mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	InstructionSimplify.cpp. Other fixups as needed. Part of rdar://10500969 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145559 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			877 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			877 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
 | 
						|
// categorize scalar expressions in loops.  It specializes in recognizing
 | 
						|
// general induction variables, representing them with the abstract and opaque
 | 
						|
// SCEV class.  Given this analysis, trip counts of loops and other important
 | 
						|
// properties can be obtained.
 | 
						|
//
 | 
						|
// This analysis is primarily useful for induction variable substitution and
 | 
						|
// strength reduction.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
 | 
						|
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class APInt;
 | 
						|
  class Constant;
 | 
						|
  class ConstantInt;
 | 
						|
  class DominatorTree;
 | 
						|
  class Type;
 | 
						|
  class ScalarEvolution;
 | 
						|
  class TargetData;
 | 
						|
  class TargetLibraryInfo;
 | 
						|
  class LLVMContext;
 | 
						|
  class Loop;
 | 
						|
  class LoopInfo;
 | 
						|
  class Operator;
 | 
						|
  class SCEVUnknown;
 | 
						|
  class SCEV;
 | 
						|
  template<> struct FoldingSetTrait<SCEV>;
 | 
						|
 | 
						|
  /// SCEV - This class represents an analyzed expression in the program.  These
 | 
						|
  /// are opaque objects that the client is not allowed to do much with
 | 
						|
  /// directly.
 | 
						|
  ///
 | 
						|
  class SCEV : public FoldingSetNode {
 | 
						|
    friend struct FoldingSetTrait<SCEV>;
 | 
						|
 | 
						|
    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
 | 
						|
    /// The ScalarEvolution's BumpPtrAllocator holds the data.
 | 
						|
    FoldingSetNodeIDRef FastID;
 | 
						|
 | 
						|
    // The SCEV baseclass this node corresponds to
 | 
						|
    const unsigned short SCEVType;
 | 
						|
 | 
						|
  protected:
 | 
						|
    /// SubclassData - This field is initialized to zero and may be used in
 | 
						|
    /// subclasses to store miscellaneous information.
 | 
						|
    unsigned short SubclassData;
 | 
						|
 | 
						|
  private:
 | 
						|
    SCEV(const SCEV &);            // DO NOT IMPLEMENT
 | 
						|
    void operator=(const SCEV &);  // DO NOT IMPLEMENT
 | 
						|
 | 
						|
  public:
 | 
						|
    /// NoWrapFlags are bitfield indices into SubclassData.
 | 
						|
    ///
 | 
						|
    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
 | 
						|
    /// no-signed-wrap <NSW> properties, which are derived from the IR
 | 
						|
    /// operator. NSW is a misnomer that we use to mean no signed overflow or
 | 
						|
    /// underflow.
 | 
						|
    ///
 | 
						|
    /// AddRec expression may have a no-self-wraparound <NW> property if the
 | 
						|
    /// result can never reach the start value. This property is independent of
 | 
						|
    /// the actual start value and step direction. Self-wraparound is defined
 | 
						|
    /// purely in terms of the recurrence's loop, step size, and
 | 
						|
    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
 | 
						|
    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
 | 
						|
    ///
 | 
						|
    /// Note that NUW and NSW are also valid properties of a recurrence, and
 | 
						|
    /// either implies NW. For convenience, NW will be set for a recurrence
 | 
						|
    /// whenever either NUW or NSW are set.
 | 
						|
    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
 | 
						|
                       FlagNW      = (1 << 0),   // No self-wrap.
 | 
						|
                       FlagNUW     = (1 << 1),   // No unsigned wrap.
 | 
						|
                       FlagNSW     = (1 << 2),   // No signed wrap.
 | 
						|
                       NoWrapMask  = (1 << 3) -1 };
 | 
						|
 | 
						|
    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
 | 
						|
      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
 | 
						|
 | 
						|
    unsigned getSCEVType() const { return SCEVType; }
 | 
						|
 | 
						|
    /// getType - Return the LLVM type of this SCEV expression.
 | 
						|
    ///
 | 
						|
    Type *getType() const;
 | 
						|
 | 
						|
    /// isZero - Return true if the expression is a constant zero.
 | 
						|
    ///
 | 
						|
    bool isZero() const;
 | 
						|
 | 
						|
    /// isOne - Return true if the expression is a constant one.
 | 
						|
    ///
 | 
						|
    bool isOne() const;
 | 
						|
 | 
						|
    /// isAllOnesValue - Return true if the expression is a constant
 | 
						|
    /// all-ones value.
