mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237287 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3716 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3716 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the function verifier interface, that can be used for some
 | 
						|
// sanity checking of input to the system.
 | 
						|
//
 | 
						|
// Note that this does not provide full `Java style' security and verifications,
 | 
						|
// instead it just tries to ensure that code is well-formed.
 | 
						|
//
 | 
						|
//  * Both of a binary operator's parameters are of the same type
 | 
						|
//  * Verify that the indices of mem access instructions match other operands
 | 
						|
//  * Verify that arithmetic and other things are only performed on first-class
 | 
						|
//    types.  Verify that shifts & logicals only happen on integrals f.e.
 | 
						|
//  * All of the constants in a switch statement are of the correct type
 | 
						|
//  * The code is in valid SSA form
 | 
						|
//  * It should be illegal to put a label into any other type (like a structure)
 | 
						|
//    or to return one. [except constant arrays!]
 | 
						|
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
 | 
						|
//  * PHI nodes must have an entry for each predecessor, with no extras.
 | 
						|
//  * PHI nodes must be the first thing in a basic block, all grouped together
 | 
						|
//  * PHI nodes must have at least one entry
 | 
						|
//  * All basic blocks should only end with terminator insts, not contain them
 | 
						|
//  * The entry node to a function must not have predecessors
 | 
						|
//  * All Instructions must be embedded into a basic block
 | 
						|
//  * Functions cannot take a void-typed parameter
 | 
						|
//  * Verify that a function's argument list agrees with it's declared type.
 | 
						|
//  * It is illegal to specify a name for a void value.
 | 
						|
//  * It is illegal to have a internal global value with no initializer
 | 
						|
//  * It is illegal to have a ret instruction that returns a value that does not
 | 
						|
//    agree with the function return value type.
 | 
						|
//  * Function call argument types match the function prototype
 | 
						|
//  * A landing pad is defined by a landingpad instruction, and can be jumped to
 | 
						|
//    only by the unwind edge of an invoke instruction.
 | 
						|
//  * A landingpad instruction must be the first non-PHI instruction in the
 | 
						|
//    block.
 | 
						|
//  * All landingpad instructions must use the same personality function with
 | 
						|
//    the same function.
 | 
						|
//  * All other things that are tested by asserts spread about the code...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdarg>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
 | 
						|
 | 
						|
namespace {
 | 
						|
struct VerifierSupport {
 | 
						|
  raw_ostream &OS;
 | 
						|
  const Module *M;
 | 
						|
 | 
						|
  /// \brief Track the brokenness of the module while recursively visiting.
 | 
						|
  bool Broken;
 | 
						|
 | 
						|
  explicit VerifierSupport(raw_ostream &OS)
 | 
						|
      : OS(OS), M(nullptr), Broken(false) {}
 | 
						|
 | 
						|
private:
 | 
						|
  void Write(const Value *V) {
 | 
						|
    if (!V)
 | 
						|
      return;
 | 
						|
    if (isa<Instruction>(V)) {
 | 
						|
      OS << *V << '\n';
 | 
						|
    } else {
 | 
						|
      V->printAsOperand(OS, true, M);
 | 
						|
      OS << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void Write(const Metadata *MD) {
 | 
						|
    if (!MD)
 | 
						|
      return;
 | 
						|
    MD->print(OS, M);
 | 
						|
    OS << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
 | 
						|
    Write(MD.get());
 | 
						|
  }
 | 
						|
 | 
						|
  void Write(const NamedMDNode *NMD) {
 | 
						|
    if (!NMD)
 | 
						|
      return;
 | 
						|
    NMD->print(OS);
 | 
						|
    OS << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  void Write(Type *T) {
 | 
						|
    if (!T)
 | 
						|
      return;
 | 
						|
    OS << ' ' << *T;
 | 
						|
  }
 | 
						|
 | 
						|
  void Write(const Comdat *C) {
 | 
						|
    if (!C)
 | 
						|
      return;
 | 
						|
    OS << *C;
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename T1, typename... Ts>
 | 
						|
  void WriteTs(const T1 &V1, const Ts &... Vs) {
 | 
						|
    Write(V1);
 | 
						|
    WriteTs(Vs...);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename... Ts> void WriteTs() {}
 | 
						|
 | 
						|
public:
 | 
						|
  /// \brief A check failed, so printout out the condition and the message.
 | 
						|
  ///
 | 
						|
  /// This provides a nice place to put a breakpoint if you want to see why
 | 
						|
  /// something is not correct.
 | 
						|
  void CheckFailed(const Twine &Message) {
 | 
						|
    OS << Message << '\n';
 | 
						|
    Broken = true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief A check failed (with values to print).
 | 
						|
  ///
 | 
						|
  /// This calls the Message-only version so that the above is easier to set a
 | 
						|
  /// breakpoint on.
 | 
						|
  template <typename T1, typename... Ts>
 | 
						|
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
 | 
						|
    CheckFailed(Message);
 | 
						|
    WriteTs(V1, Vs...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
 | 
						|
  friend class InstVisitor<Verifier>;
 | 
						|
 | 
						|
  LLVMContext *Context;
 | 
						|
  DominatorTree DT;
 | 
						|
 | 
						|
  /// \brief When verifying a basic block, keep track of all of the
 | 
						|
  /// instructions we have seen so far.
 | 
						|
  ///
 | 
						|
  /// This allows us to do efficient dominance checks for the case when an
 | 
						|
  /// instruction has an operand that is an instruction in the same block.
 | 
						|
  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
 | 
						|
 | 
						|
  /// \brief Keep track of the metadata nodes that have been checked already.
 | 
						|
  SmallPtrSet<const Metadata *, 32> MDNodes;
 | 
						|
 | 
						|
  /// \brief Track unresolved string-based type references.
 | 
						|
  SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
 | 
						|
 | 
						|
  /// \brief The personality function referenced by the LandingPadInsts.
 | 
						|
  /// All LandingPadInsts within the same function must use the same
 | 
						|
  /// personality function.
 | 
						|
  const Value *PersonalityFn;
 | 
						|
 | 
						|
  /// \brief Whether we've seen a call to @llvm.frameescape in this function
 | 
						|
  /// already.
 | 
						|
  bool SawFrameEscape;
 | 
						|
 | 
						|
  /// Stores the count of how many objects were passed to llvm.frameescape for a
 | 
						|
  /// given function and the largest index passed to llvm.framerecover.
 | 
						|
  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit Verifier(raw_ostream &OS)
 | 
						|
      : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
 | 
						|
        SawFrameEscape(false) {}
 | 
						|
 | 
						|
  bool verify(const Function &F) {
 | 
						|
    M = F.getParent();
 | 
						|
    Context = &M->getContext();
 | 
						|
 | 
						|
    // First ensure the function is well-enough formed to compute dominance
 | 
						|
    // information.
 | 
						|
    if (F.empty()) {
 | 
						|
      OS << "Function '" << F.getName()
 | 
						|
         << "' does not contain an entry block!\n";
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
      if (I->empty() || !I->back().isTerminator()) {
 | 
						|
        OS << "Basic Block in function '" << F.getName()
 | 
						|
           << "' does not have terminator!\n";
 | 
						|
        I->printAsOperand(OS, true);
 | 
						|
        OS << "\n";
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now directly compute a dominance tree. We don't rely on the pass
 | 
						|
    // manager to provide this as it isolates us from a potentially
 | 
						|
    // out-of-date dominator tree and makes it significantly more complex to
 | 
						|
    // run this code outside of a pass manager.
 | 
						|
    // FIXME: It's really gross that we have to cast away constness here.
 | 
						|
    DT.recalculate(const_cast<Function &>(F));
 | 
						|
 | 
						|
    Broken = false;
 | 
						|
    // FIXME: We strip const here because the inst visitor strips const.
 | 
						|
    visit(const_cast<Function &>(F));
 | 
						|
    InstsInThisBlock.clear();
 | 
						|
    PersonalityFn = nullptr;
 | 
						|
    SawFrameEscape = false;
 | 
						|
 | 
						|
    return !Broken;
 | 
						|
  }
 | 
						|
 | 
						|
  bool verify(const Module &M) {
 | 
						|
    this->M = &M;
 | 
						|
    Context = &M.getContext();
 | 
						|
    Broken = false;
 | 
						|
 | 
						|
    // Scan through, checking all of the external function's linkage now...
 | 
						|
    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
      visitGlobalValue(*I);
 | 
						|
 | 
						|
      // Check to make sure function prototypes are okay.
 | 
						|
      if (I->isDeclaration())
 | 
						|
        visitFunction(*I);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we've visited every function, verify that we never asked to
 | 
						|
    // recover a frame index that wasn't escaped.
 | 
						|
    verifyFrameRecoverIndices();
 | 
						|
 | 
						|
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I)
 | 
						|
      visitGlobalVariable(*I);
 | 
						|
 | 
						|
    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
 | 
						|
         I != E; ++I)
 | 
						|
      visitGlobalAlias(*I);
 | 
						|
 | 
						|
    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
 | 
						|
                                               E = M.named_metadata_end();
 | 
						|
         I != E; ++I)
 | 
						|
      visitNamedMDNode(*I);
 | 
						|
 | 
						|
    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
 | 
						|
      visitComdat(SMEC.getValue());
 | 
						|
 | 
						|
    visitModuleFlags(M);
 | 
						|
    visitModuleIdents(M);
 | 
						|
 | 
						|
    // Verify type referneces last.
 | 
						|
    verifyTypeRefs();
 | 
						|
 | 
						|
    return !Broken;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Verification methods...
 | 
						|
  void visitGlobalValue(const GlobalValue &GV);
 | 
						|
  void visitGlobalVariable(const GlobalVariable &GV);
 | 
						|
  void visitGlobalAlias(const GlobalAlias &GA);
 | 
						|
  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
 | 
						|
  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
 | 
						|
                           const GlobalAlias &A, const Constant &C);
 | 
						|
  void visitNamedMDNode(const NamedMDNode &NMD);
 | 
						|
  void visitMDNode(const MDNode &MD);
 | 
						|
  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
 | 
						|
  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
 | 
						|
  void visitComdat(const Comdat &C);
 | 
						|
  void visitModuleIdents(const Module &M);
 | 
						|
  void visitModuleFlags(const Module &M);
 | 
						|
  void visitModuleFlag(const MDNode *Op,
 | 
						|
                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | 
						|
                       SmallVectorImpl<const MDNode *> &Requirements);
 | 
						|
  void visitFunction(const Function &F);
 | 
						|
  void visitBasicBlock(BasicBlock &BB);
 | 
						|
  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
 | 
						|
 | 
						|
  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
 | 
						|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
 | 
						|
#include "llvm/IR/Metadata.def"
 | 
						|
  void visitDIScope(const DIScope &N);
 | 
						|
  void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
 | 
						|
  void visitDIVariable(const DIVariable &N);
 | 
						|
  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
 | 
						|
  void visitDITemplateParameter(const DITemplateParameter &N);
 | 
						|
 | 
						|
  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
 | 
						|
 | 
						|
  /// \brief Check for a valid string-based type reference.
 | 
						|
  ///
 | 
						|
  /// Checks if \c MD is a string-based type reference.  If it is, keeps track
 | 
						|
  /// of it (and its user, \c N) for error messages later.
 | 
						|
  bool isValidUUID(const MDNode &N, const Metadata *MD);
 | 
						|
 | 
						|
  /// \brief Check for a valid type reference.
 | 
						|
  ///
 | 
						|
  /// Checks for subclasses of \a DIType, or \a isValidUUID().
 | 
						|
  bool isTypeRef(const MDNode &N, const Metadata *MD);
 | 
						|
 | 
						|
  /// \brief Check for a valid scope reference.
 | 
						|
  ///
 | 
						|
  /// Checks for subclasses of \a DIScope, or \a isValidUUID().
 | 
						|
  bool isScopeRef(const MDNode &N, const Metadata *MD);
 | 
						|
 | 
						|
  /// \brief Check for a valid debug info reference.
 | 
						|
  ///
 | 
						|
  /// Checks for subclasses of \a DINode, or \a isValidUUID().
 | 
						|
  bool isDIRef(const MDNode &N, const Metadata *MD);
 | 
						|
 | 
						|
  // InstVisitor overrides...
 | 
						|
  using InstVisitor<Verifier>::visit;
 | 
						|
  void visit(Instruction &I);
 | 
						|
 | 
						|
  void visitTruncInst(TruncInst &I);
 | 
						|
  void visitZExtInst(ZExtInst &I);
 | 
						|
  void visitSExtInst(SExtInst &I);
 | 
						|
  void visitFPTruncInst(FPTruncInst &I);
 | 
						|
  void visitFPExtInst(FPExtInst &I);
 | 
						|
  void visitFPToUIInst(FPToUIInst &I);
 | 
						|
  void visitFPToSIInst(FPToSIInst &I);
 | 
						|
  void visitUIToFPInst(UIToFPInst &I);
 | 
						|
  void visitSIToFPInst(SIToFPInst &I);
 | 
						|
  void visitIntToPtrInst(IntToPtrInst &I);
 | 
						|
  void visitPtrToIntInst(PtrToIntInst &I);
 | 
						|
  void visitBitCastInst(BitCastInst &I);
 | 
						|
  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
 | 
						|
  void visitPHINode(PHINode &PN);
 | 
						|
  void visitBinaryOperator(BinaryOperator &B);
 | 
						|
  void visitICmpInst(ICmpInst &IC);
 | 
						|
  void visitFCmpInst(FCmpInst &FC);
 | 
						|
  void visitExtractElementInst(ExtractElementInst &EI);
 | 
						|
  void visitInsertElementInst(InsertElementInst &EI);
 | 
						|
  void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | 
						|
  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | 
						|
  void visitCallInst(CallInst &CI);
 | 
						|
  void visitInvokeInst(InvokeInst &II);
 | 
						|
  void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
  void visitLoadInst(LoadInst &LI);
 | 
						|
  void visitStoreInst(StoreInst &SI);
 | 
						|
  void verifyDominatesUse(Instruction &I, unsigned i);
 | 
						|
  void visitInstruction(Instruction &I);
 | 
						|
  void visitTerminatorInst(TerminatorInst &I);
 | 
						|
  void visitBranchInst(BranchInst &BI);
 | 
						|
  void visitReturnInst(ReturnInst &RI);
 | 
						|
  void visitSwitchInst(SwitchInst &SI);
 | 
						|
  void visitIndirectBrInst(IndirectBrInst &BI);
 | 
						|
  void visitSelectInst(SelectInst &SI);
 | 
						|
  void visitUserOp1(Instruction &I);
 | 
						|
  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | 
						|
  void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | 
						|
  template <class DbgIntrinsicTy>
 | 
						|
  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
 | 
						|
  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
 | 
						|
  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
 | 
						|
  void visitFenceInst(FenceInst &FI);
 | 
						|
  void visitAllocaInst(AllocaInst &AI);
 | 
						|
  void visitExtractValueInst(ExtractValueInst &EVI);
 | 
						|
  void visitInsertValueInst(InsertValueInst &IVI);
 | 
						|
  void visitLandingPadInst(LandingPadInst &LPI);
 | 
						|
 | 
						|
  void VerifyCallSite(CallSite CS);
 | 
						|
  void verifyMustTailCall(CallInst &CI);
 | 
						|
  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
 | 
						|
                        unsigned ArgNo, std::string &Suffix);
 | 
						|
  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | 
						|
                           SmallVectorImpl<Type *> &ArgTys);
 | 
						|
  bool VerifyIntrinsicIsVarArg(bool isVarArg,
 | 
						|
                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
 | 
						|
  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
 | 
						|
  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
 | 
						|
                            const Value *V);
 | 
						|
  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
 | 
						|
                            bool isReturnValue, const Value *V);
 | 
						|
  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
 | 
						|
                           const Value *V);
 | 
						|
  void VerifyFunctionMetadata(
 | 
						|
      const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
 | 
						|
 | 
						|
  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
 | 
						|
  void VerifyStatepoint(ImmutableCallSite CS);
 | 
						|
  void verifyFrameRecoverIndices();
 | 
						|
 | 
						|
  // Module-level debug info verification...
 | 
						|
  void verifyTypeRefs();
 | 
						|
  template <class MapTy>
 | 
						|
  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
 | 
						|
                                const MapTy &TypeRefs);
 | 
						|
  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
// Assert - We know that cond should be true, if not print an error message.
 | 
						|
#define Assert(C, ...) \
 | 
						|
  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
 | 
						|
 | 
						|
void Verifier::visit(Instruction &I) {
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
 | 
						|
  InstVisitor<Verifier>::visit(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Verifier::visitGlobalValue(const GlobalValue &GV) {
 | 
						|
  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
 | 
						|
             GV.hasExternalWeakLinkage(),
 | 
						|
         "Global is external, but doesn't have external or weak linkage!", &GV);
 | 
						|
 | 
						|
  Assert(GV.getAlignment() <= Value::MaximumAlignment,
 | 
						|
         "huge alignment values are unsupported", &GV);
 | 
						|
  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | 
						|
         "Only global variables can have appending linkage!", &GV);
 | 
						|
 | 
						|
  if (GV.hasAppendingLinkage()) {
 | 
						|
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
 | 
						|
    Assert(GVar && GVar->getValueType()->isArrayTy(),
 | 
						|
           "Only global arrays can have appending linkage!", GVar);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
 | 
						|
  if (GV.hasInitializer()) {
 | 
						|
    Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | 
						|
           "Global variable initializer type does not match global "
 | 
						|
           "variable type!",
 | 
						|
           &GV);
 | 
						|
 | 
						|
    // If the global has common linkage, it must have a zero initializer and
 | 
						|
    // cannot be constant.
