mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 07:32:52 +00:00
4b28ee2088
If there are no legal integers, assume 1 byte. This makes more sense than using the pointer size as a guess for the maximum GPR width. It is conceivable to want to use some 64-bit pointers on a target where 64-bit integers aren't legal. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190817 91177308-0d34-0410-b5e6-96231b3b80d8
502 lines
19 KiB
C++
502 lines
19 KiB
C++
//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines layout properties related to datatype size/offset/alignment
|
|
// information. It uses lazy annotations to cache information about how
|
|
// structure types are laid out and used.
|
|
//
|
|
// This structure should be created once, filled in if the defaults are not
|
|
// correct and then passed around by const&. None of the members functions
|
|
// require modification to the object.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_DATALAYOUT_H
|
|
#define LLVM_IR_DATALAYOUT_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
class Value;
|
|
class Type;
|
|
class IntegerType;
|
|
class StructType;
|
|
class StructLayout;
|
|
class GlobalVariable;
|
|
class LLVMContext;
|
|
template<typename T>
|
|
class ArrayRef;
|
|
|
|
/// Enum used to categorize the alignment types stored by LayoutAlignElem
|
|
enum AlignTypeEnum {
|
|
INVALID_ALIGN = 0, ///< An invalid alignment
|
|
INTEGER_ALIGN = 'i', ///< Integer type alignment
|
|
VECTOR_ALIGN = 'v', ///< Vector type alignment
|
|
FLOAT_ALIGN = 'f', ///< Floating point type alignment
|
|
AGGREGATE_ALIGN = 'a', ///< Aggregate alignment
|
|
STACK_ALIGN = 's' ///< Stack objects alignment
|
|
};
|
|
|
|
/// Layout alignment element.
|
|
///
|
|
/// Stores the alignment data associated with a given alignment type (integer,
|
|
/// vector, float) and type bit width.
|
|
///
|
|
/// @note The unusual order of elements in the structure attempts to reduce
|
|
/// padding and make the structure slightly more cache friendly.
|
|
struct LayoutAlignElem {
|
|
unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
|
|
unsigned TypeBitWidth : 24; ///< Type bit width
|
|
unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
|
|
unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
|
|
|
|
/// Initializer
|
|
static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
|
|
unsigned pref_align, uint32_t bit_width);
|
|
/// Equality predicate
|
|
bool operator==(const LayoutAlignElem &rhs) const;
|
|
};
|
|
|
|
/// Layout pointer alignment element.
|
|
///
|
|
/// Stores the alignment data associated with a given pointer and address space.
|
|
///
|
|
/// @note The unusual order of elements in the structure attempts to reduce
|
|
/// padding and make the structure slightly more cache friendly.
|
|
struct PointerAlignElem {
|
|
unsigned ABIAlign; ///< ABI alignment for this type/bitw
|
|
unsigned PrefAlign; ///< Pref. alignment for this type/bitw
|
|
uint32_t TypeBitWidth; ///< Type bit width
|
|
uint32_t AddressSpace; ///< Address space for the pointer type
|
|
|
|
/// Initializer
|
|
static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
|
|
unsigned pref_align, uint32_t bit_width);
|
|
/// Equality predicate
|
|
bool operator==(const PointerAlignElem &rhs) const;
|
|
};
|
|
|
|
|
|
/// DataLayout - This class holds a parsed version of the target data layout
|
|
/// string in a module and provides methods for querying it. The target data
|
|
/// layout string is specified *by the target* - a frontend generating LLVM IR
|
|
/// is required to generate the right target data for the target being codegen'd
|
|
/// to. If some measure of portability is desired, an empty string may be
|
|
/// specified in the module.
|
|
class DataLayout : public ImmutablePass {
|
|
private:
|
|
bool LittleEndian; ///< Defaults to false
|
|
unsigned StackNaturalAlign; ///< Stack natural alignment
|
|
|
|
SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
|
|
|
|
/// Alignments - Where the primitive type alignment data is stored.
|
|
///
|
|
/// @sa init().
|
|
/// @note Could support multiple size pointer alignments, e.g., 32-bit
|
|
/// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
|
|
/// we don't.
|
|
SmallVector<LayoutAlignElem, 16> Alignments;
|
|
DenseMap<unsigned, PointerAlignElem> Pointers;
|
|
|
|
/// InvalidAlignmentElem - This member is a signal that a requested alignment
|
|
/// type and bit width were not found in the SmallVector.
|
|
static const LayoutAlignElem InvalidAlignmentElem;
|
|
|
|
/// InvalidPointerElem - This member is a signal that a requested pointer
|
|
/// type and bit width were not found in the DenseSet.
|
|
static const PointerAlignElem InvalidPointerElem;
|
|
|
|
// The StructType -> StructLayout map.
|
|
mutable void *LayoutMap;
|
|
|
|
//! Set/initialize target alignments
|
|
void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
|
|
unsigned pref_align, uint32_t bit_width);
|
|
unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
|
|
bool ABIAlign, Type *Ty) const;
|
|
|
|
//! Set/initialize pointer alignments
|
|
void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
|
|
unsigned pref_align, uint32_t bit_width);
|
|
|
|
//! Internal helper method that returns requested alignment for type.
|
|
unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
|
|
|
|
/// Valid alignment predicate.
|
|
///
|
|
/// Predicate that tests a LayoutAlignElem reference returned by get() against
|
|
/// InvalidAlignmentElem.
|
|
bool validAlignment(const LayoutAlignElem &align) const {
|
|
return &align != &InvalidAlignmentElem;
|
|
}
|
|
|
|
/// Valid pointer predicate.
|
|
///
|
|
/// Predicate that tests a PointerAlignElem reference returned by get() against
|
|
/// InvalidPointerElem.
|
|
bool validPointer(const PointerAlignElem &align) const {
|
|
return &align != &InvalidPointerElem;
|
|
}
|
|
|
|
/// Parses a target data specification string. Assert if the string is
|
|
/// malformed.
|
|
void parseSpecifier(StringRef LayoutDescription);
|
|
|
|
public:
|
|
/// Default ctor.
|
|
///
|
|
/// @note This has to exist, because this is a pass, but it should never be
|
|
/// used.
|
|
DataLayout();
|
|
|
|
/// Constructs a DataLayout from a specification string. See init().
|
|
explicit DataLayout(StringRef LayoutDescription)
|
|
: ImmutablePass(ID) {
|
|
init(LayoutDescription);
|
|
}
|
|
|
|
/// Initialize target data from properties stored in the module.
|
|
explicit DataLayout(const Module *M);
|
|
|
|
DataLayout(const DataLayout &DL) :
|
|
ImmutablePass(ID),
|
|
LittleEndian(DL.isLittleEndian()),
|
|
StackNaturalAlign(DL.StackNaturalAlign),
|
|
LegalIntWidths(DL.LegalIntWidths),
|
|
Alignments(DL.Alignments),
|
|
Pointers(DL.Pointers),
|
|
LayoutMap(0)
|
|
{ }
|
|
|
|
~DataLayout(); // Not virtual, do not subclass this class
|
|
|
|
/// DataLayout is an immutable pass, but holds state. This allows the pass
|
|
/// manager to clear its mutable state.
|
|
bool doFinalization(Module &M);
|
|
|
|
/// Parse a data layout string (with fallback to default values). Ensure that
|
|
/// the data layout pass is registered.
|
|
void init(StringRef LayoutDescription);
|
|
|
|
/// Layout endianness...
|
|
bool isLittleEndian() const { return LittleEndian; }
|
|
bool isBigEndian() const { return !LittleEndian; }
|
|
|
|
/// getStringRepresentation - Return the string representation of the
|
|
/// DataLayout. This representation is in the same format accepted by the
|
|
/// string constructor above.
|
|
std::string getStringRepresentation() const;
|
|
|
|
/// isLegalInteger - This function returns true if the specified type is
|
|
/// known to be a native integer type supported by the CPU. For example,
|
|
/// i64 is not native on most 32-bit CPUs and i37 is not native on any known
|
|
/// one. This returns false if the integer width is not legal.
|
|
///
|
|
/// The width is specified in bits.
|
|
///
|
|
bool isLegalInteger(unsigned Width) const {
|
|
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
|
|
if (LegalIntWidths[i] == Width)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool isIllegalInteger(unsigned Width) const {
|
|
return !isLegalInteger(Width);
|
|
}
|
|
|
|
/// Returns true if the given alignment exceeds the natural stack alignment.
|
|
bool exceedsNaturalStackAlignment(unsigned Align) const {
|
|
return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
|
|
}
|
|
|
|
/// fitsInLegalInteger - This function returns true if the specified type fits
|
|
/// in a native integer type supported by the CPU. For example, if the CPU
|
|
/// only supports i32 as a native integer type, then i27 fits in a legal
|
|
// integer type but i45 does not.
|
|
bool fitsInLegalInteger(unsigned Width) const {
|
|
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
|
|
if (Width <= LegalIntWidths[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Layout pointer alignment
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerABIAlignment(unsigned AS = 0) const {
|
|
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
|
|
if (val == Pointers.end()) {
|
|
val = Pointers.find(0);
|
|
}
|
|
return val->second.ABIAlign;
|
|
}
|
|
|
|
/// Return target's alignment for stack-based pointers
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerPrefAlignment(unsigned AS = 0) const {
|
|
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
|
|
if (val == Pointers.end()) {
|
|
val = Pointers.find(0);
|
|
}
|
|
return val->second.PrefAlign;
|
|
}
|
|
/// Layout pointer size
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerSize(unsigned AS = 0) const {
|
|
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
|
|
if (val == Pointers.end()) {
|
|
val = Pointers.find(0);
|
|
}
|
|
return val->second.TypeBitWidth;
|
|
}
|
|
/// Layout pointer size, in bits
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerSizeInBits(unsigned AS = 0) const {
|
|
return getPointerSize(AS) * 8;
|
|
}
|
|
|
|
/// Layout pointer size, in bits, based on the type. If this function is
|
|
/// called with a pointer type, then the type size of the pointer is returned.
|
|
/// If this function is called with a vector of pointers, then the type size
|
|
/// of the pointer is returned. This should only be called with a pointer or
|
|
/// vector of pointers.
|
|
unsigned getPointerTypeSizeInBits(Type *) const;
|
|
|
|
unsigned getPointerTypeSize(Type *Ty) const {
|
|
return getPointerTypeSizeInBits(Ty) / 8;
|
|
}
|
|
|
|
/// Size examples:
|
|
///
|
|
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
|
|
/// ---- ---------- --------------- ---------------
|
|
/// i1 1 8 8
|
|
/// i8 8 8 8
|
|
/// i19 19 24 32
|
|
/// i32 32 32 32
|
|
/// i100 100 104 128
|
|
/// i128 128 128 128
|
|
/// Float 32 32 32
|
|
/// Double 64 64 64
|
|
/// X86_FP80 80 80 96
|
|
///
|
|
/// [*] The alloc size depends on the alignment, and thus on the target.
|
|
/// These values are for x86-32 linux.
|
|
|
|
/// getTypeSizeInBits - Return the number of bits necessary to hold the
|
|
/// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
|
|
/// The type passed must have a size (Type::isSized() must return true).
|
|
uint64_t getTypeSizeInBits(Type *Ty) const;
|
|
|
|
/// getTypeStoreSize - Return the maximum number of bytes that may be
|
|
/// overwritten by storing the specified type. For example, returns 5
|
|
/// for i36 and 10 for x86_fp80.
|
|
uint64_t getTypeStoreSize(Type *Ty) const {
|
|
return (getTypeSizeInBits(Ty)+7)/8;
|
|
}
|
|
|
|
/// getTypeStoreSizeInBits - Return the maximum number of bits that may be
|
|
/// overwritten by storing the specified type; always a multiple of 8. For
|
|
/// example, returns 40 for i36 and 80 for x86_fp80.
|
|
uint64_t getTypeStoreSizeInBits(Type *Ty) const {
|
|
return 8*getTypeStoreSize(Ty);
|
|
}
|
|
|
|
/// getTypeAllocSize - Return the offset in bytes between successive objects
|
|
/// of the specified type, including alignment padding. This is the amount
|
|
/// that alloca reserves for this type. For example, returns 12 or 16 for
|
|
/// x86_fp80, depending on alignment.
|
|
uint64_t getTypeAllocSize(Type *Ty) const {
|
|
// Round up to the next alignment boundary.
|
|
return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
|
|
}
|
|
|
|
/// getTypeAllocSizeInBits - Return the offset in bits between successive
|
|
/// objects of the specified type, including alignment padding; always a
|
|
/// multiple of 8. This is the amount that alloca reserves for this type.
|
|
/// For example, returns 96 or 128 for x86_fp80, depending on alignment.
|
|
uint64_t getTypeAllocSizeInBits(Type *Ty) const {
|
|
return 8*getTypeAllocSize(Ty);
|
|
}
|
|
|
|
/// getABITypeAlignment - Return the minimum ABI-required alignment for the
|
|
/// specified type.
|
|
unsigned getABITypeAlignment(Type *Ty) const;
|
|
|
|
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
|
|
/// an integer type of the specified bitwidth.
|
|
unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
|
|
|
|
/// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
|
|
/// for the specified type when it is part of a call frame.
|
|
unsigned getCallFrameTypeAlignment(Type *Ty) const;
|
|
|
|
/// getPrefTypeAlignment - Return the preferred stack/global alignment for
|
|
/// the specified type. This is always at least as good as the ABI alignment.
|
|
unsigned getPrefTypeAlignment(Type *Ty) const;
|
|
|
|
/// getPreferredTypeAlignmentShift - Return the preferred alignment for the
|
|
/// specified type, returned as log2 of the value (a shift amount).
|
|
unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
|
|
|
|
/// getIntPtrType - Return an integer type with size at least as big as that
|
|
/// of a pointer in the given address space.
|
|
IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
|
|
|
|
/// getIntPtrType - Return an integer (vector of integer) type with size at
|
|
/// least as big as that of a pointer of the given pointer (vector of pointer)
|
|
/// type.
|
|
Type *getIntPtrType(Type *) const;
|
|
|
|
/// getSmallestLegalIntType - Return the smallest integer type with size at
|
|
/// least as big as Width bits.
|
|
Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
|
|
|
|
/// getLargestLegalIntType - Return the largest legal integer type, or null if
|
|
/// none are set.
|
|
Type *getLargestLegalIntType(LLVMContext &C) const {
|
|
unsigned LargestSize = getLargestLegalIntTypeSize();
|
|
return (LargestSize == 0) ? 0 : Type::getIntNTy(C, LargestSize);
|
|
}
|
|
|
|
/// getLargestLegalIntType - Return the size of largest legal integer type
|
|
/// size, or 0 if none are set.
|
|
unsigned getLargestLegalIntTypeSize() const;
|
|
|
|
/// getIndexedOffset - return the offset from the beginning of the type for
|
|
/// the specified indices. This is used to implement getelementptr.
|
|
uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
|
|
|
|
/// getStructLayout - Return a StructLayout object, indicating the alignment
|
|
/// of the struct, its size, and the offsets of its fields. Note that this
|
|
/// information is lazily cached.
|
|
const StructLayout *getStructLayout(StructType *Ty) const;
|
|
|
|
/// getPreferredAlignment - Return the preferred alignment of the specified
|
|
/// global. This includes an explicitly requested alignment (if the global
|
|
/// has one).
|
|
unsigned getPreferredAlignment(const GlobalVariable *GV) const;
|
|
|
|
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
|
/// specified global, returned in log form. This includes an explicitly
|
|
/// requested alignment (if the global has one).
|
|
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
|
|
|
|
/// RoundUpAlignment - Round the specified value up to the next alignment
|
|
/// boundary specified by Alignment. For example, 7 rounded up to an
|
|
/// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
|
|
/// is 8 because it is already aligned.
|
|
template <typename UIntTy>
|
|
static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
|
|
assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
|
|
return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
|
|
}
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
};
|
|
|
|
/// StructLayout - used to lazily calculate structure layout information for a
|
|
/// target machine, based on the DataLayout structure.
|
|
///
|
|
class StructLayout {
|
|
uint64_t StructSize;
|
|
unsigned StructAlignment;
|
|
unsigned NumElements;
|
|
uint64_t MemberOffsets[1]; // variable sized array!
|
|
public:
|
|
|
|
uint64_t getSizeInBytes() const {
|
|
return StructSize;
|
|
}
|
|
|
|
uint64_t getSizeInBits() const {
|
|
return 8*StructSize;
|
|
}
|
|
|
|
unsigned getAlignment() const {
|
|
return StructAlignment;
|
|
}
|
|
|
|
/// getElementContainingOffset - Given a valid byte offset into the structure,
|
|
/// return the structure index that contains it.
|
|
///
|
|
unsigned getElementContainingOffset(uint64_t Offset) const;
|
|
|
|
uint64_t getElementOffset(unsigned Idx) const {
|
|
assert(Idx < NumElements && "Invalid element idx!");
|
|
return MemberOffsets[Idx];
|
|
}
|
|
|
|
uint64_t getElementOffsetInBits(unsigned Idx) const {
|
|
return getElementOffset(Idx)*8;
|
|
}
|
|
|
|
private:
|
|
friend class DataLayout; // Only DataLayout can create this class
|
|
StructLayout(StructType *ST, const DataLayout &DL);
|
|
};
|
|
|
|
|
|
// The implementation of this method is provided inline as it is particularly
|
|
// well suited to constant folding when called on a specific Type subclass.
|
|
inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
case Type::LabelTyID:
|
|
return getPointerSizeInBits(0);
|
|
case Type::PointerTyID:
|
|
return getPointerSizeInBits(Ty->getPointerAddressSpace());
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATy = cast<ArrayType>(Ty);
|
|
return ATy->getNumElements() *
|
|
getTypeAllocSizeInBits(ATy->getElementType());
|
|
}
|
|
case Type::StructTyID:
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
|
|
case Type::IntegerTyID:
|
|
return Ty->getIntegerBitWidth();
|
|
case Type::HalfTyID:
|
|
return 16;
|
|
case Type::FloatTyID:
|
|
return 32;
|
|
case Type::DoubleTyID:
|
|
case Type::X86_MMXTyID:
|
|
return 64;
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
return 128;
|
|
// In memory objects this is always aligned to a higher boundary, but
|
|
// only 80 bits contain information.
|
|
case Type::X86_FP80TyID:
|
|
return 80;
|
|
case Type::VectorTyID: {
|
|
VectorType *VTy = cast<VectorType>(Ty);
|
|
return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
|
|
}
|
|
default:
|
|
llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
|
|
}
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|