llvm-6502/lib/VMCore/ConstPoolVals.cpp
Vikram S. Adve c750c29f28 Support printing control characters in standard C/assembly style,
if you specify useCSyntax = true.  The old style is still the default.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1011 91177308-0d34-0410-b5e6-96231b3b80d8
2001-10-28 21:48:05 +00:00

518 lines
16 KiB
C++

//===-- iConstPool.cpp - Implement ConstPool instructions --------*- C++ -*--=//
//
// This file implements the ConstPool* classes...
//
//===----------------------------------------------------------------------===//
#define __STDC_LIMIT_MACROS // Get defs for INT64_MAX and friends...
#include "llvm/ConstPoolVals.h"
#include "llvm/Support/StringExtras.h" // itostr
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/GlobalValue.h"
#include "llvm/Module.h"
#include "llvm/Analysis/SlotCalculator.h"
#include <algorithm>
#include <assert.h>
ConstPoolBool *ConstPoolBool::True = new ConstPoolBool(true);
ConstPoolBool *ConstPoolBool::False = new ConstPoolBool(false);
//===----------------------------------------------------------------------===//
// ConstPoolVal Class
//===----------------------------------------------------------------------===//
// Specialize setName to take care of symbol table majik
void ConstPoolVal::setName(const string &Name, SymbolTable *ST) {
assert(ST && "Type::setName - Must provide symbol table argument!");
if (Name.size()) ST->insert(Name, this);
}
// Static constructor to create a '0' constant of arbitrary type...
ConstPoolVal *ConstPoolVal::getNullConstant(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: return ConstPoolBool::get(false);
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
case Type::LongTyID: return ConstPoolSInt::get(Ty, 0);
case Type::UByteTyID:
case Type::UShortTyID:
case Type::UIntTyID:
case Type::ULongTyID: return ConstPoolUInt::get(Ty, 0);
case Type::FloatTyID:
case Type::DoubleTyID: return ConstPoolFP::get(Ty, 0);
case Type::PointerTyID:
return ConstPoolPointerNull::get(cast<PointerType>(Ty));
default:
return 0;
}
}
#ifndef NDEBUG
#include "llvm/Assembly/Writer.h"
#endif
void ConstPoolVal::destroyConstantImpl() {
// When a ConstPoolVal is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependant on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// ConstPoolVals) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<ConstPoolVal>(V)) {
cerr << "While deleting: " << this << endl;
cerr << "Use still stuck around after Def is destroyed: " << V << endl;
}
#endif
assert(isa<ConstPoolVal>(V) && "References remain to ConstPoolPointerRef!");
ConstPoolVal *CPV = cast<ConstPoolVal>(V);
CPV->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() == V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
//===----------------------------------------------------------------------===//
// ConstPoolXXX Classes
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Normal Constructors
ConstPoolBool::ConstPoolBool(bool V) : ConstPoolVal(Type::BoolTy) {
Val = V;
}
ConstPoolInt::ConstPoolInt(const Type *Ty, uint64_t V) : ConstPoolVal(Ty) {
Val.Unsigned = V;
}
ConstPoolSInt::ConstPoolSInt(const Type *Ty, int64_t V) : ConstPoolInt(Ty, V) {
assert(isValueValidForType(Ty, V) && "Value too large for type!");
}
ConstPoolUInt::ConstPoolUInt(const Type *Ty, uint64_t V) : ConstPoolInt(Ty, V) {
assert(isValueValidForType(Ty, V) && "Value too large for type!");
}
ConstPoolFP::ConstPoolFP(const Type *Ty, double V) : ConstPoolVal(Ty) {
assert(isValueValidForType(Ty, V) && "Value too large for type!");
Val = V;
}
ConstPoolArray::ConstPoolArray(const ArrayType *T,
const vector<ConstPoolVal*> &V)
: ConstPoolVal(T) {
for (unsigned i = 0; i < V.size(); i++) {
assert(V[i]->getType() == T->getElementType());
Operands.push_back(Use(V[i], this));
}
}
ConstPoolStruct::ConstPoolStruct(const StructType *T,
const vector<ConstPoolVal*> &V)
: ConstPoolVal(T) {
const StructType::ElementTypes &ETypes = T->getElementTypes();
for (unsigned i = 0; i < V.size(); i++) {
assert(V[i]->getType() == ETypes[i]);
Operands.push_back(Use(V[i], this));
}
}
ConstPoolPointerRef::ConstPoolPointerRef(GlobalValue *GV)
: ConstPoolPointer(GV->getType()) {
Operands.push_back(Use(GV, this));
}
//===----------------------------------------------------------------------===//
// getStrValue implementations
string ConstPoolBool::getStrValue(bool useCSyntax) const {
return Val ? "true" : "false";
}
string ConstPoolSInt::getStrValue(bool useCSyntax) const {
return itostr(Val.Signed);
}
string ConstPoolUInt::getStrValue(bool useCSyntax) const {
return utostr(Val.Unsigned);
}
string ConstPoolFP::getStrValue(bool useCSyntax) const {
return ftostr(Val);
}
// Treat the array as a string if it is an array of ubytes or non-neg sbytes
bool ConstPoolArray::isString() const {
const Type *ETy = cast<ArrayType>(getType())->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
for (unsigned i = 0; i < Operands.size(); ++i)
if (ETy == Type::SByteTy &&
cast<ConstPoolSInt>(Operands[i])->getValue() < 0) {
isString = false;
break;
}
return isString;
}
inline string toRawString(unsigned char C) {
string result = "\\";
result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
return result;
}
string ConstPoolArray::getStrValue(bool useCSyntax) const {
string Result;
if (this->isString()) {
const Type *ETy = cast<ArrayType>(getType())->getElementType();
Result = (useCSyntax)? "\"" : "c\"";
for (unsigned i = 0; i < Operands.size(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstPoolSInt>(Operands[i])->getValue() :
(unsigned char)cast<ConstPoolUInt>(Operands[i])->getValue();
if (isprint(C)) {
Result += C;
} else if (! useCSyntax) {
Result += toRawString(C);
}
else {
switch(C) {
case '\a': Result += "\\a"; break;
case '\b': Result += "\\n"; break;
case '\f': Result += "\\n"; break;
case '\n': Result += "\\n"; break;
case '\r': Result += "\\n"; break;
case '\t': Result += "\\t"; break;
case '\v': Result += "\\v"; break;
default: Result += toRawString(C); break;
}
}
}
Result += "\"";
} else {
Result = "[";
if (Operands.size()) {
Result += " " + Operands[0]->getType()->getDescription() +
" " + cast<ConstPoolVal>(Operands[0])->getStrValue(useCSyntax);
for (unsigned i = 1; i < Operands.size(); i++)
Result += ", " + Operands[i]->getType()->getDescription() +
" " + cast<ConstPoolVal>(Operands[i])->getStrValue(useCSyntax);
}
Result += " ]";
}
return Result;
}
string ConstPoolStruct::getStrValue(bool useCSyntax) const {
string Result = "{";
if (Operands.size()) {
Result += " " + Operands[0]->getType()->getDescription() +
" " + cast<ConstPoolVal>(Operands[0])->getStrValue(useCSyntax);
for (unsigned i = 1; i < Operands.size(); i++)
Result += ", " + Operands[i]->getType()->getDescription() +
" " + cast<ConstPoolVal>(Operands[i])->getStrValue(useCSyntax);
}
return Result + " }";
}
string ConstPoolPointerNull::getStrValue(bool useCSyntax) const {
return "null";
}
string ConstPoolPointerRef::getStrValue(bool useCSyntax) const {
const GlobalValue *V = getValue();
if (V->hasName()) return "%" + V->getName();
SlotCalculator *Table = new SlotCalculator(V->getParent(), true);
int Slot = Table->getValSlot(V);
delete Table;
if (Slot >= 0) return string(" %") + itostr(Slot);
else return "<pointer reference badref>";
}
//===----------------------------------------------------------------------===//
// classof implementations
bool ConstPoolInt::classof(const ConstPoolVal *CPV) {
return CPV->getType()->isIntegral();
}
bool ConstPoolSInt::classof(const ConstPoolVal *CPV) {
return CPV->getType()->isSigned();
}
bool ConstPoolUInt::classof(const ConstPoolVal *CPV) {
return CPV->getType()->isUnsigned();
}
bool ConstPoolFP::classof(const ConstPoolVal *CPV) {
const Type *Ty = CPV->getType();
return Ty == Type::FloatTy || Ty == Type::DoubleTy;
}
bool ConstPoolArray::classof(const ConstPoolVal *CPV) {
return isa<ArrayType>(CPV->getType());
}
bool ConstPoolStruct::classof(const ConstPoolVal *CPV) {
return isa<StructType>(CPV->getType());
}
bool ConstPoolPointer::classof(const ConstPoolVal *CPV) {
return isa<PointerType>(CPV->getType());
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstPoolSInt::isValueValidForType(const Type *Ty, int64_t Val) {
switch (Ty->getPrimitiveID()) {
default:
return false; // These can't be represented as integers!!!