 | 
						|
    if (GV.hasCommonLinkage()) {
 | 
						|
      Assert(GV.getInitializer()->isNullValue(),
 | 
						|
             "'common' global must have a zero initializer!", &GV);
 | 
						|
      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
 | 
						|
             &GV);
 | 
						|
      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
 | 
						|
           "invalid linkage type for global declaration", &GV);
 | 
						|
  }
 | 
						|
 | 
						|
  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
 | 
						|
                       GV.getName() == "llvm.global_dtors")) {
 | 
						|
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | 
						|
           "invalid linkage for intrinsic global variable", &GV);
 | 
						|
    // Don't worry about emitting an error for it not being an array,
 | 
						|
    // visitGlobalValue will complain on appending non-array.
 | 
						|
    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
 | 
						|
      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
 | 
						|
      PointerType *FuncPtrTy =
 | 
						|
          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
 | 
						|
      // FIXME: Reject the 2-field form in LLVM 4.0.
 | 
						|
      Assert(STy &&
 | 
						|
                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
 | 
						|
                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
 | 
						|
                 STy->getTypeAtIndex(1) == FuncPtrTy,
 | 
						|
             "wrong type for intrinsic global variable", &GV);
 | 
						|
      if (STy->getNumElements() == 3) {
 | 
						|
        Type *ETy = STy->getTypeAtIndex(2);
 | 
						|
        Assert(ETy->isPointerTy() &&
 | 
						|
                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
 | 
						|
               "wrong type for intrinsic global variable", &GV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (GV.hasName() && (GV.getName() == "llvm.used" ||
 | 
						|
                       GV.getName() == "llvm.compiler.used")) {
 | 
						|
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | 
						|
           "invalid linkage for intrinsic global variable", &GV);
 | 
						|
    Type *GVType = GV.getType()->getElementType();
 | 
						|
    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
 | 
						|
      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
 | 
						|
      Assert(PTy, "wrong type for intrinsic global variable", &GV);
 | 
						|
      if (GV.hasInitializer()) {
 | 
						|
        const Constant *Init = GV.getInitializer();
 | 
						|
        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
 | 
						|
        Assert(InitArray, "wrong initalizer for intrinsic global variable",
 | 
						|
               Init);
 | 
						|
        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
 | 
						|
          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
 | 
						|
          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
 | 
						|
                     isa<GlobalAlias>(V),
 | 
						|
                 "invalid llvm.used member", V);
 | 
						|
          Assert(V->hasName(), "members of llvm.used must be named", V);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Assert(!GV.hasDLLImportStorageClass() ||
 | 
						|
             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
 | 
						|
             GV.hasAvailableExternallyLinkage(),
 | 
						|
         "Global is marked as dllimport, but not external", &GV);
 | 
						|
 | 
						|
  if (!GV.hasInitializer()) {
 | 
						|
    visitGlobalValue(GV);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk any aggregate initializers looking for bitcasts between address spaces
 | 
						|
  SmallPtrSet<const Value *, 4> Visited;
 | 
						|
  SmallVector<const Value *, 4> WorkStack;
 | 
						|
  WorkStack.push_back(cast<Value>(GV.getInitializer()));
 | 
						|
 | 
						|
  while (!WorkStack.empty()) {
 | 
						|
    const Value *V = WorkStack.pop_back_val();
 | 
						|
    if (!Visited.insert(V).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const User *U = dyn_cast<User>(V)) {
 | 
						|
      WorkStack.append(U->op_begin(), U->op_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | 
						|
      VerifyConstantExprBitcastType(CE);
 | 
						|
      if (Broken)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  visitGlobalValue(GV);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
 | 
						|
  SmallPtrSet<const GlobalAlias*, 4> Visited;
 | 
						|
  Visited.insert(&GA);
 | 
						|
  visitAliaseeSubExpr(Visited, GA, C);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
 | 
						|
                                   const GlobalAlias &GA, const Constant &C) {
 | 
						|
  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
 | 
						|
    Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
 | 
						|
 | 
						|
    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
 | 
						|
      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
 | 
						|
 | 
						|
      Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
 | 
						|
             &GA);
 | 
						|
    } else {
 | 
						|
      // Only continue verifying subexpressions of GlobalAliases.
 | 
						|
      // Do not recurse into global initializers.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
 | 
						|
    VerifyConstantExprBitcastType(CE);
 | 
						|
 | 
						|
  for (const Use &U : C.operands()) {
 | 
						|
    Value *V = &*U;
 | 
						|
    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
 | 
						|
      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
 | 
						|
    else if (const auto *C2 = dyn_cast<Constant>(V))
 | 
						|
      visitAliaseeSubExpr(Visited, GA, *C2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
 | 
						|
  Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA);
 | 
						|
  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
 | 
						|
         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
 | 
						|
         "weak_odr, or external linkage!",
 | 
						|
         &GA);
 | 
						|
  const Constant *Aliasee = GA.getAliasee();
 | 
						|
  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
 | 
						|
  Assert(GA.getType() == Aliasee->getType(),
 | 
						|
         "Alias and aliasee types should match!", &GA);
 | 
						|
 | 
						|
  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
 | 
						|
         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
 | 
						|
 | 
						|
  visitAliaseeSubExpr(GA, *Aliasee);
 | 
						|
 | 
						|
  visitGlobalValue(GA);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
 | 
						|
  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
 | 
						|
    MDNode *MD = NMD.getOperand(i);
 | 
						|
 | 
						|
    if (NMD.getName() == "llvm.dbg.cu") {
 | 
						|
      Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    visitMDNode(*MD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitMDNode(const MDNode &MD) {
 | 
						|
  // Only visit each node once.  Metadata can be mutually recursive, so this
 | 
						|
  // avoids infinite recursion here, as well as being an optimization.
 | 
						|
  if (!MDNodes.insert(&MD).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (MD.getMetadataID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid MDNode subclass");
 | 
						|
  case Metadata::MDTupleKind:
 | 
						|
    break;
 | 
						|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
 | 
						|
  case Metadata::CLASS##Kind:                                                  \
 | 
						|
    visit##CLASS(cast<CLASS>(MD));                                             \
 | 
						|
    break;
 | 
						|
#include "llvm/IR/Metadata.def"
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
 | 
						|
    Metadata *Op = MD.getOperand(i);
 | 
						|
    if (!Op)
 | 
						|
      continue;
 | 
						|
    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
 | 
						|
           &MD, Op);
 | 
						|
    if (auto *N = dyn_cast<MDNode>(Op)) {
 | 
						|
      visitMDNode(*N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
 | 
						|
      visitValueAsMetadata(*V, nullptr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check these last, so we diagnose problems in operands first.
 | 
						|
  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
 | 
						|
  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
 | 
						|
  Assert(MD.getValue(), "Expected valid value", &MD);
 | 
						|
  Assert(!MD.getValue()->getType()->isMetadataTy(),
 | 
						|
         "Unexpected metadata round-trip through values", &MD, MD.getValue());
 | 
						|
 | 
						|
  auto *L = dyn_cast<LocalAsMetadata>(&MD);
 | 
						|
  if (!L)
 | 
						|
    return;
 | 
						|
 | 
						|
  Assert(F, "function-local metadata used outside a function", L);
 | 
						|
 | 
						|
  // If this was an instruction, bb, or argument, verify that it is in the
 | 
						|
  // function that we expect.
 | 
						|
  Function *ActualF = nullptr;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
 | 
						|
    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
 | 
						|
    ActualF = I->getParent()->getParent();
 | 
						|
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
 | 
						|
    ActualF = BB->getParent();
 | 
						|
  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
 | 
						|
    ActualF = A->getParent();
 | 
						|
  assert(ActualF && "Unimplemented function local metadata case!");
 | 
						|
 | 
						|
  Assert(ActualF == F, "function-local metadata used in wrong function", L);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
 | 
						|
  Metadata *MD = MDV.getMetadata();
 | 
						|
  if (auto *N = dyn_cast<MDNode>(MD)) {
 | 
						|
    visitMDNode(*N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only visit each node once.  Metadata can be mutually recursive, so this
 | 
						|
  // avoids infinite recursion here, as well as being an optimization.
 | 
						|
  if (!MDNodes.insert(MD).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
 | 
						|
    visitValueAsMetadata(*V, F);
 | 
						|
}
 | 
						|
 | 
						|
bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
 | 
						|
  auto *S = dyn_cast<MDString>(MD);
 | 
						|
  if (!S)
 | 
						|
    return false;
 | 
						|
  if (S->getString().empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Keep track of names of types referenced via UUID so we can check that they
 | 
						|
  // actually exist.
 | 
						|
  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if a value can be a reference to a type.
 | 
						|
bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
 | 
						|
  return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if a value can be a ScopeRef.
 | 
						|
bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
 | 
						|
  return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if a value can be a debug info ref.
 | 
						|
bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
 | 
						|
  return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
 | 
						|
}
 | 
						|
 | 
						|
template <class Ty>
 | 
						|
bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
 | 
						|
  for (Metadata *MD : N.operands()) {
 | 
						|
    if (MD) {
 | 
						|
      if (!isa<Ty>(MD))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      if (!AllowNull)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class Ty>
 | 
						|
bool isValidMetadataArray(const MDTuple &N) {
 | 
						|
  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
 | 
						|
}
 | 
						|
 | 
						|
template <class Ty>
 | 
						|
bool isValidMetadataNullArray(const MDTuple &N) {
 | 
						|
  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDILocation(const DILocation &N) {
 | 
						|
  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | 
						|
         "location requires a valid scope", &N, N.getRawScope());
 | 
						|
  if (auto *IA = N.getRawInlinedAt())
 | 
						|
    Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGenericDINode(const GenericDINode &N) {
 | 
						|
  Assert(N.getTag(), "invalid tag", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIScope(const DIScope &N) {
 | 
						|
  if (auto *F = N.getRawFile())
 | 
						|
    Assert(isa<DIFile>(F), "invalid file", &N, F);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDISubrange(const DISubrange &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
 | 
						|
  Assert(N.getCount() >= -1, "invalid subrange count", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIEnumerator(const DIEnumerator &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIBasicType(const DIBasicType &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_unspecified_type,
 | 
						|
         "invalid tag", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
 | 
						|
  // Common scope checks.
 | 
						|
  visitDIScope(N);
 | 
						|
 | 
						|
  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
 | 
						|
  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
 | 
						|
         N.getBaseType());
 | 
						|
 | 
						|
  // FIXME: Sink this into the subclass verifies.
 | 
						|
  if (!N.getFile() || N.getFile()->getFilename().empty()) {
 | 
						|
    // Check whether the filename is allowed to be empty.
 | 
						|
    uint16_t Tag = N.getTag();
 | 
						|
    Assert(
 | 
						|
        Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
 | 
						|
            Tag == dwarf::DW_TAG_pointer_type ||
 | 
						|
            Tag == dwarf::DW_TAG_ptr_to_member_type ||
 | 
						|
            Tag == dwarf::DW_TAG_reference_type ||
 | 
						|
            Tag == dwarf::DW_TAG_rvalue_reference_type ||
 | 
						|
            Tag == dwarf::DW_TAG_restrict_type ||
 | 
						|
            Tag == dwarf::DW_TAG_array_type ||
 | 
						|
            Tag == dwarf::DW_TAG_enumeration_type ||
 | 
						|
            Tag == dwarf::DW_TAG_subroutine_type ||
 | 
						|
            Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
 | 
						|
            Tag == dwarf::DW_TAG_structure_type ||
 | 
						|
            Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
 | 
						|
        "derived/composite type requires a filename", &N, N.getFile());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIDerivedType(const DIDerivedType &N) {
 | 
						|
  // Common derived type checks.
 | 
						|
  visitDIDerivedTypeBase(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_pointer_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_reference_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_const_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_volatile_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_restrict_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_member ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_inheritance ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_friend,
 | 
						|
         "invalid tag", &N);
 | 
						|
  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
 | 
						|
    Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
 | 
						|
           N.getExtraData());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool hasConflictingReferenceFlags(unsigned Flags) {
 | 
						|
  return (Flags & DINode::FlagLValueReference) &&
 | 
						|
         (Flags & DINode::FlagRValueReference);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
 | 
						|
  auto *Params = dyn_cast<MDTuple>(&RawParams);
 | 
						|
  Assert(Params, "invalid template params", &N, &RawParams);
 | 
						|
  for (Metadata *Op : Params->operands()) {
 | 
						|
    Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
 | 
						|
           Params, Op);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDICompositeType(const DICompositeType &N) {
 | 
						|
  // Common derived type checks.
 | 
						|
  visitDIDerivedTypeBase(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_structure_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_union_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_enumeration_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_subroutine_type ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_class_type,
 | 
						|
         "invalid tag", &N);
 | 
						|
 | 
						|
  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
 | 
						|
         "invalid composite elements", &N, N.getRawElements());
 | 
						|
  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
 | 
						|
         N.getRawVTableHolder());
 | 
						|
  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
 | 
						|
         "invalid composite elements", &N, N.getRawElements());
 | 
						|
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | 
						|
         &N);
 | 
						|
  if (auto *Params = N.getRawTemplateParams())
 | 
						|
    visitTemplateParams(N, *Params);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
 | 
						|
  if (auto *Types = N.getRawTypeArray()) {
 | 
						|
    Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
 | 
						|
    for (Metadata *Ty : N.getTypeArray()->operands()) {
 | 
						|
      Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | 
						|
         &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIFile(const DIFile &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
 | 
						|
 | 
						|
  // Don't bother verifying the compilation directory or producer string
 | 
						|
  // as those could be empty.
 | 
						|
  Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
 | 
						|
         N.getRawFile());
 | 
						|
  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
 | 
						|
         N.getFile());
 | 
						|
 | 
						|
  if (auto *Array = N.getRawEnumTypes()) {
 | 
						|
    Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
 | 
						|
    for (Metadata *Op : N.getEnumTypes()->operands()) {
 | 
						|
      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
 | 
						|
      Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
 | 
						|
             "invalid enum type", &N, N.getEnumTypes(), Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto *Array = N.getRawRetainedTypes()) {
 | 
						|
    Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
 | 
						|
    for (Metadata *Op : N.getRetainedTypes()->operands()) {
 | 
						|
      Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto *Array = N.getRawSubprograms()) {
 | 
						|
    Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
 | 
						|
    for (Metadata *Op : N.getSubprograms()->operands()) {
 | 
						|
      Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto *Array = N.getRawGlobalVariables()) {
 | 
						|
    Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
 | 
						|
    for (Metadata *Op : N.getGlobalVariables()->operands()) {
 | 
						|
      Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
 | 
						|
             Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto *Array = N.getRawImportedEntities()) {
 | 
						|
    Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
 | 
						|
    for (Metadata *Op : N.getImportedEntities()->operands()) {
 | 
						|
      Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
 | 
						|
             Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDISubprogram(const DISubprogram &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
 | 
						|
  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
 | 
						|
  if (auto *T = N.getRawType())
 | 
						|
    Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
 | 
						|
  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
 | 
						|
         N.getRawContainingType());
 | 
						|
  if (auto *RawF = N.getRawFunction()) {
 | 
						|
    auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
 | 
						|
    auto *F = FMD ? FMD->getValue() : nullptr;
 | 
						|
    auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
 | 
						|
    Assert(F && FT && isa<FunctionType>(FT->getElementType()),
 | 
						|
           "invalid function", &N, F, FT);
 | 
						|
  }
 | 
						|
  if (auto *Params = N.getRawTemplateParams())
 | 
						|
    visitTemplateParams(N, *Params);
 | 
						|
  if (auto *S = N.getRawDeclaration()) {
 | 
						|
    Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
 | 
						|
           "invalid subprogram declaration", &N, S);
 | 
						|
  }
 | 
						|
  if (auto *RawVars = N.getRawVariables()) {
 | 
						|
    auto *Vars = dyn_cast<MDTuple>(RawVars);
 | 
						|
    Assert(Vars, "invalid variable list", &N, RawVars);
 | 
						|
    for (Metadata *Op : Vars->operands()) {
 | 
						|
      Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
 | 
						|
             Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | 
						|
         &N);
 | 
						|
 | 
						|
  auto *F = N.getFunction();
 | 
						|
  if (!F)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check that all !dbg attachments lead to back to N (or, at least, another
 | 
						|
  // subprogram that describes the same function).
 | 
						|
  //
 | 
						|
  // FIXME: Check this incrementally while visiting !dbg attachments.
 | 
						|
  // FIXME: Only check when N is the canonical subprogram for F.
 | 
						|
  SmallPtrSet<const MDNode *, 32> Seen;
 | 
						|
  for (auto &BB : *F)
 | 
						|
    for (auto &I : BB) {
 | 
						|
      // Be careful about using DILocation here since we might be dealing with
 | 
						|
      // broken code (this is the Verifier after all).
 | 
						|
      DILocation *DL =
 | 
						|
          dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
 | 
						|
      if (!DL)
 | 
						|
        continue;
 | 
						|
      if (!Seen.insert(DL).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DILocalScope *Scope = DL->getInlinedAtScope();
 | 
						|
      if (Scope && !Seen.insert(Scope).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
 | 
						|
      if (SP && !Seen.insert(SP).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // FIXME: Once N is canonical, check "SP == &N".
 | 
						|
      Assert(SP->describes(F),
 | 
						|
             "!dbg attachment points at wrong subprogram for function", &N, F,
 | 
						|
             &I, DL, Scope, SP);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
 | 
						|
  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | 
						|
         "invalid local scope", &N, N.getRawScope());
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
 | 
						|
  visitDILexicalBlockBase(N);
 | 
						|
 | 
						|
  Assert(N.getLine() || !N.getColumn(),
 | 
						|
         "cannot have column info without line info", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
 | 
						|
  visitDILexicalBlockBase(N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDINamespace(const DINamespace &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
 | 
						|
  if (auto *S = N.getRawScope())
 | 
						|
    Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
 | 
						|
  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
 | 
						|
  visitDITemplateParameter(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
 | 
						|
         &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDITemplateValueParameter(
 | 
						|
    const DITemplateValueParameter &N) {
 | 
						|
  visitDITemplateParameter(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
 | 
						|
         "invalid tag", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIVariable(const DIVariable &N) {
 | 
						|
  if (auto *S = N.getRawScope())
 | 
						|
    Assert(isa<DIScope>(S), "invalid scope", &N, S);
 | 
						|
  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
 | 
						|
  if (auto *F = N.getRawFile())
 | 
						|
    Assert(isa<DIFile>(F), "invalid file", &N, F);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
 | 
						|
  // Checks common to all variables.
 | 
						|
  visitDIVariable(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
 | 
						|
  Assert(!N.getName().empty(), "missing global variable name", &N);
 | 
						|
  if (auto *V = N.getRawVariable()) {
 | 
						|
    Assert(isa<ConstantAsMetadata>(V) &&
 | 
						|
               !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
 | 
						|
           "invalid global varaible ref", &N, V);
 | 
						|
  }
 | 
						|
  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
 | 
						|
    Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
 | 
						|
           &N, Member);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDILocalVariable(const DILocalVariable &N) {
 | 
						|
  // Checks common to all variables.
 | 
						|
  visitDIVariable(N);
 | 
						|
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_arg_variable,
 | 
						|
         "invalid tag", &N);
 | 
						|
  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | 
						|
         "local variable requires a valid scope", &N, N.getRawScope());
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIExpression(const DIExpression &N) {
 | 
						|
  Assert(N.isValid(), "invalid expression", &N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
 | 
						|
  if (auto *T = N.getRawType())
 | 
						|
    Assert(isa<DIType>(T), "invalid type ref", &N, T);
 | 
						|
  if (auto *F = N.getRawFile())
 | 
						|
    Assert(isa<DIFile>(F), "invalid file", &N, F);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
 | 
						|
  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
 | 
						|
             N.getTag() == dwarf::DW_TAG_imported_declaration,
 | 
						|
         "invalid tag", &N);
 | 
						|
  if (auto *S = N.getRawScope())
 | 
						|
    Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
 | 
						|
  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
 | 
						|
         N.getEntity());
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitComdat(const Comdat &C) {
 | 
						|
  // The Module is invalid if the GlobalValue has private linkage.  Entities
 | 
						|
  // with private linkage don't have entries in the symbol table.
 | 
						|
  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
 | 
						|
    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
 | 
						|
           GV);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitModuleIdents(const Module &M) {
 | 
						|
  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
 | 
						|
  if (!Idents) 
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // llvm.ident takes a list of metadata entry. Each entry has only one string.
 | 
						|
  // Scan each llvm.ident entry and make sure that this requirement is met.
 | 
						|
  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
 | 
						|
    const MDNode *N = Idents->getOperand(i);
 | 
						|
    Assert(N->getNumOperands() == 1,
 | 
						|
           "incorrect number of operands in llvm.ident metadata", N);
 | 
						|
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
 | 
						|
           ("invalid value for llvm.ident metadata entry operand"
 | 
						|
            "(the operand should be a string)"),
 | 
						|
           N->getOperand(0));
 | 
						|
  } 
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitModuleFlags(const Module &M) {
 | 
						|
  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
 | 
						|
  if (!Flags) return;
 | 
						|
 | 
						|
  // Scan each flag, and track the flags and requirements.
 | 
						|
  DenseMap<const MDString*, const MDNode*> SeenIDs;
 | 
						|
  SmallVector<const MDNode*, 16> Requirements;
 | 
						|
  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
 | 
						|
    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
 | 
						|
  }
 | 
						|
 | 
						|
  // Validate that the requirements in the module are valid.
 | 
						|
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
 | 
						|
    const MDNode *Requirement = Requirements[I];
 | 
						|
    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | 
						|
    const Metadata *ReqValue = Requirement->getOperand(1);
 | 
						|
 | 
						|
    const MDNode *Op = SeenIDs.lookup(Flag);
 | 
						|
    if (!Op) {
 | 
						|
      CheckFailed("invalid requirement on flag, flag is not present in module",
 | 
						|
                  Flag);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op->getOperand(2) != ReqValue) {
 | 
						|
      CheckFailed(("invalid requirement on flag, "
 | 
						|
                   "flag does not have the required value"),
 | 
						|
                  Flag);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Verifier::visitModuleFlag(const MDNode *Op,
 | 
						|
                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | 
						|
                          SmallVectorImpl<const MDNode *> &Requirements) {
 | 
						|
  // Each module flag should have three arguments, the merge behavior (a
 | 
						|
  // constant int), the flag ID (an MDString), and the value.
 | 
						|
  Assert(Op->getNumOperands() == 3,
 | 
						|
         "incorrect number of operands in module flag", Op);
 | 
						|
  Module::ModFlagBehavior MFB;
 | 
						|
  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
 | 
						|
    Assert(
 | 
						|
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
 | 
						|
        "invalid behavior operand in module flag (expected constant integer)",
 | 
						|
        Op->getOperand(0));
 | 
						|
    Assert(false,
 | 
						|
           "invalid behavior operand in module flag (unexpected constant)",
 | 
						|
           Op->getOperand(0));
 | 
						|
  }
 | 
						|
  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
 | 
						|
  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
 | 
						|
         Op->getOperand(1));
 | 
						|
 | 
						|
  // Sanity check the values for behaviors with additional requirements.
 | 
						|
  switch (MFB) {
 | 
						|
  case Module::Error:
 | 
						|
  case Module::Warning:
 | 
						|
  case Module::Override:
 | 
						|
    // These behavior types accept any value.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Module::Require: {
 | 
						|
    // The value should itself be an MDNode with two operands, a flag ID (an
 | 
						|
    // MDString), and a value.
 | 
						|
    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
 | 
						|
    Assert(Value && Value->getNumOperands() == 2,
 | 
						|
           "invalid value for 'require' module flag (expected metadata pair)",
 | 
						|
           Op->getOperand(2));
 | 
						|
    Assert(isa<MDString>(Value->getOperand(0)),
 | 
						|
           ("invalid value for 'require' module flag "
 | 
						|
            "(first value operand should be a string)"),
 | 
						|
           Value->getOperand(0));
 | 
						|
 | 
						|
    // Append it to the list of requirements, to check once all module flags are
 | 
						|
    // scanned.
 | 
						|
    Requirements.push_back(Value);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Module::Append:
 | 
						|
  case Module::AppendUnique: {
 | 
						|
    // These behavior types require the operand be an MDNode.
 | 
						|
    Assert(isa<MDNode>(Op->getOperand(2)),
 | 
						|
           "invalid value for 'append'-type module flag "
 | 
						|
           "(expected a metadata node)",
 | 
						|
           Op->getOperand(2));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Unless this is a "requires" flag, check the ID is unique.
 | 
						|
  if (MFB != Module::Require) {
 | 
						|
    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
 | 
						|
    Assert(Inserted,
 | 
						|
           "module flag identifiers must be unique (or of 'require' type)", ID);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
 | 
						|
                                    bool isFunction, const Value *V) {
 | 
						|
  unsigned Slot = ~0U;
 | 
						|
  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
 | 
						|
    if (Attrs.getSlotIndex(I) == Idx) {
 | 
						|
      Slot = I;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  assert(Slot != ~0U && "Attribute set inconsistency!");
 | 
						|
 | 
						|
  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
 | 
						|
         I != E; ++I) {
 | 
						|
    if (I->isStringAttribute())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (I->getKindAsEnum() == Attribute::NoReturn ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoUnwind ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoInline ||
 | 
						|
        I->getKindAsEnum() == Attribute::AlwaysInline ||
 | 
						|
        I->getKindAsEnum() == Attribute::OptimizeForSize ||
 | 
						|
        I->getKindAsEnum() == Attribute::StackProtect ||
 | 
						|
        I->getKindAsEnum() == Attribute::StackProtectReq ||
 | 
						|
        I->getKindAsEnum() == Attribute::StackProtectStrong ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoRedZone ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
 | 
						|
        I->getKindAsEnum() == Attribute::Naked ||
 | 
						|
        I->getKindAsEnum() == Attribute::InlineHint ||
 | 
						|
        I->getKindAsEnum() == Attribute::StackAlignment ||
 | 
						|
        I->getKindAsEnum() == Attribute::UWTable ||
 | 
						|
        I->getKindAsEnum() == Attribute::NonLazyBind ||
 | 
						|
        I->getKindAsEnum() == Attribute::ReturnsTwice ||
 | 
						|
        I->getKindAsEnum() == Attribute::SanitizeAddress ||
 | 
						|
        I->getKindAsEnum() == Attribute::SanitizeThread ||
 | 
						|
        I->getKindAsEnum() == Attribute::SanitizeMemory ||
 | 
						|
        I->getKindAsEnum() == Attribute::MinSize ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoDuplicate ||
 | 
						|
        I->getKindAsEnum() == Attribute::Builtin ||
 | 
						|
        I->getKindAsEnum() == Attribute::NoBuiltin ||
 | 
						|
        I->getKindAsEnum() == Attribute::Cold ||
 | 
						|
        I->getKindAsEnum() == Attribute::OptimizeNone ||
 | 
						|
        I->getKindAsEnum() == Attribute::JumpTable) {
 | 
						|
      if (!isFunction) {
 | 
						|
        CheckFailed("Attribute '" + I->getAsString() +
 | 
						|
                    "' only applies to functions!", V);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
 | 
						|
               I->getKindAsEnum() == Attribute::ReadNone) {
 | 
						|
      if (Idx == 0) {
 | 
						|
        CheckFailed("Attribute '" + I->getAsString() +
 | 
						|
                    "' does not apply to function returns");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (isFunction) {
 | 
						|
      CheckFailed("Attribute '" + I->getAsString() +
 | 
						|
                  "' does not apply to functions!", V);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// VerifyParameterAttrs - Check the given attributes for an argument or return
 | 
						|
// value of the specified type.  The value V is printed in error messages.
 | 
						|
void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
 | 
						|
                                    bool isReturnValue, const Value *V) {
 | 
						|
  if (!Attrs.hasAttributes(Idx))
 | 
						|
    return;
 | 
						|
 | 
						|
  VerifyAttributeTypes(Attrs, Idx, false, V);
 | 
						|
 | 
						|
  if (isReturnValue)
 | 
						|
    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
 | 
						|
               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
 | 
						|
               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
 | 
						|
               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
 | 
						|
               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
 | 
						|
               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
 | 
						|
           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
 | 
						|
           "'returned' do not apply to return values!",
 | 
						|
           V);
 | 
						|
 | 
						|
  // Check for mutually incompatible attributes.  Only inreg is compatible with
 | 
						|
  // sret.
 | 
						|
  unsigned AttrCount = 0;
 | 
						|
  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
 | 
						|
  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
 | 
						|
  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
 | 
						|
               Attrs.hasAttribute(Idx, Attribute::InReg);
 | 
						|
  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
 | 
						|
  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
 | 
						|
                         "and 'sret' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
 | 
						|
           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
 | 
						|
         "Attributes "
 | 
						|
         "'inalloca and readonly' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
 | 
						|
           Attrs.hasAttribute(Idx, Attribute::Returned)),
 | 
						|
         "Attributes "
 | 
						|
         "'sret and returned' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
 | 
						|
           Attrs.hasAttribute(Idx, Attribute::SExt)),
 | 
						|
         "Attributes "
 | 
						|
         "'zeroext and signext' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
 | 
						|
           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
 | 
						|
         "Attributes "
 | 
						|
         "'readnone and readonly' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
 | 
						|
           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
 | 
						|
         "Attributes "
 | 
						|
         "'noinline and alwaysinline' are incompatible!",
 | 
						|
         V);
 | 
						|
 | 
						|
  Assert(!AttrBuilder(Attrs, Idx)
 | 
						|
              .overlaps(AttributeFuncs::typeIncompatible(Ty)),
 | 
						|
         "Wrong types for attribute: " +
 | 
						|
         AttributeSet::get(*Context, Idx,
 | 
						|
                        AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
 | 
						|
         V);
 | 
						|
 | 
						|
  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
    SmallPtrSet<const Type*, 4> Visited;
 | 
						|
    if (!PTy->getElementType()->isSized(&Visited)) {
 | 
						|
      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
 | 
						|
                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
 | 
						|
             "Attributes 'byval' and 'inalloca' do not support unsized types!",
 | 
						|
             V);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
 | 
						|
           "Attribute 'byval' only applies to parameters with pointer type!",
 | 
						|
           V);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// VerifyFunctionAttrs - Check parameter attributes against a function type.
 | 
						|
// The value V is printed in error messages.
 | 
						|
void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
 | 
						|
                                   const Value *V) {
 | 
						|
  if (Attrs.isEmpty())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool SawNest = false;
 | 
						|
  bool SawReturned = false;
 | 
						|
  bool SawSRet = false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
 | 
						|
    unsigned Idx = Attrs.getSlotIndex(i);
 | 
						|
 | 
						|
    Type *Ty;
 | 
						|
    if (Idx == 0)
 | 
						|
      Ty = FT->getReturnType();
 | 
						|
    else if (Idx-1 < FT->getNumParams())
 | 
						|
      Ty = FT->getParamType(Idx-1);
 | 
						|
    else
 | 
						|
      break;  // VarArgs attributes, verified elsewhere.
 | 
						|
 | 
						|
    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
 | 
						|
 | 
						|
    if (Idx == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
 | 
						|
      Assert(!SawNest, "More than one parameter has attribute nest!", V);
 | 
						|
      SawNest = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
 | 
						|
      Assert(!SawReturned, "More than one parameter has attribute returned!",
 | 
						|
             V);
 | 
						|
      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
 | 
						|
             "Incompatible "
 | 
						|
             "argument and return types for 'returned' attribute",
 | 
						|
             V);
 | 
						|
      SawReturned = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
 | 
						|
      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
 | 
						|
      Assert(Idx == 1 || Idx == 2,
 | 
						|
             "Attribute 'sret' is not on first or second parameter!", V);
 | 
						|
      SawSRet = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
 | 
						|
      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
 | 
						|
             V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
    return;
 | 
						|
 | 
						|
  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
 | 
						|
 | 
						|
  Assert(
 | 
						|
      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
 | 
						|
        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
 | 
						|
      "Attributes 'readnone and readonly' are incompatible!", V);
 | 
						|
 | 
						|
  Assert(
 | 
						|
      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
 | 
						|
        Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                           Attribute::AlwaysInline)),
 | 
						|
      "Attributes 'noinline and alwaysinline' are incompatible!", V);
 | 
						|
 | 
						|
  if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
 | 
						|
                         Attribute::OptimizeNone)) {
 | 
						|
    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
 | 
						|
           "Attribute 'optnone' requires 'noinline'!", V);
 | 
						|
 | 
						|
    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                               Attribute::OptimizeForSize),
 | 
						|
           "Attributes 'optsize and optnone' are incompatible!", V);
 | 
						|
 | 
						|
    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
 | 
						|
           "Attributes 'minsize and optnone' are incompatible!", V);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                         Attribute::JumpTable)) {
 | 
						|
    const GlobalValue *GV = cast<GlobalValue>(V);
 | 
						|
    Assert(GV->hasUnnamedAddr(),
 | 
						|
           "Attribute 'jumptable' requires 'unnamed_addr'", V);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::VerifyFunctionMetadata(
 | 
						|
    const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
 | 
						|
  if (MDs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < MDs.size(); i++) {
 | 
						|
    if (MDs[i].first == LLVMContext::MD_prof) {
 | 
						|
      MDNode *MD = MDs[i].second;
 | 
						|
      Assert(MD->getNumOperands() == 2,
 | 
						|
             "!prof annotations should have exactly 2 operands", MD);
 | 
						|
 | 
						|
      // Check first operand.
 | 
						|
      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
 | 
						|
             MD);
 | 
						|
      Assert(isa<MDString>(MD->getOperand(0)),
 | 
						|
             "expected string with name of the !prof annotation", MD);
 | 
						|
      MDString *MDS = cast<MDString>(MD->getOperand(0));
 | 
						|
      StringRef ProfName = MDS->getString();
 | 
						|
      Assert(ProfName.equals("function_entry_count"),
 | 
						|
             "first operand should be 'function_entry_count'", MD);
 | 
						|
 | 
						|
      // Check second operand.
 | 
						|
      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
 | 
						|
             MD);
 | 
						|
      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
 | 
						|
             "expected integer argument to function_entry_count", MD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
 | 
						|
  if (CE->getOpcode() != Instruction::BitCast)
 | 
						|
    return;
 | 
						|
 | 
						|
  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
 | 
						|
                               CE->getType()),
 | 
						|
         "Invalid bitcast", CE);
 | 
						|
}
 | 
						|
 | 
						|
bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
 | 
						|
  if (Attrs.getNumSlots() == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  unsigned LastSlot = Attrs.getNumSlots() - 1;
 | 
						|
  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
 | 
						|
  if (LastIndex <= Params
 | 
						|
      || (LastIndex == AttributeSet::FunctionIndex
 | 
						|
          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify that statepoint intrinsic is well formed.
