mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	JP Bonn! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59876 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2163 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			2163 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| <html>
 | |
| <head>
 | |
|   <title>Writing an LLVM Compiler Backend</title>
 | |
|   <link rel="stylesheet" href="llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">
 | |
|   Writing an LLVM Compiler Backend
 | |
| </div>
 | |
| 
 | |
| <ol>
 | |
|   <li><a href="#intro">Introduction</a>
 | |
|   <ul>
 | |
|     <li><a href="#Audience">Audience</a></li>
 | |
|     <li><a href="#Prerequisite">Prerequisite Reading</a></li>
 | |
|     <li><a href="#Basic">Basic Steps</a></li>
 | |
|     <li><a href="#Preliminaries">Preliminaries</a></li>
 | |
|   </ul>
 | |
|   <li><a href="#TargetMachine">Target Machine</a></li>
 | |
|   <li><a href="#RegisterSet">Register Set and Register Classes</a>
 | |
|   <ul>
 | |
|     <li><a href="#RegisterDef">Defining a Register</a></li>
 | |
|     <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
 | |
|     <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
 | |
|   </ul></li>
 | |
|   <li><a href="#InstructionSet">Instruction Set</a>
 | |
|   <ul>  
 | |
|     <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
 | |
|     <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
 | |
|     <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
 | |
|   </ul></li>
 | |
|   <li><a href="#InstructionSelector">Instruction Selector</a>
 | |
|   <ul>
 | |
|     <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
 | |
|     <ul>
 | |
|       <li><a href="#promote">Promote</a></li> 
 | |
|       <li><a href="#expand">Expand</a></li> 
 | |
|       <li><a href="#custom">Custom</a></li> 
 | |
|       <li><a href="#legal">Legal</a></li>       
 | |
|     </ul></li>
 | |
|     <li><a href="#callingConventions">Calling Conventions</a></li>     
 | |
|   </ul></li>
 | |
|   <li><a href="#assemblyPrinter">Assembly Printer</a></li> 
 | |
|   <li><a href="#subtargetSupport">Subtarget Support</a></li> 
 | |
|   <li><a href="#jitSupport">JIT Support</a>
 | |
|   <ul>  
 | |
|     <li><a href="#mce">Machine Code Emitter</a></li>   
 | |
|     <li><a href="#targetJITInfo">Target JIT Info</a></li>   
 | |
|   </ul></li>
 | |
| </ol>
 | |
| 
 | |
| <div class="doc_author">    
 | |
|   <p>Written by <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="intro">Introduction</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>This document describes techniques for writing compiler backends
 | |
| that convert the LLVM IR (intermediate representation) to code for a specified
 | |
| machine or other languages. Code intended for a specific machine can take the
 | |
| form of either assembly code or binary code (usable for a JIT compiler). </p>
 | |
| 
 | |
| <p>The backend of LLVM features a target-independent code generator
 | |
| that may create output for several types of target CPUs, including X86,
 | |
| PowerPC, Alpha, and SPARC. The backend may also be used to generate code
 | |
| targeted at SPUs of the Cell processor or GPUs to support the execution of
 | |
| compute kernels.</p>
 | |
| 
 | |
| <p>The document focuses on existing examples found in subdirectories
 | |
| of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this document
 | |
| focuses on the example of creating a static compiler (one that emits text
 | |
| assembly) for a SPARC target, because SPARC has fairly standard
 | |
| characteristics, such as a RISC instruction set and straightforward calling
 | |
| conventions.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_subsection">
 | |
|   <a name="Audience">Audience</a>
 | |
| </div>  
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The audience for this document is anyone who needs to write an
 | |
| LLVM backend to generate code for a specific hardware or software target.</p>  
 | |
| </div>
 | |
| 
 | |
| <div class="doc_subsection">
 | |
|   <a name="Prerequisite">Prerequisite Reading</a>
 | |
| </div>  
 | |
| 
 | |
| <div class="doc_text">  
 | |
| These essential documents must be read before reading this document:  
 | |
| <ul>
 | |
| <li>
 | |
| <i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference Manual</a></i> - 
 | |
| a reference manual for the LLVM assembly language
 | |
| </li>
 | |
| <li>
 | |
| <i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator </a></i> - 
 | |
| a guide to the components (classes and code generation algorithms) for translating 
 | |
| the LLVM internal representation to the machine code for a specified target. 
 | |
| Pay particular attention to the descriptions of code generation stages: 
 | |
| Instruction Selection, Scheduling and Formation, SSA-based Optimization, 
 | |
| Register Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, 
 | |
| and Code Emission. 
 | |
| </li>
 | |
| <li>
 | |
| <i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen Fundamentals</a></i> - 
 | |
| a document that describes the TableGen (tblgen) application that manages domain-specific 
 | |
| information to support LLVM code generation. TableGen processes input from a 
 | |
| target description file (.td suffix) and generates C++ code that can be used 
 | |
| for code generation.
 | |
| </li>
 | |
| <li>
 | |
| <i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM Pass</a></i> - 
 | |
| The assembly printer is a FunctionPass, as are several SelectionDAG processing steps.
 | |
| </li>
 | |
| </ul>
 | |
| To follow the SPARC examples in this document, have a copy of 
 | |
| <i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture Manual, Version 8</a></i> 
 | |
| for reference. For details about the ARM instruction set, refer to the 
 | |
| <i><a href="http://infocenter.arm.com/">ARM Architecture Reference Manual</a></i>
 | |
| For more about the GNU Assembler format (GAS), see 
 | |
| <i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>
 | |
| especially for the assembly printer. <i>Using As</i> contains lists of target machine dependent features. 
 | |
| </div>
 | |
| 
 | |
| <div class="doc_subsection">
 | |
|   <a name="Basic">Basic Steps</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>To write a compiler
 | |
| backend for LLVM that converts the LLVM IR (intermediate representation)
 | |
| to code for a specified target (machine or other language), follow these steps:</p>
 | |
| 
 | |
| <ul>
 | |
| <li>
 | |
| Create a subclass of the TargetMachine class that describes
 | |
| characteristics of your target machine. Copy existing examples of specific
 | |
| TargetMachine class and header files; for example, start with <tt>SparcTargetMachine.cpp</tt>
 | |
| and <tt>SparcTargetMachine.h</tt>, but change the file names for your target. Similarly,
 | |
| change code that references "Sparc" to reference your target. </li>
 | |
| 
 | |
| <li>Describe the register set of the target. Use TableGen to generate
 | |
| code for register definition, register aliases, and register classes from a
 | |
| target-specific <tt>RegisterInfo.td</tt> input file. You should also write additional
 | |
| code for a subclass of TargetRegisterInfo class that represents the class
 | |
| register file data used for register allocation and also describes the
 | |
| interactions between registers.</li>
 | |
| 
 | |
| <li>Describe the instruction set of the target. Use TableGen to
 | |
| generate code for target-specific instructions from target-specific versions of
 | |
| <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should write additional code
 | |
| for a subclass of the TargetInstrInfo
 | |
| class to represent machine
 | |
| instructions supported by the target machine. </li>
 | |
| 
 | |
| <li>Describe the selection and conversion of the LLVM IR from a DAG (directed
 | |
| acyclic graph) representation of instructions to native target-specific
 | |
| instructions. Use TableGen to generate code that matches patterns and selects
 | |
| instructions based on additional information in a target-specific version of
 | |
| <tt>TargetInstrInfo.td</tt>. Write code for <tt>XXXISelDAGToDAG.cpp</tt> 
 | |
| (where XXX identifies the specific target) to perform pattern
 | |
| matching and DAG-to-DAG instruction selection. Also write code in <tt>XXXISelLowering.cpp</tt>
 | |
| to replace or remove operations and data types that are not supported natively
 | |
| in a SelectionDAG. </li>
 | |
| 
 | |
| <li>Write code for an
 | |
| assembly printer that converts LLVM IR to a GAS format for your target machine.
 | |
| You should add assembly strings to the instructions defined in your
 | |
| target-specific version of <tt>TargetInstrInfo.td</tt>. You should also write code for a
 | |
| subclass of AsmPrinter that performs the LLVM-to-assembly conversion and a
 | |
| trivial subclass of TargetAsmInfo.</li>
 | |
| 
 | |
| <li>Optionally, add support for subtargets (that is, variants with
 | |
| different capabilities). You should also write code for a subclass of the
 | |
| TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt> 
 | |
| and <tt>-mattr=</tt> command-line options.</li>
 | |
| 
 | |
| <li>Optionally, add JIT support and create a machine code emitter (subclass
 | |
| of TargetJITInfo) that is used to emit binary code directly into memory. </li>
 | |
| </ul>
 | |
| 
 | |
| <p>In the .cpp and .h files, initially stub up these methods and
 | |
| then implement them later. Initially, you may not know which private members
 | |
| that the class will need and which components will need to be subclassed.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_subsection">
 | |
|   <a name="Preliminaries">Preliminaries</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>To actually create
 | |
| your compiler backend, you need to create and modify a few files. The absolute
 | |
| minimum is discussed here, but to actually use the LLVM target-independent code
 | |
| generator, you must perform the steps described in the <a
 | |
| href="http://www.llvm.org/docs/CodeGenerator.html">LLVM
 | |
| Target-Independent Code Generator</a> document.</p>
 | |
| 
 | |
| <p>First, you should
 | |
| create a subdirectory under <tt>lib/Target</tt> to hold all the files related to your
 | |
| target. If your target is called "Dummy", create the directory
 | |
| <tt>lib/Target/Dummy</tt>.</p>
 | |
| 
 | |
| <p>In this new
 | |
| directory, create a <tt>Makefile</tt>. It is easiest to copy a <tt>Makefile</tt> of another
 | |
| target and modify it. It should at least contain the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and
 | |
| <tt>TARGET</tt> variables, and then include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
 | |
| named LLVMDummy (for example, see the MIPS target). Alternatively, you can
 | |
| split the library into LLVMDummyCodeGen and LLVMDummyAsmPrinter, the latter of
 | |
| which should be implemented in a subdirectory below <tt>lib/Target/Dummy</tt> (for
 | |
| example, see the PowerPC target).</p>
 | |
| 
 | |
| <p>Note that these two
 | |
| naming schemes are hardcoded into <tt>llvm-config</tt>. Using any other naming scheme
 | |
| will confuse <tt>llvm-config</tt> and produce lots of (seemingly unrelated) linker
 | |
| errors when linking <tt>llc</tt>.</p>
 | |
| 
 | |
| <p>To make your target
 | |
| actually do something, you need to implement a subclass of TargetMachine. This
 | |
| implementation should typically be in the file
 | |
| <tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in the <tt>lib/Target</tt> directory will
 | |
| be built and should work. To use LLVM's target
 | |
| independent code generator, you should do what all current machine backends do: create a subclass
 | |
| of LLVMTargetMachine. (To create a target from scratch, create a subclass of
 | |
| TargetMachine.)</p>
 | |
| 
 | |
| <p>To get LLVM to
 | |
| actually build and link your target, you need to add it to the <tt>TARGETS_TO_BUILD</tt>
 | |
| variable. To do this, you modify the configure script to know about your target
 | |
| when parsing the <tt>--enable-targets</tt> option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>,
 | |
| add your target to the lists there (some creativity required) and then
 | |
| reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
 | |
| regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="TargetMachine">Target Machine</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>LLVMTargetMachine is designed as a base class for targets
 | |
| implemented with the LLVM target-independent code generator. The
 | |
| LLVMTargetMachine class should be specialized by a concrete target class that
 | |
| implements the various virtual methods. LLVMTargetMachine is defined as a
 | |
| subclass of TargetMachine in <tt>include/llvm/Target/TargetMachine.h</tt>. The
 | |
| TargetMachine class implementation (<tt>TargetMachine.cpp</tt>) also processes numerous
 | |
| command-line options.  </p>
 | |
| 
 | |
| <p>To create a concrete target-specific subclass of
 | |
| LLVMTargetMachine, start by copying an existing TargetMachine class and header.
 | |
| You should name the files that you create to reflect your specific target. For
 | |
| instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
 | |
| <tt>SparcTargetMachine.cpp</tt></p>
 | |
| 
 | |
| <p>For a target machine XXX, the implementation of XXXTargetMachine
 | |
| must have access methods to obtain objects that represent target components.
 | |
| These methods are named <tt>get*Info</tt> and are intended to obtain the instruction set
 | |
| (<tt>getInstrInfo</tt>), register set (<tt>getRegisterInfo</tt>), stack frame layout
 | |
| (<tt>getFrameInfo</tt>), and similar information. XXXTargetMachine must also implement
 | |
| the <tt>getTargetData</tt> method to access an object with target-specific data
 | |
| characteristics, such as data type size and alignment requirements. </p>
 | |
| 
 | |
| <p>For instance, for the SPARC target, the header file <tt>SparcTargetMachine.h</tt>
 | |
| declares prototypes for several <tt>get*Info</tt> and <tt>getTargetData</tt> methods that simply
 | |
| return a class member.  </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>namespace llvm {
 | |
| 
 | |
| class Module;
 | |
| 
 | |
| class SparcTargetMachine : public LLVMTargetMachine {
 | |
|   const TargetData DataLayout;       // Calculates type size & alignment
 | |
|   SparcSubtarget Subtarget;
 | |
|   SparcInstrInfo InstrInfo;
 | |
|   TargetFrameInfo FrameInfo;
 | |
|   
 | |
| protected:
 | |
|   virtual const TargetAsmInfo *createTargetAsmInfo()
 | |
| const;
 | |
|   
 | |
| public:
 | |
|   SparcTargetMachine(const Module &M, const std::string &FS);
 | |
| 
 | |
|   virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
 | |
|   virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
 | |
|   virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
 | |
|   virtual const TargetRegisterInfo *getRegisterInfo() const {
 | |
|     return &InstrInfo.getRegisterInfo();
 | |
|   }
 | |
|   virtual const TargetData *getTargetData() const { return &DataLayout; }
 | |
|   static unsigned getModuleMatchQuality(const Module &M);
 | |
| 
 | |
|   // Pass Pipeline Configuration
 | |
|   virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
 | |
|   virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
 | |
|   virtual bool addAssemblyEmitter(PassManagerBase &PM, bool Fast, 
 | |
|                                   std::ostream &Out);
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <ul>
 | |
| <li><tt>getInstrInfo </tt></li>
 | |
| <li><tt>getRegisterInfo</tt></li>
 | |
| <li><tt>getFrameInfo</tt></li>
 | |
| <li><tt>getTargetData</tt></li>
 | |
| <li><tt>getSubtargetImpl</tt></li>
 | |
| </ul>
 | |
| <p>For some targets, you also need to support the following methods:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>getTargetLowering </tt></li>
 | |
| <li><tt>getJITInfo</tt></li>
 | |
| </ul>
 | |
| <p>In addition, the XXXTargetMachine constructor should specify a
 | |
| TargetDescription string that determines the data layout for the target machine,
 | |
| including characteristics such as pointer size, alignment, and endianness. For
 | |
| example, the constructor for SparcTargetMachine contains the following: </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
 | |
|   : DataLayout("E-p:32:32-f128:128:128"),
 | |
|     Subtarget(M, FS), InstrInfo(Subtarget),
 | |
|     FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>Hyphens separate portions of the TargetDescription string. </p>
 | |
| <ul>
 | |
| <li>The "E" in the string indicates a big-endian target data model; a
 | |
| lower-case "e" would indicate little-endian. </li>
 | |
| <li>"p:" is followed by pointer information: size, ABI alignment, and
 | |
| preferred alignment. If only two figures follow "p:", then the first value is
 | |
| pointer size, and the second value is both ABI and preferred alignment.</li>
 | |
| <li>then a letter for numeric type alignment: "i", "f", "v", or "a"
 | |
| (corresponding to integer, floating point, vector, or aggregate). "i", "v", or
 | |
| "a" are followed by ABI alignment and preferred alignment. "f" is followed by
 | |
| three values, the first indicates the size of a long double, then ABI alignment
 | |
| and preferred alignment.</li>
 | |
| </ul>
 | |
| <p>You must also register your target using the RegisterTarget
 | |
| template. (See the TargetMachineRegistry class.) For example, in <tt>SparcTargetMachine.cpp</tt>,
 | |
| the target is registered with:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| namespace {
 | |
|   // Register the target.
 | |
|   RegisterTarget<SparcTargetMachine>X("sparc", "SPARC");
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="RegisterSet">Register Set and Register Classes</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>You should describe
 | |
| a concrete target-specific class
 | |
| that represents the register file of a target machine. This class is
 | |
| called XXXRegisterInfo (where XXX identifies the target) and represents the
 | |
| class register file data that is used for register allocation and also
 | |
| describes the interactions between registers. </p>
 | |
| 
 | |
| <p>You also need to
 | |
| define register classes to categorize related registers. A register class
 | |
| should be added for groups of registers that are all treated the same way for
 | |
| some instruction. Typical examples are register classes that include integer,
 | |
| floating-point, or vector registers. A register allocator allows an
 | |
| instruction to use any register in a specified register class to perform the
 | |
| instruction in a similar manner. Register classes allocate virtual registers to
 | |
| instructions from these sets, and register classes let the target-independent
 | |
| register allocator automatically choose the actual registers.</p>
 | |
| 
 | |
| <p>Much of the code for registers, including register definition,
 | |
| register aliases, and register classes, is generated by TableGen from
 | |
| <tt>XXXRegisterInfo.td</tt> input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
 | |
| <tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the implementation of
 | |
| XXXRegisterInfo requires hand-coding. </p>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="RegisterDef">Defining a Register</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
 | |
| for a target machine. The Register class (specified in <tt>Target.td</tt>) is used to
 | |
| define an object for each register. The specified string n becomes the Name of
 | |
| the register. The basic Register object does not have any subregisters and does
 | |
| not specify any aliases.</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class Register<string n> {
 | |
|   string Namespace = "";
 | |
|   string AsmName = n;
 | |
|   string Name = n;
 | |
|   int SpillSize = 0;
 | |
|   int SpillAlignment = 0;
 | |
|   list<Register> Aliases = [];
 | |
|   list<Register> SubRegs = [];
 | |
|   list<int> DwarfNumbers = [];
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
 | |
| definitions that utilize the Register class, such as:</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def AL : Register<"AL">,
 | |
| DwarfRegNum<[0, 0, 0]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>This defines the register AL and assigns it values (with
 | |
| DwarfRegNum) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug information writer (such as
 | |
| DwarfWriter in <tt>llvm/lib/CodeGen</tt>) to identify a register. For register AL,
 | |
| DwarfRegNum takes an array of 3 values, representing 3 different modes: the
 | |
| first element is for X86-64, the second for EH (exception handling) on X86-32,
 | |
| and the third is generic. -1 is a special Dwarf number that indicates the gcc
 | |
| number is undefined, and -2 indicates the register number is invalid for this
 | |
| mode.</p>
 | |
| 
 | |
| <p>From the previously described line in the <tt>X86RegisterInfo.td</tt>
 | |
| file, TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   static const unsigned GR8[] = { X86::AL, ... };
 | |
|  
 | |
|   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
 | |
|  
 | |
|   const TargetRegisterDesc RegisterDescriptors[] = { 
 | |
|     ...
 | |
|     { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>From the register info file, TableGen generates a
 | |
| TargetRegisterDesc object for each register. TargetRegisterDesc is defined in
 | |
| <tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| struct TargetRegisterDesc {
 | |
|   const char     *AsmName;      // Assembly language name for the register
 | |
|   const char     *Name;         // Printable name for the reg (for debugging)
 | |
|   const unsigned *AliasSet;     // Register Alias Set
 | |
|   const unsigned *SubRegs;      // Sub-register set
 | |
|   const unsigned *ImmSubRegs;   // Immediate sub-register set
 | |
|   const unsigned *SuperRegs;    // Super-register set
 | |
| };</pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>TableGen uses the entire target description file (<tt>.td</tt>) to
 | |
| determine text names for the register (in the AsmName and Name fields of
 | |
| TargetRegisterDesc) and the relationships of other registers to the defined
 | |
| register (in the other TargetRegisterDesc fields). In this example, other
 | |
| definitions establish the registers "AX", "EAX", and "RAX" as aliases for one
 | |
| another, so TableGen generates a null-terminated array (AL_AliasSet) for this
 | |
| register alias set. </p>
 | |
| 
 | |
| <p>The Register class is commonly used as a base class for more
 | |
| complex classes. In <tt>Target.td</tt>, the Register class is the base for the
 | |
| RegisterWithSubRegs class that is used to define registers that need to specify
 | |
| subregisters in the SubRegs list, as shown here:</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class RegisterWithSubRegs<string n,
 | |
| list<Register> subregs> : Register<n> {
 | |
|   let SubRegs = subregs;
 | |
| }</pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined
 | |
| for SPARC: a Register subclass, SparcReg, and further subclasses: Ri, Rf, and
 | |
| Rd. SPARC registers are identified by 5-bit ID numbers, which is a feature
 | |
| common to these subclasses. Note the use of ‘let’ expressions to override values
 | |
| that are initially defined in a superclass (such as SubRegs field in the Rd
 | |
| class). </p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class SparcReg<string n> : Register<n> {
 | |
|   field bits<5> Num;
 | |
|   let Namespace = "SP";
 | |
| }
 | |
| // Ri - 32-bit integer registers
 | |
| class Ri<bits<5> num, string n> :
 | |
| SparcReg<n> {
 | |
|   let Num = num;
 | |
| }
 | |
| // Rf - 32-bit floating-point registers
 | |
| class Rf<bits<5> num, string n> :
 | |
| SparcReg<n> {
 | |
|   let Num = num;
 | |
| }
 | |
| // Rd - Slots in the FP register file for 64-bit
 | |
| floating-point values.
 | |
| class Rd<bits<5> num, string n,
 | |
| list<Register> subregs> : SparcReg<n> {
 | |
|   let Num = num;
 | |
|   let SubRegs = subregs;
 | |
| }</pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions
 | |
| that utilize these subclasses of Register, such as:</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def G0 : Ri< 0, "G0">,
 | |
| DwarfRegNum<[0]>;
 | |
| def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
 | |
| ...
 | |
| def F0 : Rf< 0, "F0">,
 | |
| DwarfRegNum<[32]>;
 | |
| def F1 : Rf< 1, "F1">,
 | |
| DwarfRegNum<[33]>;
 | |
| ...
 | |
| def D0 : Rd< 0, "F0", [F0, F1]>,
 | |
| DwarfRegNum<[32]>;
 | |
| def D1 : Rd< 2, "F2", [F2, F3]>,
 | |
| DwarfRegNum<[34]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The last two registers shown above (D0 and D1) are double-precision
 | |
| floating-point registers that are aliases for pairs of single-precision
 | |
| floating-point sub-registers. In addition to aliases, the sub-register and
 | |
| super-register relationships of the defined register are in fields of a
 | |
| register’s TargetRegisterDesc.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="RegisterClassDef">Defining a Register Class</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The RegisterClass class (specified in <tt>Target.td</tt>) is used to
 | |
| define an object that represents a group of related registers and also defines
 | |
| the default allocation order of the registers. A target description file
 | |
| <tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register classes using the
 | |
| following class:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class RegisterClass<string namespace,
 | |
| list<ValueType> regTypes, int alignment,
 | |
|                     list<Register> regList> {
 | |
|   string Namespace = namespace;
 | |
|   list<ValueType> RegTypes = regTypes;
 | |
|   int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
 | |
|   int Alignment = alignment;
 | |
|  
 | |
|   // CopyCost is the cost of copying a value between two registers
 | |
|   // default value 1 means a single instruction
 | |
|   // A negative value means copying is extremely expensive or impossible
 | |
|   int CopyCost = 1;  
 | |
|   list<Register> MemberList = regList;
 | |
|   
 | |
|   // for register classes that are subregisters of this class
 | |
|   list<RegisterClass> SubRegClassList = [];  
 | |
|   
 | |
|   code MethodProtos = [{}];  // to insert arbitrary code
 | |
|   code MethodBodies = [{}];
 | |
| }</pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>To define a RegisterClass, use the following 4 arguments:</p>
 | |
| <ul>
 | |
| <li>The first argument of the definition is the name of the
 | |
| namespace. </li>
 | |
| 
 | |
| <li>The second argument is a list of ValueType register type values
 | |
| that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined values include
 | |
| integer types (such as i16, i32, and i1 for Boolean), floating-point types
 | |
| (f32, f64), and vector types (for example, v8i16 for an 8 x i16 vector). All
 | |
| registers in a RegisterClass must have the same ValueType, but some registers
 | |
| may store vector data in different configurations. For example a register that
 | |
| can process a 128-bit vector may be able to handle 16 8-bit integer elements, 8
 | |
| 16-bit integers, 4 32-bit integers, and so on. </li>
 | |
| 
 | |
| <li>The third argument of the RegisterClass definition specifies the
 | |
| alignment required of the registers when they are stored or loaded to memory.</li>
 | |
| 
 | |
| <li>The final argument, <tt>regList</tt>, specifies which registers are in
 | |
| this class.  If an <tt>allocation_order_*</tt> method is not specified, then <tt>regList</tt> also
 | |
| defines the order of allocation used by the register allocator.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
 | |
| FPRegs, DFPRegs, and IntRegs. For all three register classes, the first
 | |
| argument defines the namespace with the string “SP”. FPRegs defines a group of 32
 | |
| single-precision floating-point registers (F0 to F31); DFPRegs defines a group
 | |
| of 16 double-precision registers (D0-D15). For IntRegs, the MethodProtos and
 | |
| MethodBodies methods are used by TableGen to insert the specified code into generated
 | |
| output.</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def FPRegs : RegisterClass<"SP", [f32], 32, [F0, F1, F2, F3, F4, F5, F6, F7,   
 | |
|   F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22,
 | |
|   F23, F24, F25, F26, F27, F28, F29, F30, F31]>;
 | |
|  
 | |
| def DFPRegs : RegisterClass<"SP", [f64], 64, [D0, D1, D2, D3, D4, D5, D6, D7,
 | |
|   D8, D9, D10, D11, D12, D13, D14, D15]>;
 | |
|  
 | |
| def IntRegs : RegisterClass<"SP", [i32], 32, [L0, L1, L2, L3, L4, L5, L6, L7,
 | |
|                                      I0, I1, I2, I3, I4, I5,
 | |
|                                      O0, O1, O2, O3, O4, O5, O7,
 | |
|                                      G1,
 | |
|                                      // Non-allocatable regs:
 | |
|                                      G2, G3, G4, 
 | |
|                                      O6, // stack ptr
 | |
|                                      I6, // frame ptr
 | |
|                                      I7, // return address
 | |
|                                      G0, // constant zero
 | |
|                                      G5, G6, G7 // reserved for kernel
 | |
|                                      ]> {
 | |
|   let MethodProtos = [{
 | |
|     iterator allocation_order_end(const MachineFunction &MF) const;
 | |
|   }];
 | |
|   let MethodBodies = [{
 | |
|     IntRegsClass::iterator
 | |
|     IntRegsClass::allocation_order_end(const MachineFunction &MF) const {
 | |
|       return end()-10  // Don't allocate special registers
 | |
|          -1;  
 | |
|     }
 | |
|   }];
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output
 | |
| files that are intended for inclusion in other source code that you write.
 | |
| <tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>, which should be
 | |
| included in the header file for the implementation of the SPARC register
 | |
| implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
 | |
| <tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
 | |
| SparcGenRegisterInfo that uses TargetRegisterInfo as its base. It also
 | |
| specifies types, based upon the defined register classes: DFPRegsClass, FPRegsClass,
 | |
| and IntRegsClass. </p>
 | |
| 
 | |
| <p><tt>SparcRegisterInfo.td</tt> also generates SparcGenRegisterInfo.inc,
 | |
| which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC register
 | |
| implementation. The code below shows only the generated integer registers and
 | |
| associated register classes. The order of registers in IntRegs reflects the
 | |
| order in the definition of IntRegs in the target description file. Take special
 | |
| note of the use of MethodBodies in <tt>SparcRegisterInfo.td</tt> to create code in
 | |
| <tt>SparcGenRegisterInfo.inc</tt>. MethodProtos generates similar code in
 | |
| <tt>SparcGenRegisterInfo.h.inc</tt>.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>  // IntRegs Register Class...
 | |
|   static const unsigned IntRegs[] = {
 | |
|     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
 | |
| SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5, SP::O0, SP::O1,
 | |
| SP::O2, SP::O3, SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, SP::G4, SP::O6,
 | |
| SP::I6, SP::I7, SP::G0, SP::G5, SP::G6, SP::G7, 
 | |
|   };
 | |
|  
 | |
|   // IntRegsVTs Register Class Value Types...
 | |
|   static const MVT::ValueType IntRegsVTs[] = {
 | |
|     MVT::i32, MVT::Other
 | |
|   };
 | |
| namespace SP {   // Register class instances
 | |
|   DFPRegsClass    DFPRegsRegClass;
 | |
|   FPRegsClass     FPRegsRegClass;
 | |
|   IntRegsClass    IntRegsRegClass;
 | |
| ...
 | |
|  
 | |
| // IntRegs Sub-register Classess...
 | |
|   static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
| // IntRegs Super-register Classess...
 | |
|   static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
 | |
|     NULL
 | |
|   };
 | |
|  
 | |
| // IntRegs Register Class sub-classes...
 | |
|   static const TargetRegisterClass* const IntRegsSubclasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
|  
 | |
| // IntRegs Register Class super-classes...
 | |
|   static const TargetRegisterClass* const IntRegsSuperclasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
|  
 | |
|   IntRegsClass::iterator
 | |
|   IntRegsClass::allocation_order_end(const MachineFunction &MF) const {
 | |
| 
 | |
|      return end()-10  // Don't allocate special registers
 | |
|          -1; 
 | |
|   }
 | |
|   
 | |
| IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 
 | |
|    IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 
 | |
|    IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="implementRegister">Implement a subclass of</a> 
 | |
|   <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The final step is to hand code portions of XXXRegisterInfo, which
 | |
| implements the interface described in <tt>TargetRegisterInfo.h</tt>. These functions
 | |
| return 0, NULL, or false, unless overridden. Here’s a list of functions that
 | |
| are overridden for the SPARC implementation in <tt>SparcRegisterInfo.cpp</tt>:</p>
 | |
| <ul>
 | |
| <li><tt>getCalleeSavedRegs</tt> (returns a list of callee-saved registers in
 | |
| the order of the desired callee-save stack frame offset)</li>
 | |
| 
 | |
| <li><tt>getCalleeSavedRegClasses</tt> (returns a list of preferred register
 | |
| classes with which to spill each callee saved register)</li>
 | |
| 
 | |
| <li><tt>getReservedRegs</tt> (returns a bitset indexed by physical register
 | |
| numbers, indicating if a particular register is unavailable)</li>
 | |
| 
 | |
| <li><tt>hasFP</tt> (return a Boolean indicating if a function should have a
 | |
| dedicated frame pointer register)</li>
 | |
| 
 | |
| <li><tt>eliminateCallFramePseudoInstr</tt> (if call frame setup or destroy
 | |
| pseudo instructions are used, this can be called to eliminate them)</li>
 | |
| 
 | |
| <li><tt>eliminateFrameIndex</tt> (eliminate abstract frame indices from
 | |
| instructions that may use them)</li>
 | |
| 
 | |
| <li><tt>emitPrologue</tt> (insert prologue code into the function)</li>
 | |
| 
 | |
| <li><tt>emitEpilogue</tt> (insert epilogue code into the function)</li>
 | |
| </ul>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="InstructionSet">Instruction Set</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>During the early stages of code generation, the LLVM IR code is
 | |
| converted to a SelectionDAG with nodes that are instances of the SDNode class
 | |
| containing target instructions. An SDNode has an opcode, operands, type
 | |
| requirements, and operation properties (for example, is an operation
 | |
| commutative, does an operation load from memory). The various operation node
 | |
| types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> file (values
 | |
| of the NodeType enum in the ISD namespace).</p>
 | |
| 
 | |
| <p>TableGen uses the following target description (.td) input files
 | |
| to generate much of the code for instruction definition:</p>
 | |
| <ul>
 | |
| <li><tt>Target.td</tt>, where the Instruction, Operand, InstrInfo, and other
 | |
| fundamental classes are defined</li>
 | |
| 
 | |
| <li><tt>TargetSelectionDAG.td</tt>, used by SelectionDAG instruction selection
 | |
| generators, contains SDTC* classes (selection DAG type constraint), definitions
 | |
| of SelectionDAG nodes (such as imm, cond, bb, add, fadd, sub), and pattern
 | |
| support  (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern)</li>
 | |
| 
 | |
| <li><tt>XXXInstrFormats.td</tt>, patterns for definitions of target-specific
 | |
| instructions</li>
 | |
| 
 | |
| <li><tt>XXXInstrInfo.td</tt>, target-specific definitions of instruction
 | |
| templates, condition codes, and instructions of an instruction set. (For architecture
 | |
| modifications, a different file name may be used. For example, for Pentium with
 | |
| SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and for Pentium with MMX, this
 | |
| file is <tt>X86InstrMMX.td</tt>.)</li>
 | |
| </ul>
 | |
| <p>There is also a target-specific <tt>XXX.td</tt> file, where XXX is the
 | |
| name of the target. The <tt>XXX.td</tt> file includes the other .td input files, but its
 | |
| contents are only directly important for subtargets.</p>
 | |
| 
 | |
| <p>You should describe
 | |
| a concrete target-specific class
 | |
| XXXInstrInfo that represents machine
 | |
| instructions supported by a target machine. XXXInstrInfo contains an array of
 | |
| XXXInstrDescriptor objects, each of which describes one instruction. An
 | |
| instruction descriptor defines:</p>
 | |
| <ul>
 | |
| <li>opcode mnemonic</li>
 | |
| 
 | |
| <li>number of operands</li>
 | |
| 
 | |
| <li>list of implicit register definitions and uses</li>
 | |
| 
 | |
| <li>target-independent properties (such as memory access, is
 | |
| commutable)</li>
 | |
| 
 | |
| <li>target-specific flags </li>
 | |
| </ul>
 | |
| 
 | |
| <p>The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a
 | |
| base for more complex instruction classes.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>class Instruction {
 | |
|   string Namespace = "";
 | |
|   dag OutOperandList;       // An dag containing the MI def operand list.
 | |
|   dag InOperandList;        // An dag containing the MI use operand list.
 | |
|   string AsmString = "";    // The .s format to print the instruction with.
 | |
|   list<dag> Pattern;  // Set to the DAG pattern for this instruction
 | |
|   list<Register> Uses = []; 
 | |
|   list<Register> Defs = [];
 | |
|   list<Predicate> Predicates = [];  // predicates turned into isel match code
 | |
|   ... remainder not shown for space ...
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>A SelectionDAG node (SDNode) should contain an object
 | |
| representing a target-specific instruction that is defined in <tt>XXXInstrInfo.td</tt>. The
 | |
| instruction objects should represent instructions from the architecture manual
 | |
| of the target machine (such as the
 | |
| SPARC Architecture Manual for the SPARC target). </p>
 | |
| 
 | |
| <p>A single
 | |
| instruction from the architecture manual is often modeled as multiple target
 | |
| instructions, depending upon its operands.  For example, a manual might
 | |
| describe an add instruction that takes a register or an immediate operand. An
 | |
| LLVM target could model this with two instructions named ADDri and ADDrr.</p>
 | |
| 
 | |
| <p>You should define a
 | |
| class for each instruction category and define each opcode as a subclass of the
 | |
| category with appropriate parameters such as the fixed binary encoding of
 | |
| opcodes and extended opcodes. You should map the register bits to the bits of
 | |
| the instruction in which they are encoded (for the JIT). Also you should specify
 | |
| how the instruction should be printed when the automatic assembly printer is
 | |
| used.</p>
 | |
| 
 | |
| <p>As is described in
 | |
| the SPARC Architecture Manual, Version 8, there are three major 32-bit formats
 | |
| for instructions. Format 1 is only for the CALL instruction. Format 2 is for
 | |
| branch on condition codes and SETHI (set high bits of a register) instructions.
 | |
| Format 3 is for other instructions. </p>
 | |
| 
 | |
| <p>Each of these
 | |
| formats has corresponding classes in <tt>SparcInstrFormat.td</tt>. InstSP is a base
 | |
| class for other instruction classes. Additional base classes are specified for
 | |
| more precise formats: for example in <tt>SparcInstrFormat.td</tt>, F2_1 is for SETHI,
 | |
| and F2_2 is for branches. There are three other base classes: F3_1 for
 | |
| register/register operations, F3_2 for register/immediate operations, and F3_3 for
 | |
| floating-point operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
 | |
| synthetic SPARC instructions.   </p>
 | |
| 
 | |
| <p><tt>SparcInstrInfo.td</tt>
 | |
| largely consists of operand and instruction definitions for the SPARC target. In
 | |
| <tt>SparcInstrInfo.td</tt>, the following target description file entry, LDrr, defines
 | |
| the Load Integer instruction for a Word (the LD SPARC opcode) from a memory
 | |
| address to a register. The first parameter, the value 3 (11<sub>2</sub>), is
 | |
| the operation value for this category of operation. The second parameter
 | |
| (000000<sub>2</sub>) is the specific operation value for LD/Load Word. The
 | |
| third parameter is the output destination, which is a register operand and
 | |
| defined in the Register target description file (IntRegs). </p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
 | |
|                  "ld [$addr], $dst",
 | |
|                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The fourth
 | |
| parameter is the input source, which uses the address operand MEMrr that is
 | |
| defined earlier in <tt>SparcInstrInfo.td</tt>:</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>def MEMrr : Operand<i32> {
 | |
|   let PrintMethod = "printMemOperand";
 | |
|   let MIOperandInfo = (ops IntRegs, IntRegs);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The fifth parameter is a string that is used by the assembly
 | |
| printer and can be left as an empty string until the assembly printer interface
 | |
| is implemented. The sixth and final parameter is the pattern used to match the
 | |
| instruction during the SelectionDAG Select Phase described in 
 | |
| (<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator</a>).
 | |
| This parameter is detailed in the next section, <a href="#InstructionSelector">Instruction Selector</a>.</p>
 | |
| 
 | |
| <p>Instruction class definitions are not overloaded for different
 | |
| operand types, so separate versions of instructions are needed for register,
 | |
| memory, or immediate value operands. For example, to perform a 
 | |
| Load Integer instruction for a Word
 | |
| from an immediate operand to a register, the following instruction class is
 | |
| defined: </p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
 | |
|                  "ld [$addr], $dst",
 | |
|                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>Writing these definitions for so many similar instructions can
 | |
| involve a lot of cut and paste. In td files, the <tt>multiclass</tt> directive enables
 | |
| the creation of templates to define several instruction classes at once (using
 | |
| the <tt>defm</tt> directive). For example in
 | |
| <tt>SparcInstrInfo.td</tt>, the <tt>multiclass</tt> pattern F3_12 is defined to create 2
 | |
| instruction classes each time F3_12 is invoked:  </p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
 | |
|   def rr  : F3_1 <2, Op3Val, 
 | |
|                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 | |
|                  !strconcat(OpcStr, " $b, $c, $dst"),
 | |
|                  [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
 | |
|   def ri  : F3_2 <2, Op3Val,
 | |
|                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
 | |
|                  !strconcat(OpcStr, " $b, $c, $dst"),
 | |
|                  [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>So when the <tt>defm</tt> directive is used for the XOR and ADD
 | |
| instructions, as seen below, it creates four instruction objects: XORrr, XORri,
 | |
| ADDrr, and ADDri.</p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>defm XOR   : F3_12<"xor", 0b000011, xor>;
 | |
| defm ADD   : F3_12<"add", 0b000000, add>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p><tt>SparcInstrInfo.td</tt>
 | |
| also includes definitions for condition codes that are referenced by branch
 | |
| instructions. The following definitions in <tt>SparcInstrInfo.td</tt> indicate the bit location
 | |
| of the SPARC condition code; for example, the 10<sup>th</sup> bit represents
 | |
| the ‘greater than’ condition for integers, and the 22<sup>nd</sup> bit
 | |
| represents the ‘greater than’ condition for floats. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def ICC_NE  : ICC_VAL< 9>;  // Not Equal
 | |
| def ICC_E   : ICC_VAL< 1>;  // Equal
 | |
| def ICC_G   : ICC_VAL<10>;  // Greater
 | |
| ...
 | |
| def FCC_U   : FCC_VAL<23>;  // Unordered
 | |
| def FCC_G   : FCC_VAL<22>;  // Greater
 | |
| def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
 | |
| ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>(Note that <tt>Sparc.h</tt>
 | |
| also defines enums that correspond to the same SPARC condition codes. Care must
 | |
| be taken to ensure the values in <tt>Sparc.h</tt> correspond to the values in
 | |
| <tt>SparcInstrInfo.td</tt>; that is, <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)</p>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="operandMapping">Instruction Operand Mapping</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The code generator backend maps instruction operands to fields in
 | |
| the instruction.  Operands are assigned to unbound fields in the instruction in 
 | |
| the order they are defined. Fields are bound when they are assigned a value.
 | |
| For example, the Sparc target defines the XNORrr instruction as a F3_1 format 
 | |
| instruction having three operands.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code"> <pre>
 | |
| def XNORrr  : F3_1<2, 0b000111,
 | |
|                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 | |
|                    "xnor $b, $c, $dst",
 | |
|                    [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
 | |
| </pre></div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class for F3_1 is InstSP.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code"> <pre>
 | |
| class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
 | |
|   field bits<32> Inst;
 | |
|   let Namespace = "SP";
 | |
|   bits<2> op;
 | |
|   let Inst{31-30} = op;       
 | |
|   dag OutOperandList = outs;
 | |
|   dag InOperandList = ins;
 | |
|   let AsmString   = asmstr;
 | |
|   let Pattern = pattern;
 | |
| }
 | |
| </pre></div>
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| InstSP leaves the op field unbound.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code"> <pre>
 | |
| class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
 | |
|     : InstSP<outs, ins, asmstr, pattern> {
 | |
|   bits<5> rd;
 | |
|   bits<6> op3;
 | |
|   bits<5> rs1;
 | |
|   let op{1} = 1;   // Op = 2 or 3
 | |
|   let Inst{29-25} = rd;
 | |
|   let Inst{24-19} = op3;
 | |
|   let Inst{18-14} = rs1;
 | |
| }
 | |
| </pre></div>
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| F3 binds the op field and defines the rd, op3, and rs1 fields.  F3 format instructions will
 | |
| bind the operands rd, op3, and rs1 fields.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code"> <pre>
 | |
| class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
 | |
|            string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
 | |
|   bits<8> asi = 0; // asi not currently used
 | |
|   bits<5> rs2;
 | |
|   let op         = opVal;
 | |
|   let op3        = op3val;
 | |
|   let Inst{13}   = 0;     // i field = 0
 | |
|   let Inst{12-5} = asi;   // address space identifier
 | |
|   let Inst{4-0}  = rs2;
 | |
| }
 | |
| </pre></div>
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| F3_1 binds the op3 field and defines the rs2 fields.  F3_1 format instructions will
 | |
| bind the operands to the rd, rs1, and rs2 fields. This results in the XNORrr instruction
 | |
| binding $dst, $b, and $c operands to the rd, rs1, and rs2 fields respectively.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="implementInstr">Implement a subclass of </a>
 | |
|   <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The final step is to hand code portions of XXXInstrInfo, which
 | |
| implements the interface described in <tt>TargetInstrInfo.h</tt>. These functions return
 | |
| 0 or a Boolean or they assert, unless overridden. Here's a list of functions
 | |
| that are overridden for the SPARC implementation in <tt>SparcInstrInfo.cpp</tt>:</p>
 | |
| <ul>
 | |
| <li><tt>isMoveInstr</tt> (return true if the instruction is a register to
 | |
| register move; false, otherwise)</li>
 | |
| 
 | |
| <li><tt>isLoadFromStackSlot</tt> (if the specified machine instruction is a
 | |
| direct load from a stack slot, return the register number of the destination
 | |
| and the FrameIndex of the stack slot)</li>
 | |
| 
 | |
| <li><tt>isStoreToStackSlot</tt> (if the specified machine instruction is a
 | |
| direct store to a stack slot, return the register number of the destination and
 | |
| the FrameIndex of the stack slot)</li>
 | |
| 
 | |
| <li><tt>copyRegToReg</tt> (copy values between a pair of registers)</li>
 | |
| 
 | |
| <li><tt>storeRegToStackSlot</tt> (store a register value to a stack slot)</li>
 | |
| 
 | |
| <li><tt>loadRegFromStackSlot</tt> (load a register value from a stack slot)</li>
 | |
| 
 | |
| <li><tt>storeRegToAddr</tt> (store a register value to memory)</li>
 | |
| 
 | |
| <li><tt>loadRegFromAddr</tt> (load a register value from memory)</li>
 | |
| 
 | |
| <li><tt>foldMemoryOperand</tt> (attempt to combine instructions of any load or
 | |
| store instruction for the specified operand(s))</li>
 | |
| </ul>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="branchFolding">Branch Folding and If Conversion</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>Performance can be improved by combining instructions or by eliminating
 | |
| instructions that are never reached. The <tt>AnalyzeBranch</tt> method in XXXInstrInfo may
 | |
| be implemented to examine conditional instructions and remove unnecessary
 | |
| instructions. <tt>AnalyzeBranch</tt> looks at the end of a machine basic block (MBB) for
 | |
| opportunities for improvement, such as branch folding and if conversion. The
 | |
| <tt>BranchFolder</tt> and <tt>IfConverter</tt> machine function passes (see the source files
 | |
| <tt>BranchFolding.cpp</tt> and <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
 | |
| <tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
 | |
| instructions. </p>
 | |
| 
 | |
| <p>Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and
 | |
| X86) can be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
 | |
| SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target implementation
 | |
| is shown below.</p>
 | |
| 
 | |
| <p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
 | |
| <ul>
 | |
| <li>MachineBasicBlock &MBB – the incoming block to be
 | |
| examined</li>
 | |
| 
 | |
| <li>MachineBasicBlock *&TBB – a destination block that is
 | |
| returned; for a conditional branch that evaluates to true, TBB is the
 | |
| destination </li>
 | |
| 
 | |
| <li>MachineBasicBlock *&FBB – for a conditional branch that
 | |
| evaluates to false, FBB is returned as the destination</li>
 | |
| 
 | |
| <li>std::vector<MachineOperand> &Cond – list of
 | |
| operands to evaluate a condition for a conditional branch</li>
 | |
| </ul>
 | |
| 
 | |
| <p>In the simplest case, if a block ends without a branch, then it
 | |
| falls through to the successor block. No destination blocks are specified for
 | |
| either TBB or FBB, so both parameters return NULL. The start of the <tt>AnalyzeBranch</tt>
 | |
| (see code below for the ARM target) shows the function parameters and the code
 | |
| for the simplest case.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | |
|         MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
 | |
|         std::vector<MachineOperand> &Cond) const
 | |
| {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
 | |
|     return false;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>If a block ends with a single unconditional branch instruction,
 | |
| then <tt>AnalyzeBranch</tt> (shown below) should return the destination of that branch
 | |
| in the TBB parameter. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>if (LastOpc == ARM::B || LastOpc == ARM::tB) {
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       return false;
 | |
|     }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>If a block ends with two unconditional branches, then the second
 | |
| branch is never reached. In that situation, as shown below, remove the last
 | |
| branch instruction and return the penultimate branch in the TBB parameter. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
 | |
|       (LastOpc == ARM::B || LastOpc == ARM::tB)) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>A block may end with a single conditional branch instruction that
 | |
| falls through to successor block if the condition evaluates to false. In that
 | |
| case, <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
 | |
| conditional branch in the TBB parameter and a list of operands in the <tt>Cond</tt>
 | |
| parameter to evaluate the condition. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       Cond.push_back(LastInst->getOperand(1));
 | |
|       Cond.push_back(LastInst->getOperand(2));
 | |
|       return false;
 | |
|     }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>If a block ends with both a conditional branch and an ensuing
 | |
| unconditional branch, then <tt>AnalyzeBranch</tt> (shown below) should return the
 | |
| conditional branch destination (assuming it corresponds to a conditional
 | |
| evaluation of ‘true’) in the TBB parameter and the unconditional branch
 | |
| destination in the FBB (corresponding to a conditional evaluation of ‘false’).
 | |
| A list of operands to evaluate the condition should be returned in the <tt>Cond</tt>
 | |
| parameter.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>unsigned SecondLastOpc = SecondLastInst->getOpcode();
 | |
|   if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
 | |
|       (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
 | |
|     TBB =  SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(SecondLastInst->getOperand(1));
 | |
|     Cond.push_back(SecondLastInst->getOperand(2));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>For the last two cases (ending with a single conditional branch or
 | |
| ending with one conditional and one unconditional branch), the operands returned
 | |
| in the <tt>Cond</tt> parameter can be passed to methods of other instructions to create
 | |
| new branches or perform other operations. An implementation of <tt>AnalyzeBranch</tt>
 | |
| requires the helper methods <tt>RemoveBranch</tt> and <tt>InsertBranch</tt> to manage subsequent
 | |
| operations.</p>
 | |
| 
 | |
| <p><tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
 | |
| <tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
 | |
| do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
 | |
| return true if it encounters a terminator it cannot handle, such as an indirect
 | |
| branch.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="InstructionSelector">Instruction Selector</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>LLVM uses a SelectionDAG to represent LLVM IR instructions, and nodes
 | |
| of the SelectionDAG ideally represent native target instructions. During code
 | |
| generation, instruction selection passes are performed to convert non-native
 | |
| DAG instructions into native target-specific instructions. The pass described
 | |
| in <tt>XXXISelDAGToDAG.cpp</tt> is used to match patterns and perform DAG-to-DAG
 | |
| instruction selection. Optionally, a pass may be defined (in
 | |
| <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG operations for branch
 | |
| instructions. Later,
 | |
| the code in <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types
 | |
| not supported natively (legalizes) in a Selection DAG. </p>
 | |
| 
 | |
| <p>TableGen generates code for instruction selection using the
 | |
| following target description input files:</p>
 | |
| <ul>
 | |
| <li><tt>XXXInstrInfo.td</tt> contains definitions of instructions in a
 | |
| target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which is included
 | |
| in <tt>XXXISelDAGToDAG.cpp</tt>. </li>
 | |
| 
 | |
| <li><tt>XXXCallingConv.td</tt> contains the calling and return value conventions
 | |
| for the target architecture, and it generates <tt>XXXGenCallingConv.inc</tt>, which is
 | |
| included in <tt>XXXISelLowering.cpp</tt>.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>The implementation of an instruction selection pass must include
 | |
| a header that declares the FunctionPass class or a subclass of FunctionPass. In
 | |
| <tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction selection
 | |
| pass into the queue of passes to run.</p>
 | |
| 
 | |
| <p>The LLVM static
 | |
| compiler (<tt>llc</tt>) is an excellent tool for visualizing the contents of DAGs. To display
 | |
| the SelectionDAG before or after specific processing phases, use the command
 | |
| line options for <tt>llc</tt>, described at <a
 | |
| href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
 | |
| SelectionDAG Instruction Selection Process</a>.
 | |
| </p>
 | |
| 
 | |
| <p>To describe instruction selector behavior, you should add
 | |
| patterns for lowering LLVM code into a SelectionDAG as the last parameter of
 | |
| the instruction definitions in <tt>XXXInstrInfo.td</tt>. For example, in
 | |
| <tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and the last
 | |
| parameter describes a pattern with the store DAG operator.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
 | |
|                  "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>ADDRrr is a memory mode that is also defined in <tt>SparcInstrInfo.td</tt>:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The definition of ADDRrr refers to SelectADDRrr, which is a function defined in an
 | |
| implementation of the Instructor Selector (such as <tt>SparcISelDAGToDAG.cpp</tt>). </p>
 | |
| 
 | |
| <p>In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store
 | |
| is defined below:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def store : PatFrag<(ops node:$val, node:$ptr),
 | |
|                     (st node:$val, node:$ptr), [{
 | |
|   if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
 | |
|     return !ST->isTruncatingStore() && 
 | |
|            ST->getAddressingMode() == ISD::UNINDEXED;
 | |
|   return false;
 | |
| }]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p><tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
 | |
| <tt>SelectCode</tt> method that is used to call the appropriate processing method for an
 | |
| instruction. In this example, <tt>SelectCode</tt> calls <tt>Select_ISD_STORE</tt> for the
 | |
| ISD::STORE opcode.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>SDNode *SelectCode(SDOperand N) {
 | |
|   ... 
 | |
|   MVT::ValueType NVT = N.Val->getValueType(0);
 | |
|   switch (N.getOpcode()) {
 | |
|   case ISD::STORE: {
 | |
|     switch (NVT) {
 | |
|     default:
 | |
|       return Select_ISD_STORE(N);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   ...
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The pattern for STrr is matched, so elsewhere in
 | |
| <tt>XXXGenDAGISel.inc</tt>, code for STrr is created for <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method
 | |
| is also generated in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
 | |
| instruction. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>SDNode *Select_ISD_STORE(const SDOperand &N) {
 | |
|   SDOperand Chain = N.getOperand(0);
 | |
|   if (Predicate_store(N.Val)) {
 | |
|     SDOperand N1 = N.getOperand(1);
 | |
|     SDOperand N2 = N.getOperand(2);
 | |
|     SDOperand CPTmp0;
 | |
|     SDOperand CPTmp1;
 | |
|  
 | |
|     // Pattern: (st:void IntRegs:i32:$src, 
 | |
|     //           ADDRrr:i32:$addr)<<P:Predicate_store>>
 | |
|     // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
 | |
|     // Pattern complexity = 13  cost = 1  size = 0
 | |
|     if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
 | |
|         N1.Val->getValueType(0) == MVT::i32 &&
 | |
|         N2.Val->getValueType(0) == MVT::i32) {
 | |
|       return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
 | |
|     }
 | |
| ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The Legalize phase converts a DAG to use types and operations
 | |
| that are natively supported by the target. For natively unsupported types and
 | |
| operations, you need to add code to the target-specific XXXTargetLowering implementation
 | |
| to convert unsupported types and operations to supported ones.</p>
 | |
| 
 | |
| <p>In the constructor for the XXXTargetLowering class, first use the
 | |
| <tt>addRegisterClass</tt> method to specify which types are supports and which register
 | |
| classes are associated with them. The code for the register classes are generated
 | |
| by TableGen from <tt>XXXRegisterInfo.td</tt> and placed in <tt>XXXGenRegisterInfo.h.inc</tt>. For
 | |
| example, the implementation of the constructor for the SparcTargetLowering
 | |
| class (in <tt>SparcISelLowering.cpp</tt>) starts with the following code:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
 | |
| addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
 | |
| addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>You should examine the node types in the ISD namespace 
 | |
| (<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>)
 | |
| and determine which operations the target natively supports. For operations
 | |
| that do <b>not</b> have native support, add a callback to the constructor for
 | |
| the XXXTargetLowering class, so the instruction selection process knows what to
 | |
| do. The TargetLowering class callback methods (declared in
 | |
| <tt>llvm/Target/TargetLowering.h</tt>) are:</p>
 | |
| <ul>
 | |
| <li><tt>setOperationAction</tt> (general operation)</li>
 | |
| 
 | |
| <li><tt>setLoadExtAction</tt> (load with extension)</li>
 | |
| 
 | |
| <li><tt>setTruncStoreAction</tt> (truncating store)</li>
 | |
| 
 | |
| <li><tt>setIndexedLoadAction</tt> (indexed load)</li>
 | |
| 
 | |
| <li><tt>setIndexedStoreAction</tt> (indexed store)</li>
 | |
| 
 | |
| <li><tt>setConvertAction</tt> (type conversion)</li>
 | |
| 
 | |
| <li><tt>setCondCodeAction</tt> (support for a given condition code)</li>
 | |
| </ul>
 | |
| 
 | |
| <p>Note: on older releases, <tt>setLoadXAction</tt> is used instead of <tt>setLoadExtAction</tt>.
 | |
| Also, on older releases, <tt>setCondCodeAction</tt> may not be supported. Examine your
 | |
| release to see what methods are specifically supported.</p>
 | |
| 
 | |
| <p>These callbacks are used to determine that an operation does or
 | |
| does not work with a specified type (or types). And in all cases, the third
 | |
| parameter is a LegalAction type enum value: <tt>Promote</tt>, <tt>Expand</tt>, 
 | |
| <tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
 | |
| contains examples of all four LegalAction values.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="promote">Promote</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>For an operation without native support for a given type, the
 | |
| specified type may be promoted to a larger type that is supported. For example,
 | |
| SPARC does not support a sign-extending load for Boolean values (<tt>i1</tt> type), so
 | |
| in <tt>SparcISelLowering.cpp</tt> the third 
 | |
| parameter below, <tt>Promote</tt>, changes <tt>i1</tt> type
 | |
| values to a large type before loading.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="expand">Expand</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>For a type without native support, a value may need to be broken
 | |
| down further, rather than promoted. For an operation without native support, a
 | |
| combination of other operations may be used to similar effect. In SPARC, the
 | |
| floating-point sine and cosine trig operations are supported by expansion to
 | |
| other operations, as indicated by the third parameter, <tt>Expand</tt>, to
 | |
| <tt>setOperationAction</tt>:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | |
| setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="custom">Custom</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>For some operations, simple type promotion or operation expansion
 | |
| may be insufficient. In some cases, a special intrinsic function must be
 | |
| implemented. </p>
 | |
| 
 | |
| <p>For example, a constant value may require special treatment, or
 | |
| an operation may require spilling and restoring registers in the stack and
 | |
| working with register allocators. </p>
 | |
| 
 | |
| <p>As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
 | |
| conversion from a floating point value to a signed integer, first the
 | |
| <tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third parameter:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| </pre>
 | |
| </div>    
 | |
| <div class="doc_text">
 | |
| <p>In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a case
 | |
| statement should be added to indicate what function to call. In the following
 | |
| code, an FP_TO_SINT opcode will call the <tt>LowerFP_TO_SINT</tt> method:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>SDOperand SparcTargetLowering::LowerOperation(
 | |
|                                SDOperand Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
 | |
|   ...
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>        
 | |
| <div class="doc_text">
 | |
| <p>Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
 | |
| register to convert the floating-point value to an integer.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
 | |
| assert(Op.getValueType() == MVT::i32);
 | |
|   Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
 | |
| }
 | |
| </pre>
 | |
| </div>    
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="legal">Legal</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
 | |
| operation <b>is</b> natively supported. <tt>Legal</tt> represents the default condition,
 | |
| so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action for CTPOP (an
 | |
| operation to count the bits set in an integer) is natively supported only for
 | |
| SPARC v9. The following code enables the <tt>Expand</tt> conversion technique for non-v9
 | |
| SPARC implementations.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
| ...
 | |
| if (TM.getSubtarget<SparcSubtarget>().isV9())
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
 | |
|   case ISD::SETULT: return SPCC::ICC_CS;
 | |
|   case ISD::SETULE: return SPCC::ICC_LEU;
 | |
|   case ISD::SETUGT: return SPCC::ICC_GU;
 | |
|   case ISD::SETUGE: return SPCC::ICC_CC;
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="callingConventions">Calling Conventions</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
 | |
| uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
 | |
| <tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target descriptor file
 | |
| <tt>XXXGenCallingConv.td</tt> and generate the header file <tt>XXXGenCallingConv.inc</tt>, which
 | |
| is typically included in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
 | |
| <tt>TargetCallingConv.td</tt> to specify:</p>
 | |
| <ul>
 | |
| <li>the order of parameter allocation</li>
 | |
| 
 | |
| <li>where parameters and return values are placed (that is, on the
 | |
| stack or in registers)</li>
 | |
| 
 | |
| <li>which registers may be used</li>
 | |
| 
 | |
| <li>whether the caller or callee unwinds the stack</li>
 | |
| </ul>
 | |
| 
 | |
| <p>The following example demonstrates the use of the CCIfType and
 | |
| CCAssignToReg interfaces. If the CCIfType predicate is true (that is, if the
 | |
| current argument is of type f32 or f64), then the action is performed. In this
 | |
| case, the CCAssignToReg action assigns the argument value to the first
 | |
| available register: either R0 or R1.  </p>
 | |
| </div>
 | |
| <div class="doc_code">
 | |
| <pre>CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p><tt>SparcCallingConv.td</tt> contains definitions for a target-specific return-value
 | |
| calling convention (RetCC_Sparc32) and a basic 32-bit C calling convention
 | |
| (CC_Sparc32). The definition of RetCC_Sparc32 (shown below) indicates which
 | |
| registers are used for specified scalar return types. A single-precision float
 | |
| is returned to register F0, and a double-precision float goes to register D0. A
 | |
| 32-bit integer is returned in register I0 or I1. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def RetCC_Sparc32 : CallingConv<[
 | |
|   CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
 | |
|   CCIfType<[f32], CCAssignToReg<[F0]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[D0]>>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The definition of CC_Sparc32 in <tt>SparcCallingConv.td</tt> introduces
 | |
| CCAssignToStack, which assigns the value to a stack slot with the specified size
 | |
| and alignment. In the example below, the first parameter, 4, indicates the size
 | |
| of the slot, and the second parameter, also 4, indicates the stack alignment
 | |
| along 4-byte units. (Special cases: if size is zero, then the ABI size is used;
 | |
| if alignment is zero, then the ABI alignment is used.) </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def CC_Sparc32 : CallingConv<[
 | |
|   // All arguments get passed in integer registers if there is space.
 | |
|   CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
 | |
|   CCAssignToStack<4, 4>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>CCDelegateTo is another commonly used interface, which tries to find
 | |
| a specified sub-calling convention and, if a match is found, it is invoked. In
 | |
| the following example (in <tt>X86CallingConv.td</tt>), the definition of RetCC_X86_32_C
 | |
| ends with CCDelegateTo. After the current value is assigned to the register ST0
 | |
| or ST1, the RetCC_X86Common is invoked.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def RetCC_X86_32_C : CallingConv<[
 | |
|   CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>CCIfCC is an interface that attempts to match the given name to
 | |
| the current calling convention. If the name identifies the current calling
 | |
| convention, then a specified action is invoked. In the following example (in
 | |
| <tt>X86CallingConv.td</tt>), if the Fast calling convention is in use, then RetCC_X86_32_Fast
 | |
| is invoked. If the SSECall calling convention is in use, then RetCC_X86_32_SSE
 | |
| is invoked. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def RetCC_X86_32 : CallingConv<[
 | |
|   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
 | |
|   CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
 | |
|   CCDelegateTo<RetCC_X86_32_C>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>Other calling convention interfaces include:</p>
 | |
| <ul>
 | |
| <li>CCIf <predicate, action> - if the predicate matches, apply
 | |
| the action</li>
 | |
| 
 | |
| <li>CCIfInReg <action> - if the argument is marked with the
 | |
| ‘inreg’ attribute, then apply the action </li>
 | |
| 
 | |
| <li>CCIfNest <action> - if the argument is marked with the
 | |
| ‘nest’ attribute, then apply the action</li>
 | |
| 
 | |
| <li>CCIfNotVarArg <action> - if the current function does not
 | |
| take a variable number of arguments, apply the action</li>
 | |
| 
 | |
| <li>CCAssignToRegWithShadow <registerList, shadowList> -
 | |
| similar to CCAssignToReg, but with a shadow list of registers</li>
 | |
| 
 | |
| <li>CCPassByVal <size, align> - assign value to a stack slot
 | |
| with the minimum specified size and alignment </li>
 | |
| 
 | |
| <li>CCPromoteToType <type> - promote the current value to the specified
 | |
| type</li>
 | |
| 
 | |
| <li>CallingConv <[actions]> - define each calling convention
 | |
| that is supported</li>
 | |
| </ul>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="assemblyPrinter">Assembly Printer</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>During the code
 | |
| emission stage, the code generator may utilize an LLVM pass to produce assembly
 | |
| output. To do this, you want to implement the code for a printer that converts
 | |
| LLVM IR to a GAS-format assembly language for your target machine, using the
 | |
| following steps:</p>
 | |
| <ul>
 | |
| <li>Define all the assembly strings for your target, adding them to
 | |
| the instructions defined in the <tt>XXXInstrInfo.td</tt> file. 
 | |
| (See <a href="#InstructionSet">Instruction Set</a>.)
 | |
| TableGen will produce an output file (<tt>XXXGenAsmWriter.inc</tt>) with an
 | |
| implementation of the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
 | |
| 
 | |
| <li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones
 | |
| declaration of the XXXTargetAsmInfo class (a subclass of TargetAsmInfo). </li>
 | |
| 
 | |
| <li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
 | |
| for TargetAsmInfo properties and sometimes new implementations for methods</li>
 | |
| 
 | |
| <li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class
 | |
| that performs the LLVM-to-assembly conversion. </li>
 | |
| </ul>
 | |
| 
 | |
| <p>The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration
 | |
| of the XXXTargetAsmInfo class for use in <tt>XXXTargetAsmInfo.cpp</tt>. Similarly,
 | |
| <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of XXXTargetAsmInfo replacement
 | |
| values that override the default values in <tt>TargetAsmInfo.cpp</tt>. For example in
 | |
| <tt>SparcTargetAsmInfo.cpp</tt>, </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
 | |
|   Data16bitsDirective = "\t.half\t";
 | |
|   Data32bitsDirective = "\t.word\t";
 | |
|   Data64bitsDirective = 0;  // .xword is only supported by V9.
 | |
|   ZeroDirective = "\t.skip\t";
 | |
|   CommentString = "!";
 | |
|   ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The X86 assembly printer implementation (X86TargetAsmInfo) is an
 | |
| example where the target specific TargetAsmInfo class uses overridden methods:
 | |
| <tt>ExpandInlineAsm</tt> and <tt>PreferredEHDataFormat</tt>. </p>
 | |
| 
 | |
| <p>A target-specific implementation of AsmPrinter is written in
 | |
| <tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class that converts the LLVM
 | |
| to printable assembly. The implementation must include the following headers
 | |
| that have declarations for the AsmPrinter and MachineFunctionPass classes. The
 | |
| MachineFunctionPass is a subclass of FunctionPass. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>#include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h" 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>As a FunctionPass, AsmPrinter first calls <tt>doInitialization</tt> to set
 | |
| up the AsmPrinter. In SparcAsmPrinter, a Mangler object is instantiated to
 | |
| process variable names.</p>
 | |
| 
 | |
| <p>In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method (declared
 | |
| in MachineFunctionPass) must be implemented for XXXAsmPrinter. In
 | |
| MachineFunctionPass, the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
 | |
| Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but generally
 | |
| do the following to process each machine function:</p>
 | |
| <ul>
 | |
| <li>call <tt>SetupMachineFunction</tt> to perform initialization</li>
 | |
| 
 | |
| <li>call <tt>EmitConstantPool</tt> to print out (to the output stream)
 | |
| constants which have been spilled to memory </li>
 | |
| 
 | |
| <li>call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the
 | |
| current function </li>
 | |
| 
 | |
| <li>print out the label for the current function</li>
 | |
| 
 | |
| <li>print out the code for the function, including basic block labels
 | |
| and the assembly for the instruction (using <tt>printInstruction</tt>)</li>
 | |
| </ul>
 | |
| <p>The XXXAsmPrinter implementation must also include the code
 | |
| generated by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
 | |
| in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the <tt>printInstruction</tt>
 | |
| method that may call these methods:</p>
 | |
| <ul>
 | |
| <li><tt>printOperand</tt></li>
 | |
| 
 | |
| <li><tt>printMemOperand</tt></li>
 | |
| 
 | |
| <li><tt>printCCOperand (for conditional statements)</tt></li>
 | |
| 
 | |
| <li><tt>printDataDirective</tt></li>
 | |
| 
 | |
| <li><tt>printDeclare</tt></li>
 | |
| 
 | |
| <li><tt>printImplicitDef</tt></li>
 | |
| 
 | |
| <li><tt>printInlineAsm</tt></li>
 | |
| 
 | |
| <li><tt>printLabel</tt></li>
 | |
| 
 | |
| <li><tt>printPICJumpTableEntry</tt></li>
 | |
| 
 | |
| <li><tt>printPICJumpTableSetLabel</tt></li>
 | |
| </ul>
 | |
| 
 | |
| <p>The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
 | |
| <tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are generally adequate for
 | |
| printing assembly and do not need to be overridden. (<tt>printBasicBlockLabel</tt> is
 | |
| another method that is implemented in <tt>AsmPrinter.cpp</tt> that may be directly used
 | |
| in an implementation of XXXAsmPrinter.)</p>
 | |
| 
 | |
| <p>The <tt>printOperand</tt> method is implemented with a long switch/case
 | |
| statement for the type of operand: register, immediate, basic block, external
 | |
| symbol, global address, constant pool index, or jump table index. For an
 | |
| instruction with a memory address operand, the <tt>printMemOperand</tt> method should be
 | |
| implemented to generate the proper output. Similarly, <tt>printCCOperand</tt> should be
 | |
| used to print a conditional operand. </p>
 | |
| 
 | |
| <p><tt>doFinalization</tt> should be overridden in XXXAsmPrinter, and
 | |
| it should be called to shut down the assembly printer. During <tt>doFinalization</tt>,
 | |
| global variables and constants are printed to output.</p>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="subtargetSupport">Subtarget Support</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>Subtarget support is used to inform the code generation process
 | |
| of instruction set variations for a given chip set.  For example, the LLVM
 | |
| SPARC implementation provided covers three major versions of the SPARC
 | |
| microprocessor architecture: Version 8 (V8, which is a 32-bit architecture),
 | |
| Version 9 (V9, a 64-bit architecture), and the UltraSPARC architecture. V8 has
 | |
| 16 double-precision floating-point registers that are also usable as either 32
 | |
| single-precision or 8 quad-precision registers.  V8 is also purely big-endian. V9
 | |
| has 32 double-precision floating-point registers that are also usable as 16
 | |
| quad-precision registers, but cannot be used as single-precision registers. The
 | |
| UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
 | |
| extensions.</p>
 | |
| 
 | |
| <p>If subtarget support is needed, you should implement a
 | |
| target-specific XXXSubtarget class for your architecture. This class should
 | |
| process the command-line options <tt>–mcpu=</tt> and <tt>–mattr=</tt></p>
 | |
| 
 | |
| <p>TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files to
 | |
| generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown below, the
 | |
| SubtargetFeature interface is defined. The first 4 string parameters of the
 | |
| SubtargetFeature interface are a feature name, an attribute set by the feature,
 | |
| the value of the attribute, and a description of the feature. (The fifth
 | |
| parameter is a list of features whose presence is implied, and its default
 | |
| value is an empty array.)</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>class SubtargetFeature<string n, string a,  string v, string d,
 | |
|                        list<SubtargetFeature> i = []> {
 | |
|   string Name = n;
 | |
|   string Attribute = a;
 | |
|   string Value = v;
 | |
|   string Desc = d;
 | |
|   list<SubtargetFeature> Implies = i;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
 | |
| following features.  </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
 | |
|                      "Enable SPARC-V9 instructions">;
 | |
| def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 
 | |
|                      "V8DeprecatedInsts", "true",
 | |
|                      "Enable deprecated V8 instructions in V9 mode">;
 | |
| def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
 | |
|                      "Enable UltraSPARC Visual Instruction Set extensions">;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used
 | |
| to define particular SPARC processor subtypes that may have the previously
 | |
| described features. </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>class Proc<string Name, list<SubtargetFeature> Features>
 | |
|  : Processor<Name, NoItineraries, Features>;
 | |
|  
 | |
| def : Proc<"generic",         []>;
 | |
| def : Proc<"v8",              []>;
 | |
| def : Proc<"supersparc",      []>;
 | |
| def : Proc<"sparclite",       []>;
 | |
| def : Proc<"f934",            []>;
 | |
| def : Proc<"hypersparc",      []>;
 | |
| def : Proc<"sparclite86x",    []>;
 | |
| def : Proc<"sparclet",        []>;
 | |
| def : Proc<"tsc701",          []>;
 | |
| def : Proc<"v9",              [FeatureV9]>;
 | |
| def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
 | |
| def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
 | |
| def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
 | |
| SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
 | |
| constants to represent the CPU features and CPU subtypes, and the
 | |
| ParseSubtargetFeatures method that parses the features string that sets
 | |
| specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file should be
 | |
| included in the <tt>SparcSubtarget.cpp</tt>. The target-specific implementation of the XXXSubtarget
 | |
| method should follow this pseudocode:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
 | |
|   // Set the default features
 | |
|   // Determine default and user specified characteristics of the CPU
 | |
|   // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
 | |
|   // Perform any additional operations
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section">
 | |
|   <a name="jitSupport">JIT Support</a>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>The implementation of a target machine optionally includes a Just-In-Time
 | |
| (JIT) code generator that emits machine code and auxiliary structures as binary
 | |
| output that can be written directly to memory. 
 | |
| To do this, implement JIT code generation by performing the following
 | |
| steps:</p>
 | |
| <ul>
 | |
| <li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
 | |
| pass that transforms target-machine instructions into relocatable machine code.</li>
 | |
| 
 | |
| <li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces
 | |
| for target-specific code-generation
 | |
| activities, such as emitting machine code and stubs. </li>
 | |
| 
 | |
| <li>Modify XXXTargetMachine so that it provides a TargetJITInfo
 | |
| object through its <tt>getJITInfo</tt> method. </li>
 | |
| </ul>
 | |
| 
 | |
| <p>There are several different approaches to writing the JIT support
 | |
| code. For instance, TableGen and target descriptor files may be used for
 | |
| creating a JIT code generator, but are not mandatory. For the Alpha and PowerPC
 | |
| target machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
 | |
| contains the binary coding of machine instructions and the
 | |
| <tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT implementations
 | |
| do not.</p>
 | |
| 
 | |
| <p>Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
 | |
| <tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the MachineCodeEmitter
 | |
| class containing code for several callback functions that write data (in bytes,
 | |
| words, strings, etc.) to the output stream.</p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="mce">Machine Code Emitter</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the Emitter class is
 | |
| implemented as a function pass (subclass of MachineFunctionPass). The
 | |
| target-specific implementation of <tt>runOnMachineFunction</tt> (invoked by
 | |
| <tt>runOnFunction</tt> in MachineFunctionPass) iterates through the MachineBasicBlock
 | |
| calls <tt>emitInstruction</tt> to process each instruction and emit binary code. <tt>emitInstruction</tt>
 | |
| is largely implemented with case statements on the instruction types defined in
 | |
| <tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>, the <tt>emitInstruction</tt> method
 | |
| is built around the following switch/case statements:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>switch (Desc->TSFlags & X86::FormMask) {
 | |
| case X86II::Pseudo:  // for not yet implemented instructions 
 | |
|    ...               // or pseudo-instructions
 | |
|    break;
 | |
| case X86II::RawFrm:  // for instructions with a fixed opcode value
 | |
|    ...
 | |
|    break;
 | |
| case X86II::AddRegFrm: // for instructions that have one register operand 
 | |
|    ...                 // added to their opcode
 | |
|    break;
 | |
| case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a destination (register)
 | |
|    break;
 | |
| case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a destination (memory)
 | |
|    break;
 | |
| case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a source (register)
 | |
|    break;
 | |
| case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a source (memory)
 | |
|    break;
 | |
| case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on 
 | |
| case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
 | |
| case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
 | |
| case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
 | |
|    ...  
 | |
|    break;
 | |
| case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
 | |
| case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
 | |
| case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
 | |
| case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
 | |
|    ...  
 | |
|    break;
 | |
| case X86II::MRMInitReg: // for instructions whose source and
 | |
|    ...                  // destination are the same register
 | |
|    break;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>The implementations of these case statements often first emit the
 | |
| opcode and then get the operand(s). Then depending upon the operand, helper
 | |
| methods may be called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
 | |
| for the <tt>X86II::AddRegFrm</tt> case, the first data emitted (by <tt>emitByte</tt>) is the
 | |
| opcode added to the register operand. Then an object representing the machine
 | |
| operand, MO1, is extracted. The helper methods such as <tt>isImmediate</tt>,
 | |
| <tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and 
 | |
| <tt>isJumpTableIndex</tt>
 | |
| determine the operand type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
 | |
| as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>, 
 | |
| <tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
 | |
| and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.) </p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>case X86II::AddRegFrm:
 | |
|   MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | |
|   
 | |
|   if (CurOp != NumOps) {
 | |
|     const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|     unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | |
|     if (MO1.isImmediate())
 | |
|       emitConstant(MO1.getImm(), Size);
 | |
|     else {
 | |
|       unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|         : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|       if (Opcode == X86::MOV64ri) 
 | |
|         rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | |
|       if (MO1.isGlobalAddress()) {
 | |
|         bool NeedStub = isa<Function>(MO1.getGlobal());
 | |
|         bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
 | |
|         emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | |
|                           NeedStub, isLazy);
 | |
|       } else if (MO1.isExternalSymbol())
 | |
|         emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|       else if (MO1.isConstantPoolIndex())
 | |
|         emitConstPoolAddress(MO1.getIndex(), rt);
 | |
|       else if (MO1.isJumpTableIndex())
 | |
|         emitJumpTableAddress(MO1.getIndex(), rt);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the variable <tt>rt</tt>,
 | |
| which is a RelocationType enum that may be used to relocate addresses (for
 | |
| example, a global address with a PIC base offset). The RelocationType enum for
 | |
| that target is defined in the short target-specific <tt>XXXRelocations.h</tt> file. The
 | |
| RelocationType is used by the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to
 | |
| rewrite addresses for referenced global symbols.</p>
 | |
| 
 | |
| <p>For example, <tt>X86Relocations.h</tt> specifies the following relocation
 | |
| types for the X86 addresses. In all four cases, the relocated value is added to
 | |
| the value already in memory. For <tt>reloc_pcrel_word</tt> and <tt>reloc_picrel_word</tt>, 
 | |
| there is an additional initial adjustment.</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>enum RelocationType {
 | |
|   reloc_pcrel_word = 0,  // add reloc value after adjusting for the PC loc
 | |
|   reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
 | |
|   reloc_absolute_word = 2, // absolute relocation; no additional adjustment 
 | |
|   reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="targetJITInfo">Target JIT Info</a>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p><tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific code-generation
 | |
| activities, such as emitting machine code and stubs. At minimum, 
 | |
| a target-specific version of XXXJITInfo implements the following:</p>
 | |
| <ul>
 | |
| <li><tt>getLazyResolverFunction</tt> – initializes the JIT, gives the
 | |
| target a function that is used for compilation </li>
 | |
| 
 | |
| <li><tt>emitFunctionStub</tt> – returns a native function with a
 | |
| specified address for a callback function</li>
 | |
| 
 | |
| <li><tt>relocate</tt> – changes the addresses of referenced globals,
 | |
| based on relocation types</li>
 | |
| 
 | |
| <li>callback function that are wrappers to a function stub that is
 | |
| used when the real target is not initially known </li>
 | |
| </ul>
 | |
| 
 | |
| <p><tt>getLazyResolverFunction</tt> is generally trivial to implement. It
 | |
| makes the incoming parameter as the global JITCompilerFunction and returns the
 | |
| callback function that will be used a function wrapper. For the Alpha target
 | |
| (in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt> implementation is simply:</p>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(  
 | |
|                                             JITCompilerFn F) 
 | |
| {
 | |
|   JITCompilerFunction = F;
 | |
|   return AlphaCompilationCallback;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <div class="doc_text">
 | |
| <p>For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is
 | |
| a little more complication, because it returns a different callback function
 | |
| for processors with SSE instructions and XMM registers. </p>
 | |
| 
 | |
| <p>The callback function initially saves and later restores the
 | |
| callee register values, incoming arguments, and frame and return address. The
 | |
| callback function needs low-level access to the registers or stack, so it is typically
 | |
| implemented with assembler. </p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a>
 | |
|   <br>
 | |
|   Last modified: $Date$
 | |
| </address>
 | |
| 
 | |
| </body>
 | |
| </html>
 |