// Signed types...
case Type::SByteTyID:
return (Val <= INT8_MAX && Val >= INT8_MIN);
case Type::ShortTyID:
return (Val <= INT16_MAX && Val >= INT16_MIN);
case Type::IntTyID:
return (Val <= INT32_MAX && Val >= INT32_MIN);
case Type::LongTyID:
return true; // This is the largest type...
}
assert(0 && "WTF?");
return false;
}
bool ConstPoolUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
switch (Ty->getPrimitiveID()) {
default:
return false; // These can't be represented as integers!!!
// Unsigned types...
case Type::UByteTyID:
return (Val <= UINT8_MAX);
case Type::UShortTyID:
return (Val <= UINT16_MAX);
case Type::UIntTyID:
return (Val <= UINT32_MAX);
case Type::ULongTyID:
return true; // This is the largest type...
}
assert(0 && "WTF?");
return false;
}
bool ConstPoolFP::isValueValidForType(const Type *Ty, double Val) {
switch (Ty->getPrimitiveID()) {
default:
return false; // These can't be represented as floating point!
// TODO: Figure out how to test if a double can be cast to a float!
case Type::FloatTyID:
/*
return (Val <= UINT8_MAX);
*/
case Type::DoubleTyID:
return true; // This is the largest type...
}
};
//===----------------------------------------------------------------------===//
// Hash Function Implementations
#if 0
unsigned ConstPoolSInt::hash(const Type *Ty, int64_t V) {
return unsigned(Ty->getPrimitiveID() ^ V);
}
unsigned ConstPoolUInt::hash(const Type *Ty, uint64_t V) {
return unsigned(Ty->getPrimitiveID() ^ V);
}
unsigned ConstPoolFP::hash(const Type *Ty, double V) {
return Ty->getPrimitiveID() ^ unsigned(V);
}
unsigned ConstPoolArray::hash(const ArrayType *Ty,
const vector<ConstPoolVal*> &V) {
unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7);
for (unsigned i = 0; i < V.size(); ++i)
Result ^= V[i]->getHash() << (i & 7);
return Result;
}
unsigned ConstPoolStruct::hash(const StructType *Ty,
const vector<ConstPoolVal*> &V) {
unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7);
for (unsigned i = 0; i < V.size(); ++i)
Result ^= V[i]->getHash() << (i & 7);
return Result;
}
#endif
//===----------------------------------------------------------------------===//
// Factory Function Implementation
template<class ValType, class ConstPoolClass>
struct ValueMap {
typedef pair<const Type*, ValType> ConstHashKey;
map<ConstHashKey, ConstPoolClass *> Map;
inline ConstPoolClass *get(const Type *Ty, ValType V) {
map<ConstHashKey,ConstPoolClass *>::iterator I =
Map.find(ConstHashKey(Ty, V));
return (I != Map.end()) ? I->second : 0;
}
inline void add(const Type *Ty, ValType V, ConstPoolClass *CP) {
Map.insert(make_pair(ConstHashKey(Ty, V), CP));
}
inline void remove(ConstPoolClass *CP) {
for (map<ConstHashKey,ConstPoolClass *>::iterator I = Map.begin(),
E = Map.end(); I != E;++I)
if (I->second == CP) {
Map.erase(I);
return;
}
}
};
//---- ConstPoolUInt::get() and ConstPoolSInt::get() implementations...