 | 
						|
void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
 | 
						|
  assert(CS.getCalledFunction() &&
 | 
						|
         CS.getCalledFunction()->getIntrinsicID() ==
 | 
						|
           Intrinsic::experimental_gc_statepoint);
 | 
						|
 | 
						|
  const Instruction &CI = *CS.getInstruction();
 | 
						|
 | 
						|
  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(),
 | 
						|
         "gc.statepoint must read and write memory to preserve "
 | 
						|
         "reordering restrictions required by safepoint semantics",
 | 
						|
         &CI);
 | 
						|
 | 
						|
  const Value *IDV = CS.getArgument(0);
 | 
						|
  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
 | 
						|
         &CI);
 | 
						|
 | 
						|
  const Value *NumPatchBytesV = CS.getArgument(1);
 | 
						|
  Assert(isa<ConstantInt>(NumPatchBytesV),
 | 
						|
         "gc.statepoint number of patchable bytes must be a constant integer",
 | 
						|
         &CI);
 | 
						|
  const int64_t NumPatchBytes =
 | 
						|
      cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
 | 
						|
  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
 | 
						|
  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
 | 
						|
                             "positive",
 | 
						|
         &CI);
 | 
						|
 | 
						|
  const Value *Target = CS.getArgument(2);
 | 
						|
  const PointerType *PT = dyn_cast<PointerType>(Target->getType());
 | 
						|
  Assert(PT && PT->getElementType()->isFunctionTy(),
 | 
						|
         "gc.statepoint callee must be of function pointer type", &CI, Target);
 | 
						|
  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
 | 
						|
 | 
						|
  if (NumPatchBytes)
 | 
						|
    Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
 | 
						|
           "gc.statepoint must have null as call target if number of patchable "
 | 
						|
           "bytes is non zero",
 | 
						|
           &CI);
 | 
						|
 | 
						|
  const Value *NumCallArgsV = CS.getArgument(3);
 | 
						|
  Assert(isa<ConstantInt>(NumCallArgsV),
 | 
						|
         "gc.statepoint number of arguments to underlying call "
 | 
						|
         "must be constant integer",
 | 
						|
         &CI);
 | 
						|
  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
 | 
						|
  Assert(NumCallArgs >= 0,
 | 
						|
         "gc.statepoint number of arguments to underlying call "
 | 
						|
         "must be positive",
 | 
						|
         &CI);
 | 
						|
  const int NumParams = (int)TargetFuncType->getNumParams();
 | 
						|
  if (TargetFuncType->isVarArg()) {
 | 
						|
    Assert(NumCallArgs >= NumParams,
 | 
						|
           "gc.statepoint mismatch in number of vararg call args", &CI);
 | 
						|
 | 
						|
    // TODO: Remove this limitation
 | 
						|
    Assert(TargetFuncType->getReturnType()->isVoidTy(),
 | 
						|
           "gc.statepoint doesn't support wrapping non-void "
 | 
						|
           "vararg functions yet",
 | 
						|
           &CI);
 | 
						|
  } else
 | 
						|
    Assert(NumCallArgs == NumParams,
 | 
						|
           "gc.statepoint mismatch in number of call args", &CI);
 | 
						|
 | 
						|
  const Value *FlagsV = CS.getArgument(4);
 | 
						|
  Assert(isa<ConstantInt>(FlagsV),
 | 
						|
         "gc.statepoint flags must be constant integer", &CI);
 | 
						|
  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
 | 
						|
  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
 | 
						|
         "unknown flag used in gc.statepoint flags argument", &CI);
 | 
						|
 | 
						|
  // Verify that the types of the call parameter arguments match
 | 
						|
  // the type of the wrapped callee.
 | 
						|
  for (int i = 0; i < NumParams; i++) {
 | 
						|
    Type *ParamType = TargetFuncType->getParamType(i);
 | 
						|
    Type *ArgType = CS.getArgument(5 + i)->getType();
 | 
						|
    Assert(ArgType == ParamType,
 | 
						|
           "gc.statepoint call argument does not match wrapped "
 | 
						|
           "function type",
 | 
						|
           &CI);
 | 
						|
  }
 | 
						|
 | 
						|
  const int EndCallArgsInx = 4 + NumCallArgs;
 | 
						|
 | 
						|
  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
 | 
						|
  Assert(isa<ConstantInt>(NumTransitionArgsV),
 | 
						|
         "gc.statepoint number of transition arguments "
 | 
						|
         "must be constant integer",
 | 
						|
         &CI);
 | 
						|
  const int NumTransitionArgs =
 | 
						|
      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
 | 
						|
  Assert(NumTransitionArgs >= 0,
 | 
						|
         "gc.statepoint number of transition arguments must be positive", &CI);
 | 
						|
  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
 | 
						|
 | 
						|
  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
 | 
						|
  Assert(isa<ConstantInt>(NumDeoptArgsV),
 | 
						|
         "gc.statepoint number of deoptimization arguments "
 | 
						|
         "must be constant integer",
 | 
						|
         &CI);
 | 
						|
  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
 | 
						|
  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
 | 
						|
                            "must be positive",
 | 
						|
         &CI);
 | 
						|
 | 
						|
  const int ExpectedNumArgs =
 | 
						|
      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
 | 
						|
  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
 | 
						|
         "gc.statepoint too few arguments according to length fields", &CI);
 | 
						|
 | 
						|
  // Check that the only uses of this gc.statepoint are gc.result or 
 | 
						|
  // gc.relocate calls which are tied to this statepoint and thus part
 | 
						|
  // of the same statepoint sequence
 | 
						|
  for (const User *U : CI.users()) {
 | 
						|
    const CallInst *Call = dyn_cast<const CallInst>(U);
 | 
						|
    Assert(Call, "illegal use of statepoint token", &CI, U);
 | 
						|
    if (!Call) continue;
 | 
						|
    Assert(isGCRelocate(Call) || isGCResult(Call),
 | 
						|
           "gc.result or gc.relocate are the only value uses"
 | 
						|
           "of a gc.statepoint",
 | 
						|
           &CI, U);
 | 
						|
    if (isGCResult(Call)) {
 | 
						|
      Assert(Call->getArgOperand(0) == &CI,
 | 
						|
             "gc.result connected to wrong gc.statepoint", &CI, Call);
 | 
						|
    } else if (isGCRelocate(Call)) {
 | 
						|
      Assert(Call->getArgOperand(0) == &CI,
 | 
						|
             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: It is legal for a single derived pointer to be listed multiple
 | 
						|
  // times.  It's non-optimal, but it is legal.  It can also happen after
 | 
						|
  // insertion if we strip a bitcast away.
 | 
						|
  // Note: It is really tempting to check that each base is relocated and
 | 
						|
  // that a derived pointer is never reused as a base pointer.  This turns
 | 
						|
  // out to be problematic since optimizations run after safepoint insertion
 | 
						|
  // can recognize equality properties that the insertion logic doesn't know
 | 
						|
  // about.  See example statepoint.ll in the verifier subdirectory
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::verifyFrameRecoverIndices() {
 | 
						|
  for (auto &Counts : FrameEscapeInfo) {
 | 
						|
    Function *F = Counts.first;
 | 
						|
    unsigned EscapedObjectCount = Counts.second.first;
 | 
						|
    unsigned MaxRecoveredIndex = Counts.second.second;
 | 
						|
    Assert(MaxRecoveredIndex <= EscapedObjectCount,
 | 
						|
           "all indices passed to llvm.framerecover must be less than the "
 | 
						|
           "number of arguments passed ot llvm.frameescape in the parent "
 | 
						|
           "function",
 | 
						|
           F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// visitFunction - Verify that a function is ok.
 | 
						|
//
 | 
						|
void Verifier::visitFunction(const Function &F) {
 | 
						|
  // Check function arguments.
 | 
						|
  FunctionType *FT = F.getFunctionType();
 | 
						|
  unsigned NumArgs = F.arg_size();
 | 
						|
 | 
						|
  Assert(Context == &F.getContext(),
 | 
						|
         "Function context does not match Module context!", &F);
 | 
						|
 | 
						|
  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
 | 
						|
  Assert(FT->getNumParams() == NumArgs,
 | 
						|
         "# formal arguments must match # of arguments for function type!", &F,
 | 
						|
         FT);
 | 
						|
  Assert(F.getReturnType()->isFirstClassType() ||
 | 
						|
             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
 | 
						|
         "Functions cannot return aggregate values!", &F);
 | 
						|
 | 
						|
  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
 | 
						|
         "Invalid struct return type!", &F);
 | 
						|
 | 
						|
  AttributeSet Attrs = F.getAttributes();
 | 
						|
 | 
						|
  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
 | 
						|
         "Attribute after last parameter!", &F);
 | 
						|
 | 
						|
  // Check function attributes.
 | 
						|
  VerifyFunctionAttrs(FT, Attrs, &F);
 | 
						|
 | 
						|
  // On function declarations/definitions, we do not support the builtin
 | 
						|
  // attribute. We do not check this in VerifyFunctionAttrs since that is
 | 
						|
  // checking for Attributes that can/can not ever be on functions.
 | 
						|
  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
 | 
						|
         "Attribute 'builtin' can only be applied to a callsite.", &F);
 | 
						|
 | 
						|
  // Check that this function meets the restrictions on this calling convention.
 | 
						|
  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
 | 
						|
  // restrictions can be lifted.
 | 
						|
  switch (F.getCallingConv()) {
 | 
						|
  default:
 | 
						|
  case CallingConv::C:
 | 
						|
    break;
 | 
						|
  case CallingConv::Fast:
 | 
						|
  case CallingConv::Cold:
 | 
						|
  case CallingConv::Intel_OCL_BI:
 | 
						|
  case CallingConv::PTX_Kernel:
 | 
						|
  case CallingConv::PTX_Device:
 | 
						|
    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
 | 
						|
                          "perfect forwarding!",
 | 
						|
           &F);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isLLVMdotName = F.getName().size() >= 5 &&
 | 
						|
                       F.getName().substr(0, 5) == "llvm.";
 | 
						|
 | 
						|
  // Check that the argument values match the function type for this function...
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
 | 
						|
       ++I, ++i) {
 | 
						|
    Assert(I->getType() == FT->getParamType(i),
 | 
						|
           "Argument value does not match function argument type!", I,
 | 
						|
           FT->getParamType(i));
 | 
						|
    Assert(I->getType()->isFirstClassType(),
 | 
						|
           "Function arguments must have first-class types!", I);
 | 
						|
    if (!isLLVMdotName)
 | 
						|
      Assert(!I->getType()->isMetadataTy(),
 | 
						|
             "Function takes metadata but isn't an intrinsic", I, &F);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the function metadata attachments.
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  F.getAllMetadata(MDs);
 | 
						|
  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
 | 
						|
  VerifyFunctionMetadata(MDs);
 | 
						|
 | 
						|
  if (F.isMaterializable()) {
 | 
						|
    // Function has a body somewhere we can't see.
 | 
						|
    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
 | 
						|
           MDs.empty() ? nullptr : MDs.front().second);
 | 
						|
  } else if (F.isDeclaration()) {
 | 
						|
    Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
 | 
						|
           "invalid linkage type for function declaration", &F);
 | 
						|
    Assert(MDs.empty(), "function without a body cannot have metadata", &F,
 | 
						|
           MDs.empty() ? nullptr : MDs.front().second);
 | 
						|
  } else {
 | 
						|
    // Verify that this function (which has a body) is not named "llvm.*".  It
 | 
						|
    // is not legal to define intrinsics.
 | 
						|
    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
 | 
						|
 | 
						|
    // Check the entry node
 | 
						|
    const BasicBlock *Entry = &F.getEntryBlock();
 | 
						|
    Assert(pred_empty(Entry),
 | 
						|
           "Entry block to function must not have predecessors!", Entry);
 | 
						|
 | 
						|
    // The address of the entry block cannot be taken, unless it is dead.
 | 
						|
    if (Entry->hasAddressTaken()) {
 | 
						|
      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
 | 
						|
             "blockaddress may not be used with the entry block!", Entry);
 | 
						|
    }
 | 
						|
 | 
						|
    // Visit metadata attachments.
 | 
						|
    for (const auto &I : MDs)
 | 
						|
      visitMDNode(*I.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this function is actually an intrinsic, verify that it is only used in
 | 
						|
  // direct call/invokes, never having its "address taken".
 | 
						|
  if (F.getIntrinsicID()) {
 | 
						|
    const User *U;
 | 
						|
    if (F.hasAddressTaken(&U))
 | 
						|
      Assert(0, "Invalid user of intrinsic instruction!", U);
 | 
						|
  }
 | 
						|
 | 
						|
  Assert(!F.hasDLLImportStorageClass() ||
 | 
						|
             (F.isDeclaration() && F.hasExternalLinkage()) ||
 | 
						|
             F.hasAvailableExternallyLinkage(),
 | 
						|
         "Function is marked as dllimport, but not external.", &F);
 | 
						|
}
 | 
						|
 | 
						|
// verifyBasicBlock - Verify that a basic block is well formed...
 | 
						|
//
 | 
						|
void Verifier::visitBasicBlock(BasicBlock &BB) {
 | 
						|
  InstsInThisBlock.clear();
 | 
						|
 | 
						|
  // Ensure that basic blocks have terminators!
 | 
						|
  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | 
						|
 | 
						|
  // Check constraints that this basic block imposes on all of the PHI nodes in
 | 
						|
  // it.
 | 
						|
  if (isa<PHINode>(BB.front())) {
 | 
						|
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | 
						|
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | 
						|
    std::sort(Preds.begin(), Preds.end());
 | 
						|
    PHINode *PN;
 | 
						|
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | 
						|
      // Ensure that PHI nodes have at least one entry!
 | 
						|
      Assert(PN->getNumIncomingValues() != 0,
 | 
						|
             "PHI nodes must have at least one entry.  If the block is dead, "
 | 
						|
             "the PHI should be removed!",
 | 
						|
             PN);
 | 
						|
      Assert(PN->getNumIncomingValues() == Preds.size(),
 | 
						|
             "PHINode should have one entry for each predecessor of its "
 | 
						|
             "parent basic block!",
 | 
						|
             PN);
 | 
						|
 | 
						|
      // Get and sort all incoming values in the PHI node...
 | 
						|
      Values.clear();
 | 
						|
      Values.reserve(PN->getNumIncomingValues());
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | 
						|
                                        PN->getIncomingValue(i)));
 | 
						|
      std::sort(Values.begin(), Values.end());
 | 
						|
 | 
						|
      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | 
						|
        // Check to make sure that if there is more than one entry for a
 | 
						|
        // particular basic block in this PHI node, that the incoming values are
 | 
						|
        // all identical.
 | 
						|
        //
 | 
						|
        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
 | 
						|
                   Values[i].second == Values[i - 1].second,
 | 
						|
               "PHI node has multiple entries for the same basic block with "
 | 
						|
               "different incoming values!",
 | 
						|
               PN, Values[i].first, Values[i].second, Values[i - 1].second);
 | 
						|
 | 
						|
        // Check to make sure that the predecessors and PHI node entries are
 | 
						|
        // matched up.
 | 
						|
        Assert(Values[i].first == Preds[i],
 | 
						|
               "PHI node entries do not match predecessors!", PN,
 | 
						|
               Values[i].first, Preds[i]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that all instructions have their parent pointers set up correctly.
 | 
						|
  for (auto &I : BB)
 | 
						|
  {
 | 
						|
    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | 
						|
  // Ensure that terminators only exist at the end of the basic block.
 | 
						|
  Assert(&I == I.getParent()->getTerminator(),
 | 
						|
         "Terminator found in the middle of a basic block!", I.getParent());
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitBranchInst(BranchInst &BI) {
 | 
						|
  if (BI.isConditional()) {
 | 
						|
    Assert(BI.getCondition()->getType()->isIntegerTy(1),
 | 
						|
           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
 | 
						|
  }
 | 
						|
  visitTerminatorInst(BI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitReturnInst(ReturnInst &RI) {
 | 
						|
  Function *F = RI.getParent()->getParent();
 | 
						|
  unsigned N = RI.getNumOperands();
 | 
						|
  if (F->getReturnType()->isVoidTy())
 | 
						|
    Assert(N == 0,
 | 
						|
           "Found return instr that returns non-void in Function of void "
 | 
						|
           "return type!",
 | 
						|
           &RI, F->getReturnType());
 | 
						|
  else
 | 
						|
    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
 | 
						|
           "Function return type does not match operand "
 | 
						|
           "type of return inst!",
 | 
						|
           &RI, F->getReturnType());
 | 
						|
 | 
						|
  // Check to make sure that the return value has necessary properties for
 | 
						|
  // terminators...
 | 
						|
  visitTerminatorInst(RI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  // Check to make sure that all of the constants in the switch instruction
 | 
						|
  // have the same type as the switched-on value.
 | 
						|
  Type *SwitchTy = SI.getCondition()->getType();
 | 
						|
  SmallPtrSet<ConstantInt*, 32> Constants;
 | 
						|
  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
 | 
						|
    Assert(i.getCaseValue()->getType() == SwitchTy,
 | 
						|
           "Switch constants must all be same type as switch value!", &SI);
 | 
						|
    Assert(Constants.insert(i.getCaseValue()).second,
 | 
						|
           "Duplicate integer as switch case", &SI, i.getCaseValue());
 | 
						|
  }
 | 
						|
 | 
						|
  visitTerminatorInst(SI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
 | 
						|
  Assert(BI.getAddress()->getType()->isPointerTy(),
 | 
						|
         "Indirectbr operand must have pointer type!", &BI);
 | 
						|
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
 | 
						|
    Assert(BI.getDestination(i)->getType()->isLabelTy(),
 | 
						|
           "Indirectbr destinations must all have pointer type!", &BI);
 | 
						|
 | 
						|
  visitTerminatorInst(BI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSelectInst(SelectInst &SI) {
 | 
						|
  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
 | 
						|
                                         SI.getOperand(2)),
 | 
						|
         "Invalid operands for select instruction!", &SI);
 | 
						|
 | 
						|
  Assert(SI.getTrueValue()->getType() == SI.getType(),
 | 
						|
         "Select values must have same type as select instruction!", &SI);
 | 
						|
  visitInstruction(SI);
 | 
						|
}
 | 
						|
 | 
						|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | 
						|
/// a pass, if any exist, it's an error.
 | 
						|
///
 | 
						|
void Verifier::visitUserOp1(Instruction &I) {
 | 
						|
  Assert(0, "User-defined operators should not live outside of a pass!", &I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitTruncInst(TruncInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
 | 
						|
  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | 
						|
         "trunc source and destination must both be a vector or neither", &I);
 | 
						|
  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitZExtInst(ZExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
 | 
						|
  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | 
						|
         "zext source and destination must both be a vector or neither", &I);
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSExtInst(SExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
 | 
						|
  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | 
						|
         "sext source and destination must both be a vector or neither", &I);
 | 
						|
  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
 | 
						|
  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | 
						|
         "fptrunc source and destination must both be a vector or neither", &I);
 | 
						|
  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPExtInst(FPExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
 | 
						|
  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | 
						|
         "fpext source and destination must both be a vector or neither", &I);
 | 
						|
  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  bool SrcVec = SrcTy->isVectorTy();
 | 
						|
  bool DstVec = DestTy->isVectorTy();
 | 
						|
 | 
						|
  Assert(SrcVec == DstVec,
 | 
						|
         "UIToFP source and dest must both be vector or scalar", &I);
 | 
						|
  Assert(SrcTy->isIntOrIntVectorTy(),
 | 
						|
         "UIToFP source must be integer or integer vector", &I);
 | 
						|
  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
 | 
						|
         &I);
 | 
						|
 | 
						|
  if (SrcVec && DstVec)
 | 
						|
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | 
						|
               cast<VectorType>(DestTy)->getNumElements(),
 | 
						|
           "UIToFP source and dest vector length mismatch", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  bool SrcVec = SrcTy->isVectorTy();
 | 
						|
  bool DstVec = DestTy->isVectorTy();
 | 
						|
 | 
						|
  Assert(SrcVec == DstVec,
 | 
						|
         "SIToFP source and dest must both be vector or scalar", &I);
 | 
						|
  Assert(SrcTy->isIntOrIntVectorTy(),
 | 
						|
         "SIToFP source must be integer or integer vector", &I);
 | 
						|
  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
 | 
						|
         &I);
 | 
						|
 | 
						|
  if (SrcVec && DstVec)
 | 
						|
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | 
						|
               cast<VectorType>(DestTy)->getNumElements(),
 | 
						|
           "SIToFP source and dest vector length mismatch", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  bool SrcVec = SrcTy->isVectorTy();
 | 
						|
  bool DstVec = DestTy->isVectorTy();
 | 
						|
 | 
						|
  Assert(SrcVec == DstVec,
 | 
						|
         "FPToUI source and dest must both be vector or scalar", &I);
 | 
						|
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
 | 
						|
         &I);
 | 
						|
  Assert(DestTy->isIntOrIntVectorTy(),
 | 
						|
         "FPToUI result must be integer or integer vector", &I);
 | 
						|
 | 
						|
  if (SrcVec && DstVec)
 | 
						|
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | 
						|
               cast<VectorType>(DestTy)->getNumElements(),
 | 
						|
           "FPToUI source and dest vector length mismatch", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  bool SrcVec = SrcTy->isVectorTy();
 | 
						|
  bool DstVec = DestTy->isVectorTy();
 | 
						|
 | 
						|
  Assert(SrcVec == DstVec,
 | 
						|
         "FPToSI source and dest must both be vector or scalar", &I);
 | 
						|
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
 | 
						|
         &I);
 | 
						|
  Assert(DestTy->isIntOrIntVectorTy(),
 | 
						|
         "FPToSI result must be integer or integer vector", &I);
 | 
						|
 | 
						|
  if (SrcVec && DstVec)
 | 
						|
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | 
						|
               cast<VectorType>(DestTy)->getNumElements(),
 | 
						|
           "FPToSI source and dest vector length mismatch", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert(SrcTy->getScalarType()->isPointerTy(),
 | 
						|
         "PtrToInt source must be pointer", &I);
 | 
						|
  Assert(DestTy->getScalarType()->isIntegerTy(),
 | 
						|
         "PtrToInt result must be integral", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
 | 
						|
         &I);
 | 
						|
 | 
						|
  if (SrcTy->isVectorTy()) {
 | 
						|
    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | 
						|
    VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | 
						|
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | 
						|
           "PtrToInt Vector width mismatch", &I);
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert(SrcTy->getScalarType()->isIntegerTy(),
 | 
						|
         "IntToPtr source must be an integral", &I);
 | 
						|
  Assert(DestTy->getScalarType()->isPointerTy(),
 | 
						|
         "IntToPtr result must be a pointer", &I);
 | 
						|
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
 | 
						|
         &I);
 | 
						|
  if (SrcTy->isVectorTy()) {
 | 
						|
    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | 
						|
    VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | 
						|
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | 
						|
           "IntToPtr Vector width mismatch", &I);
 | 
						|
  }
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitBitCastInst(BitCastInst &I) {
 | 
						|
  Assert(
 | 
						|
      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
 | 
						|
      "Invalid bitcast", &I);
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
 | 
						|
  Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
 | 
						|
         &I);
 | 
						|
  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
 | 
						|
         &I);
 | 
						|
  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
 | 
						|
         "AddrSpaceCast must be between different address spaces", &I);
 | 
						|
  if (SrcTy->isVectorTy())
 | 
						|
    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
 | 
						|
           "AddrSpaceCast vector pointer number of elements mismatch", &I);
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
/// visitPHINode - Ensure that a PHI node is well formed.
 | 
						|
///
 | 
						|
void Verifier::visitPHINode(PHINode &PN) {
 | 
						|
  // Ensure that the PHI nodes are all grouped together at the top of the block.
 | 
						|
  // This can be tested by checking whether the instruction before this is
 | 
						|
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | 
						|
  // then there is some other instruction before a PHI.
 | 
						|
  Assert(&PN == &PN.getParent()->front() ||
 | 
						|
             isa<PHINode>(--BasicBlock::iterator(&PN)),
 | 
						|
         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
 | 
						|
 | 
						|
  // Check that all of the values of the PHI node have the same type as the
 | 
						|
  // result, and that the incoming blocks are really basic blocks.
 | 
						|
  for (Value *IncValue : PN.incoming_values()) {
 | 
						|
    Assert(PN.getType() == IncValue->getType(),
 | 
						|
           "PHI node operands are not the same type as the result!", &PN);
 | 
						|
  }
 | 
						|
 | 
						|
  // All other PHI node constraints are checked in the visitBasicBlock method.
 | 
						|
 | 
						|
  visitInstruction(PN);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::VerifyCallSite(CallSite CS) {
 | 
						|
  Instruction *I = CS.getInstruction();
 | 
						|
 | 
						|
  Assert(CS.getCalledValue()->getType()->isPointerTy(),
 | 
						|
         "Called function must be a pointer!", I);
 | 
						|
  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
 | 
						|
  Assert(FPTy->getElementType()->isFunctionTy(),
 | 
						|
         "Called function is not pointer to function type!", I);
 | 
						|
 | 
						|
  Assert(FPTy->getElementType() == CS.getFunctionType(),
 | 
						|
         "Called function is not the same type as the call!", I);
 | 
						|
 | 
						|
  FunctionType *FTy = CS.getFunctionType();
 | 
						|
 | 
						|
  // Verify that the correct number of arguments are being passed
 | 
						|
  if (FTy->isVarArg())
 | 
						|
    Assert(CS.arg_size() >= FTy->getNumParams(),
 | 
						|
           "Called function requires more parameters than were provided!", I);
 | 
						|
  else
 | 
						|
    Assert(CS.arg_size() == FTy->getNumParams(),
 | 
						|
           "Incorrect number of arguments passed to called function!", I);
 | 
						|
 | 
						|
  // Verify that all arguments to the call match the function type.
 | 
						|
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
 | 
						|
           "Call parameter type does not match function signature!",
 | 
						|
           CS.getArgument(i), FTy->getParamType(i), I);
 | 
						|
 | 
						|
  AttributeSet Attrs = CS.getAttributes();
 | 
						|
 | 
						|
  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
 | 
						|
         "Attribute after last parameter!", I);
 | 
						|
 | 
						|
  // Verify call attributes.
 | 
						|
  VerifyFunctionAttrs(FTy, Attrs, I);
 | 
						|
 | 
						|
  // Conservatively check the inalloca argument.
 | 
						|
  // We have a bug if we can find that there is an underlying alloca without
 | 
						|
  // inalloca.
 | 
						|
  if (CS.hasInAllocaArgument()) {
 | 
						|
    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
 | 
						|
    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
 | 
						|
      Assert(AI->isUsedWithInAlloca(),
 | 
						|
             "inalloca argument for call has mismatched alloca", AI, I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    // FIXME? is 'nest' even legal here?
 | 
						|
    bool SawNest = false;
 | 
						|
    bool SawReturned = false;
 | 
						|
 | 
						|
    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
 | 
						|
      if (Attrs.hasAttribute(Idx, Attribute::Nest))
 | 
						|
        SawNest = true;
 | 
						|
      if (Attrs.hasAttribute(Idx, Attribute::Returned))
 | 
						|
        SawReturned = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check attributes on the varargs part.
 | 
						|
    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
 | 
						|
      Type *Ty = CS.getArgument(Idx-1)->getType();
 | 
						|
      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
 | 
						|
 | 
						|
      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
 | 
						|
        Assert(!SawNest, "More than one parameter has attribute nest!", I);
 | 
						|
        SawNest = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
 | 
						|
        Assert(!SawReturned, "More than one parameter has attribute returned!",
 | 
						|
               I);
 | 
						|
        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
 | 
						|
               "Incompatible argument and return types for 'returned' "
 | 
						|
               "attribute",
 | 
						|
               I);
 | 
						|
        SawReturned = true;
 | 
						|
      }
 | 
						|
 | 
						|
      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
 | 
						|
             "Attribute 'sret' cannot be used for vararg call arguments!", I);
 | 
						|
 | 
						|
      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
 | 
						|
        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify that there's no metadata unless it's a direct call to an intrinsic.
 | 
						|
  if (CS.getCalledFunction() == nullptr ||
 | 
						|
      !CS.getCalledFunction()->getName().startswith("llvm.")) {
 | 
						|
    for (FunctionType::param_iterator PI = FTy->param_begin(),
 | 
						|
           PE = FTy->param_end(); PI != PE; ++PI)
 | 
						|
      Assert(!(*PI)->isMetadataTy(),
 | 
						|
             "Function has metadata parameter but isn't an intrinsic", I);
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(*I);
 | 
						|
}
 | 
						|
 | 
						|
/// Two types are "congruent" if they are identical, or if they are both pointer
 | 
						|
/// types with different pointee types and the same address space.
 | 
						|
static bool isTypeCongruent(Type *L, Type *R) {
 | 
						|
  if (L == R)
 | 
						|
    return true;
 | 
						|
  PointerType *PL = dyn_cast<PointerType>(L);
 | 
						|
  PointerType *PR = dyn_cast<PointerType>(R);
 | 
						|
  if (!PL || !PR)
 | 
						|
    return false;
 | 
						|
  return PL->getAddressSpace() == PR->getAddressSpace();
 | 
						|
}
 | 
						|
 | 
						|
static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
 | 
						|
  static const Attribute::AttrKind ABIAttrs[] = {
 | 
						|
      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
 | 
						|
      Attribute::InReg, Attribute::Returned};
 | 
						|
  AttrBuilder Copy;
 | 
						|
  for (auto AK : ABIAttrs) {
 | 
						|
    if (Attrs.hasAttribute(I + 1, AK))
 | 
						|
      Copy.addAttribute(AK);
 | 
						|
  }
 | 
						|
  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
 | 
						|
    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
 | 
						|
  return Copy;
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::verifyMustTailCall(CallInst &CI) {
 | 
						|
  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
 | 
						|
 | 
						|
  // - The caller and callee prototypes must match.  Pointer types of
 | 
						|
  //   parameters or return types may differ in pointee type, but not
 | 
						|
  //   address space.
 | 
						|
  Function *F = CI.getParent()->getParent();
 | 
						|
  FunctionType *CallerTy = F->getFunctionType();
 | 
						|
  FunctionType *CalleeTy = CI.getFunctionType();
 | 
						|
  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
 | 
						|
         "cannot guarantee tail call due to mismatched parameter counts", &CI);
 | 
						|
  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
 | 
						|
         "cannot guarantee tail call due to mismatched varargs", &CI);
 | 
						|
  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
 | 
						|
         "cannot guarantee tail call due to mismatched return types", &CI);
 | 
						|
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | 
						|
    Assert(
 | 
						|
        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
 | 
						|
        "cannot guarantee tail call due to mismatched parameter types", &CI);
 | 
						|
  }
 | 
						|
 | 
						|
  // - The calling conventions of the caller and callee must match.
 | 
						|
  Assert(F->getCallingConv() == CI.getCallingConv(),
 | 
						|
         "cannot guarantee tail call due to mismatched calling conv", &CI);
 | 
						|
 | 
						|
  // - All ABI-impacting function attributes, such as sret, byval, inreg,
 | 
						|
  //   returned, and inalloca, must match.
 | 
						|
  AttributeSet CallerAttrs = F->getAttributes();
 | 
						|
  AttributeSet CalleeAttrs = CI.getAttributes();
 | 
						|
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | 
						|
    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
 | 
						|
    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
 | 
						|
    Assert(CallerABIAttrs == CalleeABIAttrs,
 | 
						|
           "cannot guarantee tail call due to mismatched ABI impacting "
 | 
						|
           "function attributes",
 | 
						|
           &CI, CI.getOperand(I));
 | 
						|
  }
 | 
						|
 | 
						|
  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
 | 
						|
  //   or a pointer bitcast followed by a ret instruction.
 | 
						|
  // - The ret instruction must return the (possibly bitcasted) value
 | 
						|
  //   produced by the call or void.
 | 
						|
  Value *RetVal = &CI;
 | 
						|
  Instruction *Next = CI.getNextNode();
 | 
						|
 | 
						|
  // Handle the optional bitcast.
 | 
						|
  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
 | 
						|
    Assert(BI->getOperand(0) == RetVal,
 | 
						|
           "bitcast following musttail call must use the call", BI);
 | 
						|
    RetVal = BI;
 | 
						|
    Next = BI->getNextNode();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the return.
 | 
						|
  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
 | 
						|
  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
 | 
						|
         &CI);
 | 
						|
  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
 | 
						|
         "musttail call result must be returned", Ret);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitCallInst(CallInst &CI) {
 | 
						|
  VerifyCallSite(&CI);
 | 
						|
 | 
						|
  if (CI.isMustTailCall())
 | 
						|
    verifyMustTailCall(CI);
 | 
						|
 | 
						|
  if (Function *F = CI.getCalledFunction())
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | 
						|
      visitIntrinsicFunctionCall(ID, CI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitInvokeInst(InvokeInst &II) {
 | 
						|
  VerifyCallSite(&II);
 | 
						|
 | 
						|
  // Verify that there is a landingpad instruction as the first non-PHI
 | 
						|
  // instruction of the 'unwind' destination.
 | 
						|
  Assert(II.getUnwindDest()->isLandingPad(),
 | 
						|
         "The unwind destination does not have a landingpad instruction!", &II);
 | 
						|
 | 
						|
  if (Function *F = II.getCalledFunction())
 | 
						|
    // TODO: Ideally we should use visitIntrinsicFunction here. But it uses
 | 
						|
    //       CallInst as an input parameter. It not woth updating this whole
 | 
						|
    //       function only to support statepoint verification.
 | 
						|
    if (F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
 | 
						|
      VerifyStatepoint(ImmutableCallSite(&II));
 | 
						|
 | 
						|
  visitTerminatorInst(II);
 | 
						|
}
 | 
						|
 | 
						|
/// visitBinaryOperator - Check that both arguments to the binary operator are
 | 
						|
/// of the same type!
 | 
						|
///
 | 
						|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | 
						|
  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | 
						|
         "Both operands to a binary operator are not of the same type!", &B);
 | 
						|
 | 
						|
  switch (B.getOpcode()) {
 | 
						|
  // Check that integer arithmetic operators are only used with
 | 
						|
  // integral operands.
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::URem:
 | 
						|
    Assert(B.getType()->isIntOrIntVectorTy(),
 | 
						|
           "Integer arithmetic operators only work with integral types!", &B);
 | 
						|
    Assert(B.getType() == B.getOperand(0)->getType(),
 | 
						|
           "Integer arithmetic operators must have same type "
 | 
						|
           "for operands and result!",
 | 
						|
           &B);
 | 
						|
    break;
 | 
						|
  // Check that floating-point arithmetic operators are only used with
 | 
						|
  // floating-point operands.
 | 
						|
  case Instruction::FAdd:
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FMul:
 | 
						|
  case Instruction::FDiv:
 | 
						|
  case Instruction::FRem:
 | 
						|
    Assert(B.getType()->isFPOrFPVectorTy(),
 | 
						|
           "Floating-point arithmetic operators only work with "
 | 
						|
           "floating-point types!",
 | 
						|
           &B);
 | 
						|
    Assert(B.getType() == B.getOperand(0)->getType(),
 | 
						|
           "Floating-point arithmetic operators must have same type "
 | 
						|
           "for operands and result!",
 | 
						|
           &B);
 | 
						|
    break;
 | 
						|
  // Check that logical operators are only used with integral operands.
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    Assert(B.getType()->isIntOrIntVectorTy(),
 | 
						|
           "Logical operators only work with integral types!", &B);
 | 
						|
    Assert(B.getType() == B.getOperand(0)->getType(),
 | 
						|
           "Logical operators must have same type for operands and result!",
 | 
						|
           &B);
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    Assert(B.getType()->isIntOrIntVectorTy(),
 | 
						|
           "Shifts only work with integral types!", &B);
 | 
						|
    Assert(B.getType() == B.getOperand(0)->getType(),
 | 
						|
           "Shift return type must be same as operands!", &B);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown BinaryOperator opcode!");
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(B);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitICmpInst(ICmpInst &IC) {
 | 
						|
  // Check that the operands are the same type
 | 
						|
  Type *Op0Ty = IC.getOperand(0)->getType();
 | 
						|
  Type *Op1Ty = IC.getOperand(1)->getType();
 | 
						|
  Assert(Op0Ty == Op1Ty,
 | 
						|
         "Both operands to ICmp instruction are not of the same type!", &IC);
 | 
						|
  // Check that the operands are the right type
 | 
						|
  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
 | 
						|
         "Invalid operand types for ICmp instruction", &IC);
 | 
						|
  // Check that the predicate is valid.
 | 
						|
  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
 | 
						|
             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
 | 
						|
         "Invalid predicate in ICmp instruction!", &IC);
 | 
						|
 | 
						|
  visitInstruction(IC);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFCmpInst(FCmpInst &FC) {
 | 
						|
  // Check that the operands are the same type
 | 
						|
  Type *Op0Ty = FC.getOperand(0)->getType();
 | 
						|
  Type *Op1Ty = FC.getOperand(1)->getType();
 | 
						|
  Assert(Op0Ty == Op1Ty,
 | 
						|
         "Both operands to FCmp instruction are not of the same type!", &FC);
 | 
						|
  // Check that the operands are the right type
 | 
						|
  Assert(Op0Ty->isFPOrFPVectorTy(),
 | 
						|
         "Invalid operand types for FCmp instruction", &FC);
 | 
						|
  // Check that the predicate is valid.
 | 
						|
  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
 | 
						|
             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
 | 
						|
         "Invalid predicate in FCmp instruction!", &FC);
 | 
						|
 | 
						|
  visitInstruction(FC);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
  Assert(
 | 
						|
      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
 | 
						|
      "Invalid extractelement operands!", &EI);
 | 
						|
  visitInstruction(EI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
 | 
						|
                                            IE.getOperand(2)),
 | 
						|
         "Invalid insertelement operands!", &IE);
 | 
						|
  visitInstruction(IE);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | 
						|
  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | 
						|
                                            SV.getOperand(2)),
 | 
						|
         "Invalid shufflevector operands!", &SV);
 | 
						|
  visitInstruction(SV);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
 | 
						|
 | 
						|
  Assert(isa<PointerType>(TargetTy),
 | 
						|
         "GEP base pointer is not a vector or a vector of pointers", &GEP);
 | 
						|
  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
 | 
						|
  Assert(GEP.getPointerOperandType()->isVectorTy() ==
 | 
						|
             GEP.getType()->isVectorTy(),
 | 
						|
         "Vector GEP must return a vector value", &GEP);
 | 
						|
 | 
						|
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | 
						|
  Type *ElTy =
 | 
						|
      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
 | 
						|
  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | 
						|
 | 
						|
  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
 | 
						|
             GEP.getResultElementType() == ElTy,
 | 
						|
         "GEP is not of right type for indices!", &GEP, ElTy);
 | 
						|
 | 
						|
  if (GEP.getPointerOperandType()->isVectorTy()) {
 | 
						|
    // Additional checks for vector GEPs.
 | 
						|
    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
 | 
						|
    Assert(GepWidth == GEP.getType()->getVectorNumElements(),
 | 
						|
           "Vector GEP result width doesn't match operand's", &GEP);
 | 
						|
    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
 | 
						|
      Type *IndexTy = Idxs[i]->getType();
 | 
						|
      Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!",
 | 
						|
             &GEP);
 | 
						|
      unsigned IndexWidth = IndexTy->getVectorNumElements();
 | 
						|
      Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  visitInstruction(GEP);
 | 
						|
}
 | 
						|
 | 
						|
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
 | 
						|
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitRangeMetadata(Instruction& I,
 | 
						|
                                  MDNode* Range, Type* Ty) {
 | 
						|
  assert(Range &&
 | 
						|
         Range == I.getMetadata(LLVMContext::MD_range) &&
 | 
						|
         "precondition violation");
 | 
						|
 | 
						|
  unsigned NumOperands = Range->getNumOperands();
 | 
						|
  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
 | 
						|
  unsigned NumRanges = NumOperands / 2;
 | 
						|
  Assert(NumRanges >= 1, "It should have at least one range!", Range);
 | 
						|
 | 
						|
  ConstantRange LastRange(1); // Dummy initial value
 | 
						|
  for (unsigned i = 0; i < NumRanges; ++i) {
 | 
						|
    ConstantInt *Low =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
 | 
						|
    Assert(Low, "The lower limit must be an integer!", Low);
 | 
						|
    ConstantInt *High =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
 | 
						|
    Assert(High, "The upper limit must be an integer!", High);
 | 
						|
    Assert(High->getType() == Low->getType() && High->getType() == Ty,
 | 
						|
           "Range types must match instruction type!", &I);
 | 
						|
 | 
						|
    APInt HighV = High->getValue();
 | 
						|
    APInt LowV = Low->getValue();
 | 
						|
    ConstantRange CurRange(LowV, HighV);
 | 
						|
    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
 | 
						|
           "Range must not be empty!", Range);
 | 
						|
    if (i != 0) {
 | 
						|
      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
 | 
						|
             "Intervals are overlapping", Range);
 | 
						|
      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
 | 
						|
             Range);
 | 
						|
      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
 | 
						|
             Range);
 | 
						|
    }
 | 
						|
    LastRange = ConstantRange(LowV, HighV);
 | 
						|
  }
 | 
						|
  if (NumRanges > 2) {
 | 
						|
    APInt FirstLow =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
 | 
						|
    APInt FirstHigh =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
 | 
						|
    ConstantRange FirstRange(FirstLow, FirstHigh);
 | 
						|
    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
 | 
						|
           "Intervals are overlapping", Range);
 | 
						|
    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
 | 
						|
           Range);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitLoadInst(LoadInst &LI) {
 | 
						|
  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
 | 
						|
  Assert(PTy, "Load operand must be a pointer.", &LI);
 | 
						|
  Type *ElTy = LI.getType();
 | 
						|
  Assert(LI.getAlignment() <= Value::MaximumAlignment,
 | 
						|
         "huge alignment values are unsupported", &LI);
 | 
						|
  if (LI.isAtomic()) {
 | 
						|
    Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
 | 
						|
           "Load cannot have Release ordering", &LI);
 | 
						|
    Assert(LI.getAlignment() != 0,
 | 
						|
           "Atomic load must specify explicit alignment", &LI);
 | 
						|
    if (!ElTy->isPointerTy()) {
 | 
						|
      Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
 | 
						|
             &LI, ElTy);
 | 
						|
      unsigned Size = ElTy->getPrimitiveSizeInBits();
 | 
						|
      Assert(Size >= 8 && !(Size & (Size - 1)),
 | 
						|
             "atomic load operand must be power-of-two byte-sized integer", &LI,
 | 
						|
             ElTy);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Assert(LI.getSynchScope() == CrossThread,
 | 
						|
           "Non-atomic load cannot have SynchronizationScope specified", &LI);
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(LI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitStoreInst(StoreInst &SI) {
 | 
						|
  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
 | 
						|
  Assert(PTy, "Store operand must be a pointer.", &SI);
 | 
						|
  Type *ElTy = PTy->getElementType();
 | 
						|
  Assert(ElTy == SI.getOperand(0)->getType(),
 | 
						|
         "Stored value type does not match pointer operand type!", &SI, ElTy);
 | 
						|
  Assert(SI.getAlignment() <= Value::MaximumAlignment,
 | 
						|
         "huge alignment values are unsupported", &SI);
 | 
						|
  if (SI.isAtomic()) {
 | 
						|
    Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
 | 
						|
           "Store cannot have Acquire ordering", &SI);
 | 
						|
    Assert(SI.getAlignment() != 0,
 | 
						|
           "Atomic store must specify explicit alignment", &SI);
 | 
						|
    if (!ElTy->isPointerTy()) {
 | 
						|
      Assert(ElTy->isIntegerTy(),
 | 
						|
             "atomic store operand must have integer type!", &SI, ElTy);
 | 
						|
      unsigned Size = ElTy->getPrimitiveSizeInBits();
 | 
						|
      Assert(Size >= 8 && !(Size & (Size - 1)),
 | 
						|
             "atomic store operand must be power-of-two byte-sized integer",
 | 
						|
             &SI, ElTy);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Assert(SI.getSynchScope() == CrossThread,
 | 
						|
           "Non-atomic store cannot have SynchronizationScope specified", &SI);
 | 
						|
  }
 | 
						|
  visitInstruction(SI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAllocaInst(AllocaInst &AI) {
 | 
						|
  SmallPtrSet<const Type*, 4> Visited;
 | 
						|
  PointerType *PTy = AI.getType();
 | 
						|
  Assert(PTy->getAddressSpace() == 0,
 | 
						|
         "Allocation instruction pointer not in the generic address space!",
 | 
						|
         &AI);
 | 
						|
  Assert(AI.getAllocatedType()->isSized(&Visited),
 | 
						|
         "Cannot allocate unsized type", &AI);
 | 
						|
  Assert(AI.getArraySize()->getType()->isIntegerTy(),
 | 
						|
         "Alloca array size must have integer type", &AI);
 | 
						|
  Assert(AI.getAlignment() <= Value::MaximumAlignment,
 | 
						|
         "huge alignment values are unsupported", &AI);
 | 
						|
 | 
						|
  visitInstruction(AI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
 | 
						|
 | 
						|
  // FIXME: more conditions???
 | 
						|
  Assert(CXI.getSuccessOrdering() != NotAtomic,
 | 
						|
         "cmpxchg instructions must be atomic.", &CXI);
 | 
						|
  Assert(CXI.getFailureOrdering() != NotAtomic,
 | 
						|
         "cmpxchg instructions must be atomic.", &CXI);
 | 
						|
  Assert(CXI.getSuccessOrdering() != Unordered,
 | 
						|
         "cmpxchg instructions cannot be unordered.", &CXI);
 | 
						|
  Assert(CXI.getFailureOrdering() != Unordered,
 | 
						|
         "cmpxchg instructions cannot be unordered.", &CXI);
 | 
						|
  Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
 | 
						|
         "cmpxchg instructions be at least as constrained on success as fail",
 | 
						|
         &CXI);
 | 
						|
  Assert(CXI.getFailureOrdering() != Release &&
 | 
						|
             CXI.getFailureOrdering() != AcquireRelease,
 | 
						|
         "cmpxchg failure ordering cannot include release semantics", &CXI);
 | 
						|
 | 
						|
  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
 | 
						|
  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
 | 
						|
  Type *ElTy = PTy->getElementType();
 | 
						|
  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
 | 
						|
         ElTy);
 | 
						|
  unsigned Size = ElTy->getPrimitiveSizeInBits();
 | 
						|
  Assert(Size >= 8 && !(Size & (Size - 1)),
 | 
						|
         "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
 | 
						|
  Assert(ElTy == CXI.getOperand(1)->getType(),
 | 
						|
         "Expected value type does not match pointer operand type!", &CXI,
 | 
						|
         ElTy);
 | 
						|
  Assert(ElTy == CXI.getOperand(2)->getType(),
 | 
						|
         "Stored value type does not match pointer operand type!", &CXI, ElTy);
 | 
						|
  visitInstruction(CXI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
 | 
						|
  Assert(RMWI.getOrdering() != NotAtomic,
 | 
						|
         "atomicrmw instructions must be atomic.", &RMWI);
 | 
						|
  Assert(RMWI.getOrdering() != Unordered,
 | 
						|
         "atomicrmw instructions cannot be unordered.", &RMWI);
 | 
						|
  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
 | 
						|
  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
 | 
						|
  Type *ElTy = PTy->getElementType();
 | 
						|
  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
 | 
						|
         &RMWI, ElTy);
 | 
						|
  unsigned Size = ElTy->getPrimitiveSizeInBits();
 | 
						|
  Assert(Size >= 8 && !(Size & (Size - 1)),
 | 
						|
         "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
 | 
						|
         ElTy);
 | 
						|
  Assert(ElTy == RMWI.getOperand(1)->getType(),
 | 
						|
         "Argument value type does not match pointer operand type!", &RMWI,
 | 
						|
         ElTy);
 | 
						|
  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
 | 
						|
             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
 | 
						|
         "Invalid binary operation!", &RMWI);
 | 
						|
  visitInstruction(RMWI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFenceInst(FenceInst &FI) {
 | 
						|
  const AtomicOrdering Ordering = FI.getOrdering();
 | 
						|
  Assert(Ordering == Acquire || Ordering == Release ||
 | 
						|
             Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
 | 
						|
         "fence instructions may only have "
 | 
						|
         "acquire, release, acq_rel, or seq_cst ordering.",
 | 
						|
         &FI);
 | 
						|
  visitInstruction(FI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
 | 
						|
  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
 | 
						|
                                          EVI.getIndices()) == EVI.getType(),
 | 
						|
         "Invalid ExtractValueInst operands!", &EVI);
 | 
						|
 | 
						|
  visitInstruction(EVI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
 | 
						|
  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
 | 
						|
                                          IVI.getIndices()) ==
 | 
						|
             IVI.getOperand(1)->getType(),
 | 
						|
         "Invalid InsertValueInst operands!", &IVI);
 | 
						|
 | 
						|
  visitInstruction(IVI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
 | 
						|
  BasicBlock *BB = LPI.getParent();
 | 
						|
 | 
						|
  // The landingpad instruction is ill-formed if it doesn't have any clauses and
 | 
						|
  // isn't a cleanup.
 | 
						|
  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
 | 
						|
         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
 | 
						|
 | 
						|
  // The landingpad instruction defines its parent as a landing pad block. The
 | 
						|
  // landing pad block may be branched to only by the unwind edge of an invoke.
 | 
						|
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | 
						|
    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
 | 
						|
    Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
 | 
						|
           "Block containing LandingPadInst must be jumped to "
 | 
						|
           "only by the unwind edge of an invoke.",
 | 
						|
           &LPI);
 | 
						|
  }
 | 
						|
 | 
						|
  // The landingpad instruction must be the first non-PHI instruction in the
 | 
						|
  // block.
 | 
						|
  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
 | 
						|
         "LandingPadInst not the first non-PHI instruction in the block.",
 | 
						|
         &LPI);
 | 
						|
 | 
						|
  // The personality functions for all landingpad instructions within the same
 | 
						|
  // function should match.
 | 
						|
  if (PersonalityFn)
 | 
						|
    Assert(LPI.getPersonalityFn() == PersonalityFn,
 | 
						|
           "Personality function doesn't match others in function", &LPI);
 | 
						|
  PersonalityFn = LPI.getPersonalityFn();
 | 
						|
 | 
						|
  // All operands must be constants.
 | 
						|
  Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!",
 | 
						|
         &LPI);
 | 
						|
  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
 | 
						|
    Constant *Clause = LPI.getClause(i);
 | 
						|
    if (LPI.isCatch(i)) {
 | 
						|
      Assert(isa<PointerType>(Clause->getType()),
 | 
						|
             "Catch operand does not have pointer type!", &LPI);
 | 
						|
    } else {
 | 
						|
      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
 | 
						|
      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
 | 
						|
             "Filter operand is not an array of constants!", &LPI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(LPI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
 | 
						|
  Instruction *Op = cast<Instruction>(I.getOperand(i));
 | 
						|
  // If the we have an invalid invoke, don't try to compute the dominance.
 | 
						|
  // We already reject it in the invoke specific checks and the dominance
 | 
						|
  // computation doesn't handle multiple edges.
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | 
						|
    if (II->getNormalDest() == II->getUnwindDest())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Use &U = I.getOperandUse(i);
 | 
						|
  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
 | 
						|
         "Instruction does not dominate all uses!", Op, &I);
 | 
						|
}
 | 
						|
 | 
						|
/// verifyInstruction - Verify that an instruction is well formed.
 | 
						|
///
 | 
						|
void Verifier::visitInstruction(Instruction &I) {
 | 
						|
  BasicBlock *BB = I.getParent();
 | 
						|
  Assert(BB, "Instruction not embedded in basic block!", &I);
 | 
						|
 | 
						|
  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | 
						|
    for (User *U : I.users()) {
 | 
						|
      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
 | 
						|
             "Only PHI nodes may reference their own value!", &I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that void typed values don't have names
 | 
						|
  Assert(!I.getType()->isVoidTy() || !I.hasName(),
 | 
						|
         "Instruction has a name, but provides a void value!", &I);
 | 
						|
 | 
						|
  // Check that the return value of the instruction is either void or a legal
 | 
						|
  // value type.
 | 
						|
  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
 | 
						|
         "Instruction returns a non-scalar type!", &I);
 | 
						|
 | 
						|
  // Check that the instruction doesn't produce metadata. Calls are already
 | 
						|
  // checked against the callee type.
 | 
						|
  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
 | 
						|
         "Invalid use of metadata!", &I);
 | 
						|
 | 
						|
  // Check that all uses of the instruction, if they are instructions
 | 
						|
  // themselves, actually have parent basic blocks.  If the use is not an
 | 
						|
  // instruction, it is an error!
 | 
						|
  for (Use &U : I.uses()) {
 | 
						|
    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
 | 
						|
      Assert(Used->getParent() != nullptr,
 | 
						|
             "Instruction referencing"
 | 
						|
             " instruction not embedded in a basic block!",
 | 
						|
             &I, Used);
 | 
						|
    else {
 | 
						|
      CheckFailed("Use of instruction is not an instruction!", U);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
 | 
						|
 | 
						|
    // Check to make sure that only first-class-values are operands to
 | 
						|
    // instructions.
 | 
						|
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
 | 
						|
      Assert(0, "Instruction operands must be first-class values!", &I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | 
						|
      // Check to make sure that the "address of" an intrinsic function is never
 | 
						|
      // taken.
 | 
						|
      Assert(
 | 
						|
          !F->isIntrinsic() ||
 | 
						|
              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
 | 
						|
          "Cannot take the address of an intrinsic!", &I);
 | 
						|
      Assert(
 | 
						|
          !F->isIntrinsic() || isa<CallInst>(I) ||
 | 
						|
              F->getIntrinsicID() == Intrinsic::donothing ||
 | 
						|
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
 | 
						|
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
 | 
						|
              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
 | 
						|
          "Cannot invoke an intrinsinc other than"
 | 
						|
          " donothing or patchpoint",
 | 
						|
          &I);
 | 
						|
      Assert(F->getParent() == M, "Referencing function in another module!",
 | 
						|
             &I);
 | 
						|
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | 
						|
      Assert(OpBB->getParent() == BB->getParent(),
 | 
						|
             "Referring to a basic block in another function!", &I);
 | 
						|
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | 
						|
      Assert(OpArg->getParent() == BB->getParent(),
 | 
						|
             "Referring to an argument in another function!", &I);
 | 
						|
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
 | 
						|
      Assert(GV->getParent() == M, "Referencing global in another module!", &I);
 | 
						|
    } else if (isa<Instruction>(I.getOperand(i))) {
 | 
						|
      verifyDominatesUse(I, i);
 | 
						|
    } else if (isa<InlineAsm>(I.getOperand(i))) {
 | 
						|
      Assert((i + 1 == e && isa<CallInst>(I)) ||
 | 
						|
                 (i + 3 == e && isa<InvokeInst>(I)),
 | 
						|
             "Cannot take the address of an inline asm!", &I);
 | 
						|
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
 | 
						|
      if (CE->getType()->isPtrOrPtrVectorTy()) {
 | 
						|
        // If we have a ConstantExpr pointer, we need to see if it came from an
 | 
						|
        // illegal bitcast (inttoptr <constant int> )
 | 
						|
        SmallVector<const ConstantExpr *, 4> Stack;
 | 
						|
        SmallPtrSet<const ConstantExpr *, 4> Visited;
 | 
						|
        Stack.push_back(CE);
 | 
						|
 | 
						|
        while (!Stack.empty()) {
 | 
						|
          const ConstantExpr *V = Stack.pop_back_val();
 | 
						|
          if (!Visited.insert(V).second)
 | 
						|
            continue;
 | 
						|
 | 
						|
          VerifyConstantExprBitcastType(V);
 | 
						|
 | 
						|
          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
 | 
						|
            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
 | 
						|
              Stack.push_back(Op);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
 | 
						|
    Assert(I.getType()->isFPOrFPVectorTy(),
 | 
						|
           "fpmath requires a floating point result!", &I);
 | 
						|
    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
 | 
						|
    if (ConstantFP *CFP0 =
 | 
						|
            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
 | 
						|
      APFloat Accuracy = CFP0->getValueAPF();
 | 
						|
      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
 | 
						|
             "fpmath accuracy not a positive number!", &I);
 | 
						|
    } else {
 | 
						|
      Assert(false, "invalid fpmath accuracy!", &I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
 | 
						|
    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
 | 
						|
           "Ranges are only for loads, calls and invokes!", &I);
 | 
						|
    visitRangeMetadata(I, Range, I.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (I.getMetadata(LLVMContext::MD_nonnull)) {
 | 
						|
    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
 | 
						|
           &I);
 | 
						|
    Assert(isa<LoadInst>(I),
 | 
						|
           "nonnull applies only to load instructions, use attributes"
 | 
						|
           " for calls or invokes",
 | 
						|
           &I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
 | 
						|
    Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
 | 
						|
    visitMDNode(*N);
 | 
						|
  }
 | 
						|
 | 
						|
  InstsInThisBlock.insert(&I);
 | 
						|
}
 | 
						|
 | 
						|
/// VerifyIntrinsicType - Verify that the specified type (which comes from an
 | 
						|
/// intrinsic argument or return value) matches the type constraints specified
 | 
						|
/// by the .td file (e.g. an "any integer" argument really is an integer).
 | 
						|
///
 | 
						|
/// This return true on error but does not print a message.
 | 
						|
bool Verifier::VerifyIntrinsicType(Type *Ty,
 | 
						|
                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | 
						|
                                   SmallVectorImpl<Type*> &ArgTys) {
 | 
						|
  using namespace Intrinsic;
 | 
						|
 | 
						|
  // If we ran out of descriptors, there are too many arguments.
 | 
						|
  if (Infos.empty()) return true;
 | 
						|
  IITDescriptor D = Infos.front();
 | 
						|
  Infos = Infos.slice(1);
 | 
						|
 | 
						|
  switch (D.Kind) {
 | 
						|
  case IITDescriptor::Void: return !Ty->isVoidTy();
 | 
						|
  case IITDescriptor::VarArg: return true;
 | 
						|
  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
 | 
						|
  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
 | 
						|
  case IITDescriptor::Half: return !Ty->isHalfTy();
 | 
						|
  case IITDescriptor::Float: return !Ty->isFloatTy();
 | 
						|
  case IITDescriptor::Double: return !Ty->isDoubleTy();
 | 
						|
  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
 | 
						|
  case IITDescriptor::Vector: {
 | 
						|
    VectorType *VT = dyn_cast<VectorType>(Ty);
 | 
						|
    return !VT || VT->getNumElements() != D.Vector_Width ||
 | 
						|
           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
 | 
						|
  }
 | 
						|
  case IITDescriptor::Pointer: {
 | 
						|
    PointerType *PT = dyn_cast<PointerType>(Ty);
 | 
						|
    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
 | 
						|
           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
 | 
						|
  }
 | 
						|
 | 
						|
  case IITDescriptor::Struct: {
 | 
						|
    StructType *ST = dyn_cast<StructType>(Ty);
 | 
						|
    if (!ST || ST->getNumElements() != D.Struct_NumElements)
 | 
						|
      return true;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
 | 
						|
      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case IITDescriptor::Argument:
 | 
						|
    // Two cases here - If this is the second occurrence of an argument, verify
 | 
						|
    // that the later instance matches the previous instance.
 | 
						|
    if (D.getArgumentNumber() < ArgTys.size())
 | 
						|
      return Ty != ArgTys[D.getArgumentNumber()];
 | 
						|
 | 
						|
    // Otherwise, if this is the first instance of an argument, record it and
 | 
						|
    // verify the "Any" kind.
 | 
						|
    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
 | 
						|
    ArgTys.push_back(Ty);
 | 
						|
 | 
						|
    switch (D.getArgumentKind()) {
 | 
						|
    case IITDescriptor::AK_Any:        return false; // Success
 | 
						|
    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
 | 
						|
    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
 | 
						|
    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
 | 
						|
    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
 | 
						|
    }
 | 
						|
    llvm_unreachable("all argument kinds not covered");
 | 
						|
 | 
						|
  case IITDescriptor::ExtendArgument: {
 | 
						|
    // This may only be used when referring to a previous vector argument.
 | 
						|
    if (D.getArgumentNumber() >= ArgTys.size())
 | 
						|
      return true;
 | 
						|
 | 
						|
    Type *NewTy = ArgTys[D.getArgumentNumber()];
 | 
						|
    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | 
						|
      NewTy = VectorType::getExtendedElementVectorType(VTy);
 | 
						|
    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | 
						|
      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
 | 
						|
    return Ty != NewTy;
 | 
						|
  }
 | 
						|
  case IITDescriptor::TruncArgument: {
 | 
						|
    // This may only be used when referring to a previous vector argument.
 | 
						|
    if (D.getArgumentNumber() >= ArgTys.size())
 | 
						|
      return true;
 | 
						|
 | 
						|
    Type *NewTy = ArgTys[D.getArgumentNumber()];
 | 
						|
    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | 
						|
      NewTy = VectorType::getTruncatedElementVectorType(VTy);
 | 
						|
    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | 
						|
      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
 | 
						|
    return Ty != NewTy;
 | 
						|
  }
 | 
						|
  case IITDescriptor::HalfVecArgument:
 | 
						|
    // This may only be used when referring to a previous vector argument.
 | 
						|
    return D.getArgumentNumber() >= ArgTys.size() ||
 | 
						|
           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
 | 
						|
           VectorType::getHalfElementsVectorType(
 | 
						|
                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
 | 
						|
  case IITDescriptor::SameVecWidthArgument: {
 | 
						|
    if (D.getArgumentNumber() >= ArgTys.size())
 | 
						|
      return true;
 | 
						|
    VectorType * ReferenceType =
 | 
						|
      dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
 | 
						|
    VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
 | 
						|
    if (!ThisArgType || !ReferenceType || 
 | 
						|
        (ReferenceType->getVectorNumElements() !=
 | 
						|
         ThisArgType->getVectorNumElements()))
 | 
						|
      return true;
 | 
						|
    return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
 | 
						|
                               Infos, ArgTys);
 | 
						|
  }
 | 
						|
  case IITDescriptor::PtrToArgument: {
 | 
						|
    if (D.getArgumentNumber() >= ArgTys.size())
 | 
						|
      return true;
 | 
						|
    Type * ReferenceType = ArgTys[D.getArgumentNumber()];
 | 
						|
    PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
 | 
						|
    return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
 | 
						|
  }
 | 
						|
  case IITDescriptor::VecOfPtrsToElt: {
 | 
						|
    if (D.getArgumentNumber() >= ArgTys.size())
 | 
						|
      return true;
 | 
						|
    VectorType * ReferenceType =
 | 
						|
      dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
 | 
						|
    VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
 | 
						|
    if (!ThisArgVecTy || !ReferenceType || 
 | 
						|
        (ReferenceType->getVectorNumElements() !=
 | 
						|
         ThisArgVecTy->getVectorNumElements()))
 | 
						|
      return true;
 | 
						|
    PointerType *ThisArgEltTy =
 | 
						|
      dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
 | 
						|
    if (!ThisArgEltTy)
 | 
						|
      return true;
 | 
						|
    return ThisArgEltTy->getElementType() !=
 | 
						|
           ReferenceType->getVectorElementType();
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("unhandled");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify if the intrinsic has variable arguments.
 | 
						|
/// This method is intended to be called after all the fixed arguments have been
 | 
						|
/// verified first.
 | 
						|
///
 | 
						|
/// This method returns true on error and does not print an error message.
 | 
						|
bool
 | 
						|
Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
 | 
						|
                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
 | 
						|
  using namespace Intrinsic;
 | 
						|
 | 
						|
  // If there are no descriptors left, then it can't be a vararg.
 | 
						|
  if (Infos.empty())
 | 
						|
    return isVarArg;
 | 
						|
 | 
						|
  // There should be only one descriptor remaining at this point.
 | 
						|
  if (Infos.size() != 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check and verify the descriptor.
 | 
						|
  IITDescriptor D = Infos.front();
 | 
						|
  Infos = Infos.slice(1);
 | 
						|
  if (D.Kind == IITDescriptor::VarArg)
 | 
						|
    return !isVarArg;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | 
						|
///
 | 
						|
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | 
						|
  Function *IF = CI.getCalledFunction();
 | 
						|
  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
 | 
						|
         IF);
 | 
						|
 | 
						|
  // Verify that the intrinsic prototype lines up with what the .td files
 | 
						|
  // describe.
 | 
						|
  FunctionType *IFTy = IF->getFunctionType();
 | 
						|
  bool IsVarArg = IFTy->isVarArg();
 | 
						|
 | 
						|
  SmallVector<Intrinsic::IITDescriptor, 8> Table;
 | 
						|
  getIntrinsicInfoTableEntries(ID, Table);
 | 
						|
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
 | 
						|
 | 
						|
  SmallVector<Type *, 4> ArgTys;
 | 
						|
  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
 | 
						|
         "Intrinsic has incorrect return type!", IF);
 | 
						|
  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
 | 
						|
    Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
 | 
						|
           "Intrinsic has incorrect argument type!", IF);
 | 
						|
 | 
						|
  // Verify if the intrinsic call matches the vararg property.
 | 
						|
  if (IsVarArg)
 | 
						|
    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
 | 
						|
           "Intrinsic was not defined with variable arguments!", IF);
 | 
						|
  else
 | 
						|
    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
 | 
						|
           "Callsite was not defined with variable arguments!", IF);
 | 
						|
 | 
						|
  // All descriptors should be absorbed by now.
 | 
						|
  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
 | 
						|
 | 
						|
  // Now that we have the intrinsic ID and the actual argument types (and we
 | 
						|
  // know they are legal for the intrinsic!) get the intrinsic name through the
 | 
						|
  // usual means.  This allows us to verify the mangling of argument types into
 | 
						|
  // the name.
 | 
						|
  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
 | 
						|
  Assert(ExpectedName == IF->getName(),
 | 
						|
         "Intrinsic name not mangled correctly for type arguments! "
 | 
						|
         "Should be: " +
 | 
						|
             ExpectedName,
 | 
						|
         IF);
 | 
						|
 | 
						|
  // If the intrinsic takes MDNode arguments, verify that they are either global
 | 
						|
  // or are local to *this* function.
 | 
						|
  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
 | 
						|
    if (auto *MD = dyn_cast<MetadataAsValue>(CI.getArgOperand(i)))
 | 
						|
      visitMetadataAsValue(*MD, CI.getParent()->getParent());
 | 
						|
 | 
						|
  switch (ID) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case Intrinsic::ctlz:  // llvm.ctlz
 | 
						|
  case Intrinsic::cttz:  // llvm.cttz
 | 
						|
    Assert(isa<ConstantInt>(CI.getArgOperand(1)),
 | 
						|
           "is_zero_undef argument of bit counting intrinsics must be a "
 | 
						|
           "constant int",
 | 
						|
           &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::dbg_declare: // llvm.dbg.declare
 | 
						|
    Assert(isa<MetadataAsValue>(CI.getArgOperand(0)),
 | 
						|
           "invalid llvm.dbg.declare intrinsic call 1", &CI);
 | 
						|
    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI));
 | 
						|
    break;
 | 
						|
  case Intrinsic::dbg_value: // llvm.dbg.value
 | 
						|
    visitDbgIntrinsic("value", cast<DbgValueInst>(CI));
 | 
						|
    break;
 | 
						|
  case Intrinsic::memcpy:
 | 
						|
  case Intrinsic::memmove:
 | 
						|
  case Intrinsic::memset: {
 | 
						|
    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3));
 | 
						|
    Assert(AlignCI,
 | 
						|
           "alignment argument of memory intrinsics must be a constant int",
 | 
						|
           &CI);
 | 
						|
    const APInt &AlignVal = AlignCI->getValue();
 | 
						|
    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
 | 
						|
           "alignment argument of memory intrinsics must be a power of 2", &CI);
 | 
						|
    Assert(isa<ConstantInt>(CI.getArgOperand(4)),
 | 
						|
           "isvolatile argument of memory intrinsics must be a constant int",
 | 
						|
           &CI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::gcroot:
 | 
						|
  case Intrinsic::gcwrite:
 | 
						|
  case Intrinsic::gcread:
 | 
						|
    if (ID == Intrinsic::gcroot) {
 | 
						|
      AllocaInst *AI =
 | 
						|
        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
 | 
						|
      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
 | 
						|
      Assert(isa<Constant>(CI.getArgOperand(1)),
 | 
						|
             "llvm.gcroot parameter #2 must be a constant.", &CI);
 | 
						|
      if (!AI->getAllocatedType()->isPointerTy()) {
 | 
						|
        Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
 | 
						|
               "llvm.gcroot parameter #1 must either be a pointer alloca, "
 | 
						|
               "or argument #2 must be a non-null constant.",
 | 
						|
               &CI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Assert(CI.getParent()->getParent()->hasGC(),
 | 
						|
           "Enclosing function does not use GC.", &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::init_trampoline:
 | 
						|
    Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
 | 
						|
           "llvm.init_trampoline parameter #2 must resolve to a function.",
 | 
						|
           &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::prefetch:
 | 
						|
    Assert(isa<ConstantInt>(CI.getArgOperand(1)) &&
 | 
						|
               isa<ConstantInt>(CI.getArgOperand(2)) &&
 | 
						|
               cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
 | 
						|
               cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
 | 
						|
           "invalid arguments to llvm.prefetch", &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::stackprotector:
 | 
						|
    Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
 | 
						|
           "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::lifetime_start:
 | 
						|
  case Intrinsic::lifetime_end:
 | 
						|
  case Intrinsic::invariant_start:
 | 
						|
    Assert(isa<ConstantInt>(CI.getArgOperand(0)),
 | 
						|
           "size argument of memory use markers must be a constant integer",
 | 
						|
           &CI);
 | 
						|
    break;
 | 
						|
  case Intrinsic::invariant_end:
 | 
						|
    Assert(isa<ConstantInt>(CI.getArgOperand(1)),
 | 
						|
           "llvm.invariant.end parameter #2 must be a constant integer", &CI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Intrinsic::frameescape: {
 | 
						|
    BasicBlock *BB = CI.getParent();
 | 
						|
    Assert(BB == &BB->getParent()->front(),
 | 
						|
           "llvm.frameescape used outside of entry block", &CI);
 | 
						|
    Assert(!SawFrameEscape,
 | 
						|
           "multiple calls to llvm.frameescape in one function", &CI);
 | 
						|
    for (Value *Arg : CI.arg_operands()) {
 | 
						|
      if (isa<ConstantPointerNull>(Arg))
 | 
						|
        continue; // Null values are allowed as placeholders.
 | 
						|
      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | 
						|
      Assert(AI && AI->isStaticAlloca(),
 | 
						|
             "llvm.frameescape only accepts static allocas", &CI);
 | 
						|
    }
 | 
						|
    FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands();
 | 
						|
    SawFrameEscape = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::framerecover: {
 | 
						|
    Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
 | 
						|
    Function *Fn = dyn_cast<Function>(FnArg);
 | 
						|
    Assert(Fn && !Fn->isDeclaration(),
 | 
						|
           "llvm.framerecover first "
 | 
						|
           "argument must be function defined in this module",
 | 
						|
           &CI);
 | 
						|
    auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2));
 | 
						|
    Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int",
 | 
						|
           &CI);
 | 
						|
    auto &Entry = FrameEscapeInfo[Fn];
 | 
						|
    Entry.second = unsigned(
 | 
						|
        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::experimental_gc_statepoint:
 | 
						|
    Assert(!CI.isInlineAsm(),
 | 
						|
           "gc.statepoint support for inline assembly unimplemented", &CI);
 | 
						|
    Assert(CI.getParent()->getParent()->hasGC(),
 | 
						|
           "Enclosing function does not use GC.", &CI);
 | 
						|
 | 
						|
    VerifyStatepoint(ImmutableCallSite(&CI));
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_gc_result_int:
 | 
						|
  case Intrinsic::experimental_gc_result_float:
 | 
						|
  case Intrinsic::experimental_gc_result_ptr:
 | 
						|
  case Intrinsic::experimental_gc_result: {
 | 
						|
    Assert(CI.getParent()->getParent()->hasGC(),
 | 
						|
           "Enclosing function does not use GC.", &CI);
 | 
						|
    // Are we tied to a statepoint properly?
 | 
						|
    CallSite StatepointCS(CI.getArgOperand(0));
 | 
						|
    const Function *StatepointFn =
 | 
						|
      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
 | 
						|
    Assert(StatepointFn && StatepointFn->isDeclaration() &&
 | 
						|
               StatepointFn->getIntrinsicID() ==
 | 
						|
                   Intrinsic::experimental_gc_statepoint,
 | 
						|
           "gc.result operand #1 must be from a statepoint", &CI,
 | 
						|
           CI.getArgOperand(0));
 | 
						|
 | 
						|
    // Assert that result type matches wrapped callee.
 | 
						|
    const Value *Target = StatepointCS.getArgument(2);
 | 
						|
    const PointerType *PT = cast<PointerType>(Target->getType());
 | 
						|
    const FunctionType *TargetFuncType =
 | 
						|
      cast<FunctionType>(PT->getElementType());
 | 
						|
    Assert(CI.getType() == TargetFuncType->getReturnType(),
 | 
						|
           "gc.result result type does not match wrapped callee", &CI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::experimental_gc_relocate: {
 | 
						|
    Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);
 | 
						|
 | 
						|
    // Check that this relocate is correctly tied to the statepoint
 | 
						|
 | 
						|
    // This is case for relocate on the unwinding path of an invoke statepoint
 | 
						|
    if (ExtractValueInst *ExtractValue =
 | 
						|
          dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) {
 | 
						|
      Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
 | 
						|
             "gc relocate on unwind path incorrectly linked to the statepoint",
 | 
						|
             &CI);
 | 
						|
 | 
						|
      const BasicBlock *InvokeBB =
 | 
						|
        ExtractValue->getParent()->getUniquePredecessor();
 | 
						|
 | 
						|
      // Landingpad relocates should have only one predecessor with invoke
 | 
						|
      // statepoint terminator
 | 
						|
      Assert(InvokeBB, "safepoints should have unique landingpads",
 | 
						|
             ExtractValue->getParent());
 | 
						|
      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
 | 
						|
             InvokeBB);
 | 
						|
      Assert(isStatepoint(InvokeBB->getTerminator()),
 | 
						|
             "gc relocate should be linked to a statepoint", InvokeBB);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // In all other cases relocate should be tied to the statepoint directly.
 | 
						|
      // This covers relocates on a normal return path of invoke statepoint and
 | 
						|
      // relocates of a call statepoint
 | 
						|
      auto Token = CI.getArgOperand(0);
 | 
						|
      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
 | 
						|
             "gc relocate is incorrectly tied to the statepoint", &CI, Token);
 | 
						|
    }
 | 
						|
 | 
						|
    // Verify rest of the relocate arguments
 | 
						|
 | 
						|
    GCRelocateOperands Ops(&CI);
 | 
						|
    ImmutableCallSite StatepointCS(Ops.getStatepoint());
 | 
						|
 | 
						|
    // Both the base and derived must be piped through the safepoint
 | 
						|
    Value* Base = CI.getArgOperand(1);
 | 
						|
    Assert(isa<ConstantInt>(Base),
 | 
						|
           "gc.relocate operand #2 must be integer offset", &CI);
 | 
						|
 | 
						|
    Value* Derived = CI.getArgOperand(2);
 | 
						|
    Assert(isa<ConstantInt>(Derived),
 | 
						|
           "gc.relocate operand #3 must be integer offset", &CI);
 | 
						|
 | 
						|
    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
 | 
						|
    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
 | 
						|
    // Check the bounds
 | 
						|
    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
 | 
						|
           "gc.relocate: statepoint base index out of bounds", &CI);
 | 
						|
    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
 | 
						|
           "gc.relocate: statepoint derived index out of bounds", &CI);
 | 
						|
 | 
						|
    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
 | 
						|
    // section of the statepoint's argument
 | 
						|
    Assert(StatepointCS.arg_size() > 0,
 | 
						|
           "gc.statepoint: insufficient arguments");
 | 
						|
    Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
 | 
						|
           "gc.statement: number of call arguments must be constant integer");
 | 
						|
    const unsigned NumCallArgs =
 | 
						|
        cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
 | 
						|
    Assert(StatepointCS.arg_size() > NumCallArgs + 5,
 | 
						|
           "gc.statepoint: mismatch in number of call arguments");
 | 
						|
    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
 | 
						|
           "gc.statepoint: number of transition arguments must be "
 | 
						|
           "a constant integer");
 | 
						|
    const int NumTransitionArgs =
 | 
						|
        cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
 | 
						|
            ->getZExtValue();
 | 
						|
    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
 | 
						|
    Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
 | 
						|
           "gc.statepoint: number of deoptimization arguments must be "
 | 
						|
           "a constant integer");
 | 
						|
    const int NumDeoptArgs =
 | 
						|
      cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
 | 
						|
    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
 | 
						|
    const int GCParamArgsEnd = StatepointCS.arg_size();
 | 
						|
    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
 | 
						|
           "gc.relocate: statepoint base index doesn't fall within the "
 | 
						|
           "'gc parameters' section of the statepoint call",
 | 
						|
           &CI);
 | 
						|
    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
 | 
						|
           "gc.relocate: statepoint derived index doesn't fall within the "
 | 
						|
           "'gc parameters' section of the statepoint call",
 | 
						|
           &CI);
 | 
						|
 | 
						|
    // gc_relocate does not need to be the same type as the relocated pointer.
 | 
						|
    // It can casted to the correct type later if it's desired
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Carefully grab the subprogram from a local scope.
 | 
						|
///
 | 
						|
/// This carefully grabs the subprogram from a local scope, avoiding the
 | 
						|
/// built-in assertions that would typically fire.
 | 
						|
static DISubprogram *getSubprogram(Metadata *LocalScope) {
 | 
						|
  if (!LocalScope)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
 | 
						|
    return SP;
 | 
						|
 | 
						|
  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
 | 
						|
    return getSubprogram(LB->getRawScope());
 | 
						|
 | 
						|
  // Just return null; broken scope chains are checked elsewhere.
 | 
						|
  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class DbgIntrinsicTy>
 | 
						|
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
 | 
						|
  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
 | 
						|
  Assert(isa<ValueAsMetadata>(MD) ||
 | 
						|
             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
 | 
						|
         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
 | 
						|
  Assert(isa<DILocalVariable>(DII.getRawVariable()),
 | 
						|
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
 | 
						|
         DII.getRawVariable());
 | 
						|
  Assert(isa<DIExpression>(DII.getRawExpression()),
 | 
						|
         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
 | 
						|
         DII.getRawExpression());
 | 
						|
 | 
						|
  // Ignore broken !dbg attachments; they're checked elsewhere.
 | 
						|
  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
 | 
						|
    if (!isa<DILocation>(N))
 | 
						|
      return;
 | 
						|
 | 
						|
  BasicBlock *BB = DII.getParent();
 | 
						|
  Function *F = BB ? BB->getParent() : nullptr;
 | 
						|
 | 
						|
  // The scopes for variables and !dbg attachments must agree.
 | 
						|
  DILocalVariable *Var = DII.getVariable();
 | 
						|
  DILocation *Loc = DII.getDebugLoc();
 | 
						|
  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
 | 
						|
         &DII, BB, F);
 | 
						|
 | 
						|
  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
 | 
						|
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
 | 
						|
  if (!VarSP || !LocSP)
 | 
						|
    return; // Broken scope chains are checked elsewhere.
 | 
						|
 | 
						|
  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
 | 
						|
                             " variable and !dbg attachment",
 | 
						|
         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
 | 
						|
         Loc->getScope()->getSubprogram());
 | 
						|
}
 | 
						|
 | 
						|
template <class MapTy>
 | 
						|
static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
 | 
						|
  // Be careful of broken types (checked elsewhere).
 | 
						|
  const Metadata *RawType = V.getRawType();
 | 
						|
  while (RawType) {
 | 
						|
    // Try to get the size directly.
 | 
						|
    if (auto *T = dyn_cast<DIType>(RawType))
 | 
						|
      if (uint64_t Size = T->getSizeInBits())
 | 
						|
        return Size;
 | 
						|
 | 
						|
    if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
 | 
						|
      // Look at the base type.
 | 
						|
      RawType = DT->getRawBaseType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *S = dyn_cast<MDString>(RawType)) {
 | 
						|
      // Don't error on missing types (checked elsewhere).
 | 
						|
      RawType = Map.lookup(S);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Missing type or size.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fail gracefully.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
template <class MapTy>
 | 
						|
void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
 | 
						|
                                        const MapTy &TypeRefs) {
 | 
						|
  DILocalVariable *V;
 | 
						|
  DIExpression *E;
 | 
						|
  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
 | 
						|
    V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
 | 
						|
    E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
 | 
						|
  } else {
 | 
						|
    auto *DDI = cast<DbgDeclareInst>(&I);
 | 
						|
    V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
 | 
						|
    E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know whether this intrinsic verified correctly.
 | 
						|
  if (!V || !E || !E->isValid())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Nothing to do if this isn't a bit piece expression.
 | 
						|
  if (!E->isBitPiece())
 | 
						|
    return;
 | 
						|
 | 
						|
  // The frontend helps out GDB by emitting the members of local anonymous
 | 
						|
  // unions as artificial local variables with shared storage. When SROA splits
 | 
						|
  // the storage for artificial local variables that are smaller than the entire
 | 
						|
  // union, the overhang piece will be outside of the allotted space for the
 | 
						|
  // variable and this check fails.
 | 
						|
  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
 | 
						|
  if (V->isArtificial())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If there's no size, the type is broken, but that should be checked
 | 
						|
  // elsewhere.
 | 
						|
  uint64_t VarSize = getVariableSize(*V, TypeRefs);
 | 
						|
  if (!VarSize)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned PieceSize = E->getBitPieceSize();
 | 
						|
  unsigned PieceOffset = E->getBitPieceOffset();
 | 
						|
  Assert(PieceSize + PieceOffset <= VarSize,
 | 
						|
         "piece is larger than or outside of variable", &I, V, E);
 | 
						|
  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
 | 
						|
  // This is in its own function so we get an error for each bad type ref (not
 | 
						|
  // just the first).
 | 
						|
  Assert(false, "unresolved type ref", S, N);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::verifyTypeRefs() {
 | 
						|
  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
 | 
						|
  if (!CUs)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Visit all the compile units again to map the type references.
 | 
						|
  SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
 | 
						|
  for (auto *CU : CUs->operands())
 | 
						|
    if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
 | 
						|
      for (DIType *Op : Ts)
 | 
						|
        if (auto *T = dyn_cast<DICompositeType>(Op))
 | 
						|
          if (auto *S = T->getRawIdentifier()) {
 | 
						|
            UnresolvedTypeRefs.erase(S);
 | 
						|
            TypeRefs.insert(std::make_pair(S, T));
 | 
						|
          }
 | 
						|
 | 
						|
  // Verify debug info intrinsic bit piece expressions.  This needs a second
 | 
						|
  // pass through the intructions, since we haven't built TypeRefs yet when
 | 
						|
  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
 | 
						|
  // later/now would queue up some that could be later deleted.
 | 
						|
  for (const Function &F : *M)
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
 | 
						|
          verifyBitPieceExpression(*DII, TypeRefs);
 | 
						|
 | 
						|
  // Return early if all typerefs were resolved.
 | 
						|
  if (UnresolvedTypeRefs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Sort the unresolved references by name so the output is deterministic.
 | 
						|
  typedef std::pair<const MDString *, const MDNode *> TypeRef;
 | 
						|
  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
 | 
						|
                                      UnresolvedTypeRefs.end());
 | 
						|
  std::sort(Unresolved.begin(), Unresolved.end(),
 | 
						|
            [](const TypeRef &LHS, const TypeRef &RHS) {
 | 
						|
    return LHS.first->getString() < RHS.first->getString();
 | 
						|
  });
 | 
						|
 | 
						|
  // Visit the unresolved refs (printing out the errors).
 | 
						|
  for (const TypeRef &TR : Unresolved)
 | 
						|
    visitUnresolvedTypeRef(TR.first, TR.second);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Implement the public interfaces to this file...
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
 | 
						|
  Function &F = const_cast<Function &>(f);
 | 
						|
  assert(!F.isDeclaration() && "Cannot verify external functions");
 | 
						|
 | 
						|
  raw_null_ostream NullStr;
 | 
						|
  Verifier V(OS ? *OS : NullStr);
 | 
						|
 | 
						|
  // Note that this function's return value is inverted from what you would
 | 
						|
  // expect of a function called "verify".
 | 
						|
  return !V.verify(F);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
 | 
						|
  raw_null_ostream NullStr;
 | 
						|
  Verifier V(OS ? *OS : NullStr);
 | 
						|
 | 
						|
  bool Broken = false;
 | 
						|
  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    if (!I->isDeclaration() && !I->isMaterializable())
 | 
						|
      Broken |= !V.verify(*I);
 | 
						|
 | 
						|
  // Note that this function's return value is inverted from what you would
 | 
						|
  // expect of a function called "verify".
 | 
						|
  return !V.verify(M) || Broken;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct VerifierLegacyPass : public FunctionPass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  Verifier V;
 | 
						|
  bool FatalErrors;
 | 
						|
 | 
						|
  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
 | 
						|
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
  explicit VerifierLegacyPass(bool FatalErrors)
 | 
						|
      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
 | 
						|
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (!V.verify(F) && FatalErrors)
 | 
						|
      report_fatal_error("Broken function found, compilation aborted!");
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool doFinalization(Module &M) override {
 | 
						|
    if (!V.verify(M) && FatalErrors)
 | 
						|
      report_fatal_error("Broken module found, compilation aborted!");
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesAll();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char VerifierLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
 | 
						|
  return new VerifierLegacyPass(FatalErrors);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses VerifierPass::run(Module &M) {
 | 
						|
  if (verifyModule(M, &dbgs()) && FatalErrors)
 | 
						|
    report_fatal_error("Broken module found, compilation aborted!");
 | 
						|
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses VerifierPass::run(Function &F) {
 | 
						|
  if (verifyFunction(F, &dbgs()) && FatalErrors)
 | 
						|
    report_fatal_error("Broken function found, compilation aborted!");
 | 
						|
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |