mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27912 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation implements the well known scalar replacement of
 | |
| // aggregates transformation.  This xform breaks up alloca instructions of
 | |
| // aggregate type (structure or array) into individual alloca instructions for
 | |
| // each member (if possible).  Then, if possible, it transforms the individual
 | |
| // alloca instructions into nice clean scalar SSA form.
 | |
| //
 | |
| // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | |
| // often interact, especially for C++ programs.  As such, iterating between
 | |
| // SRoA, then Mem2Reg until we run out of things to promote works well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
 | |
|   Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
 | |
|   Statistic<> NumConverted("scalarrepl",
 | |
|                            "Number of aggregates converted to scalar");
 | |
| 
 | |
|   struct SROA : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     bool performScalarRepl(Function &F);
 | |
|     bool performPromotion(Function &F);
 | |
| 
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     int isSafeElementUse(Value *Ptr);
 | |
|     int isSafeUseOfAllocation(Instruction *User);
 | |
|     int isSafeAllocaToScalarRepl(AllocationInst *AI);
 | |
|     void CanonicalizeAllocaUsers(AllocationInst *AI);
 | |
|     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
 | |
|     
 | |
|     const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
 | |
|     void ConvertToScalar(AllocationInst *AI, const Type *Ty);
 | |
|     void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
 | |
| }
 | |
| 
 | |
| // Public interface to the ScalarReplAggregates pass
 | |
| FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
 | |
| 
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   bool Changed = performPromotion(F);
 | |
|   while (1) {
 | |
|     bool LocalChange = performScalarRepl(F);
 | |
|     if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | |
|     Changed = true;
 | |
|     LocalChange = performPromotion(F);
 | |
|     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::performPromotion(Function &F) {
 | |
|   std::vector<AllocaInst*> Allocas;
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   DominatorTree     &DT = getAnalysis<DominatorTree>();
 | |
|   DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | |
| 
 | |
|   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   while (1) {
 | |
|     Allocas.clear();
 | |
| 
 | |
|     // Find allocas that are safe to promote, by looking at all instructions in
 | |
|     // the entry node
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | |
|         if (isAllocaPromotable(AI, TD))
 | |
|           Allocas.push_back(AI);
 | |
| 
 | |
|     if (Allocas.empty()) break;
 | |
| 
 | |
|     PromoteMemToReg(Allocas, DT, DF, TD);
 | |
|     NumPromoted += Allocas.size();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | |
| // which runs on all of the malloc/alloca instructions in the function, removing
 | |
| // them if they are only used by getelementptr instructions.
 | |
| //
 | |
| bool SROA::performScalarRepl(Function &F) {
 | |
|   std::vector<AllocationInst*> WorkList;
 | |
| 
 | |
|   // Scan the entry basic block, adding any alloca's and mallocs to the worklist
 | |
|   BasicBlock &BB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | |
|     if (AllocationInst *A = dyn_cast<AllocationInst>(I))
 | |
|       WorkList.push_back(A);
 | |
| 
 | |
|   // Process the worklist
 | |
|   bool Changed = false;
 | |
|   while (!WorkList.empty()) {
 | |
|     AllocationInst *AI = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     
 | |
|     // If we can turn this aggregate value (potentially with casts) into a
 | |
|     // simple scalar value that can be mem2reg'd into a register value.
 | |
|     bool IsNotTrivial = false;
 | |
|     if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
 | |
|       if (IsNotTrivial && ActualType != Type::VoidTy) {
 | |
|         ConvertToScalar(AI, ActualType);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // We cannot transform the allocation instruction if it is an array
 | |
|     // allocation (allocations OF arrays are ok though), and an allocation of a
 | |
|     // scalar value cannot be decomposed at all.
 | |
|     //
 | |
|     if (AI->isArrayAllocation() ||
 | |
|         (!isa<StructType>(AI->getAllocatedType()) &&
 | |
|          !isa<ArrayType>(AI->getAllocatedType()))) continue;
 | |
| 
 | |
|     // Check that all of the users of the allocation are capable of being
 | |
|     // transformed.
 | |
|     switch (isSafeAllocaToScalarRepl(AI)) {
 | |
|     default: assert(0 && "Unexpected value!");
 | |
|     case 0:  // Not safe to scalar replace.
 | |
|       continue;
 | |
|     case 1:  // Safe, but requires cleanup/canonicalizations first
 | |
|       CanonicalizeAllocaUsers(AI);
 | |
|     case 3:  // Safe to scalar replace.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "Found inst to xform: " << *AI);
 | |
|     Changed = true;
 | |
| 
 | |
|     std::vector<AllocaInst*> ElementAllocas;
 | |
|     if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|       ElementAllocas.reserve(ST->getNumContainedTypes());
 | |
|       for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | |
|         AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
 | |
|                                         AI->getAlignment(),
 | |
|                                         AI->getName() + "." + utostr(i), AI);
 | |
|         ElementAllocas.push_back(NA);
 | |
|         WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|       }
 | |
|     } else {
 | |
|       const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | |
|       ElementAllocas.reserve(AT->getNumElements());
 | |
|       const Type *ElTy = AT->getElementType();
 | |
|       for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|         AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | |
|                                         AI->getName() + "." + utostr(i), AI);
 | |
|         ElementAllocas.push_back(NA);
 | |
|         WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have created the alloca instructions that we want to use,
 | |
|     // expand the getelementptr instructions to use them.
 | |
|     //
 | |
|     while (!AI->use_empty()) {
 | |
|       Instruction *User = cast<Instruction>(AI->use_back());
 | |
|       GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|       // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
 | |
|       unsigned Idx =
 | |
|          (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
 | |
| 
 | |
|       assert(Idx < ElementAllocas.size() && "Index out of range?");
 | |
|       AllocaInst *AllocaToUse = ElementAllocas[Idx];
 | |
| 
 | |
|       Value *RepValue;
 | |
|       if (GEPI->getNumOperands() == 3) {
 | |
|         // Do not insert a new getelementptr instruction with zero indices, only
 | |
|         // to have it optimized out later.
 | |
|         RepValue = AllocaToUse;
 | |
|       } else {
 | |
|         // We are indexing deeply into the structure, so we still need a
 | |
|         // getelement ptr instruction to finish the indexing.  This may be
 | |
|         // expanded itself once the worklist is rerun.
 | |
|         //
 | |
|         std::string OldName = GEPI->getName();  // Steal the old name.
 | |
|         std::vector<Value*> NewArgs;
 | |
|         NewArgs.push_back(Constant::getNullValue(Type::IntTy));
 | |
|         NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
 | |
|         GEPI->setName("");
 | |
|         RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
 | |
|       }
 | |
| 
 | |
|       // Move all of the users over to the new GEP.
 | |
|       GEPI->replaceAllUsesWith(RepValue);
 | |
|       // Delete the old GEP
 | |
|       GEPI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Finally, delete the Alloca instruction
 | |
|     AI->getParent()->getInstList().erase(AI);
 | |
|     NumReplaced++;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeElementUse - Check to see if this use is an allowed use for a
 | |
| /// getelementptr instruction of an array aggregate allocation.
 | |
| ///
 | |
| int SROA::isSafeElementUse(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I) {
 | |
|     Instruction *User = cast<Instruction>(*I);
 | |
|     switch (User->getOpcode()) {
 | |
|     case Instruction::Load:  break;
 | |
|     case Instruction::Store:
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (User->getOperand(0) == Ptr) return 0;
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
 | |
|       if (GEP->getNumOperands() > 1) {
 | |
|         if (!isa<Constant>(GEP->getOperand(1)) ||
 | |
|             !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|           return 0;  // Using pointer arithmetic to navigate the array...
 | |
|       }
 | |
|       if (!isSafeElementUse(GEP)) return 0;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 3;  // All users look ok :)
 | |
| }
 | |
| 
 | |
| /// AllUsersAreLoads - Return true if all users of this value are loads.
 | |
| static bool AllUsersAreLoads(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I)
 | |
|     if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
 | |
| /// aggregate allocation.
 | |
| ///
 | |
| int SROA::isSafeUseOfAllocation(Instruction *User) {
 | |
|   if (!isa<GetElementPtrInst>(User)) return 0;
 | |
| 
 | |
|   GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|   gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | |
| 
 | |
|   // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
 | |
|   if (I == E ||
 | |
|       I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
 | |
|     return 0;
 | |
| 
 | |
|   ++I;
 | |
|   if (I == E) return 0;  // ran out of GEP indices??
 | |
| 
 | |
|   // If this is a use of an array allocation, do a bit more checking for sanity.
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|     uint64_t NumElements = AT->getNumElements();
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | |
|       // Check to make sure that index falls within the array.  If not,
 | |
|       // something funny is going on, so we won't do the optimization.
 | |
|       //
 | |
|       if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
 | |
|         return 0;
 | |
| 
 | |
|       // We cannot scalar repl this level of the array unless any array
 | |
|       // sub-indices are in-range constants.  In particular, consider:
 | |
|       // A[0][i].  We cannot know that the user isn't doing invalid things like
 | |
|       // allowing i to index an out-of-range subscript that accesses A[1].
 | |
|       //
 | |
|       // Scalar replacing *just* the outer index of the array is probably not
 | |
|       // going to be a win anyway, so just give up.
 | |
|       for (++I; I != E && isa<ArrayType>(*I); ++I) {
 | |
|         const ArrayType *SubArrayTy = cast<ArrayType>(*I);
 | |
|         uint64_t NumElements = SubArrayTy->getNumElements();
 | |
|         if (!isa<ConstantInt>(I.getOperand())) return 0;
 | |
|         if (cast<ConstantInt>(I.getOperand())->getRawValue() >= NumElements)
 | |
|           return 0;
 | |
|       }
 | |
|       
 | |
|     } else {
 | |
|       // If this is an array index and the index is not constant, we cannot
 | |
|       // promote... that is unless the array has exactly one or two elements in
 | |
|       // it, in which case we CAN promote it, but we have to canonicalize this
 | |
|       // out if this is the only problem.
 | |
|       if ((NumElements == 1 || NumElements == 2) &&
 | |
|           AllUsersAreLoads(GEPI))
 | |
|         return 1;  // Canonicalization required!
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any non-simple uses of this getelementptr, make sure to reject
 | |
|   // them.
 | |
|   return isSafeElementUse(GEPI);
 | |
| }
 | |
| 
 | |
| /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | |
| /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | |
| /// or 1 if safe after canonicalization has been performed.
 | |
| ///
 | |
| int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
 | |
|   // Loop over the use list of the alloca.  We can only transform it if all of
 | |
|   // the users are safe to transform.
 | |
|   //
 | |
|   int isSafe = 3;
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | |
|        I != E; ++I) {
 | |
|     isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
 | |
|     if (isSafe == 0) {
 | |
|       DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
 | |
|             << **I);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   // If we require cleanup, isSafe is now 1, otherwise it is 3.
 | |
|   return isSafe;
 | |
| }
 | |
| 
 | |
| /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
 | |
| /// allocation, but only if cleaned up, perform the cleanups required.
 | |
| void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
 | |
|   // At this point, we know that the end result will be SROA'd and promoted, so
 | |
|   // we can insert ugly code if required so long as sroa+mem2reg will clean it
 | |
|   // up.
 | |
|   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|        UI != E; ) {
 | |
|     GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
 | |
|     gep_type_iterator I = gep_type_begin(GEPI);
 | |
|     ++I;
 | |
| 
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|       uint64_t NumElements = AT->getNumElements();
 | |
| 
 | |
|       if (!isa<ConstantInt>(I.getOperand())) {
 | |
|         if (NumElements == 1) {
 | |
|           GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
 | |
|         } else {
 | |
|           assert(NumElements == 2 && "Unhandled case!");
 | |
|           // All users of the GEP must be loads.  At each use of the GEP, insert
 | |
|           // two loads of the appropriate indexed GEP and select between them.
 | |
|           Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
 | |
|                               Constant::getNullValue(I.getOperand()->getType()),
 | |
|                                                      "isone", GEPI);
 | |
|           // Insert the new GEP instructions, which are properly indexed.
 | |
|           std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
 | |
|           Indices[1] = Constant::getNullValue(Type::IntTy);
 | |
|           Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
 | |
|                                                  GEPI->getName()+".0", GEPI);
 | |
|           Indices[1] = ConstantInt::get(Type::IntTy, 1);
 | |
|           Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
 | |
|                                                 GEPI->getName()+".1", GEPI);
 | |
|           // Replace all loads of the variable index GEP with loads from both
 | |
|           // indexes and a select.
 | |
|           while (!GEPI->use_empty()) {
 | |
|             LoadInst *LI = cast<LoadInst>(GEPI->use_back());
 | |
|             Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
 | |
|             Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
 | |
|             Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
 | |
|             LI->replaceAllUsesWith(R);
 | |
|             LI->eraseFromParent();
 | |
|           }
 | |
|           GEPI->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MergeInType - Add the 'In' type to the accumulated type so far.  If the
 | |
| /// types are incompatible, return true, otherwise update Accum and return
 | |
| /// false.
 | |
| ///
 | |
| /// There are two cases we handle here:
 | |
| ///   1) An effectively integer union, where the pieces are stored into as
 | |
| ///      smaller integers (common with byte swap and other idioms).
 | |
| ///   2) A union of a vector and its elements.  Here we turn element accesses
 | |
| ///      into insert/extract element operations.
 | |
| static bool MergeInType(const Type *In, const Type *&Accum) {
 | |
|   // If this is our first type, just use it.
 | |
|   const PackedType *PTy;
 | |
|   if (Accum == Type::VoidTy || In == Accum) {
 | |
|     Accum = In;
 | |
|   } else if (In->isIntegral() && Accum->isIntegral()) {   // integer union.
 | |
|     // Otherwise pick whichever type is larger.
 | |
|     if (In->getTypeID() > Accum->getTypeID())
 | |
|       Accum = In;
 | |
|   } else if ((PTy = dyn_cast<PackedType>(Accum)) && 
 | |
|              PTy->getElementType() == In) {
 | |
|     // Accum is a vector, and we are accessing an element: ok.
 | |
|   } else if ((PTy = dyn_cast<PackedType>(In)) && 
 | |
|              PTy->getElementType() == Accum) {
 | |
|     // In is a vector, and accum is an element: ok, remember In.
 | |
|     Accum = In;
 | |
|   } else {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
 | |
| /// as big as the specified type.  If there is no suitable type, this returns
 | |
| /// null.
 | |
| const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
 | |
|   if (NumBits > 64) return 0;
 | |
|   if (NumBits > 32) return Type::ULongTy;
 | |
|   if (NumBits > 16) return Type::UIntTy;
 | |
|   if (NumBits > 8) return Type::UShortTy;
 | |
|   return Type::UByteTy;    
 | |
| }
 | |
| 
 | |
| /// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
 | |
| /// single scalar integer type, return that type.  Further, if the use is not
 | |
| /// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
 | |
| /// there are no uses of this pointer, return Type::VoidTy to differentiate from
 | |
| /// failure.
 | |
| ///
 | |
| const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
 | |
|   const Type *UsedType = Type::VoidTy; // No uses, no forced type.
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   const PointerType *PTy = cast<PointerType>(V->getType());
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       if (MergeInType(LI->getType(), UsedType))
 | |
|         return 0;
 | |
|       
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Storing the pointer, not the into the value?
 | |
|       if (SI->getOperand(0) == V) return 0;
 | |
|       
 | |
|       // NOTE: We could handle storing of FP imms into integers here!
 | |
|       
 | |
|       if (MergeInType(SI->getOperand(0)->getType(), UsedType))
 | |
|         return 0;
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
 | |
|       if (!isa<PointerType>(CI->getType())) return 0;
 | |
|       IsNotTrivial = true;
 | |
|       const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
 | |
|       if (!SubTy || MergeInType(SubTy, UsedType)) return 0;
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Check to see if this is stepping over an element: GEP Ptr, int C
 | |
|       if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
 | |
|         unsigned ElSize = TD.getTypeSize(PTy->getElementType());
 | |
|         unsigned BitOffset = Idx*ElSize*8;
 | |
|         if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
 | |
|         
 | |
|         IsNotTrivial = true;
 | |
|         const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|         if (SubElt == 0) return 0;
 | |
|         if (SubElt != Type::VoidTy && SubElt->isInteger()) {
 | |
|           const Type *NewTy = 
 | |
|             getUIntAtLeastAsBitAs(SubElt->getPrimitiveSizeInBits()+BitOffset);
 | |
|           if (NewTy == 0 || MergeInType(NewTy, UsedType)) return 0;
 | |
|           continue;
 | |
|         }
 | |
|       } else if (GEP->getNumOperands() == 3 && 
 | |
|                  isa<ConstantInt>(GEP->getOperand(1)) &&
 | |
|                  isa<ConstantInt>(GEP->getOperand(2)) &&
 | |
|                  cast<Constant>(GEP->getOperand(1))->isNullValue()) {
 | |
|         // We are stepping into an element, e.g. a structure or an array:
 | |
|         // GEP Ptr, int 0, uint C
 | |
|         const Type *AggTy = PTy->getElementType();
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
 | |
|         
 | |
|         if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
 | |
|           if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
 | |
|         } else if (const PackedType *PackedTy = dyn_cast<PackedType>(AggTy)) {
 | |
|           // Getting an element of the packed vector.
 | |
|           if (Idx >= PackedTy->getNumElements()) return 0;  // Out of range.
 | |
| 
 | |
|           // Merge in the packed type.
 | |
|           if (MergeInType(PackedTy, UsedType)) return 0;
 | |
|           
 | |
|           const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|           if (SubTy == 0) return 0;
 | |
|           
 | |
|           if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
 | |
|             return 0;
 | |
| 
 | |
|           // We'll need to change this to an insert/extract element operation.
 | |
|           IsNotTrivial = true;
 | |
|           continue;    // Everything looks ok
 | |
|           
 | |
|         } else if (isa<StructType>(AggTy)) {
 | |
|           // Structs are always ok.
 | |
|         } else {
 | |
|           return 0;
 | |
|         }
 | |
|         const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
 | |
|         if (NTy == 0 || MergeInType(NTy, UsedType)) return 0;
 | |
|         const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|         if (SubTy == 0) return 0;
 | |
|         if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
 | |
|           return 0;
 | |
|         continue;    // Everything looks ok
 | |
|       }
 | |
|       return 0;
 | |
|     } else {
 | |
|       // Cannot handle this!
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return UsedType;
 | |
| }
 | |
| 
 | |
| /// ConvertToScalar - The specified alloca passes the CanConvertToScalar
 | |
| /// predicate and is non-trivial.  Convert it to something that can be trivially
 | |
| /// promoted into a register by mem2reg.
 | |
| void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
 | |
|   DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
 | |
|                   << *ActualTy << "\n");
 | |
|   ++NumConverted;
 | |
|   
 | |
|   BasicBlock *EntryBlock = AI->getParent();
 | |
|   assert(EntryBlock == &EntryBlock->getParent()->front() &&
 | |
|          "Not in the entry block!");
 | |
|   EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
 | |
|   
 | |
|   if (ActualTy->isInteger())
 | |
|     ActualTy = ActualTy->getUnsignedVersion();
 | |
|   
 | |
|   // Create and insert the alloca.
 | |
|   AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
 | |
|                                      EntryBlock->begin());
 | |
|   ConvertUsesToScalar(AI, NewAI, 0);
 | |
|   delete AI;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | |
| /// directly.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
 | |
|   bool isVectorInsert = isa<PackedType>(NewAI->getType()->getElementType());
 | |
|   while (!Ptr->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(Ptr->use_back());
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // The load is a bit extract from NewAI shifted right by Offset bits.
 | |
|       Value *NV = new LoadInst(NewAI, LI->getName(), LI);
 | |
|       if (NV->getType() != LI->getType()) {
 | |
|         if (const PackedType *PTy = dyn_cast<PackedType>(NV->getType())) {
 | |
|           // Must be an element access.
 | |
|           unsigned Elt = Offset/PTy->getElementType()->getPrimitiveSizeInBits();
 | |
|           NV = new ExtractElementInst(NV, ConstantUInt::get(Type::UIntTy, Elt),
 | |
|                                       "tmp", LI);
 | |
|         } else {
 | |
|           assert(NV->getType()->isInteger() && "Unknown promotion!");
 | |
|           if (Offset && Offset < NV->getType()->getPrimitiveSizeInBits())
 | |
|             NV = new ShiftInst(Instruction::Shr, NV,
 | |
|                                ConstantUInt::get(Type::UByteTy, Offset),
 | |
|                                LI->getName(), LI);
 | |
|           NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
 | |
|         }
 | |
|       }
 | |
|       LI->replaceAllUsesWith(NV);
 | |
|       LI->eraseFromParent();
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | |
| 
 | |
|       // Convert the stored type to the actual type, shift it left to insert
 | |
|       // then 'or' into place.
 | |
|       Value *SV = SI->getOperand(0);
 | |
|       const Type *AllocaType = NewAI->getType()->getElementType();
 | |
|       if (SV->getType() != AllocaType) {
 | |
|         Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
 | |
|         
 | |
|         if (const PackedType *PTy = dyn_cast<PackedType>(AllocaType)) {
 | |
|           // Must be an element insertion.
 | |
|           unsigned Elt = Offset/PTy->getElementType()->getPrimitiveSizeInBits();
 | |
|           SV = new InsertElementInst(Old, SV,
 | |
|                                      ConstantUInt::get(Type::UIntTy, Elt),
 | |
|                                      "tmp", SI);
 | |
|         } else {
 | |
|           // If SV is signed, convert it to unsigned, so that the next cast zero
 | |
|           // extends the value.
 | |
|           if (SV->getType()->isSigned())
 | |
|             SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
 | |
|                               SV->getName(), SI);
 | |
|           SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
 | |
|           if (Offset && Offset < SV->getType()->getPrimitiveSizeInBits())
 | |
|             SV = new ShiftInst(Instruction::Shl, SV,
 | |
|                                ConstantUInt::get(Type::UByteTy, Offset),
 | |
|                                SV->getName()+".adj", SI);
 | |
|           // Mask out the bits we are about to insert from the old value.
 | |
|           unsigned TotalBits = SV->getType()->getPrimitiveSizeInBits();
 | |
|           unsigned InsertBits =
 | |
|             SI->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|           if (TotalBits != InsertBits) {
 | |
|             assert(TotalBits > InsertBits);
 | |
|             uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
 | |
|             if (TotalBits != 64)
 | |
|               Mask = Mask & ((1ULL << TotalBits)-1);
 | |
|             Old = BinaryOperator::createAnd(Old,
 | |
|                                         ConstantUInt::get(Old->getType(), Mask),
 | |
|                                             Old->getName()+".mask", SI);
 | |
|             SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       new StoreInst(SV, NewAI, SI);
 | |
|       SI->eraseFromParent();
 | |
|       
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
 | |
|       unsigned NewOff = Offset;
 | |
|       const TargetData &TD = getAnalysis<TargetData>();
 | |
|       if (TD.isBigEndian() && !isVectorInsert) {
 | |
|         // Adjust the pointer.  For example, storing 16-bits into a 32-bit
 | |
|         // alloca with just a cast makes it modify the top 16-bits.
 | |
|         const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|         const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|         int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
 | |
|         NewOff += PtrDiffBits;
 | |
|       }
 | |
|       ConvertUsesToScalar(CI, NewAI, NewOff);
 | |
|       CI->eraseFromParent();
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       const PointerType *AggPtrTy = 
 | |
|         cast<PointerType>(GEP->getOperand(0)->getType());
 | |
|       const TargetData &TD = getAnalysis<TargetData>();
 | |
|       unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
 | |
|       
 | |
|       // Check to see if this is stepping over an element: GEP Ptr, int C
 | |
|       unsigned NewOffset = Offset;
 | |
|       if (GEP->getNumOperands() == 2) {
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
 | |
|         unsigned BitOffset = Idx*AggSizeInBits;
 | |
|         
 | |
|         if (TD.isLittleEndian() || isVectorInsert)
 | |
|           NewOffset += BitOffset;
 | |
|         else
 | |
|           NewOffset -= BitOffset;
 | |
|         
 | |
|       } else if (GEP->getNumOperands() == 3) {
 | |
|         // We know that operand #2 is zero.
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
 | |
|         const Type *AggTy = AggPtrTy->getElementType();
 | |
|         if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
 | |
|           unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
 | |
| 
 | |
|           if (TD.isLittleEndian() || isVectorInsert)
 | |
|             NewOffset += ElSizeBits*Idx;
 | |
|           else
 | |
|             NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
 | |
|         } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
 | |
|           unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
 | |
|           
 | |
|           if (TD.isLittleEndian() || isVectorInsert)
 | |
|             NewOffset += EltBitOffset;
 | |
|           else {
 | |
|             const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
 | |
|             unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
 | |
|             NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
 | |
|           }
 | |
|           
 | |
|         } else {
 | |
|           assert(0 && "Unsupported operation!");
 | |
|           abort();
 | |
|         }
 | |
|       } else {
 | |
|         assert(0 && "Unsupported operation!");
 | |
|         abort();
 | |
|       }
 | |
|       ConvertUsesToScalar(GEP, NewAI, NewOffset);
 | |
|       GEP->eraseFromParent();
 | |
|     } else {
 | |
|       assert(0 && "Unsupported operation!");
 | |
|       abort();
 | |
|     }
 | |
|   }
 | |
| }
 |