mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25315 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			327 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LowerGC.cpp - Provide GC support for targets that don't -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements lowering for the llvm.gc* intrinsics for targets that do
 | |
| // not natively support them (which includes the C backend).  Note that the code
 | |
| // generated is not as efficient as it would be for targets that natively
 | |
| // support the GC intrinsics, but it is useful for getting new targets
 | |
| // up-and-running quickly.
 | |
| //
 | |
| // This pass implements the code transformation described in this paper:
 | |
| //   "Accurate Garbage Collection in an Uncooperative Environment"
 | |
| //   Fergus Henderson, ISMM, 2002
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "lowergc"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   class LowerGC : public FunctionPass {
 | |
|     /// GCRootInt, GCReadInt, GCWriteInt - The function prototypes for the
 | |
|     /// llvm.gcread/llvm.gcwrite/llvm.gcroot intrinsics.
 | |
|     Function *GCRootInt, *GCReadInt, *GCWriteInt;
 | |
| 
 | |
|     /// GCRead/GCWrite - These are the functions provided by the garbage
 | |
|     /// collector for read/write barriers.
 | |
|     Function *GCRead, *GCWrite;
 | |
| 
 | |
|     /// RootChain - This is the global linked-list that contains the chain of GC
 | |
|     /// roots.
 | |
|     GlobalVariable *RootChain;
 | |
| 
 | |
|     /// MainRootRecordType - This is the type for a function root entry if it
 | |
|     /// had zero roots.
 | |
|     const Type *MainRootRecordType;
 | |
|   public:
 | |
|     LowerGC() : GCRootInt(0), GCReadInt(0), GCWriteInt(0),
 | |
|                 GCRead(0), GCWrite(0), RootChain(0), MainRootRecordType(0) {}
 | |
|     virtual bool doInitialization(Module &M);
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|   private:
 | |
|     const StructType *getRootRecordType(unsigned NumRoots);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<LowerGC>
 | |
|   X("lowergc", "Lower GC intrinsics, for GCless code generators");
 | |
| }
 | |
| 
 | |
| /// createLowerGCPass - This function returns an instance of the "lowergc"
 | |
| /// pass, which lowers garbage collection intrinsics to normal LLVM code.
 | |
| FunctionPass *llvm::createLowerGCPass() {
 | |
|   return new LowerGC();
 | |
| }
 | |
| 
 | |
| /// getRootRecordType - This function creates and returns the type for a root
 | |
| /// record containing 'NumRoots' roots.
 | |
| const StructType *LowerGC::getRootRecordType(unsigned NumRoots) {
 | |
|   // Build a struct that is a type used for meta-data/root pairs.
 | |
|   std::vector<const Type *> ST;
 | |
|   ST.push_back(GCRootInt->getFunctionType()->getParamType(0));
 | |
|   ST.push_back(GCRootInt->getFunctionType()->getParamType(1));
 | |
|   StructType *PairTy = StructType::get(ST);
 | |
| 
 | |
|   // Build the array of pairs.
 | |
|   ArrayType *PairArrTy = ArrayType::get(PairTy, NumRoots);
 | |
| 
 | |
|   // Now build the recursive list type.
 | |
|   PATypeHolder RootListH =
 | |
|     MainRootRecordType ? (Type*)MainRootRecordType : (Type*)OpaqueType::get();
 | |
|   ST.clear();
 | |
|   ST.push_back(PointerType::get(RootListH));         // Prev pointer
 | |
|   ST.push_back(Type::UIntTy);                        // NumElements in array
 | |
|   ST.push_back(PairArrTy);                           // The pairs
 | |
|   StructType *RootList = StructType::get(ST);
 | |
|   if (MainRootRecordType)
 | |
|     return RootList;
 | |
| 
 | |
|   assert(NumRoots == 0 && "The main struct type should have zero entries!");
 | |
|   cast<OpaqueType>((Type*)RootListH.get())->refineAbstractTypeTo(RootList);
 | |
|   MainRootRecordType = RootListH;
 | |
|   return cast<StructType>(RootListH.get());
 | |
| }
 | |
| 
 | |
| /// doInitialization - If this module uses the GC intrinsics, find them now.  If
 | |
| /// not, this pass does not do anything.
 | |
| bool LowerGC::doInitialization(Module &M) {
 | |
|   GCRootInt  = M.getNamedFunction("llvm.gcroot");
 | |
|   GCReadInt  = M.getNamedFunction("llvm.gcread");
 | |
|   GCWriteInt = M.getNamedFunction("llvm.gcwrite");
 | |
|   if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
 | |
| 
 | |
|   PointerType *VoidPtr = PointerType::get(Type::SByteTy);
 | |
|   PointerType *VoidPtrPtr = PointerType::get(VoidPtr);
 | |
| 
 | |
|   // If the program is using read/write barriers, find the implementations of
 | |
|   // them from the GC runtime library.
 | |
|   if (GCReadInt)        // Make:  sbyte* %llvm_gc_read(sbyte**)
 | |
|     GCRead = M.getOrInsertFunction("llvm_gc_read", VoidPtr, VoidPtr, VoidPtrPtr,
 | |
|                                    (Type *)0);
 | |
|   if (GCWriteInt)       // Make:  void %llvm_gc_write(sbyte*, sbyte**)
 | |
|     GCWrite = M.getOrInsertFunction("llvm_gc_write", Type::VoidTy,
 | |
|                                     VoidPtr, VoidPtr, VoidPtrPtr, (Type *)0);
 | |
| 
 | |
|   // If the program has GC roots, get or create the global root list.
 | |
|   if (GCRootInt) {
 | |
|     const StructType *RootListTy = getRootRecordType(0);
 | |
|     const Type *PRLTy = PointerType::get(RootListTy);
 | |
|     M.addTypeName("llvm_gc_root_ty", RootListTy);
 | |
| 
 | |
|     // Get the root chain if it already exists.
 | |
|     RootChain = M.getGlobalVariable("llvm_gc_root_chain", PRLTy);
 | |
|     if (RootChain == 0) {
 | |
|       // If the root chain does not exist, insert a new one with linkonce
 | |
|       // linkage!
 | |
|       RootChain = new GlobalVariable(PRLTy, false,
 | |
|                                      GlobalValue::LinkOnceLinkage,
 | |
|                                      Constant::getNullValue(PRLTy),
 | |
|                                      "llvm_gc_root_chain", &M);
 | |
|     } else if (RootChain->hasExternalLinkage() && RootChain->isExternal()) {
 | |
|       RootChain->setInitializer(Constant::getNullValue(PRLTy));
 | |
|       RootChain->setLinkage(GlobalValue::LinkOnceLinkage);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Coerce - If the specified operand number of the specified instruction does
 | |
| /// not have the specified type, insert a cast.
 | |
| static void Coerce(Instruction *I, unsigned OpNum, Type *Ty) {
 | |
|   if (I->getOperand(OpNum)->getType() != Ty) {
 | |
|     if (Constant *C = dyn_cast<Constant>(I->getOperand(OpNum)))
 | |
|       I->setOperand(OpNum, ConstantExpr::getCast(C, Ty));
 | |
|     else {
 | |
|       CastInst *CI = new CastInst(I->getOperand(OpNum), Ty, "", I);
 | |
|       I->setOperand(OpNum, CI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// runOnFunction - If the program is using GC intrinsics, replace any
 | |
| /// read/write intrinsics with the appropriate read/write barrier calls, then
 | |
| /// inline them.  Finally, build the data structures for
 | |
| bool LowerGC::runOnFunction(Function &F) {
 | |
|   // Quick exit for programs that are not using GC mechanisms.
 | |
|   if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
 | |
| 
 | |
|   PointerType *VoidPtr    = PointerType::get(Type::SByteTy);
 | |
|   PointerType *VoidPtrPtr = PointerType::get(VoidPtr);
 | |
| 
 | |
|   // If there are read/write barriers in the program, perform a quick pass over
 | |
|   // the function eliminating them.  While we are at it, remember where we see
 | |
|   // calls to llvm.gcroot.
 | |
|   std::vector<CallInst*> GCRoots;
 | |
|   std::vector<CallInst*> NormalCalls;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(II++)) {
 | |
|         if (!CI->getCalledFunction() ||
 | |
|             !CI->getCalledFunction()->getIntrinsicID())
 | |
|           NormalCalls.push_back(CI);   // Remember all normal function calls.
 | |
| 
 | |
|         if (Function *F = CI->getCalledFunction())
 | |
|           if (F == GCRootInt)
 | |
|             GCRoots.push_back(CI);
 | |
|           else if (F == GCReadInt || F == GCWriteInt) {
 | |
|             if (F == GCWriteInt) {
 | |
|               // Change a llvm.gcwrite call to call llvm_gc_write instead.
 | |
|               CI->setOperand(0, GCWrite);
 | |
|               // Insert casts of the operands as needed.
 | |
|               Coerce(CI, 1, VoidPtr);
 | |
|               Coerce(CI, 2, VoidPtr);
 | |
|               Coerce(CI, 3, VoidPtrPtr);
 | |
|             } else {
 | |
|               Coerce(CI, 1, VoidPtr);
 | |
|               Coerce(CI, 2, VoidPtrPtr);
 | |
|               if (CI->getType() == VoidPtr) {
 | |
|                 CI->setOperand(0, GCRead);
 | |
|               } else {
 | |
|                 // Create a whole new call to replace the old one.
 | |
|                 CallInst *NC = new CallInst(GCRead, CI->getOperand(1),
 | |
|                                             CI->getOperand(2),
 | |
|                                             CI->getName(), CI);
 | |
|                 Value *NV = new CastInst(NC, CI->getType(), "", CI);
 | |
|                 CI->replaceAllUsesWith(NV);
 | |
|                 BB->getInstList().erase(CI);
 | |
|                 CI = NC;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             MadeChange = true;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|   // If there are no GC roots in this function, then there is no need to create
 | |
|   // a GC list record for it.
 | |
|   if (GCRoots.empty()) return MadeChange;
 | |
| 
 | |
|   // Okay, there are GC roots in this function.  On entry to the function, add a
 | |
|   // record to the llvm_gc_root_chain, and remove it on exit.
 | |
| 
 | |
|   // Create the alloca, and zero it out.
 | |
|   const StructType *RootListTy = getRootRecordType(GCRoots.size());
 | |
|   AllocaInst *AI = new AllocaInst(RootListTy, 0, "gcroots", F.begin()->begin());
 | |
| 
 | |
|   // Insert the memset call after all of the allocas in the function.
 | |
|   BasicBlock::iterator IP = AI;
 | |
|   while (isa<AllocaInst>(IP)) ++IP;
 | |
| 
 | |
|   Constant *Zero = ConstantUInt::get(Type::UIntTy, 0);
 | |
|   Constant *One  = ConstantUInt::get(Type::UIntTy, 1);
 | |
| 
 | |
|   // Get a pointer to the prev pointer.
 | |
|   std::vector<Value*> Par;
 | |
|   Par.push_back(Zero);
 | |
|   Par.push_back(Zero);
 | |
|   Value *PrevPtrPtr = new GetElementPtrInst(AI, Par, "prevptrptr", IP);
 | |
| 
 | |
|   // Load the previous pointer.
 | |
|   Value *PrevPtr = new LoadInst(RootChain, "prevptr", IP);
 | |
|   // Store the previous pointer into the prevptrptr
 | |
|   new StoreInst(PrevPtr, PrevPtrPtr, IP);
 | |
| 
 | |
|   // Set the number of elements in this record.
 | |
|   Par[1] = ConstantUInt::get(Type::UIntTy, 1);
 | |
|   Value *NumEltsPtr = new GetElementPtrInst(AI, Par, "numeltsptr", IP);
 | |
|   new StoreInst(ConstantUInt::get(Type::UIntTy, GCRoots.size()), NumEltsPtr,IP);
 | |
| 
 | |
|   Par[1] = ConstantUInt::get(Type::UIntTy, 2);
 | |
|   Par.resize(4);
 | |
| 
 | |
|   const PointerType *PtrLocTy =
 | |
|     cast<PointerType>(GCRootInt->getFunctionType()->getParamType(0));
 | |
|   Constant *Null = ConstantPointerNull::get(PtrLocTy);
 | |
| 
 | |
|   // Initialize all of the gcroot records now, and eliminate them as we go.
 | |
|   for (unsigned i = 0, e = GCRoots.size(); i != e; ++i) {
 | |
|     // Initialize the meta-data pointer.
 | |
|     Par[2] = ConstantUInt::get(Type::UIntTy, i);
 | |
|     Par[3] = One;
 | |
|     Value *MetaDataPtr = new GetElementPtrInst(AI, Par, "MetaDataPtr", IP);
 | |
|     assert(isa<Constant>(GCRoots[i]->getOperand(2)) && "Must be a constant");
 | |
|     new StoreInst(GCRoots[i]->getOperand(2), MetaDataPtr, IP);
 | |
| 
 | |
|     // Initialize the root pointer to null on entry to the function.
 | |
|     Par[3] = Zero;
 | |
|     Value *RootPtrPtr = new GetElementPtrInst(AI, Par, "RootEntPtr", IP);
 | |
|     new StoreInst(Null, RootPtrPtr, IP);
 | |
| 
 | |
|     // Each occurrance of the llvm.gcroot intrinsic now turns into an
 | |
|     // initialization of the slot with the address and a zeroing out of the
 | |
|     // address specified.
 | |
|     new StoreInst(Constant::getNullValue(PtrLocTy->getElementType()),
 | |
|                   GCRoots[i]->getOperand(1), GCRoots[i]);
 | |
|     new StoreInst(GCRoots[i]->getOperand(1), RootPtrPtr, GCRoots[i]);
 | |
|     GCRoots[i]->getParent()->getInstList().erase(GCRoots[i]);
 | |
|   }
 | |
| 
 | |
|   // Now that the record is all initialized, store the pointer into the global
 | |
|   // pointer.
 | |
|   Value *C = new CastInst(AI, PointerType::get(MainRootRecordType), "", IP);
 | |
|   new StoreInst(C, RootChain, IP);
 | |
| 
 | |
|   // On exit from the function we have to remove the entry from the GC root
 | |
|   // chain.  Doing this is straight-forward for return and unwind instructions:
 | |
|   // just insert the appropriate copy.
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     if (isa<UnwindInst>(BB->getTerminator()) ||
 | |
|         isa<ReturnInst>(BB->getTerminator())) {
 | |
|       // We could reuse the PrevPtr loaded on entry to the function, but this
 | |
|       // would make the value live for the whole function, which is probably a
 | |
|       // bad idea.  Just reload the value out of our stack entry.
 | |
|       PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", BB->getTerminator());
 | |
|       new StoreInst(PrevPtr, RootChain, BB->getTerminator());
 | |
|     }
 | |
| 
 | |
|   // If an exception is thrown from a callee we have to make sure to
 | |
|   // unconditionally take the record off the stack.  For this reason, we turn
 | |
|   // all call instructions into invoke whose cleanup pops the entry off the
 | |
|   // stack.  We only insert one cleanup block, which is shared by all invokes.
 | |
|   if (!NormalCalls.empty()) {
 | |
|     // Create the shared cleanup block.
 | |
|     BasicBlock *Cleanup = new BasicBlock("gc_cleanup", &F);
 | |
|     UnwindInst *UI = new UnwindInst(Cleanup);
 | |
|     PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", UI);
 | |
|     new StoreInst(PrevPtr, RootChain, UI);
 | |
| 
 | |
|     // Loop over all of the function calls, turning them into invokes.
 | |
|     while (!NormalCalls.empty()) {
 | |
|       CallInst *CI = NormalCalls.back();
 | |
|       BasicBlock *CBB = CI->getParent();
 | |
|       NormalCalls.pop_back();
 | |
| 
 | |
|       // Split the basic block containing the function call.
 | |
|       BasicBlock *NewBB = CBB->splitBasicBlock(CI, CBB->getName()+".cont");
 | |
| 
 | |
|       // Remove the unconditional branch inserted at the end of the CBB.
 | |
|       CBB->getInstList().pop_back();
 | |
|       NewBB->getInstList().remove(CI);
 | |
| 
 | |
|       // Create a new invoke instruction.
 | |
|       Value *II = new InvokeInst(CI->getCalledValue(), NewBB, Cleanup,
 | |
|                                  std::vector<Value*>(CI->op_begin()+1,
 | |
|                                                      CI->op_end()),
 | |
|                                  CI->getName(), CBB);
 | |
|       CI->replaceAllUsesWith(II);
 | |
|       delete CI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |