mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
d0fde30ce8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
801 lines
29 KiB
C++
801 lines
29 KiB
C++
//===- PassManagerT.h - Container for Passes --------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the PassManagerT class. This class is used to hold,
|
|
// maintain, and optimize execution of Pass's. The PassManager class ensures
|
|
// that analysis results are available before a pass runs, and that Pass's are
|
|
// destroyed when the PassManager is destroyed.
|
|
//
|
|
// The PassManagerT template is instantiated three times to do its job. The
|
|
// public PassManager class is a Pimpl around the PassManagerT<Module> interface
|
|
// to avoid having all of the PassManager clients being exposed to the
|
|
// implementation details herein.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_PASSMANAGER_T_H
|
|
#define LLVM_PASSMANAGER_T_H
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "Support/CommandLine.h"
|
|
#include "Support/LeakDetector.h"
|
|
#include "Support/Timer.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
|
|
namespace llvm {
|
|
|
|
class Annotable;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass debugging information. Often it is useful to find out what pass is
|
|
// running when a crash occurs in a utility. When this library is compiled with
|
|
// debugging on, a command line option (--debug-pass) is enabled that causes the
|
|
// pass name to be printed before it executes.
|
|
//
|
|
|
|
// Different debug levels that can be enabled...
|
|
enum PassDebugLevel {
|
|
None, Arguments, Structure, Executions, Details
|
|
};
|
|
|
|
static cl::opt<enum PassDebugLevel>
|
|
PassDebugging("debug-pass", cl::Hidden,
|
|
cl::desc("Print PassManager debugging information"),
|
|
cl::values(
|
|
clEnumVal(None , "disable debug output"),
|
|
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
|
|
clEnumVal(Structure , "print pass structure before run()"),
|
|
clEnumVal(Executions, "print pass name before it is executed"),
|
|
clEnumVal(Details , "print pass details when it is executed"),
|
|
0));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PMDebug class - a set of debugging functions, that are not to be
|
|
// instantiated by the template.
|
|
//
|
|
struct PMDebug {
|
|
static void PerformPassStartupStuff(Pass *P) {
|
|
// If debugging is enabled, print out argument information...
|
|
if (PassDebugging >= Arguments) {
|
|
std::cerr << "Pass Arguments: ";
|
|
PrintArgumentInformation(P);
|
|
std::cerr << "\n";
|
|
|
|
// Print the pass execution structure
|
|
if (PassDebugging >= Structure)
|
|
P->dumpPassStructure();
|
|
}
|
|
}
|
|
|
|
static void PrintArgumentInformation(const Pass *P);
|
|
static void PrintPassInformation(unsigned,const char*,Pass *, Annotable *);
|
|
static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
|
|
const std::vector<AnalysisID> &);
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TimingInfo Class - This class is used to calculate information about the
|
|
// amount of time each pass takes to execute. This only happens when
|
|
// -time-passes is enabled on the command line.
|
|
//
|
|
|
|
class TimingInfo {
|
|
std::map<Pass*, Timer> TimingData;
|
|
TimerGroup TG;
|
|
|
|
// Private ctor, must use 'create' member
|
|
TimingInfo() : TG("... Pass execution timing report ...") {}
|
|
public:
|
|
// TimingDtor - Print out information about timing information
|
|
~TimingInfo() {
|
|
// Delete all of the timers...
|
|
TimingData.clear();
|
|
// TimerGroup is deleted next, printing the report.
|
|
}
|
|
|
|
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
|
|
// to a non null value (if the -time-passes option is enabled) or it leaves it
|
|
// null. It may be called multiple times.
|
|
static void createTheTimeInfo();
|
|
|
|
void passStarted(Pass *P) {
|
|
if (dynamic_cast<AnalysisResolver*>(P)) return;
|
|
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
|
|
if (I == TimingData.end())
|
|
I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
|
|
I->second.startTimer();
|
|
}
|
|
void passEnded(Pass *P) {
|
|
if (dynamic_cast<AnalysisResolver*>(P)) return;
|
|
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
|
|
assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
|
|
I->second.stopTimer();
|
|
}
|
|
};
|
|
|
|
static TimingInfo *TheTimeInfo;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Declare the PassManagerTraits which will be specialized...
|
|
//
|
|
template<class UnitType> class PassManagerTraits; // Do not define.
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerT - Container object for passes. The PassManagerT destructor
|
|
// deletes all passes contained inside of the PassManagerT, so you shouldn't
|
|
// delete passes manually, and all passes should be dynamically allocated.
|
|
//
|
|
template<typename UnitType>
|
|
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
|
|
typedef PassManagerTraits<UnitType> Traits;
|
|
typedef typename Traits::PassClass PassClass;
|
|
typedef typename Traits::SubPassClass SubPassClass;
|
|
typedef typename Traits::BatcherClass BatcherClass;
|
|
typedef typename Traits::ParentClass ParentClass;
|
|
|
|
friend class PassManagerTraits<UnitType>::PassClass;
|
|
friend class PassManagerTraits<UnitType>::SubPassClass;
|
|
friend class PassManagerTraits<UnitType>;
|
|
friend class ImmutablePass;
|
|
|
|
std::vector<PassClass*> Passes; // List of passes to run
|
|
std::vector<ImmutablePass*> ImmutablePasses; // List of immutable passes
|
|
|
|
// The parent of this pass manager...
|
|
ParentClass * const Parent;
|
|
|
|
// The current batcher if one is in use, or null
|
|
BatcherClass *Batcher;
|
|
|
|
// CurrentAnalyses - As the passes are being run, this map contains the
|
|
// analyses that are available to the current pass for use. This is accessed
|
|
// through the getAnalysis() function in this class and in Pass.
|
|
//
|
|
std::map<AnalysisID, Pass*> CurrentAnalyses;
|
|
|
|
// LastUseOf - This map keeps track of the last usage in our pipeline of a
|
|
// particular pass. When executing passes, the memory for .first is free'd
|
|
// after .second is run.
|
|
//
|
|
std::map<Pass*, Pass*> LastUseOf;
|
|
|
|
public:
|
|
PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
|
|
~PassManagerT() {
|
|
// Delete all of the contained passes...
|
|
for (typename std::vector<PassClass*>::iterator
|
|
I = Passes.begin(), E = Passes.end(); I != E; ++I)
|
|
delete *I;
|
|
|
|
for (std::vector<ImmutablePass*>::iterator
|
|
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
|
|
delete *I;
|
|
}
|
|
|
|
// run - Run all of the queued passes on the specified module in an optimal
|
|
// way.
|
|
virtual bool runOnUnit(UnitType *M) {
|
|
bool MadeChanges = false;
|
|
closeBatcher();
|
|
CurrentAnalyses.clear();
|
|
|
|
TimingInfo::createTheTimeInfo();
|
|
|
|
// Add any immutable passes to the CurrentAnalyses set...
|
|
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
|
|
ImmutablePass *IPass = ImmutablePasses[i];
|
|
if (const PassInfo *PI = IPass->getPassInfo()) {
|
|
CurrentAnalyses[PI] = IPass;
|
|
|
|
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
|
|
for (unsigned i = 0, e = II.size(); i != e; ++i)
|
|
CurrentAnalyses[II[i]] = IPass;
|
|
}
|
|
}
|
|
|
|
// LastUserOf - This contains the inverted LastUseOfMap...
|
|
std::map<Pass *, std::vector<Pass*> > LastUserOf;
|
|
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
|
|
E = LastUseOf.end(); I != E; ++I)
|
|
LastUserOf[I->second].push_back(I->first);
|
|
|
|
|
|
// Output debug information...
|
|
if (Parent == 0) PMDebug::PerformPassStartupStuff(this);
|
|
|
|
// Run all of the passes
|
|
for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
|
|
PassClass *P = Passes[i];
|
|
|
|
PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P,
|
|
(Annotable*)M);
|
|
|
|
// Get information about what analyses the pass uses...
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P,
|
|
AnUsage.getRequiredSet());
|
|
|
|
// All Required analyses should be available to the pass as it runs! Here
|
|
// we fill in the AnalysisImpls member of the pass so that it can
|
|
// successfully use the getAnalysis() method to retrieve the
|
|
// implementations it needs.
|
|
//
|
|
P->AnalysisImpls.clear();
|
|
P->AnalysisImpls.reserve(AnUsage.getRequiredSet().size());
|
|
for (std::vector<const PassInfo *>::const_iterator
|
|
I = AnUsage.getRequiredSet().begin(),
|
|
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
|
|
Pass *Impl = getAnalysisOrNullUp(*I);
|
|
if (Impl == 0) {
|
|
std::cerr << "Analysis '" << (*I)->getPassName()
|
|
<< "' used but not available!";
|
|
assert(0 && "Analysis used but not available!");
|
|
} else if (PassDebugging == Details) {
|
|
if ((*I)->getPassName() != std::string(Impl->getPassName()))
|
|
std::cerr << " Interface '" << (*I)->getPassName()
|
|
<< "' implemented by '" << Impl->getPassName() << "'\n";
|
|
}
|
|
P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
|
|
}
|
|
|
|
// Run the sub pass!
|
|
if (TheTimeInfo) TheTimeInfo->passStarted(P);
|
|
bool Changed = runPass(P, M);
|
|
if (TheTimeInfo) TheTimeInfo->passEnded(P);
|
|
MadeChanges |= Changed;
|
|
|
|
// Check for memory leaks by the pass...
|
|
LeakDetector::checkForGarbage(std::string("after running pass '") +
|
|
P->getPassName() + "'");
|
|
|
|
if (Changed)
|
|
PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P,
|
|
(Annotable*)M);
|
|
PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P,
|
|
AnUsage.getPreservedSet());
|
|
|
|
|
|
// Erase all analyses not in the preserved set...
|
|
if (!AnUsage.getPreservesAll()) {
|
|
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
|
|
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
|
|
E = CurrentAnalyses.end(); I != E; )
|
|
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) !=
|
|
PreservedSet.end())
|
|
++I; // This analysis is preserved, leave it in the available set...
|
|
else {
|
|
if (!dynamic_cast<ImmutablePass*>(I->second)) {
|
|
std::map<AnalysisID, Pass*>::iterator J = I++;
|
|
CurrentAnalyses.erase(J); // Analysis not preserved!
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the current pass to the set of passes that have been run, and are
|
|
// thus available to users.
|
|
//
|
|
if (const PassInfo *PI = P->getPassInfo()) {
|
|
CurrentAnalyses[PI] = P;
|
|
|
|
// This pass is the current implementation of all of the interfaces it
|
|
// implements as well.
|
|
//
|
|
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
|
|
for (unsigned i = 0, e = II.size(); i != e; ++i)
|
|
CurrentAnalyses[II[i]] = P;
|
|
}
|
|
|
|
// Free memory for any passes that we are the last use of...
|
|
std::vector<Pass*> &DeadPass = LastUserOf[P];
|
|
for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
|
|
I != E; ++I) {
|
|
PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I,
|
|
(Annotable*)M);
|
|
(*I)->releaseMemory();
|
|
}
|
|
|
|
// Make sure to remove dead passes from the CurrentAnalyses list...
|
|
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin();
|
|
I != CurrentAnalyses.end(); ) {
|
|
std::vector<Pass*>::iterator DPI = std::find(DeadPass.begin(),
|
|
DeadPass.end(), I->second);
|
|
if (DPI != DeadPass.end()) { // This pass is dead now... remove it
|
|
std::map<AnalysisID, Pass*>::iterator IDead = I++;
|
|
CurrentAnalyses.erase(IDead);
|
|
} else {
|
|
++I; // Move on to the next element...
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|
|
|
|
// dumpPassStructure - Implement the -debug-passes=PassStructure option
|
|
virtual void dumpPassStructure(unsigned Offset = 0) {
|
|
// Print out the immutable passes...
|
|
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i)
|
|
ImmutablePasses[i]->dumpPassStructure(0);
|
|
|
|
std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
|
|
<< " Pass Manager\n";
|
|
for (typename std::vector<PassClass*>::iterator
|
|
I = Passes.begin(), E = Passes.end(); I != E; ++I) {
|
|
PassClass *P = *I;
|
|
P->dumpPassStructure(Offset+1);
|
|
|
|
// Loop through and see which classes are destroyed after this one...
|
|
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
|
|
E = LastUseOf.end(); I != E; ++I) {
|
|
if (P == I->second) {
|
|
std::cerr << "--" << std::string(Offset*2, ' ');
|
|
I->first->dumpPassStructure(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Pass *getImmutablePassOrNull(const PassInfo *ID) const {
|
|
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
|
|
const PassInfo *IPID = ImmutablePasses[i]->getPassInfo();
|
|
if (IPID == ID)
|
|
return ImmutablePasses[i];
|
|
|
|
// This pass is the current implementation of all of the interfaces it
|
|
// implements as well.
|
|
//
|
|
const std::vector<const PassInfo*> &II =
|
|
IPID->getInterfacesImplemented();
|
|
for (unsigned j = 0, e = II.size(); j != e; ++j)
|
|
if (II[j] == ID) return ImmutablePasses[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Pass *getAnalysisOrNullDown(const PassInfo *ID) const {
|
|
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
|
|
|
|
if (I != CurrentAnalyses.end())
|
|
return I->second; // Found it.
|
|
|
|
if (Pass *P = getImmutablePassOrNull(ID))
|
|
return P;
|
|
|
|
if (Batcher)
|
|
return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
|
|
return 0;
|
|
}
|
|
|
|
Pass *getAnalysisOrNullUp(const PassInfo *ID) const {
|
|
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
|
|
if (I != CurrentAnalyses.end())
|
|
return I->second; // Found it.
|
|
|
|
if (Parent) // Try scanning...
|
|
return Parent->getAnalysisOrNullUp(ID);
|
|
else if (!ImmutablePasses.empty())
|
|
return getImmutablePassOrNull(ID);
|
|
return 0;
|
|
}
|
|
|
|
// markPassUsed - Inform higher level pass managers (and ourselves)
|
|
// that these analyses are being used by this pass. This is used to
|
|
// make sure that analyses are not free'd before we have to use
|
|
// them...
|
|
//
|
|
void markPassUsed(const PassInfo *P, Pass *User) {
|
|
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(P);
|
|
|
|
if (I != CurrentAnalyses.end()) {
|
|
LastUseOf[I->second] = User; // Local pass, extend the lifetime
|
|
} else {
|
|
// Pass not in current available set, must be a higher level pass
|
|
// available to us, propagate to parent pass manager... We tell the
|
|
// parent that we (the passmanager) are using the analysis so that it
|
|
// frees the analysis AFTER this pass manager runs.
|
|
//
|
|
if (Parent) {
|
|
Parent->markPassUsed(P, this);
|
|
} else {
|
|
assert(getAnalysisOrNullUp(P) &&
|
|
dynamic_cast<ImmutablePass*>(getAnalysisOrNullUp(P)) &&
|
|
"Pass available but not found! "
|
|
"Perhaps this is a module pass requiring a function pass?");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the number of parent PassManagers that exist
|
|
virtual unsigned getDepth() const {
|
|
if (Parent == 0) return 0;
|
|
return 1 + Parent->getDepth();
|
|
}
|
|
|
|
virtual unsigned getNumContainedPasses() const { return Passes.size(); }
|
|
virtual const Pass *getContainedPass(unsigned N) const {
|
|
assert(N < Passes.size() && "Pass number out of range!");
|
|
return Passes[N];
|
|
}
|
|
|
|
// add - Add a pass to the queue of passes to run. This gives ownership of
|
|
// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
// will be destroyed as well, so there is no need to delete the pass. This
|
|
// implies that all passes MUST be new'd.
|
|
//
|
|
void add(PassClass *P) {
|
|
// Get information about what analyses the pass uses...
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();
|
|
|
|
// Loop over all of the analyses used by this pass,
|
|
for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
|
|
E = Required.end(); I != E; ++I) {
|
|
if (getAnalysisOrNullDown(*I) == 0)
|
|
add((PassClass*)(*I)->createPass());
|
|
}
|
|
|
|
// Tell the pass to add itself to this PassManager... the way it does so
|
|
// depends on the class of the pass, and is critical to laying out passes in
|
|
// an optimal order..
|
|
//
|
|
P->addToPassManager(this, AnUsage);
|
|
}
|
|
|
|
// add - H4x0r an ImmutablePass into a PassManager that might not be
|
|
// expecting one.
|
|
//
|
|
void add(ImmutablePass *P) {
|
|
// Get information about what analyses the pass uses...
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();
|
|
|
|
// Loop over all of the analyses used by this pass,
|
|
for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
|
|
E = Required.end(); I != E; ++I) {
|
|
if (getAnalysisOrNullDown(*I) == 0)
|
|
add((PassClass*)(*I)->createPass());
|
|
}
|
|
|
|
// Add the ImmutablePass to this PassManager.
|
|
addPass(P, AnUsage);
|
|
}
|
|
|
|
private:
|
|
// addPass - These functions are used to implement the subclass specific
|
|
// behaviors present in PassManager. Basically the add(Pass*) method ends up
|
|
// reflecting its behavior into a Pass::addToPassManager call. Subclasses of
|
|
// Pass override it specifically so that they can reflect the type
|
|
// information inherent in "this" back to the PassManager.
|
|
//
|
|
// For generic Pass subclasses (which are interprocedural passes), we simply
|
|
// add the pass to the end of the pass list and terminate any accumulation of
|
|
// FunctionPass's that are present.
|
|
//
|
|
void addPass(PassClass *P, AnalysisUsage &AnUsage) {
|
|
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
|
|
|
|
// FIXME: If this pass being added isn't killed by any of the passes in the
|
|
// batcher class then we can reorder to pass to execute before the batcher
|
|
// does, which will potentially allow us to batch more passes!
|
|
//
|
|
//const std::vector<AnalysisID> &ProvidedSet = AnUsage.getProvidedSet();
|
|
if (Batcher /*&& ProvidedSet.empty()*/)
|
|
closeBatcher(); // This pass cannot be batched!
|
|
|
|
// Set the Resolver instance variable in the Pass so that it knows where to
|
|
// find this object...
|
|
//
|
|
setAnalysisResolver(P, this);
|
|
Passes.push_back(P);
|
|
|
|
// Inform higher level pass managers (and ourselves) that these analyses are
|
|
// being used by this pass. This is used to make sure that analyses are not
|
|
// free'd before we have to use them...
|
|
//
|
|
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
|
|
E = RequiredSet.end(); I != E; ++I)
|
|
markPassUsed(*I, P); // Mark *I as used by P
|
|
|
|
// Erase all analyses not in the preserved set...
|
|
if (!AnUsage.getPreservesAll()) {
|
|
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
|
|
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
|
|
E = CurrentAnalyses.end(); I != E; ) {
|
|
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
|
|
PreservedSet.end()) { // Analysis not preserved!
|
|
CurrentAnalyses.erase(I); // Remove from available analyses
|
|
I = CurrentAnalyses.begin();
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add this pass to the currently available set...
|
|
if (const PassInfo *PI = P->getPassInfo()) {
|
|
CurrentAnalyses[PI] = P;
|
|
|
|
// This pass is the current implementation of all of the interfaces it
|
|
// implements as well.
|
|
//
|
|
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
|
|
for (unsigned i = 0, e = II.size(); i != e; ++i)
|
|
CurrentAnalyses[II[i]] = P;
|
|
}
|
|
|
|
// For now assume that our results are never used...
|
|
LastUseOf[P] = P;
|
|
}
|
|
|
|
// For FunctionPass subclasses, we must be sure to batch the FunctionPass's
|
|
// together in a BatcherClass object so that all of the analyses are run
|
|
// together a function at a time.
|
|
//
|
|
void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) {
|
|
if (Batcher == 0) // If we don't have a batcher yet, make one now.
|
|
Batcher = new BatcherClass(this);
|
|
// The Batcher will queue the passes up
|
|
MP->addToPassManager(Batcher, AnUsage);
|
|
}
|
|
|
|
// closeBatcher - Terminate the batcher that is being worked on.
|
|
void closeBatcher() {
|
|
if (Batcher) {
|
|
Passes.push_back(Batcher);
|
|
Batcher = 0;
|
|
}
|
|
}
|
|
|
|
public:
|
|
// When an ImmutablePass is added, it gets added to the top level pass
|
|
// manager.
|
|
void addPass(ImmutablePass *IP, AnalysisUsage &AU) {
|
|
if (Parent) { // Make sure this request goes to the top level passmanager...
|
|
Parent->addPass(IP, AU);
|
|
return;
|
|
}
|
|
|
|
// Set the Resolver instance variable in the Pass so that it knows where to
|
|
// find this object...
|
|
//
|
|
setAnalysisResolver(IP, this);
|
|
ImmutablePasses.push_back(IP);
|
|
|
|
// All Required analyses should be available to the pass as it initializes!
|
|
// Here we fill in the AnalysisImpls member of the pass so that it can
|
|
// successfully use the getAnalysis() method to retrieve the implementations
|
|
// it needs.
|
|
//
|
|
IP->AnalysisImpls.clear();
|
|
IP->AnalysisImpls.reserve(AU.getRequiredSet().size());
|
|
for (std::vector<const PassInfo *>::const_iterator
|
|
I = AU.getRequiredSet().begin(),
|
|
E = AU.getRequiredSet().end(); I != E; ++I) {
|
|
Pass *Impl = getAnalysisOrNullUp(*I);
|
|
if (Impl == 0) {
|
|
std::cerr << "Analysis '" << (*I)->getPassName()
|
|
<< "' used but not available!";
|
|
assert(0 && "Analysis used but not available!");
|
|
} else if (PassDebugging == Details) {
|
|
if ((*I)->getPassName() != std::string(Impl->getPassName()))
|
|
std::cerr << " Interface '" << (*I)->getPassName()
|
|
<< "' implemented by '" << Impl->getPassName() << "'\n";
|
|
}
|
|
IP->AnalysisImpls.push_back(std::make_pair(*I, Impl));
|
|
}
|
|
|
|
// Initialize the immutable pass...
|
|
IP->initializePass();
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerTraits<BasicBlock> Specialization
|
|
//
|
|
// This pass manager is used to group together all of the BasicBlockPass's
|
|
// into a single unit.
|
|
//
|
|
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
|
|
// PassClass - The type of passes tracked by this PassManager
|
|
typedef BasicBlockPass PassClass;
|
|
|
|
// SubPassClass - The types of classes that should be collated together
|
|
// This is impossible to match, so BasicBlock instantiations of PassManagerT
|
|
// do not collate.
|
|
//
|
|
typedef PassManagerT<Module> SubPassClass;
|
|
|
|
// BatcherClass - The type to use for collation of subtypes... This class is
|
|
// never instantiated for the PassManager<BasicBlock>, but it must be an
|
|
// instance of PassClass to typecheck.
|
|
//
|
|
typedef PassClass BatcherClass;
|
|
|
|
// ParentClass - The type of the parent PassManager...
|
|
typedef PassManagerT<Function> ParentClass;
|
|
|
|
// PMType - The type of the passmanager that subclasses this class
|
|
typedef PassManagerT<BasicBlock> PMType;
|
|
|
|
// runPass - Specify how the pass should be run on the UnitType
|
|
static bool runPass(PassClass *P, BasicBlock *M) {
|
|
// todo, init and finalize
|
|
return P->runOnBasicBlock(*M);
|
|
}
|
|
|
|
// getPMName() - Return the name of the unit the PassManager operates on for
|
|
// debugging.
|
|
const char *getPMName() const { return "BasicBlock"; }
|
|
virtual const char *getPassName() const { return "BasicBlock Pass Manager"; }
|
|
|
|
// Implement the BasicBlockPass interface...
|
|
virtual bool doInitialization(Module &M);
|
|
virtual bool doInitialization(Function &F);
|
|
virtual bool runOnBasicBlock(BasicBlock &BB);
|
|
virtual bool doFinalization(Function &F);
|
|
virtual bool doFinalization(Module &M);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerTraits<Function> Specialization
|
|
//
|
|
// This pass manager is used to group together all of the FunctionPass's
|
|
// into a single unit.
|
|
//
|
|
template<> struct PassManagerTraits<Function> : public FunctionPass {
|
|
// PassClass - The type of passes tracked by this PassManager
|
|
typedef FunctionPass PassClass;
|
|
|
|
// SubPassClass - The types of classes that should be collated together
|
|
typedef BasicBlockPass SubPassClass;
|
|
|
|
// BatcherClass - The type to use for collation of subtypes...
|
|
typedef PassManagerT<BasicBlock> BatcherClass;
|
|
|
|
// ParentClass - The type of the parent PassManager...
|
|
typedef PassManagerT<Module> ParentClass;
|
|
|
|
// PMType - The type of the passmanager that subclasses this class
|
|
typedef PassManagerT<Function> PMType;
|
|
|
|
// runPass - Specify how the pass should be run on the UnitType
|
|
static bool runPass(PassClass *P, Function *F) {
|
|
return P->runOnFunction(*F);
|
|
}
|
|
|
|
// getPMName() - Return the name of the unit the PassManager operates on for
|
|
// debugging.
|
|
const char *getPMName() const { return "Function"; }
|
|
virtual const char *getPassName() const { return "Function Pass Manager"; }
|
|
|
|
// Implement the FunctionPass interface...
|
|
virtual bool doInitialization(Module &M);
|
|
virtual bool runOnFunction(Function &F);
|
|
virtual bool doFinalization(Module &M);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerTraits<Module> Specialization
|
|
//
|
|
// This is the top level PassManager implementation that holds generic passes.
|
|
//
|
|
template<> struct PassManagerTraits<Module> : public Pass {
|
|
// PassClass - The type of passes tracked by this PassManager
|
|
typedef Pass PassClass;
|
|
|
|
// SubPassClass - The types of classes that should be collated together
|
|
typedef FunctionPass SubPassClass;
|
|
|
|
// BatcherClass - The type to use for collation of subtypes...
|
|
typedef PassManagerT<Function> BatcherClass;
|
|
|
|
// ParentClass - The type of the parent PassManager...
|
|
typedef AnalysisResolver ParentClass;
|
|
|
|
// runPass - Specify how the pass should be run on the UnitType
|
|
static bool runPass(PassClass *P, Module *M) { return P->run(*M); }
|
|
|
|
// getPMName() - Return the name of the unit the PassManager operates on for
|
|
// debugging.
|
|
const char *getPMName() const { return "Module"; }
|
|
virtual const char *getPassName() const { return "Module Pass Manager"; }
|
|
|
|
// run - Implement the PassManager interface...
|
|
bool run(Module &M) {
|
|
return ((PassManagerT<Module>*)this)->runOnUnit(&M);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerTraits Method Implementations
|
|
//
|
|
|
|
// PassManagerTraits<BasicBlock> Implementations
|
|
//
|
|
inline bool PassManagerTraits<BasicBlock>::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doInitialization(M);
|
|
return Changed;
|
|
}
|
|
|
|
inline bool PassManagerTraits<BasicBlock>::doInitialization(Function &F) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doInitialization(F);
|
|
return Changed;
|
|
}
|
|
|
|
inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock &BB) {
|
|
return ((PMType*)this)->runOnUnit(&BB);
|
|
}
|
|
|
|
inline bool PassManagerTraits<BasicBlock>::doFinalization(Function &F) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doFinalization(F);
|
|
return Changed;
|
|
}
|
|
|
|
inline bool PassManagerTraits<BasicBlock>::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doFinalization(M);
|
|
return Changed;
|
|
}
|
|
|
|
|
|
// PassManagerTraits<Function> Implementations
|
|
//
|
|
inline bool PassManagerTraits<Function>::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doInitialization(M);
|
|
return Changed;
|
|
}
|
|
|
|
inline bool PassManagerTraits<Function>::runOnFunction(Function &F) {
|
|
return ((PMType*)this)->runOnUnit(&F);
|
|
}
|
|
|
|
inline bool PassManagerTraits<Function>::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
|
|
((PMType*)this)->Passes[i]->doFinalization(M);
|
|
return Changed;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|