//
static ValueMap<uint64_t, ConstPoolInt> IntConstants;
ConstPoolSInt *ConstPoolSInt::get(const Type *Ty, int64_t V) {
ConstPoolSInt *Result = (ConstPoolSInt*)IntConstants.get(Ty, (uint64_t)V);
if (!Result) // If no preexisting value, create one now...
IntConstants.add(Ty, V, Result = new ConstPoolSInt(Ty, V));
return Result;
}
ConstPoolUInt *ConstPoolUInt::get(const Type *Ty, uint64_t V) {
ConstPoolUInt *Result = (ConstPoolUInt*)IntConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
IntConstants.add(Ty, V, Result = new ConstPoolUInt(Ty, V));
return Result;
}
ConstPoolInt *ConstPoolInt::get(const Type *Ty, unsigned char V) {
assert(V <= 127 && "Can only be used with very small positive constants!");
if (Ty->isSigned()) return ConstPoolSInt::get(Ty, V);
return ConstPoolUInt::get(Ty, V);
}
//---- ConstPoolFP::get() implementation...
//
static ValueMap<double, ConstPoolFP> FPConstants;
ConstPoolFP *ConstPoolFP::get(const Type *Ty, double V) {
ConstPoolFP *Result = FPConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
FPConstants.add(Ty, V, Result = new ConstPoolFP(Ty, V));
return Result;
}
//---- ConstPoolArray::get() implementation...
//
static ValueMap<vector<ConstPoolVal*>, ConstPoolArray> ArrayConstants;
ConstPoolArray *ConstPoolArray::get(const ArrayType *Ty,
const vector<ConstPoolVal*> &V) {
ConstPoolArray *Result = ArrayConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
ArrayConstants.add(Ty, V, Result = new ConstPoolArray(Ty, V));
return Result;
}
// ConstPoolArray::get(const string&) - Return an array that is initialized to
// contain the specified string. A null terminator is added to the specified
// string so that it may be used in a natural way...
//
ConstPoolArray *ConstPoolArray::get(const string &Str) {
vector<ConstPoolVal*> ElementVals;
for (unsigned i = 0; i < Str.length(); ++i)
ElementVals.push_back(ConstPoolUInt::get(Type::UByteTy, Str[i]));
// Add a null terminator to the string...
ElementVals.push_back(ConstPoolUInt::get(Type::UByteTy, 0));
ArrayType *ATy = ArrayType::get(Type::UByteTy/*,stringConstant.length()*/);
return ConstPoolArray::get(ATy, ElementVals);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstPoolArray::destroyConstant() {
ArrayConstants.remove(this);
destroyConstantImpl();
}
//---- ConstPoolStruct::get() implementation...
//
static ValueMap<vector<ConstPoolVal*>, ConstPoolStruct> StructConstants;
ConstPoolStruct *ConstPoolStruct::get(const StructType *Ty,
const vector<ConstPoolVal*> &V) {
ConstPoolStruct *Result = StructConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
StructConstants.add(Ty, V, Result = new ConstPoolStruct(Ty, V));
return Result;
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstPoolStruct::destroyConstant() {
StructConstants.remove(this);
destroyConstantImpl();
}
//---- ConstPoolPointerNull::get() implementation...
//
static ValueMap<char, ConstPoolPointerNull> NullPtrConstants;
ConstPoolPointerNull *ConstPoolPointerNull::get(const PointerType *Ty) {
ConstPoolPointerNull *Result = NullPtrConstants.get(Ty, 0);
if (!Result) // If no preexisting value, create one now...
NullPtrConstants.add(Ty, 0, Result = new ConstPoolPointerNull(Ty));
return Result;
}
//---- ConstPoolPointerRef::get() implementation...
//
ConstPoolPointerRef *ConstPoolPointerRef::get(GlobalValue *GV) {
assert(GV->getParent() && "Global Value must be attached to a module!");
// The Module handles the pointer reference sharing...
return GV->getParent()->getConstPoolPointerRef(GV);
}
void ConstPoolPointerRef::mutateReference(GlobalValue *NewGV) {
getValue()->getParent()->mutateConstPoolPointerRef(getValue(), NewGV);
Operands[0] = NewGV;
}