 | 
						|
    ///
 | 
						|
    bool isAllOnesValue() const;
 | 
						|
 | 
						|
    /// print - Print out the internal representation of this scalar to the
 | 
						|
    /// specified stream.  This should really only be used for debugging
 | 
						|
    /// purposes.
 | 
						|
    void print(raw_ostream &OS) const;
 | 
						|
 | 
						|
    /// dump - This method is used for debugging.
 | 
						|
    ///
 | 
						|
    void dump() const;
 | 
						|
  };
 | 
						|
 | 
						|
  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
 | 
						|
  // temporary FoldingSetNodeID values.
 | 
						|
  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
 | 
						|
    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
 | 
						|
      ID = X.FastID;
 | 
						|
    }
 | 
						|
    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
 | 
						|
                       FoldingSetNodeID &TempID) {
 | 
						|
      return ID == X.FastID;
 | 
						|
    }
 | 
						|
    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
 | 
						|
      return X.FastID.ComputeHash();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
 | 
						|
    S.print(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  /// SCEVCouldNotCompute - An object of this class is returned by queries that
 | 
						|
  /// could not be answered.  For example, if you ask for the number of
 | 
						|
  /// iterations of a linked-list traversal loop, you will get one of these.
 | 
						|
  /// None of the standard SCEV operations are valid on this class, it is just a
 | 
						|
  /// marker.
 | 
						|
  struct SCEVCouldNotCompute : public SCEV {
 | 
						|
    SCEVCouldNotCompute();
 | 
						|
 | 
						|
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
 | 
						|
    static bool classof(const SCEV *S);
 | 
						|
  };
 | 
						|
 | 
						|
  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
 | 
						|
  /// client code (intentionally) can't do much with the SCEV objects directly,
 | 
						|
  /// they must ask this class for services.
 | 
						|
  ///
 | 
						|
  class ScalarEvolution : public FunctionPass {
 | 
						|
  public:
 | 
						|
    /// LoopDisposition - An enum describing the relationship between a
 | 
						|
    /// SCEV and a loop.
 | 
						|
    enum LoopDisposition {
 | 
						|
      LoopVariant,    ///< The SCEV is loop-variant (unknown).
 | 
						|
      LoopInvariant,  ///< The SCEV is loop-invariant.
 | 
						|
      LoopComputable  ///< The SCEV varies predictably with the loop.
 | 
						|
    };
 | 
						|
 | 
						|
    /// BlockDisposition - An enum describing the relationship between a
 | 
						|
    /// SCEV and a basic block.
 | 
						|
    enum BlockDisposition {
 | 
						|
      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
 | 
						|
      DominatesBlock,        ///< The SCEV dominates the block.
 | 
						|
      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
 | 
						|
    };
 | 
						|
 | 
						|
    /// Convenient NoWrapFlags manipulation that hides enum casts and is
 | 
						|
    /// visible in the ScalarEvolution name space.
 | 
						|
    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
 | 
						|
      return (SCEV::NoWrapFlags)(Flags & Mask);
 | 
						|
    }
 | 
						|
    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
 | 
						|
                                      SCEV::NoWrapFlags OnFlags) {
 | 
						|
      return (SCEV::NoWrapFlags)(Flags | OnFlags);
 | 
						|
    }
 | 
						|
    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
 | 
						|
                                        SCEV::NoWrapFlags OffFlags) {
 | 
						|
      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
 | 
						|
    /// notified whenever a Value is deleted.
 | 
						|
    class SCEVCallbackVH : public CallbackVH {
 | 
						|
      ScalarEvolution *SE;
 | 
						|
      virtual void deleted();
 | 
						|
      virtual void allUsesReplacedWith(Value *New);
 | 
						|
    public:
 | 
						|
      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
 | 
						|
    };
 | 
						|
 | 
						|
    friend class SCEVCallbackVH;
 | 
						|
    friend class SCEVExpander;
 | 
						|
    friend class SCEVUnknown;
 | 
						|
 | 
						|
    /// F - The function we are analyzing.
 | 
						|
    ///
 | 
						|
    Function *F;
 | 
						|
 | 
						|
    /// LI - The loop information for the function we are currently analyzing.
 | 
						|
    ///
 | 
						|
    LoopInfo *LI;
 | 
						|
 | 
						|
    /// TD - The target data information for the target we are targeting.
 | 
						|
    ///
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// TLI - The target library information for the target we are targeting.
 | 
						|
    ///
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
 | 
						|
    /// DT - The dominator tree.
 | 
						|
    ///
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    /// CouldNotCompute - This SCEV is used to represent unknown trip
 | 
						|
    /// counts and things.
