llvm-6502/include/llvm/DerivedTypes.h
Chris Lattner 48486893f4 Standardize header file comments
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8782 91177308-0d34-0410-b5e6-96231b3b80d8
2003-09-30 18:37:50 +00:00

446 lines
16 KiB
C++

//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;
class DerivedType : public Type {
char isRefining; // Used for recursive types
// AbstractTypeUsers - Implement a list of the users that need to be notified
// if I am a type, and I get resolved into a more concrete type.
//
///// FIXME: kill mutable nonsense when Type's are not const
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
protected:
inline DerivedType(PrimitiveID id) : Type("", id) {
isRefining = 0;
}
~DerivedType() {
assert(AbstractTypeUsers.empty());
}
// typeIsRefined - Notify AbstractTypeUsers of this type that the current type
// has been refined a bit. The pointer is still valid and still should be
// used, but the subtypes have changed.
//
void typeIsRefined();
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. This also removes the
// type from the internal tables of available types.
virtual void dropAllTypeUses(bool inMap) = 0;
void refineAbstractTypeToInternal(const Type *NewType, bool inMap);
public:
//===--------------------------------------------------------------------===//
// Abstract Type handling methods - These types have special lifetimes, which
// are managed by (add|remove)AbstractTypeUser. See comments in
// AbstractTypeUser.h for more information.
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
//
void addAbstractTypeUser(AbstractTypeUser *U) const;
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever
// again.
//
void removeAbstractTypeUser(AbstractTypeUser *U) const;
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete
// type NewType and for 'this' to be deleted.
//
void refineAbstractTypeTo(const Type *NewType) {
refineAbstractTypeToInternal(NewType, true);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const DerivedType *T) { return true; }
static inline bool classof(const Type *T) {
return T->isDerivedType();
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
struct FunctionType : public DerivedType {
typedef std::vector<PATypeHandle> ParamTypes;
friend class TypeMap<FunctionValType, FunctionType>;
private:
PATypeHandle ResultType;
ParamTypes ParamTys;
bool isVarArgs;
FunctionType(const FunctionType &); // Do not implement
const FunctionType &operator=(const FunctionType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class FunctionType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
bool IsVarArgs);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. This also removes the
// type from the internal tables of available types.
virtual void dropAllTypeUses(bool inMap);
public:
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ResultType; }
inline const ParamTypes &getParamTypes() const { return ParamTys; }
// Parameter type accessors...
const Type *getParamType(unsigned i) const { return ParamTys[i]; }
// getNumParams - Return the number of fixed parameters this function type
// requires. This does not consider varargs.
//
unsigned getNumParams() const { return ParamTys.size(); }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ResultType :
(i <= ParamTys.size() ? ParamTys[i-1].get() : 0);
}
virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static FunctionType *get(const Type *Result,
const std::vector<const Type*> &Params,
bool isVarArg);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FunctionType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == FunctionTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// CompositeType - Common super class of ArrayType, StructType, and PointerType
//
class CompositeType : public DerivedType {
protected:
inline CompositeType(PrimitiveID id) : DerivedType(id) { }
public:
// getTypeAtIndex - Given an index value into the type, return the type of the
// element.
//
virtual const Type *getTypeAtIndex(const Value *V) const = 0;
virtual bool indexValid(const Value *V) const = 0;
// getIndexType - Return the type required of indices for this composite.
// For structures, this is ubyte, for arrays, this is uint
//
virtual const Type *getIndexType() const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CompositeType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID ||
T->getPrimitiveID() == StructTyID ||
T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
struct StructType : public CompositeType {
friend class TypeMap<StructValType, StructType>;
typedef std::vector<PATypeHandle> ElementTypes;
private:
ElementTypes ETypes; // Element types of struct
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class StructType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
StructType(const std::vector<const Type*> &Types);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. This also removes the
// type from the internal tables of available types.
virtual void dropAllTypeUses(bool inMap);
public:
inline const ElementTypes &getElementTypes() const { return ETypes; }
virtual const Type *getContainedType(unsigned i) const {
return i < ETypes.size() ? ETypes[i].get() : 0;
}
virtual unsigned getNumContainedTypes() const { return ETypes.size(); }
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
virtual const Type *getTypeAtIndex(const Value *V) const ;
virtual bool indexValid(const Value *V) const;
// getIndexType - Return the type required of indices for this composite.
// For structures, this is ubyte, for arrays, this is uint
//
virtual const Type *getIndexType() const { return Type::UByteTy; }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static StructType *get(const std::vector<const Type*> &Params);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StructType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == StructTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// SequentialType - This is the superclass of the array and pointer type
// classes. Both of these represent "arrays" in memory. The array type
// represents a specifically sized array, pointer types are unsized/unknown size
// arrays. SequentialType holds the common features of both, which stem from
// the fact that both lay their components out in memory identically.
//
class SequentialType : public CompositeType {
SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement!
protected:
PATypeHandle ElementType;
SequentialType(PrimitiveID TID, const Type *ElType)
: CompositeType(TID), ElementType(PATypeHandle(ElType, this)) {
}
public:
inline const Type *getElementType() const { return ElementType; }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ElementType.get() : 0;
}
virtual unsigned getNumContainedTypes() const { return 1; }
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For sequential types, there is only one subtype...
//
virtual const Type *getTypeAtIndex(const Value *V) const {
return ElementType.get();
}
virtual bool indexValid(const Value *V) const {
return V->getType() == Type::LongTy; // Must be a 'long' index
}
// getIndexType() - Return the type required of indices for this composite.
// For structures, this is ubyte, for arrays, this is uint
//
virtual const Type *getIndexType() const { return Type::LongTy; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SequentialType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID ||
T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class ArrayType : public SequentialType {
friend class TypeMap<ArrayValType, ArrayType>;
unsigned NumElements;
ArrayType(const ArrayType &); // Do not implement
const ArrayType &operator=(const ArrayType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class ArrayType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
ArrayType(const Type *ElType, unsigned NumEl);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. This also removes the
// type from the internal tables of available types.
virtual void dropAllTypeUses(bool inMap);
public:
inline unsigned getNumElements() const { return NumElements; }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static ArrayType *get(const Type *ElementType, unsigned NumElements);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ArrayType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class PointerType : public SequentialType {
friend class TypeMap<PointerValType, PointerType>;
PointerType(const PointerType &); // Do not implement
const PointerType &operator=(const PointerType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class PointerType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
PointerType(const Type *ElType);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. This also removes the
// type from the internal tables of available types.
virtual void dropAllTypeUses(bool inMap);
public:
// PointerType::get - Named constructor for pointer types...
static PointerType *get(const Type *ElementType);
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PointerType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class OpaqueType : public DerivedType {
OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT
const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class OpaqueType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
OpaqueType();
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses(bool inMap) {} // No type uses
public:
// get - Static factory method for the OpaqueType class...
static OpaqueType *get() {
return new OpaqueType(); // All opaque types are distinct
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const OpaqueType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == OpaqueTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependent on
// the definition of the Type class. Of course Type derives from Value, which
// contains an AbstractTypeUser instance, so there is no good way to factor out
// the code. Hence this bit of uglyness.
//
inline void PATypeHandle::addUser() {
assert(Ty && "Type Handle has a null type!");
if (Ty->isAbstract())
cast<DerivedType>(Ty)->addAbstractTypeUser(User);
}
inline void PATypeHandle::removeUser() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}
inline void PATypeHandle::removeUserFromConcrete() {
if (!Ty->isAbstract())
cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}
#endif