 | 
						|
    SCEVCouldNotCompute CouldNotCompute;
 | 
						|
 | 
						|
    /// ValueExprMapType - The typedef for ValueExprMap.
 | 
						|
    ///
 | 
						|
    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
 | 
						|
      ValueExprMapType;
 | 
						|
 | 
						|
    /// ValueExprMap - This is a cache of the values we have analyzed so far.
 | 
						|
    ///
 | 
						|
    ValueExprMapType ValueExprMap;
 | 
						|
 | 
						|
    /// ExitLimit - Information about the number of loop iterations for
 | 
						|
    /// which a loop exit's branch condition evaluates to the not-taken path.
 | 
						|
    /// This is a temporary pair of exact and max expressions that are
 | 
						|
    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
 | 
						|
    struct ExitLimit {
 | 
						|
      const SCEV *Exact;
 | 
						|
      const SCEV *Max;
 | 
						|
 | 
						|
      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
 | 
						|
 | 
						|
      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
 | 
						|
 | 
						|
      /// hasAnyInfo - Test whether this ExitLimit contains any computed
 | 
						|
      /// information, or whether it's all SCEVCouldNotCompute values.
 | 
						|
      bool hasAnyInfo() const {
 | 
						|
        return !isa<SCEVCouldNotCompute>(Exact) ||
 | 
						|
          !isa<SCEVCouldNotCompute>(Max);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// ExitNotTakenInfo - Information about the number of times a particular
 | 
						|
    /// loop exit may be reached before exiting the loop.
 | 
						|
    struct ExitNotTakenInfo {
 | 
						|
      AssertingVH<BasicBlock> ExitingBlock;
 | 
						|
      const SCEV *ExactNotTaken;
 | 
						|
      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
 | 
						|
 | 
						|
      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
 | 
						|
 | 
						|
      /// isCompleteList - Return true if all loop exits are computable.
 | 
						|
      bool isCompleteList() const {
 | 
						|
        return NextExit.getInt() == 0;
 | 
						|
      }
 | 
						|
 | 
						|
      void setIncomplete() { NextExit.setInt(1); }
 | 
						|
 | 
						|
      /// getNextExit - Return a pointer to the next exit's not-taken info.
 | 
						|
      ExitNotTakenInfo *getNextExit() const {
 | 
						|
        return NextExit.getPointer();
 | 
						|
      }
 | 
						|
 | 
						|
      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
 | 
						|
    };
 | 
						|
 | 
						|
    /// BackedgeTakenInfo - Information about the backedge-taken count
 | 
						|
    /// of a loop. This currently includes an exact count and a maximum count.
 | 
						|
    ///
 | 
						|
    class BackedgeTakenInfo {
 | 
						|
      /// ExitNotTaken - A list of computable exits and their not-taken counts.
 | 
						|
      /// Loops almost never have more than one computable exit.
 | 
						|
      ExitNotTakenInfo ExitNotTaken;
 | 
						|
 | 
						|
      /// Max - An expression indicating the least maximum backedge-taken
 | 
						|
      /// count of the loop that is known, or a SCEVCouldNotCompute.
 | 
						|
      const SCEV *Max;
 | 
						|
 | 
						|
    public:
 | 
						|
      BackedgeTakenInfo() : Max(0) {}
 | 
						|
 | 
						|
      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
 | 
						|
      BackedgeTakenInfo(
 | 
						|
        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
 | 
						|
        bool Complete, const SCEV *MaxCount);
 | 
						|
 | 
						|
      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
 | 
						|
      /// computed information, or whether it's all SCEVCouldNotCompute
 | 
						|
      /// values.
 | 
						|
      bool hasAnyInfo() const {
 | 
						|
        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
 | 
						|
      }
 | 
						|
 | 
						|
      /// getExact - Return an expression indicating the exact backedge-taken
 | 
						|
      /// count of the loop if it is known, or SCEVCouldNotCompute
 | 
						|
      /// otherwise. This is the number of times the loop header can be
 | 
						|
      /// guaranteed to execute, minus one.
 | 
						|
      const SCEV *getExact(ScalarEvolution *SE) const;
 | 
						|
 | 
						|
      /// getExact - Return the number of times this loop exit may fall through
 | 
						|
      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
 | 
						|
      /// to exit via this block before this number of iterations, but may exit
 | 
						|
      /// via another block.
 | 
						|
      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
 | 
						|
 | 
						|
      /// getMax - Get the max backedge taken count for the loop.
 | 
						|
      const SCEV *getMax(ScalarEvolution *SE) const;
 | 
						|
 | 
						|
      /// clear - Invalidate this result and free associated memory.
 | 
						|
      void clear();
 | 
						|
    };
 | 
						|
 | 
						|
    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
 | 
						|
    /// this function as they are computed.
 | 
						|
    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
 | 
						|
 | 
						|
    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | 
						|
    /// the PHI instructions that we attempt to compute constant evolutions for.
 | 
						|
    /// This allows us to avoid potentially expensive recomputation of these
 | 
						|
    /// properties.  An instruction maps to null if we are unable to compute its
 | 
						|
    /// exit value.
 | 
						|
    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | 
						|
 | 
						|
    /// ValuesAtScopes - This map contains entries for all the expressions
 | 
						|
    /// that we attempt to compute getSCEVAtScope information for, which can
 | 
						|
    /// be expensive in extreme cases.
 | 
						|
    DenseMap<const SCEV *,
 | 
						|
             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
 | 
						|
 | 
						|
    /// LoopDispositions - Memoized computeLoopDisposition results.
 | 
						|
    DenseMap<const SCEV *,
 | 
						|
             std::map<const Loop *, LoopDisposition> > LoopDispositions;
 | 
						|
 | 
						|
    /// computeLoopDisposition - Compute a LoopDisposition value.
 | 
						|
    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// BlockDispositions - Memoized computeBlockDisposition results.
 | 
						|
    DenseMap<const SCEV *,
 | 
						|
             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
 | 
						|
 | 
						|
    /// computeBlockDisposition - Compute a BlockDisposition value.
 | 
						|
    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
 | 
						|
 | 
						|
    /// UnsignedRanges - Memoized results from getUnsignedRange
 | 
						|
    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
 | 
						|
 | 
						|
    /// SignedRanges - Memoized results from getSignedRange
 | 
						|
    DenseMap<const SCEV *, ConstantRange> SignedRanges;
 | 
						|
 | 
						|
    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
 | 
						|
    const ConstantRange &setUnsignedRange(const SCEV *S,
 | 
						|
                                          const ConstantRange &CR) {
 | 
						|
      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
 | 
						|
        UnsignedRanges.insert(std::make_pair(S, CR));
 | 
						|
      if (!Pair.second)
 | 
						|
        Pair.first->second = CR;
 | 
						|
      return Pair.first->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
 | 
						|
    const ConstantRange &setSignedRange(const SCEV *S,
 | 
						|
                                        const ConstantRange &CR) {
 | 
						|
      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
 | 
						|
        SignedRanges.insert(std::make_pair(S, CR));
 | 
						|
      if (!Pair.second)
 | 
						|
        Pair.first->second = CR;
 | 
						|
      return Pair.first->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// createSCEV - We know that there is no SCEV for the specified value.
 | 
						|
    /// Analyze the expression.
 | 
						|
    const SCEV *createSCEV(Value *V);
 | 
						|
 | 
						|
    /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | 
						|
    /// SCEVs.
 | 
						|
    const SCEV *createNodeForPHI(PHINode *PN);
 | 
						|
 | 
						|
    /// createNodeForGEP - Provide the special handling we need to analyze GEP
 | 
						|
    /// SCEVs.
 | 
						|
    const SCEV *createNodeForGEP(GEPOperator *GEP);
 | 
						|
 | 
						|
    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
 | 
						|
    /// at most once for each SCEV+Loop pair.
 | 
						|
    ///
 | 
						|
    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// ForgetSymbolicValue - This looks up computed SCEV values for all
 | 
						|
    /// instructions that depend on the given instruction and removes them from
 | 
						|
    /// the ValueExprMap map if they reference SymName. This is used during PHI
 | 
						|
    /// resolution.
 | 
						|
    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
 | 
						|
 | 
						|
    /// getBECount - Subtract the end and start values and divide by the step,
 | 
						|
    /// rounding up, to get the number of times the backedge is executed. Return
 | 
						|
    /// CouldNotCompute if an intermediate computation overflows.
 | 
						|
    const SCEV *getBECount(const SCEV *Start,
 | 
						|
                           const SCEV *End,
 | 
						|
                           const SCEV *Step,
 | 
						|
                           bool NoWrap);
 | 
						|
 | 
						|
    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
 | 
						|
    /// loop, lazily computing new values if the loop hasn't been analyzed
 | 
						|
    /// yet.
 | 
						|
    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCount - Compute the number of times the specified
 | 
						|
    /// loop will iterate.
 | 
						|
    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// ComputeExitLimit - Compute the number of times the backedge of the
 | 
						|
    /// specified loop will execute if it exits via the specified block.
 | 
						|
    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
 | 
						|
 | 
						|
    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
 | 
						|
    /// the specified loop will execute if its exit condition were a conditional
 | 
						|
    /// branch of ExitCond, TBB, and FBB.
 | 
						|
    ExitLimit ComputeExitLimitFromCond(const Loop *L,
 | 
						|
                                       Value *ExitCond,
 | 
						|
                                       BasicBlock *TBB,
 | 
						|
                                       BasicBlock *FBB);
 | 
						|
 | 
						|
    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
 | 
						|
    /// the specified loop will execute if its exit condition were a conditional
 | 
						|
    /// branch of the ICmpInst ExitCond, TBB, and FBB.
 | 
						|
    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
 | 
						|
                                       ICmpInst *ExitCond,
 | 
						|
                                       BasicBlock *TBB,
 | 
						|
                                       BasicBlock *FBB);
 | 
						|
 | 
						|
    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
 | 
						|
    /// of 'icmp op load X, cst', try to see if we can compute the
 | 
						|
    /// backedge-taken count.
 | 
						|
    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
 | 
						|
                                                  Constant *RHS,
 | 
						|
                                                  const Loop *L,
 | 
						|
                                                  ICmpInst::Predicate p);
 | 
						|
 | 
						|
    /// ComputeExitCountExhaustively - If the loop is known to execute a
 | 
						|
    /// constant number of times (the condition evolves only from constants),
 | 
						|
    /// try to evaluate a few iterations of the loop until we get the exit
 | 
						|
    /// condition gets a value of ExitWhen (true or false).  If we cannot
 | 
						|
    /// evaluate the exit count of the loop, return CouldNotCompute.
 | 
						|
    const SCEV *ComputeExitCountExhaustively(const Loop *L,
 | 
						|
                                             Value *Cond,
 | 
						|
                                             bool ExitWhen);
 | 
						|
 | 
						|
    /// HowFarToZero - Return the number of times an exit condition comparing
 | 
						|
    /// the specified value to zero will execute.  If not computable, return
 | 
						|
    /// CouldNotCompute.
 | 
						|
    ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
 | 
						|
 | 
						|
    /// HowFarToNonZero - Return the number of times an exit condition checking
 | 
						|
    /// the specified value for nonzero will execute.  If not computable, return
 | 
						|
    /// CouldNotCompute.
 | 
						|
    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
 | 
						|
 | 
						|
    /// HowManyLessThans - Return the number of times an exit condition
 | 
						|
    /// containing the specified less-than comparison will execute.  If not
 | 
						|
    /// computable, return CouldNotCompute. isSigned specifies whether the
 | 
						|
    /// less-than is signed.
 | 
						|
    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                               const Loop *L, bool isSigned);
 | 
						|
 | 
						|
    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | 
						|
    /// (which may not be an immediate predecessor) which has exactly one
 | 
						|
    /// successor from which BB is reachable, or null if no such block is
 | 
						|
    /// found.
 | 
						|
    std::pair<BasicBlock *, BasicBlock *>
 | 
						|
    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
 | 
						|
 | 
						|
    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
 | 
						|
    /// RHS is true whenever the given FoundCondValue value evaluates to true.
 | 
						|
    bool isImpliedCond(ICmpInst::Predicate Pred,
 | 
						|
                       const SCEV *LHS, const SCEV *RHS,
 | 
						|
                       Value *FoundCondValue,
 | 
						|
                       bool Inverse);
 | 
						|
 | 
						|
    /// isImpliedCondOperands - Test whether the condition described by Pred,
 | 
						|
    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
 | 
						|
    /// and FoundRHS is true.
 | 
						|
    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
 | 
						|
                               const SCEV *LHS, const SCEV *RHS,
 | 
						|
                               const SCEV *FoundLHS, const SCEV *FoundRHS);
 | 
						|
 | 
						|
    /// isImpliedCondOperandsHelper - Test whether the condition described by
 | 
						|
    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
 | 
						|
    /// FoundLHS, and FoundRHS is true.
 | 
						|
    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | 
						|
                                     const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                     const SCEV *FoundLHS,
 | 
						|
                                     const SCEV *FoundRHS);
 | 
						|
 | 
						|
    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | 
						|
    /// in the header of its containing loop, we know the loop executes a
 | 
						|
    /// constant number of times, and the PHI node is just a recurrence
 | 
						|
    /// involving constants, fold it.
 | 
						|
    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
 | 
						|
                                                const Loop *L);
 | 
						|
 | 
						|
    /// isKnownPredicateWithRanges - Test if the given expression is known to
 | 
						|
    /// satisfy the condition described by Pred and the known constant ranges
 | 
						|
    /// of LHS and RHS.
 | 
						|
    ///
 | 
						|
    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
 | 
						|
                                    const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// forgetMemoizedResults - Drop memoized information computed for S.
 | 
						|
    void forgetMemoizedResults(const SCEV *S);
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    ScalarEvolution();
 | 
						|
 | 
						|
    LLVMContext &getContext() const { return F->getContext(); }
 | 
						|
 | 
						|
    /// isSCEVable - Test if values of the given type are analyzable within
 | 
						|
    /// the SCEV framework. This primarily includes integer types, and it
 | 
						|
    /// can optionally include pointer types if the ScalarEvolution class
 | 
						|
    /// has access to target-specific information.
 | 
						|
    bool isSCEVable(Type *Ty) const;
 | 
						|
 | 
						|
    /// getTypeSizeInBits - Return the size in bits of the specified type,
 | 
						|
    /// for which isSCEVable must return true.
 | 
						|
    uint64_t getTypeSizeInBits(Type *Ty) const;
 | 
						|
 | 
						|
    /// getEffectiveSCEVType - Return a type with the same bitwidth as
 | 
						|
    /// the given type and which represents how SCEV will treat the given
 | 
						|
    /// type, for which isSCEVable must return true. For pointer types,
 | 
						|
    /// this is the pointer-sized integer type.
 | 
						|
    Type *getEffectiveSCEVType(Type *Ty) const;
 | 
						|
 | 
						|
    /// getSCEV - Return a SCEV expression for the full generality of the
 | 
						|
    /// specified expression.
 | 
						|
    const SCEV *getSCEV(Value *V);
 | 
						|
 | 
						|
    const SCEV *getConstant(ConstantInt *V);
 | 
						|
    const SCEV *getConstant(const APInt& Val);
 | 
						|
    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
 | 
						|
    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
 | 
						|
    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
 | 
						|
    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
 | 
						|
    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
 | 
						|
    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | 
						|
    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | 
						|
      SmallVector<const SCEV *, 2> Ops;
 | 
						|
      Ops.push_back(LHS);
 | 
						|
      Ops.push_back(RHS);
 | 
						|
      return getAddExpr(Ops, Flags);
 | 
						|
    }
 | 
						|
    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | 
						|
      SmallVector<const SCEV *, 3> Ops;
 | 
						|
      Ops.push_back(Op0);
 | 
						|
      Ops.push_back(Op1);
 | 
						|
      Ops.push_back(Op2);
 | 
						|
      return getAddExpr(Ops, Flags);
 | 
						|
    }
 | 
						|
    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | 
						|
    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
 | 
						|
    {
 | 
						|
      SmallVector<const SCEV *, 2> Ops;
 | 
						|
      Ops.push_back(LHS);
 | 
						|
      Ops.push_back(RHS);
 | 
						|
      return getMulExpr(Ops, Flags);
 | 
						|
    }
 | 
						|
    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
 | 
						|
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | 
						|
      SmallVector<const SCEV *, 3> Ops;
 | 
						|
      Ops.push_back(Op0);
 | 
						|
      Ops.push_back(Op1);
 | 
						|
      Ops.push_back(Op2);
 | 
						|
      return getMulExpr(Ops, Flags);
 | 
						|
    }
 | 
						|
    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | 
						|
                              const Loop *L, SCEV::NoWrapFlags Flags);
 | 
						|
    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | 
						|
                              const Loop *L, SCEV::NoWrapFlags Flags);
 | 
						|
    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
 | 
						|
                              const Loop *L, SCEV::NoWrapFlags Flags) {
 | 
						|
      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
 | 
						|
      return getAddRecExpr(NewOp, L, Flags);
 | 
						|
    }
 | 
						|
    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | 
						|
    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | 
						|
    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getUnknown(Value *V);
 | 
						|
    const SCEV *getCouldNotCompute();
 | 
						|
 | 
						|
    /// getSizeOfExpr - Return an expression for sizeof on the given type.
 | 
						|
    ///
 | 
						|
    const SCEV *getSizeOfExpr(Type *AllocTy);
 | 
						|
 | 
						|
    /// getAlignOfExpr - Return an expression for alignof on the given type.
 | 
						|
    ///
 | 
						|
    const SCEV *getAlignOfExpr(Type *AllocTy);
 | 
						|
 | 
						|
    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
 | 
						|
    ///
 | 
						|
    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
 | 
						|
 | 
						|
    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
 | 
						|
    ///
 | 
						|
    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
 | 
						|
 | 
						|
    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
 | 
						|
    ///
 | 
						|
    const SCEV *getNegativeSCEV(const SCEV *V);
 | 
						|
 | 
						|
    /// getNotSCEV - Return the SCEV object corresponding to ~V.
 | 
						|
    ///
 | 
						|
    const SCEV *getNotSCEV(const SCEV *V);
 | 
						|
 | 
						|
    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
 | 
						|
    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | 
						|
 | 
						|
    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
 | 
						|
    /// of the input value to the specified type.  If the type must be
 | 
						|
    /// extended, it is zero extended.
 | 
						|
    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
 | 
						|
    /// of the input value to the specified type.  If the type must be
 | 
						|
    /// extended, it is sign extended.
 | 
						|
    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type.  If the type must be extended,
 | 
						|
    /// it is zero extended.  The conversion must not be narrowing.
 | 
						|
    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type.  If the type must be extended,
 | 
						|
    /// it is sign extended.  The conversion must not be narrowing.
 | 
						|
    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type. If the type must be extended,
 | 
						|
    /// it is extended with unspecified bits. The conversion must not be
 | 
						|
    /// narrowing.
 | 
						|
    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | 
						|
    /// input value to the specified type.  The conversion must not be
 | 
						|
    /// widening.
 | 
						|
    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
 | 
						|
 | 
						|
    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
    /// the types using zero-extension, and then perform a umax operation
 | 
						|
    /// with them.
 | 
						|
    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                           const SCEV *RHS);
 | 
						|
 | 
						|
    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
    /// the types using zero-extension, and then perform a umin operation
 | 
						|
    /// with them.
 | 
						|
    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                           const SCEV *RHS);
 | 
						|
 | 
						|
    /// getPointerBase - Transitively follow the chain of pointer-type operands
 | 
						|
    /// until reaching a SCEV that does not have a single pointer operand. This
 | 
						|
    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
 | 
						|
    /// but corner cases do exist.
 | 
						|
    const SCEV *getPointerBase(const SCEV *V);
 | 
						|
 | 
						|
    /// getSCEVAtScope - Return a SCEV expression for the specified value
 | 
						|
    /// at the specified scope in the program.  The L value specifies a loop
 | 
						|
    /// nest to evaluate the expression at, where null is the top-level or a
 | 
						|
    /// specified loop is immediately inside of the loop.
 | 
						|
    ///
 | 
						|
    /// This method can be used to compute the exit value for a variable defined
 | 
						|
    /// in a loop by querying what the value will hold in the parent loop.
 | 
						|
    ///
 | 
						|
    /// In the case that a relevant loop exit value cannot be computed, the
 | 
						|
    /// original value V is returned.
 | 
						|
    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// getSCEVAtScope - This is a convenience function which does
 | 
						|
    /// getSCEVAtScope(getSCEV(V), L).
 | 
						|
    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
 | 
						|
 | 
						|
    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
 | 
						|
    /// by a conditional between LHS and RHS.  This is used to help avoid max
 | 
						|
    /// expressions in loop trip counts, and to eliminate casts.
 | 
						|
    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | 
						|
                                  const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | 
						|
    /// protected by a conditional between LHS and RHS.  This is used to
 | 
						|
    /// to eliminate casts.
 | 
						|
    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | 
						|
                                     const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
 | 
						|
    /// as a normal unsigned value, if possible. Returns 0 if the trip count is
 | 
						|
    /// unknown or not constant.
 | 
						|
    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitBlock);
 | 
						|
 | 
						|
    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
 | 
						|
    /// the trip count of this loop as a normal unsigned value, if
 | 
						|
    /// possible. This means that the actual trip count is always a multiple of
 | 
						|
    /// the returned value (don't forget the trip count could very well be zero
 | 
						|
    /// as well!).
 | 
						|
    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitBlock);
 | 
						|
 | 
						|
    // getExitCount - Get the expression for the number of loop iterations for
 | 
						|
    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
 | 
						|
    // return SCEVCouldNotCompute.
 | 
						|
    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
 | 
						|
 | 
						|
    /// getBackedgeTakenCount - If the specified loop has a predictable
 | 
						|
    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | 
						|
    /// object. The backedge-taken count is the number of times the loop header
 | 
						|
    /// will be branched to from within the loop. This is one less than the
 | 
						|
    /// trip count of the loop, since it doesn't count the first iteration,
 | 
						|
    /// when the header is branched to from outside the loop.
 | 
						|
    ///
 | 
						|
    /// Note that it is not valid to call this method on a loop without a
 | 
						|
    /// loop-invariant backedge-taken count (see
 | 
						|
    /// hasLoopInvariantBackedgeTakenCount).
 | 
						|
    ///
 | 
						|
    const SCEV *getBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | 
						|
    /// return the least SCEV value that is known never to be less than the
 | 
						|
    /// actual backedge taken count.
 | 
						|
    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
 | 
						|
    /// has an analyzable loop-invariant backedge-taken count.
 | 
						|
    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// forgetLoop - This method should be called by the client when it has
 | 
						|
    /// changed a loop in a way that may effect ScalarEvolution's ability to
 | 
						|
    /// compute a trip count, or if the loop is deleted.
 | 
						|
    void forgetLoop(const Loop *L);
 | 
						|
 | 
						|
    /// forgetValue - This method should be called by the client when it has
 | 
						|
    /// changed a value in a way that may effect its value, or which may
 | 
						|
    /// disconnect it from a def-use chain linking it to a loop.
 | 
						|
    void forgetValue(Value *V);
 | 
						|
 | 
						|
    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
 | 
						|
    /// is guaranteed to end in (at every loop iteration).  It is, at the same
 | 
						|
    /// time, the minimum number of times S is divisible by 2.  For example,
 | 
						|
    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
 | 
						|
    /// bitwidth of S.
 | 
						|
    uint32_t GetMinTrailingZeros(const SCEV *S);
 | 
						|
 | 
						|
    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | 
						|
    ///
 | 
						|
    ConstantRange getUnsignedRange(const SCEV *S);
 | 
						|
 | 
						|
    /// getSignedRange - Determine the signed range for a particular SCEV.
 | 
						|
    ///
 | 
						|
    ConstantRange getSignedRange(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNegative - Test if the given expression is known to be negative.
 | 
						|
    ///
 | 
						|
    bool isKnownNegative(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownPositive - Test if the given expression is known to be positive.
 | 
						|
    ///
 | 
						|
    bool isKnownPositive(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonNegative - Test if the given expression is known to be
 | 
						|
    /// non-negative.
 | 
						|
    ///
 | 
						|
    bool isKnownNonNegative(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonPositive - Test if the given expression is known to be
 | 
						|
    /// non-positive.
 | 
						|
    ///
 | 
						|
    bool isKnownNonPositive(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonZero - Test if the given expression is known to be
 | 
						|
    /// non-zero.
 | 
						|
    ///
 | 
						|
    bool isKnownNonZero(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownPredicate - Test if the given expression is known to satisfy
 | 
						|
    /// the condition described by Pred, LHS, and RHS.
 | 
						|
    ///
 | 
						|
    bool isKnownPredicate(ICmpInst::Predicate Pred,
 | 
						|
                          const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
 | 
						|
    /// predicate Pred. Return true iff any changes were made. If the
 | 
						|
    /// operands are provably equal or inequal, LHS and RHS are set to
 | 
						|
    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
 | 
						|
    ///
 | 
						|
    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
 | 
						|
                              const SCEV *&LHS,
 | 
						|
                              const SCEV *&RHS);
 | 
						|
 | 
						|
    /// getLoopDisposition - Return the "disposition" of the given SCEV with
 | 
						|
    /// respect to the given loop.
 | 
						|
    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// isLoopInvariant - Return true if the value of the given SCEV is
 | 
						|
    /// unchanging in the specified loop.
 | 
						|
    bool isLoopInvariant(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
 | 
						|
    /// in a known way in the specified loop.  This property being true implies
 | 
						|
    /// that the value is variant in the loop AND that we can emit an expression
 | 
						|
    /// to compute the value of the expression at any particular loop iteration.
 | 
						|
    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// getLoopDisposition - Return the "disposition" of the given SCEV with
 | 
						|
    /// respect to the given block.
 | 
						|
    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
 | 
						|
 | 
						|
    /// dominates - Return true if elements that makes up the given SCEV
 | 
						|
    /// dominate the specified basic block.
 | 
						|
    bool dominates(const SCEV *S, const BasicBlock *BB);
 | 
						|
 | 
						|
    /// properlyDominates - Return true if elements that makes up the given SCEV
 | 
						|
    /// properly dominate the specified basic block.
 | 
						|
    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
 | 
						|
 | 
						|
    /// hasOperand - Test whether the given SCEV has Op as a direct or
 | 
						|
    /// indirect operand.
 | 
						|
    bool hasOperand(const SCEV *S, const SCEV *Op) const;
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    virtual void releaseMemory();
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
    virtual void print(raw_ostream &OS, const Module* = 0) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    FoldingSet<SCEV> UniqueSCEVs;
 | 
						|
    BumpPtrAllocator SCEVAllocator;
 | 
						|
 | 
						|
    /// FirstUnknown - The head of a linked list of all SCEVUnknown
 | 
						|
    /// values that have been allocated. This is used by releaseMemory
 | 
						|
    /// to locate them all and call their destructors.
 | 
						|
    SCEVUnknown *FirstUnknown;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |