mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76344 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3642 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3642 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library converts LLVM code to C code, compilable by GCC and other C
 | |
| // compilers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CTargetMachine.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Analysis/ConstantsScanner.h"
 | |
| #include "llvm/Analysis/FindUsedTypes.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Target/TargetAsmInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachineRegistry.h"
 | |
| #include "llvm/Target/TargetRegistry.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include <algorithm>
 | |
| #include <sstream>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Register the target.
 | |
| static RegisterTarget<CTargetMachine> X(TheCBackendTarget, "c", "C backend");
 | |
| 
 | |
| // Force static initialization.
 | |
| extern "C" void LLVMInitializeCBackendTarget() { }
 | |
| 
 | |
| namespace {
 | |
|   /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
 | |
|   /// any unnamed structure types that are used by the program, and merges
 | |
|   /// external functions with the same name.
 | |
|   ///
 | |
|   class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
 | |
|   public:
 | |
|     static char ID;
 | |
|     CBackendNameAllUsedStructsAndMergeFunctions() 
 | |
|       : ModulePass(&ID) {}
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<FindUsedTypes>();
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "C backend type canonicalizer";
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnModule(Module &M);
 | |
|   };
 | |
| 
 | |
|   char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
 | |
| 
 | |
|   /// CWriter - This class is the main chunk of code that converts an LLVM
 | |
|   /// module to a C translation unit.
 | |
|   class CWriter : public FunctionPass, public InstVisitor<CWriter> {
 | |
|     formatted_raw_ostream &Out;
 | |
|     IntrinsicLowering *IL;
 | |
|     Mangler *Mang;
 | |
|     LoopInfo *LI;
 | |
|     const Module *TheModule;
 | |
|     const TargetAsmInfo* TAsm;
 | |
|     const TargetData* TD;
 | |
|     std::map<const Type *, std::string> TypeNames;
 | |
|     std::map<const ConstantFP *, unsigned> FPConstantMap;
 | |
|     std::set<Function*> intrinsicPrototypesAlreadyGenerated;
 | |
|     std::set<const Argument*> ByValParams;
 | |
|     unsigned FPCounter;
 | |
|     unsigned OpaqueCounter;
 | |
|     DenseMap<const Value*, unsigned> AnonValueNumbers;
 | |
|     unsigned NextAnonValueNumber;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     explicit CWriter(formatted_raw_ostream &o)
 | |
|       : FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0), 
 | |
|         TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
 | |
|       FPCounter = 0;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const { return "C backend"; }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.setPreservesAll();
 | |
|     }
 | |
| 
 | |
|     virtual bool doInitialization(Module &M);
 | |
| 
 | |
|     bool runOnFunction(Function &F) {
 | |
|      // Do not codegen any 'available_externally' functions at all, they have
 | |
|      // definitions outside the translation unit.
 | |
|      if (F.hasAvailableExternallyLinkage())
 | |
|        return false;
 | |
| 
 | |
|       LI = &getAnalysis<LoopInfo>();
 | |
| 
 | |
|       // Get rid of intrinsics we can't handle.
 | |
|       lowerIntrinsics(F);
 | |
| 
 | |
|       // Output all floating point constants that cannot be printed accurately.
 | |
|       printFloatingPointConstants(F);
 | |
| 
 | |
|       printFunction(F);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     virtual bool doFinalization(Module &M) {
 | |
|       // Free memory...
 | |
|       delete IL;
 | |
|       delete TD;
 | |
|       delete Mang;
 | |
|       FPConstantMap.clear();
 | |
|       TypeNames.clear();
 | |
|       ByValParams.clear();
 | |
|       intrinsicPrototypesAlreadyGenerated.clear();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     raw_ostream &printType(formatted_raw_ostream &Out,
 | |
|                            const Type *Ty, 
 | |
|                            bool isSigned = false,
 | |
|                            const std::string &VariableName = "",
 | |
|                            bool IgnoreName = false,
 | |
|                            const AttrListPtr &PAL = AttrListPtr());
 | |
|     std::ostream &printType(std::ostream &Out, const Type *Ty, 
 | |
|                            bool isSigned = false,
 | |
|                            const std::string &VariableName = "",
 | |
|                            bool IgnoreName = false,
 | |
|                            const AttrListPtr &PAL = AttrListPtr());
 | |
|     raw_ostream &printSimpleType(formatted_raw_ostream &Out,
 | |
|                                  const Type *Ty, 
 | |
|                                  bool isSigned, 
 | |
|                                  const std::string &NameSoFar = "");
 | |
|     std::ostream &printSimpleType(std::ostream &Out, const Type *Ty, 
 | |
|                                  bool isSigned, 
 | |
|                                  const std::string &NameSoFar = "");
 | |
| 
 | |
|     void printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
 | |
|                                               const AttrListPtr &PAL,
 | |
|                                               const PointerType *Ty);
 | |
| 
 | |
|     /// writeOperandDeref - Print the result of dereferencing the specified
 | |
|     /// operand with '*'.  This is equivalent to printing '*' then using
 | |
|     /// writeOperand, but avoids excess syntax in some cases.
 | |
|     void writeOperandDeref(Value *Operand) {
 | |
|       if (isAddressExposed(Operand)) {
 | |
|         // Already something with an address exposed.
 | |
|         writeOperandInternal(Operand);
 | |
|       } else {
 | |
|         Out << "*(";
 | |
|         writeOperand(Operand);
 | |
|         Out << ")";
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     void writeOperand(Value *Operand, bool Static = false);
 | |
|     void writeInstComputationInline(Instruction &I);
 | |
|     void writeOperandInternal(Value *Operand, bool Static = false);
 | |
|     void writeOperandWithCast(Value* Operand, unsigned Opcode);
 | |
|     void writeOperandWithCast(Value* Operand, const ICmpInst &I);
 | |
|     bool writeInstructionCast(const Instruction &I);
 | |
| 
 | |
|     void writeMemoryAccess(Value *Operand, const Type *OperandType,
 | |
|                            bool IsVolatile, unsigned Alignment);
 | |
| 
 | |
|   private :
 | |
|     std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
 | |
| 
 | |
|     void lowerIntrinsics(Function &F);
 | |
| 
 | |
|     void printModule(Module *M);
 | |
|     void printModuleTypes(const TypeSymbolTable &ST);
 | |
|     void printContainedStructs(const Type *Ty, std::set<const Type *> &);
 | |
|     void printFloatingPointConstants(Function &F);
 | |
|     void printFloatingPointConstants(const Constant *C);
 | |
|     void printFunctionSignature(const Function *F, bool Prototype);
 | |
| 
 | |
|     void printFunction(Function &);
 | |
|     void printBasicBlock(BasicBlock *BB);
 | |
|     void printLoop(Loop *L);
 | |
| 
 | |
|     void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
 | |
|     void printConstant(Constant *CPV, bool Static);
 | |
|     void printConstantWithCast(Constant *CPV, unsigned Opcode);
 | |
|     bool printConstExprCast(const ConstantExpr *CE, bool Static);
 | |
|     void printConstantArray(ConstantArray *CPA, bool Static);
 | |
|     void printConstantVector(ConstantVector *CV, bool Static);
 | |
| 
 | |
|     /// isAddressExposed - Return true if the specified value's name needs to
 | |
|     /// have its address taken in order to get a C value of the correct type.
 | |
|     /// This happens for global variables, byval parameters, and direct allocas.
 | |
|     bool isAddressExposed(const Value *V) const {
 | |
|       if (const Argument *A = dyn_cast<Argument>(V))
 | |
|         return ByValParams.count(A);
 | |
|       return isa<GlobalVariable>(V) || isDirectAlloca(V);
 | |
|     }
 | |
|     
 | |
|     // isInlinableInst - Attempt to inline instructions into their uses to build
 | |
|     // trees as much as possible.  To do this, we have to consistently decide
 | |
|     // what is acceptable to inline, so that variable declarations don't get
 | |
|     // printed and an extra copy of the expr is not emitted.
 | |
|     //
 | |
|     static bool isInlinableInst(const Instruction &I) {
 | |
|       // Always inline cmp instructions, even if they are shared by multiple
 | |
|       // expressions.  GCC generates horrible code if we don't.
 | |
|       if (isa<CmpInst>(I)) 
 | |
|         return true;
 | |
| 
 | |
|       // Must be an expression, must be used exactly once.  If it is dead, we
 | |
|       // emit it inline where it would go.
 | |
|       if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
 | |
|           isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
 | |
|           isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
 | |
|           isa<InsertValueInst>(I))
 | |
|         // Don't inline a load across a store or other bad things!
 | |
|         return false;
 | |
| 
 | |
|       // Must not be used in inline asm, extractelement, or shufflevector.
 | |
|       if (I.hasOneUse()) {
 | |
|         const Instruction &User = cast<Instruction>(*I.use_back());
 | |
|         if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
 | |
|             isa<ShuffleVectorInst>(User))
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       // Only inline instruction it if it's use is in the same BB as the inst.
 | |
|       return I.getParent() == cast<Instruction>(I.use_back())->getParent();
 | |
|     }
 | |
| 
 | |
|     // isDirectAlloca - Define fixed sized allocas in the entry block as direct
 | |
|     // variables which are accessed with the & operator.  This causes GCC to
 | |
|     // generate significantly better code than to emit alloca calls directly.
 | |
|     //
 | |
|     static const AllocaInst *isDirectAlloca(const Value *V) {
 | |
|       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | |
|       if (!AI) return false;
 | |
|       if (AI->isArrayAllocation())
 | |
|         return 0;   // FIXME: we can also inline fixed size array allocas!
 | |
|       if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
 | |
|         return 0;
 | |
|       return AI;
 | |
|     }
 | |
|     
 | |
|     // isInlineAsm - Check if the instruction is a call to an inline asm chunk
 | |
|     static bool isInlineAsm(const Instruction& I) {
 | |
|       if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
 | |
|         return true;
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     // Instruction visitation functions
 | |
|     friend class InstVisitor<CWriter>;
 | |
| 
 | |
|     void visitReturnInst(ReturnInst &I);
 | |
|     void visitBranchInst(BranchInst &I);
 | |
|     void visitSwitchInst(SwitchInst &I);
 | |
|     void visitInvokeInst(InvokeInst &I) {
 | |
|       llvm_unreachable("Lowerinvoke pass didn't work!");
 | |
|     }
 | |
| 
 | |
|     void visitUnwindInst(UnwindInst &I) {
 | |
|       llvm_unreachable("Lowerinvoke pass didn't work!");
 | |
|     }
 | |
|     void visitUnreachableInst(UnreachableInst &I);
 | |
| 
 | |
|     void visitPHINode(PHINode &I);
 | |
|     void visitBinaryOperator(Instruction &I);
 | |
|     void visitICmpInst(ICmpInst &I);
 | |
|     void visitFCmpInst(FCmpInst &I);
 | |
| 
 | |
|     void visitCastInst (CastInst &I);
 | |
|     void visitSelectInst(SelectInst &I);
 | |
|     void visitCallInst (CallInst &I);
 | |
|     void visitInlineAsm(CallInst &I);
 | |
|     bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
 | |
| 
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitFreeInst  (FreeInst   &I);
 | |
|     void visitLoadInst  (LoadInst   &I);
 | |
|     void visitStoreInst (StoreInst  &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitVAArgInst (VAArgInst &I);
 | |
|     
 | |
|     void visitInsertElementInst(InsertElementInst &I);
 | |
|     void visitExtractElementInst(ExtractElementInst &I);
 | |
|     void visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | |
| 
 | |
|     void visitInsertValueInst(InsertValueInst &I);
 | |
|     void visitExtractValueInst(ExtractValueInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
| #ifndef NDEBUG
 | |
|       cerr << "C Writer does not know about " << I;
 | |
| #endif
 | |
|       llvm_unreachable(0);
 | |
|     }
 | |
| 
 | |
|     void outputLValue(Instruction *I) {
 | |
|       Out << "  " << GetValueName(I) << " = ";
 | |
|     }
 | |
| 
 | |
|     bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
 | |
|     void printPHICopiesForSuccessor(BasicBlock *CurBlock,
 | |
|                                     BasicBlock *Successor, unsigned Indent);
 | |
|     void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
 | |
|                             unsigned Indent);
 | |
|     void printGEPExpression(Value *Ptr, gep_type_iterator I,
 | |
|                             gep_type_iterator E, bool Static);
 | |
| 
 | |
|     std::string GetValueName(const Value *Operand);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CWriter::ID = 0;
 | |
| 
 | |
| /// This method inserts names for any unnamed structure types that are used by
 | |
| /// the program, and removes names from structure types that are not used by the
 | |
| /// program.
 | |
| ///
 | |
| bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
 | |
|   // Get a set of types that are used by the program...
 | |
|   std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
 | |
| 
 | |
|   // Loop over the module symbol table, removing types from UT that are
 | |
|   // already named, and removing names for types that are not used.
 | |
|   //
 | |
|   TypeSymbolTable &TST = M.getTypeSymbolTable();
 | |
|   for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
 | |
|        TI != TE; ) {
 | |
|     TypeSymbolTable::iterator I = TI++;
 | |
|     
 | |
|     // If this isn't a struct or array type, remove it from our set of types
 | |
|     // to name. This simplifies emission later.
 | |
|     if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
 | |
|         !isa<ArrayType>(I->second)) {
 | |
|       TST.remove(I);
 | |
|     } else {
 | |
|       // If this is not used, remove it from the symbol table.
 | |
|       std::set<const Type *>::iterator UTI = UT.find(I->second);
 | |
|       if (UTI == UT.end())
 | |
|         TST.remove(I);
 | |
|       else
 | |
|         UT.erase(UTI);    // Only keep one name for this type.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // UT now contains types that are not named.  Loop over it, naming
 | |
|   // structure types.
 | |
|   //
 | |
|   bool Changed = false;
 | |
|   unsigned RenameCounter = 0;
 | |
|   for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
 | |
|        I != E; ++I)
 | |
|     if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
 | |
|       while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
 | |
|         ++RenameCounter;
 | |
|       Changed = true;
 | |
|     }
 | |
|       
 | |
|       
 | |
|   // Loop over all external functions and globals.  If we have two with
 | |
|   // identical names, merge them.
 | |
|   // FIXME: This code should disappear when we don't allow values with the same
 | |
|   // names when they have different types!
 | |
|   std::map<std::string, GlobalValue*> ExtSymbols;
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
 | |
|     Function *GV = I++;
 | |
|     if (GV->isDeclaration() && GV->hasName()) {
 | |
|       std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
 | |
|         = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
 | |
|       if (!X.second) {
 | |
|         // Found a conflict, replace this global with the previous one.
 | |
|         GlobalValue *OldGV = X.first->second;
 | |
|         GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
 | |
|         GV->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Do the same for globals.
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E;) {
 | |
|     GlobalVariable *GV = I++;
 | |
|     if (GV->isDeclaration() && GV->hasName()) {
 | |
|       std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
 | |
|         = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
 | |
|       if (!X.second) {
 | |
|         // Found a conflict, replace this global with the previous one.
 | |
|         GlobalValue *OldGV = X.first->second;
 | |
|         GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
 | |
|         GV->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// printStructReturnPointerFunctionType - This is like printType for a struct
 | |
| /// return type, except, instead of printing the type as void (*)(Struct*, ...)
 | |
| /// print it as "Struct (*)(...)", for struct return functions.
 | |
| void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
 | |
|                                                    const AttrListPtr &PAL,
 | |
|                                                    const PointerType *TheTy) {
 | |
|   const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
 | |
|   std::stringstream FunctionInnards;
 | |
|   FunctionInnards << " (*) (";
 | |
|   bool PrintedType = false;
 | |
| 
 | |
|   FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
 | |
|   const Type *RetTy = cast<PointerType>(I->get())->getElementType();
 | |
|   unsigned Idx = 1;
 | |
|   for (++I, ++Idx; I != E; ++I, ++Idx) {
 | |
|     if (PrintedType)
 | |
|       FunctionInnards << ", ";
 | |
|     const Type *ArgTy = *I;
 | |
|     if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|       assert(isa<PointerType>(ArgTy));
 | |
|       ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|     }
 | |
|     printType(FunctionInnards, ArgTy,
 | |
|         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
 | |
|     PrintedType = true;
 | |
|   }
 | |
|   if (FTy->isVarArg()) {
 | |
|     if (PrintedType)
 | |
|       FunctionInnards << ", ...";
 | |
|   } else if (!PrintedType) {
 | |
|     FunctionInnards << "void";
 | |
|   }
 | |
|   FunctionInnards << ')';
 | |
|   std::string tstr = FunctionInnards.str();
 | |
|   printType(Out, RetTy, 
 | |
|       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
 | |
| }
 | |
| 
 | |
| raw_ostream &
 | |
| CWriter::printSimpleType(formatted_raw_ostream &Out, const Type *Ty,
 | |
|                          bool isSigned,
 | |
|                          const std::string &NameSoFar) {
 | |
|   assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) && 
 | |
|          "Invalid type for printSimpleType");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::VoidTyID:   return Out << "void " << NameSoFar;
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     if (NumBits == 1) 
 | |
|       return Out << "bool " << NameSoFar;
 | |
|     else if (NumBits <= 8)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
 | |
|     else if (NumBits <= 16)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
 | |
|     else if (NumBits <= 32)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
 | |
|     else if (NumBits <= 64)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
 | |
|     else { 
 | |
|       assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
 | |
|       return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
 | |
|     }
 | |
|   }
 | |
|   case Type::FloatTyID:  return Out << "float "   << NameSoFar;
 | |
|   case Type::DoubleTyID: return Out << "double "  << NameSoFar;
 | |
|   // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
 | |
|   // present matches host 'long double'.
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:  return Out << "long double " << NameSoFar;
 | |
|       
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *VTy = cast<VectorType>(Ty);
 | |
|     return printSimpleType(Out, VTy->getElementType(), isSigned,
 | |
|                      " __attribute__((vector_size(" +
 | |
|                      utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
 | |
|   }
 | |
|     
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     cerr << "Unknown primitive type: " << *Ty << "\n";
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::ostream &
 | |
| CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
 | |
|                          const std::string &NameSoFar) {
 | |
|   assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) && 
 | |
|          "Invalid type for printSimpleType");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::VoidTyID:   return Out << "void " << NameSoFar;
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     if (NumBits == 1) 
 | |
|       return Out << "bool " << NameSoFar;
 | |
|     else if (NumBits <= 8)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
 | |
|     else if (NumBits <= 16)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
 | |
|     else if (NumBits <= 32)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
 | |
|     else if (NumBits <= 64)
 | |
|       return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
 | |
|     else { 
 | |
|       assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
 | |
|       return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
 | |
|     }
 | |
|   }
 | |
|   case Type::FloatTyID:  return Out << "float "   << NameSoFar;
 | |
|   case Type::DoubleTyID: return Out << "double "  << NameSoFar;
 | |
|   // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
 | |
|   // present matches host 'long double'.
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:  return Out << "long double " << NameSoFar;
 | |
|       
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *VTy = cast<VectorType>(Ty);
 | |
|     return printSimpleType(Out, VTy->getElementType(), isSigned,
 | |
|                      " __attribute__((vector_size(" +
 | |
|                      utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
 | |
|   }
 | |
|     
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     cerr << "Unknown primitive type: " << *Ty << "\n";
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Pass the Type* and the variable name and this prints out the variable
 | |
| // declaration.
 | |
| //
 | |
| raw_ostream &CWriter::printType(formatted_raw_ostream &Out,
 | |
|                                 const Type *Ty,
 | |
|                                 bool isSigned, const std::string &NameSoFar,
 | |
|                                 bool IgnoreName, const AttrListPtr &PAL) {
 | |
|   if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
 | |
|     printSimpleType(Out, Ty, isSigned, NameSoFar);
 | |
|     return Out;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   if (!IgnoreName || isa<OpaqueType>(Ty)) {
 | |
|     std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|     if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
 | |
|   }
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<FunctionType>(Ty);
 | |
|     std::stringstream FunctionInnards;
 | |
|     FunctionInnards << " (" << NameSoFar << ") (";
 | |
|     unsigned Idx = 1;
 | |
|     for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|            E = FTy->param_end(); I != E; ++I) {
 | |
|       const Type *ArgTy = *I;
 | |
|       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|         assert(isa<PointerType>(ArgTy));
 | |
|         ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|       }
 | |
|       if (I != FTy->param_begin())
 | |
|         FunctionInnards << ", ";
 | |
|       printType(FunctionInnards, ArgTy,
 | |
|         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
 | |
|       ++Idx;
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (FTy->getNumParams())
 | |
|         FunctionInnards << ", ...";
 | |
|     } else if (!FTy->getNumParams()) {
 | |
|       FunctionInnards << "void";
 | |
|     }
 | |
|     FunctionInnards << ')';
 | |
|     std::string tstr = FunctionInnards.str();
 | |
|     printType(Out, FTy->getReturnType(), 
 | |
|       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
 | |
|     return Out;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     Out << NameSoFar + " {\n";
 | |
|     unsigned Idx = 0;
 | |
|     for (StructType::element_iterator I = STy->element_begin(),
 | |
|            E = STy->element_end(); I != E; ++I) {
 | |
|       Out << "  ";
 | |
|       printType(Out, *I, false, "field" + utostr(Idx++));
 | |
|       Out << ";\n";
 | |
|     }
 | |
|     Out << '}';
 | |
|     if (STy->isPacked())
 | |
|       Out << " __attribute__ ((packed))";
 | |
|     return Out;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PTy = cast<PointerType>(Ty);
 | |
|     std::string ptrName = "*" + NameSoFar;
 | |
| 
 | |
|     if (isa<ArrayType>(PTy->getElementType()) ||
 | |
|         isa<VectorType>(PTy->getElementType()))
 | |
|       ptrName = "(" + ptrName + ")";
 | |
| 
 | |
|     if (!PAL.isEmpty())
 | |
|       // Must be a function ptr cast!
 | |
|       return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
 | |
|     return printType(Out, PTy->getElementType(), false, ptrName);
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = ATy->getNumElements();
 | |
|     if (NumElements == 0) NumElements = 1;
 | |
|     // Arrays are wrapped in structs to allow them to have normal
 | |
|     // value semantics (avoiding the array "decay").
 | |
|     Out << NameSoFar << " { ";
 | |
|     printType(Out, ATy->getElementType(), false,
 | |
|               "array[" + utostr(NumElements) + "]");
 | |
|     return Out << "; }";
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
 | |
|     assert(TypeNames.find(Ty) == TypeNames.end());
 | |
|     TypeNames[Ty] = TyName;
 | |
|     return Out << TyName << ' ' << NameSoFar;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled case in getTypeProps!");
 | |
|   }
 | |
| 
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| // Pass the Type* and the variable name and this prints out the variable
 | |
| // declaration.
 | |
| //
 | |
| std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
 | |
|                                  bool isSigned, const std::string &NameSoFar,
 | |
|                                  bool IgnoreName, const AttrListPtr &PAL) {
 | |
|   if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
 | |
|     printSimpleType(Out, Ty, isSigned, NameSoFar);
 | |
|     return Out;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   if (!IgnoreName || isa<OpaqueType>(Ty)) {
 | |
|     std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|     if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
 | |
|   }
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<FunctionType>(Ty);
 | |
|     std::stringstream FunctionInnards;
 | |
|     FunctionInnards << " (" << NameSoFar << ") (";
 | |
|     unsigned Idx = 1;
 | |
|     for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|            E = FTy->param_end(); I != E; ++I) {
 | |
|       const Type *ArgTy = *I;
 | |
|       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|         assert(isa<PointerType>(ArgTy));
 | |
|         ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|       }
 | |
|       if (I != FTy->param_begin())
 | |
|         FunctionInnards << ", ";
 | |
|       printType(FunctionInnards, ArgTy,
 | |
|         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
 | |
|       ++Idx;
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (FTy->getNumParams())
 | |
|         FunctionInnards << ", ...";
 | |
|     } else if (!FTy->getNumParams()) {
 | |
|       FunctionInnards << "void";
 | |
|     }
 | |
|     FunctionInnards << ')';
 | |
|     std::string tstr = FunctionInnards.str();
 | |
|     printType(Out, FTy->getReturnType(), 
 | |
|       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
 | |
|     return Out;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     Out << NameSoFar + " {\n";
 | |
|     unsigned Idx = 0;
 | |
|     for (StructType::element_iterator I = STy->element_begin(),
 | |
|            E = STy->element_end(); I != E; ++I) {
 | |
|       Out << "  ";
 | |
|       printType(Out, *I, false, "field" + utostr(Idx++));
 | |
|       Out << ";\n";
 | |
|     }
 | |
|     Out << '}';
 | |
|     if (STy->isPacked())
 | |
|       Out << " __attribute__ ((packed))";
 | |
|     return Out;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PTy = cast<PointerType>(Ty);
 | |
|     std::string ptrName = "*" + NameSoFar;
 | |
| 
 | |
|     if (isa<ArrayType>(PTy->getElementType()) ||
 | |
|         isa<VectorType>(PTy->getElementType()))
 | |
|       ptrName = "(" + ptrName + ")";
 | |
| 
 | |
|     if (!PAL.isEmpty())
 | |
|       // Must be a function ptr cast!
 | |
|       return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
 | |
|     return printType(Out, PTy->getElementType(), false, ptrName);
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = ATy->getNumElements();
 | |
|     if (NumElements == 0) NumElements = 1;
 | |
|     // Arrays are wrapped in structs to allow them to have normal
 | |
|     // value semantics (avoiding the array "decay").
 | |
|     Out << NameSoFar << " { ";
 | |
|     printType(Out, ATy->getElementType(), false,
 | |
|               "array[" + utostr(NumElements) + "]");
 | |
|     return Out << "; }";
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
 | |
|     assert(TypeNames.find(Ty) == TypeNames.end());
 | |
|     TypeNames[Ty] = TyName;
 | |
|     return Out << TyName << ' ' << NameSoFar;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled case in getTypeProps!");
 | |
|   }
 | |
| 
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
 | |
| 
 | |
|   // As a special case, print the array as a string if it is an array of
 | |
|   // ubytes or an array of sbytes with positive values.
 | |
|   //
 | |
|   const Type *ETy = CPA->getType()->getElementType();
 | |
|   bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
 | |
| 
 | |
|   // Make sure the last character is a null char, as automatically added by C
 | |
|   if (isString && (CPA->getNumOperands() == 0 ||
 | |
|                    !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
 | |
|     isString = false;
 | |
| 
 | |
|   if (isString) {
 | |
|     Out << '\"';
 | |
|     // Keep track of whether the last number was a hexadecimal escape
 | |
|     bool LastWasHex = false;
 | |
| 
 | |
|     // Do not include the last character, which we know is null
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
 | |
|       unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
 | |
| 
 | |
|       // Print it out literally if it is a printable character.  The only thing
 | |
|       // to be careful about is when the last letter output was a hex escape
 | |
|       // code, in which case we have to be careful not to print out hex digits
 | |
|       // explicitly (the C compiler thinks it is a continuation of the previous
 | |
|       // character, sheesh...)
 | |
|       //
 | |
|       if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
 | |
|         LastWasHex = false;
 | |
|         if (C == '"' || C == '\\')
 | |
|           Out << "\\" << (char)C;
 | |
|         else
 | |
|           Out << (char)C;
 | |
|       } else {
 | |
|         LastWasHex = false;
 | |
|         switch (C) {
 | |
|         case '\n': Out << "\\n"; break;
 | |
|         case '\t': Out << "\\t"; break;
 | |
|         case '\r': Out << "\\r"; break;
 | |
|         case '\v': Out << "\\v"; break;
 | |
|         case '\a': Out << "\\a"; break;
 | |
|         case '\"': Out << "\\\""; break;
 | |
|         case '\'': Out << "\\\'"; break;
 | |
|         default:
 | |
|           Out << "\\x";
 | |
|           Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
 | |
|           Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | |
|           LastWasHex = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Out << '\"';
 | |
|   } else {
 | |
|     Out << '{';
 | |
|     if (CPA->getNumOperands()) {
 | |
|       Out << ' ';
 | |
|       printConstant(cast<Constant>(CPA->getOperand(0)), Static);
 | |
|       for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
 | |
|         Out << ", ";
 | |
|         printConstant(cast<Constant>(CPA->getOperand(i)), Static);
 | |
|       }
 | |
|     }
 | |
|     Out << " }";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
 | |
|   Out << '{';
 | |
|   if (CP->getNumOperands()) {
 | |
|     Out << ' ';
 | |
|     printConstant(cast<Constant>(CP->getOperand(0)), Static);
 | |
|     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | |
|       Out << ", ";
 | |
|       printConstant(cast<Constant>(CP->getOperand(i)), Static);
 | |
|     }
 | |
|   }
 | |
|   Out << " }";
 | |
| }
 | |
| 
 | |
| // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
 | |
| // textually as a double (rather than as a reference to a stack-allocated
 | |
| // variable). We decide this by converting CFP to a string and back into a
 | |
| // double, and then checking whether the conversion results in a bit-equal
 | |
| // double to the original value of CFP. This depends on us and the target C
 | |
| // compiler agreeing on the conversion process (which is pretty likely since we
 | |
| // only deal in IEEE FP).
 | |
| //
 | |
| static bool isFPCSafeToPrint(const ConstantFP *CFP) {
 | |
|   bool ignored;
 | |
|   // Do long doubles in hex for now.
 | |
|   if (CFP->getType() != Type::FloatTy && CFP->getType() != Type::DoubleTy)
 | |
|     return false;
 | |
|   APFloat APF = APFloat(CFP->getValueAPF());  // copy
 | |
|   if (CFP->getType() == Type::FloatTy)
 | |
|     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
 | |
| #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | |
|   char Buffer[100];
 | |
|   sprintf(Buffer, "%a", APF.convertToDouble());
 | |
|   if (!strncmp(Buffer, "0x", 2) ||
 | |
|       !strncmp(Buffer, "-0x", 3) ||
 | |
|       !strncmp(Buffer, "+0x", 3))
 | |
|     return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
 | |
|   return false;
 | |
| #else
 | |
|   std::string StrVal = ftostr(APF);
 | |
| 
 | |
|   while (StrVal[0] == ' ')
 | |
|     StrVal.erase(StrVal.begin());
 | |
| 
 | |
|   // Check to make sure that the stringized number is not some string like "Inf"
 | |
|   // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
 | |
|   if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | |
|       ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | |
|        (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | |
|     // Reparse stringized version!
 | |
|     return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
 | |
|   return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Print out the casting for a cast operation. This does the double casting
 | |
| /// necessary for conversion to the destination type, if necessary. 
 | |
| /// @brief Print a cast
 | |
| void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
 | |
|   // Print the destination type cast
 | |
|   switch (opc) {
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
 | |
|       Out << '(';
 | |
|       printType(Out, DstTy);
 | |
|       Out << ')';
 | |
|       break;
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::FPToUI: // For these, make sure we get an unsigned dest
 | |
|       Out << '(';
 | |
|       printSimpleType(Out, DstTy, false);
 | |
|       Out << ')';
 | |
|       break;
 | |
|     case Instruction::SExt: 
 | |
|     case Instruction::FPToSI: // For these, make sure we get a signed dest
 | |
|       Out << '(';
 | |
|       printSimpleType(Out, DstTy, true);
 | |
|       Out << ')';
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid cast opcode");
 | |
|   }
 | |
| 
 | |
|   // Print the source type cast
 | |
|   switch (opc) {
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::ZExt:
 | |
|       Out << '(';
 | |
|       printSimpleType(Out, SrcTy, false);
 | |
|       Out << ')';
 | |
|       break;
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::SExt:
 | |
|       Out << '(';
 | |
|       printSimpleType(Out, SrcTy, true); 
 | |
|       Out << ')';
 | |
|       break;
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::PtrToInt:
 | |
|       // Avoid "cast to pointer from integer of different size" warnings
 | |
|       Out << "(unsigned long)";
 | |
|       break;
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPToUI:
 | |
|       break; // These don't need a source cast.
 | |
|     default:
 | |
|       llvm_unreachable("Invalid cast opcode");
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // printConstant - The LLVM Constant to C Constant converter.
 | |
| void CWriter::printConstant(Constant *CPV, bool Static) {
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::BitCast:
 | |
|       Out << "(";
 | |
|       printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
 | |
|       if (CE->getOpcode() == Instruction::SExt &&
 | |
|           CE->getOperand(0)->getType() == Type::Int1Ty) {
 | |
|         // Make sure we really sext from bool here by subtracting from 0
 | |
|         Out << "0-";
 | |
|       }
 | |
|       printConstant(CE->getOperand(0), Static);
 | |
|       if (CE->getType() == Type::Int1Ty &&
 | |
|           (CE->getOpcode() == Instruction::Trunc ||
 | |
|            CE->getOpcode() == Instruction::FPToUI ||
 | |
|            CE->getOpcode() == Instruction::FPToSI ||
 | |
|            CE->getOpcode() == Instruction::PtrToInt)) {
 | |
|         // Make sure we really truncate to bool here by anding with 1
 | |
|         Out << "&1u";
 | |
|       }
 | |
|       Out << ')';
 | |
|       return;
 | |
| 
 | |
|     case Instruction::GetElementPtr:
 | |
|       Out << "(";
 | |
|       printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
 | |
|                          gep_type_end(CPV), Static);
 | |
|       Out << ")";
 | |
|       return;
 | |
|     case Instruction::Select:
 | |
|       Out << '(';
 | |
|       printConstant(CE->getOperand(0), Static);
 | |
|       Out << '?';
 | |
|       printConstant(CE->getOperand(1), Static);
 | |
|       Out << ':';
 | |
|       printConstant(CE->getOperand(2), Static);
 | |
|       Out << ')';
 | |
|       return;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     {
 | |
|       Out << '(';
 | |
|       bool NeedsClosingParens = printConstExprCast(CE, Static); 
 | |
|       printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | |
|       switch (CE->getOpcode()) {
 | |
|       case Instruction::Add:
 | |
|       case Instruction::FAdd: Out << " + "; break;
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::FSub: Out << " - "; break;
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::FMul: Out << " * "; break;
 | |
|       case Instruction::URem:
 | |
|       case Instruction::SRem: 
 | |
|       case Instruction::FRem: Out << " % "; break;
 | |
|       case Instruction::UDiv: 
 | |
|       case Instruction::SDiv: 
 | |
|       case Instruction::FDiv: Out << " / "; break;
 | |
|       case Instruction::And: Out << " & "; break;
 | |
|       case Instruction::Or:  Out << " | "; break;
 | |
|       case Instruction::Xor: Out << " ^ "; break;
 | |
|       case Instruction::Shl: Out << " << "; break;
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr: Out << " >> "; break;
 | |
|       case Instruction::ICmp:
 | |
|         switch (CE->getPredicate()) {
 | |
|           case ICmpInst::ICMP_EQ: Out << " == "; break;
 | |
|           case ICmpInst::ICMP_NE: Out << " != "; break;
 | |
|           case ICmpInst::ICMP_SLT: 
 | |
|           case ICmpInst::ICMP_ULT: Out << " < "; break;
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|           case ICmpInst::ICMP_ULE: Out << " <= "; break;
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_UGT: Out << " > "; break;
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|           case ICmpInst::ICMP_UGE: Out << " >= "; break;
 | |
|           default: llvm_unreachable("Illegal ICmp predicate");
 | |
|         }
 | |
|         break;
 | |
|       default: llvm_unreachable("Illegal opcode here!");
 | |
|       }
 | |
|       printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | |
|       if (NeedsClosingParens)
 | |
|         Out << "))";
 | |
|       Out << ')';
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::FCmp: {
 | |
|       Out << '('; 
 | |
|       bool NeedsClosingParens = printConstExprCast(CE, Static); 
 | |
|       if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
 | |
|         Out << "0";
 | |
|       else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
 | |
|         Out << "1";
 | |
|       else {
 | |
|         const char* op = 0;
 | |
|         switch (CE->getPredicate()) {
 | |
|         default: llvm_unreachable("Illegal FCmp predicate");
 | |
|         case FCmpInst::FCMP_ORD: op = "ord"; break;
 | |
|         case FCmpInst::FCMP_UNO: op = "uno"; break;
 | |
|         case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | |
|         case FCmpInst::FCMP_UNE: op = "une"; break;
 | |
|         case FCmpInst::FCMP_ULT: op = "ult"; break;
 | |
|         case FCmpInst::FCMP_ULE: op = "ule"; break;
 | |
|         case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | |
|         case FCmpInst::FCMP_UGE: op = "uge"; break;
 | |
|         case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | |
|         case FCmpInst::FCMP_ONE: op = "one"; break;
 | |
|         case FCmpInst::FCMP_OLT: op = "olt"; break;
 | |
|         case FCmpInst::FCMP_OLE: op = "ole"; break;
 | |
|         case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | |
|         case FCmpInst::FCMP_OGE: op = "oge"; break;
 | |
|         }
 | |
|         Out << "llvm_fcmp_" << op << "(";
 | |
|         printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | |
|         Out << ", ";
 | |
|         printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | |
|         Out << ")";
 | |
|       }
 | |
|       if (NeedsClosingParens)
 | |
|         Out << "))";
 | |
|       Out << ')';
 | |
|       return;
 | |
|     }
 | |
|     default:
 | |
| #ifndef NDEBUG
 | |
|       cerr << "CWriter Error: Unhandled constant expression: "
 | |
|            << *CE << "\n";
 | |
| #endif
 | |
|       llvm_unreachable(0);
 | |
|     }
 | |
|   } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
 | |
|     Out << "((";
 | |
|     printType(Out, CPV->getType()); // sign doesn't matter
 | |
|     Out << ")/*UNDEF*/";
 | |
|     if (!isa<VectorType>(CPV->getType())) {
 | |
|       Out << "0)";
 | |
|     } else {
 | |
|       Out << "{})";
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
 | |
|     const Type* Ty = CI->getType();
 | |
|     if (Ty == Type::Int1Ty)
 | |
|       Out << (CI->getZExtValue() ? '1' : '0');
 | |
|     else if (Ty == Type::Int32Ty)
 | |
|       Out << CI->getZExtValue() << 'u';
 | |
|     else if (Ty->getPrimitiveSizeInBits() > 32)
 | |
|       Out << CI->getZExtValue() << "ull";
 | |
|     else {
 | |
|       Out << "((";
 | |
|       printSimpleType(Out, Ty, false) << ')';
 | |
|       if (CI->isMinValue(true)) 
 | |
|         Out << CI->getZExtValue() << 'u';
 | |
|       else
 | |
|         Out << CI->getSExtValue();
 | |
|       Out << ')';
 | |
|     }
 | |
|     return;
 | |
|   } 
 | |
| 
 | |
|   switch (CPV->getType()->getTypeID()) {
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID: 
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID: {
 | |
|     ConstantFP *FPC = cast<ConstantFP>(CPV);
 | |
|     std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
 | |
|     if (I != FPConstantMap.end()) {
 | |
|       // Because of FP precision problems we must load from a stack allocated
 | |
|       // value that holds the value in hex.
 | |
|       Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : 
 | |
|                        FPC->getType() == Type::DoubleTy ? "double" :
 | |
|                        "long double")
 | |
|           << "*)&FPConstant" << I->second << ')';
 | |
|     } else {
 | |
|       double V;
 | |
|       if (FPC->getType() == Type::FloatTy)
 | |
|         V = FPC->getValueAPF().convertToFloat();
 | |
|       else if (FPC->getType() == Type::DoubleTy)
 | |
|         V = FPC->getValueAPF().convertToDouble();
 | |
|       else {
 | |
|         // Long double.  Convert the number to double, discarding precision.
 | |
|         // This is not awesome, but it at least makes the CBE output somewhat
 | |
|         // useful.
 | |
|         APFloat Tmp = FPC->getValueAPF();
 | |
|         bool LosesInfo;
 | |
|         Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
 | |
|         V = Tmp.convertToDouble();
 | |
|       }
 | |
|       
 | |
|       if (IsNAN(V)) {
 | |
|         // The value is NaN
 | |
| 
 | |
|         // FIXME the actual NaN bits should be emitted.
 | |
|         // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
 | |
|         // it's 0x7ff4.
 | |
|         const unsigned long QuietNaN = 0x7ff8UL;
 | |
|         //const unsigned long SignalNaN = 0x7ff4UL;
 | |
| 
 | |
|         // We need to grab the first part of the FP #
 | |
|         char Buffer[100];
 | |
| 
 | |
|         uint64_t ll = DoubleToBits(V);
 | |
|         sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
 | |
| 
 | |
|         std::string Num(&Buffer[0], &Buffer[6]);
 | |
|         unsigned long Val = strtoul(Num.c_str(), 0, 16);
 | |
| 
 | |
|         if (FPC->getType() == Type::FloatTy)
 | |
|           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
 | |
|               << Buffer << "\") /*nan*/ ";
 | |
|         else
 | |
|           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
 | |
|               << Buffer << "\") /*nan*/ ";
 | |
|       } else if (IsInf(V)) {
 | |
|         // The value is Inf
 | |
|         if (V < 0) Out << '-';
 | |
|         Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
 | |
|             << " /*inf*/ ";
 | |
|       } else {
 | |
|         std::string Num;
 | |
| #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | |
|         // Print out the constant as a floating point number.
 | |
|         char Buffer[100];
 | |
|         sprintf(Buffer, "%a", V);
 | |
|         Num = Buffer;
 | |
| #else
 | |
|         Num = ftostr(FPC->getValueAPF());
 | |
| #endif
 | |
|        Out << Num;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID:
 | |
|     // Use C99 compound expression literal initializer syntax.
 | |
|     if (!Static) {
 | |
|       Out << "(";
 | |
|       printType(Out, CPV->getType());
 | |
|       Out << ")";
 | |
|     }
 | |
|     Out << "{ "; // Arrays are wrapped in struct types.
 | |
|     if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
 | |
|       printConstantArray(CA, Static);
 | |
|     } else {
 | |
|       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
 | |
|       const ArrayType *AT = cast<ArrayType>(CPV->getType());
 | |
|       Out << '{';
 | |
|       if (AT->getNumElements()) {
 | |
|         Out << ' ';
 | |
|         Constant *CZ = Context->getNullValue(AT->getElementType());
 | |
|         printConstant(CZ, Static);
 | |
|         for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printConstant(CZ, Static);
 | |
|         }
 | |
|       }
 | |
|       Out << " }";
 | |
|     }
 | |
|     Out << " }"; // Arrays are wrapped in struct types.
 | |
|     break;
 | |
| 
 | |
|   case Type::VectorTyID:
 | |
|     // Use C99 compound expression literal initializer syntax.
 | |
|     if (!Static) {
 | |
|       Out << "(";
 | |
|       printType(Out, CPV->getType());
 | |
|       Out << ")";
 | |
|     }
 | |
|     if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
 | |
|       printConstantVector(CV, Static);
 | |
|     } else {
 | |
|       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
 | |
|       const VectorType *VT = cast<VectorType>(CPV->getType());
 | |
|       Out << "{ ";
 | |
|       Constant *CZ = Context->getNullValue(VT->getElementType());
 | |
|       printConstant(CZ, Static);
 | |
|       for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
 | |
|         Out << ", ";
 | |
|         printConstant(CZ, Static);
 | |
|       }
 | |
|       Out << " }";
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::StructTyID:
 | |
|     // Use C99 compound expression literal initializer syntax.
 | |
|     if (!Static) {
 | |
|       Out << "(";
 | |
|       printType(Out, CPV->getType());
 | |
|       Out << ")";
 | |
|     }
 | |
|     if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
 | |
|       const StructType *ST = cast<StructType>(CPV->getType());
 | |
|       Out << '{';
 | |
|       if (ST->getNumElements()) {
 | |
|         Out << ' ';
 | |
|         printConstant(Context->getNullValue(ST->getElementType(0)), Static);
 | |
|         for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printConstant(Context->getNullValue(ST->getElementType(i)), Static);
 | |
|         }
 | |
|       }
 | |
|       Out << " }";
 | |
|     } else {
 | |
|       Out << '{';
 | |
|       if (CPV->getNumOperands()) {
 | |
|         Out << ' ';
 | |
|         printConstant(cast<Constant>(CPV->getOperand(0)), Static);
 | |
|         for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printConstant(cast<Constant>(CPV->getOperand(i)), Static);
 | |
|         }
 | |
|       }
 | |
|       Out << " }";
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::PointerTyID:
 | |
|     if (isa<ConstantPointerNull>(CPV)) {
 | |
|       Out << "((";
 | |
|       printType(Out, CPV->getType()); // sign doesn't matter
 | |
|       Out << ")/*NULL*/0)";
 | |
|       break;
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
 | |
|       writeOperand(GV, Static);
 | |
|       break;
 | |
|     }
 | |
|     // FALL THROUGH
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     cerr << "Unknown constant type: " << *CPV << "\n";
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Some constant expressions need to be casted back to the original types
 | |
| // because their operands were casted to the expected type. This function takes
 | |
| // care of detecting that case and printing the cast for the ConstantExpr.
 | |
| bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
 | |
|   bool NeedsExplicitCast = false;
 | |
|   const Type *Ty = CE->getOperand(0)->getType();
 | |
|   bool TypeIsSigned = false;
 | |
|   switch (CE->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // We need to cast integer arithmetic so that it is always performed
 | |
|     // as unsigned, to avoid undefined behavior on overflow.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::URem: 
 | |
|   case Instruction::UDiv: NeedsExplicitCast = true; break;
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::SRem: 
 | |
|   case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
 | |
|   case Instruction::SExt:
 | |
|     Ty = CE->getType();
 | |
|     NeedsExplicitCast = true;
 | |
|     TypeIsSigned = true;
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|     Ty = CE->getType();
 | |
|     NeedsExplicitCast = true;
 | |
|     break;
 | |
|   default: break;
 | |
|   }
 | |
|   if (NeedsExplicitCast) {
 | |
|     Out << "((";
 | |
|     if (Ty->isInteger() && Ty != Type::Int1Ty)
 | |
|       printSimpleType(Out, Ty, TypeIsSigned);
 | |
|     else
 | |
|       printType(Out, Ty); // not integer, sign doesn't matter
 | |
|     Out << ")(";
 | |
|   }
 | |
|   return NeedsExplicitCast;
 | |
| }
 | |
| 
 | |
| //  Print a constant assuming that it is the operand for a given Opcode. The
 | |
| //  opcodes that care about sign need to cast their operands to the expected
 | |
| //  type before the operation proceeds. This function does the casting.
 | |
| void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
 | |
| 
 | |
|   // Extract the operand's type, we'll need it.
 | |
|   const Type* OpTy = CPV->getType();
 | |
| 
 | |
|   // Indicate whether to do the cast or not.
 | |
|   bool shouldCast = false;
 | |
|   bool typeIsSigned = false;
 | |
| 
 | |
|   // Based on the Opcode for which this Constant is being written, determine
 | |
|   // the new type to which the operand should be casted by setting the value
 | |
|   // of OpTy. If we change OpTy, also set shouldCast to true so it gets
 | |
|   // casted below.
 | |
|   switch (Opcode) {
 | |
|     default:
 | |
|       // for most instructions, it doesn't matter
 | |
|       break; 
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Mul:
 | |
|       // We need to cast integer arithmetic so that it is always performed
 | |
|       // as unsigned, to avoid undefined behavior on overflow.
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::URem:
 | |
|       shouldCast = true;
 | |
|       break;
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::SRem:
 | |
|       shouldCast = true;
 | |
|       typeIsSigned = true;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Write out the casted constant if we should, otherwise just write the
 | |
|   // operand.
 | |
|   if (shouldCast) {
 | |
|     Out << "((";
 | |
|     printSimpleType(Out, OpTy, typeIsSigned);
 | |
|     Out << ")";
 | |
|     printConstant(CPV, false);
 | |
|     Out << ")";
 | |
|   } else 
 | |
|     printConstant(CPV, false);
 | |
| }
 | |
| 
 | |
| std::string CWriter::GetValueName(const Value *Operand) {
 | |
|   // Mangle globals with the standard mangler interface for LLC compatibility.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
 | |
|     return Mang->getMangledName(GV);
 | |
|     
 | |
|   std::string Name = Operand->getName();
 | |
|     
 | |
|   if (Name.empty()) { // Assign unique names to local temporaries.
 | |
|     unsigned &No = AnonValueNumbers[Operand];
 | |
|     if (No == 0)
 | |
|       No = ++NextAnonValueNumber;
 | |
|     Name = "tmp__" + utostr(No);
 | |
|   }
 | |
|     
 | |
|   std::string VarName;
 | |
|   VarName.reserve(Name.capacity());
 | |
| 
 | |
|   for (std::string::iterator I = Name.begin(), E = Name.end();
 | |
|        I != E; ++I) {
 | |
|     char ch = *I;
 | |
| 
 | |
|     if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
 | |
|           (ch >= '0' && ch <= '9') || ch == '_')) {
 | |
|       char buffer[5];
 | |
|       sprintf(buffer, "_%x_", ch);
 | |
|       VarName += buffer;
 | |
|     } else
 | |
|       VarName += ch;
 | |
|   }
 | |
| 
 | |
|   return "llvm_cbe_" + VarName;
 | |
| }
 | |
| 
 | |
| /// writeInstComputationInline - Emit the computation for the specified
 | |
| /// instruction inline, with no destination provided.
 | |
| void CWriter::writeInstComputationInline(Instruction &I) {
 | |
|   // We can't currently support integer types other than 1, 8, 16, 32, 64.
 | |
|   // Validate this.
 | |
|   const Type *Ty = I.getType();
 | |
|   if (Ty->isInteger() && (Ty!=Type::Int1Ty && Ty!=Type::Int8Ty &&
 | |
|         Ty!=Type::Int16Ty && Ty!=Type::Int32Ty && Ty!=Type::Int64Ty)) {
 | |
|       llvm_report_error("The C backend does not currently support integer "
 | |
|                         "types of widths other than 1, 8, 16, 32, 64.\n"
 | |
|                         "This is being tracked as PR 4158.");
 | |
|   }
 | |
| 
 | |
|   // If this is a non-trivial bool computation, make sure to truncate down to
 | |
|   // a 1 bit value.  This is important because we want "add i1 x, y" to return
 | |
|   // "0" when x and y are true, not "2" for example.
 | |
|   bool NeedBoolTrunc = false;
 | |
|   if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
 | |
|     NeedBoolTrunc = true;
 | |
|   
 | |
|   if (NeedBoolTrunc)
 | |
|     Out << "((";
 | |
|   
 | |
|   visit(I);
 | |
|   
 | |
|   if (NeedBoolTrunc)
 | |
|     Out << ")&1)";
 | |
| }
 | |
| 
 | |
| 
 | |
| void CWriter::writeOperandInternal(Value *Operand, bool Static) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Operand))
 | |
|     // Should we inline this instruction to build a tree?
 | |
|     if (isInlinableInst(*I) && !isDirectAlloca(I)) {
 | |
|       Out << '(';
 | |
|       writeInstComputationInline(*I);
 | |
|       Out << ')';
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   Constant* CPV = dyn_cast<Constant>(Operand);
 | |
| 
 | |
|   if (CPV && !isa<GlobalValue>(CPV))
 | |
|     printConstant(CPV, Static);
 | |
|   else
 | |
|     Out << GetValueName(Operand);
 | |
| }
 | |
| 
 | |
| void CWriter::writeOperand(Value *Operand, bool Static) {
 | |
|   bool isAddressImplicit = isAddressExposed(Operand);
 | |
|   if (isAddressImplicit)
 | |
|     Out << "(&";  // Global variables are referenced as their addresses by llvm
 | |
| 
 | |
|   writeOperandInternal(Operand, Static);
 | |
| 
 | |
|   if (isAddressImplicit)
 | |
|     Out << ')';
 | |
| }
 | |
| 
 | |
| // Some instructions need to have their result value casted back to the 
 | |
| // original types because their operands were casted to the expected type. 
 | |
| // This function takes care of detecting that case and printing the cast 
 | |
| // for the Instruction.
 | |
| bool CWriter::writeInstructionCast(const Instruction &I) {
 | |
|   const Type *Ty = I.getOperand(0)->getType();
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // We need to cast integer arithmetic so that it is always performed
 | |
|     // as unsigned, to avoid undefined behavior on overflow.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::URem: 
 | |
|   case Instruction::UDiv: 
 | |
|     Out << "((";
 | |
|     printSimpleType(Out, Ty, false);
 | |
|     Out << ")(";
 | |
|     return true;
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::SRem: 
 | |
|   case Instruction::SDiv: 
 | |
|     Out << "((";
 | |
|     printSimpleType(Out, Ty, true);
 | |
|     Out << ")(";
 | |
|     return true;
 | |
|   default: break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Write the operand with a cast to another type based on the Opcode being used.
 | |
| // This will be used in cases where an instruction has specific type
 | |
| // requirements (usually signedness) for its operands. 
 | |
| void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
 | |
| 
 | |
|   // Extract the operand's type, we'll need it.
 | |
|   const Type* OpTy = Operand->getType();
 | |
| 
 | |
|   // Indicate whether to do the cast or not.
 | |
|   bool shouldCast = false;
 | |
| 
 | |
|   // Indicate whether the cast should be to a signed type or not.
 | |
|   bool castIsSigned = false;
 | |
| 
 | |
|   // Based on the Opcode for which this Operand is being written, determine
 | |
|   // the new type to which the operand should be casted by setting the value
 | |
|   // of OpTy. If we change OpTy, also set shouldCast to true.
 | |
|   switch (Opcode) {
 | |
|     default:
 | |
|       // for most instructions, it doesn't matter
 | |
|       break; 
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Mul:
 | |
|       // We need to cast integer arithmetic so that it is always performed
 | |
|       // as unsigned, to avoid undefined behavior on overflow.
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::URem: // Cast to unsigned first
 | |
|       shouldCast = true;
 | |
|       castIsSigned = false;
 | |
|       break;
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::SRem: // Cast to signed first
 | |
|       shouldCast = true;
 | |
|       castIsSigned = true;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Write out the casted operand if we should, otherwise just write the
 | |
|   // operand.
 | |
|   if (shouldCast) {
 | |
|     Out << "((";
 | |
|     printSimpleType(Out, OpTy, castIsSigned);
 | |
|     Out << ")";
 | |
|     writeOperand(Operand);
 | |
|     Out << ")";
 | |
|   } else 
 | |
|     writeOperand(Operand);
 | |
| }
 | |
| 
 | |
| // Write the operand with a cast to another type based on the icmp predicate 
 | |
| // being used. 
 | |
| void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
 | |
|   // This has to do a cast to ensure the operand has the right signedness. 
 | |
|   // Also, if the operand is a pointer, we make sure to cast to an integer when
 | |
|   // doing the comparison both for signedness and so that the C compiler doesn't
 | |
|   // optimize things like "p < NULL" to false (p may contain an integer value
 | |
|   // f.e.).
 | |
|   bool shouldCast = Cmp.isRelational();
 | |
| 
 | |
|   // Write out the casted operand if we should, otherwise just write the
 | |
|   // operand.
 | |
|   if (!shouldCast) {
 | |
|     writeOperand(Operand);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Should this be a signed comparison?  If so, convert to signed.
 | |
|   bool castIsSigned = Cmp.isSignedPredicate();
 | |
| 
 | |
|   // If the operand was a pointer, convert to a large integer type.
 | |
|   const Type* OpTy = Operand->getType();
 | |
|   if (isa<PointerType>(OpTy))
 | |
|     OpTy = TD->getIntPtrType();
 | |
|   
 | |
|   Out << "((";
 | |
|   printSimpleType(Out, OpTy, castIsSigned);
 | |
|   Out << ")";
 | |
|   writeOperand(Operand);
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| // generateCompilerSpecificCode - This is where we add conditional compilation
 | |
| // directives to cater to specific compilers as need be.
 | |
| //
 | |
| static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
 | |
|                                          const TargetData *TD) {
 | |
|   // Alloca is hard to get, and we don't want to include stdlib.h here.
 | |
|   Out << "/* get a declaration for alloca */\n"
 | |
|       << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
 | |
|       << "#define  alloca(x) __builtin_alloca((x))\n"
 | |
|       << "#define _alloca(x) __builtin_alloca((x))\n"    
 | |
|       << "#elif defined(__APPLE__)\n"
 | |
|       << "extern void *__builtin_alloca(unsigned long);\n"
 | |
|       << "#define alloca(x) __builtin_alloca(x)\n"
 | |
|       << "#define longjmp _longjmp\n"
 | |
|       << "#define setjmp _setjmp\n"
 | |
|       << "#elif defined(__sun__)\n"
 | |
|       << "#if defined(__sparcv9)\n"
 | |
|       << "extern void *__builtin_alloca(unsigned long);\n"
 | |
|       << "#else\n"
 | |
|       << "extern void *__builtin_alloca(unsigned int);\n"
 | |
|       << "#endif\n"
 | |
|       << "#define alloca(x) __builtin_alloca(x)\n"
 | |
|       << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
 | |
|       << "#define alloca(x) __builtin_alloca(x)\n"
 | |
|       << "#elif defined(_MSC_VER)\n"
 | |
|       << "#define inline _inline\n"
 | |
|       << "#define alloca(x) _alloca(x)\n"
 | |
|       << "#else\n"
 | |
|       << "#include <alloca.h>\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // We output GCC specific attributes to preserve 'linkonce'ness on globals.
 | |
|   // If we aren't being compiled with GCC, just drop these attributes.
 | |
|   Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
 | |
|       << "#define __attribute__(X)\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
 | |
|   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | |
|       << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
 | |
|       << "#elif defined(__GNUC__)\n"
 | |
|       << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
 | |
|       << "#else\n"
 | |
|       << "#define __EXTERNAL_WEAK__\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
 | |
|   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | |
|       << "#define __ATTRIBUTE_WEAK__\n"
 | |
|       << "#elif defined(__GNUC__)\n"
 | |
|       << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
 | |
|       << "#else\n"
 | |
|       << "#define __ATTRIBUTE_WEAK__\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // Add hidden visibility support. FIXME: APPLE_CC?
 | |
|   Out << "#if defined(__GNUC__)\n"
 | |
|       << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
 | |
|       << "#endif\n\n";
 | |
|     
 | |
|   // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
 | |
|   // From the GCC documentation:
 | |
|   //
 | |
|   //   double __builtin_nan (const char *str)
 | |
|   //
 | |
|   // This is an implementation of the ISO C99 function nan.
 | |
|   //
 | |
|   // Since ISO C99 defines this function in terms of strtod, which we do
 | |
|   // not implement, a description of the parsing is in order. The string is
 | |
|   // parsed as by strtol; that is, the base is recognized by leading 0 or
 | |
|   // 0x prefixes. The number parsed is placed in the significand such that
 | |
|   // the least significant bit of the number is at the least significant
 | |
|   // bit of the significand. The number is truncated to fit the significand
 | |
|   // field provided. The significand is forced to be a quiet NaN.
 | |
|   //
 | |
|   // This function, if given a string literal, is evaluated early enough
 | |
|   // that it is considered a compile-time constant.
 | |
|   //
 | |
|   //   float __builtin_nanf (const char *str)
 | |
|   //
 | |
|   // Similar to __builtin_nan, except the return type is float.
 | |
|   //
 | |
|   //   double __builtin_inf (void)
 | |
|   //
 | |
|   // Similar to __builtin_huge_val, except a warning is generated if the
 | |
|   // target floating-point format does not support infinities. This
 | |
|   // function is suitable for implementing the ISO C99 macro INFINITY.
 | |
|   //
 | |
|   //   float __builtin_inff (void)
 | |
|   //
 | |
|   // Similar to __builtin_inf, except the return type is float.
 | |
|   Out << "#ifdef __GNUC__\n"
 | |
|       << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
 | |
|       << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
 | |
|       << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
 | |
|       << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
 | |
|       << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
 | |
|       << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
 | |
|       << "#define LLVM_PREFETCH(addr,rw,locality) "
 | |
|                               "__builtin_prefetch(addr,rw,locality)\n"
 | |
|       << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
 | |
|       << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
 | |
|       << "#define LLVM_ASM           __asm__\n"
 | |
|       << "#else\n"
 | |
|       << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
 | |
|       << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
 | |
|       << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
 | |
|       << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
 | |
|       << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
 | |
|       << "#define LLVM_INFF          0.0F                    /* Float */\n"
 | |
|       << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
 | |
|       << "#define __ATTRIBUTE_CTOR__\n"
 | |
|       << "#define __ATTRIBUTE_DTOR__\n"
 | |
|       << "#define LLVM_ASM(X)\n"
 | |
|       << "#endif\n\n";
 | |
|   
 | |
|   Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
 | |
|       << "#define __builtin_stack_save() 0   /* not implemented */\n"
 | |
|       << "#define __builtin_stack_restore(X) /* noop */\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // Output typedefs for 128-bit integers. If these are needed with a
 | |
|   // 32-bit target or with a C compiler that doesn't support mode(TI),
 | |
|   // more drastic measures will be needed.
 | |
|   Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
 | |
|       << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
 | |
|       << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // Output target-specific code that should be inserted into main.
 | |
|   Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
 | |
| }
 | |
| 
 | |
| /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
 | |
| /// the StaticTors set.
 | |
| static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
 | |
|   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (!InitList) return;
 | |
|   
 | |
|   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
 | |
|       if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
 | |
|       
 | |
|       if (CS->getOperand(1)->isNullValue())
 | |
|         return;  // Found a null terminator, exit printing.
 | |
|       Constant *FP = CS->getOperand(1);
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | |
|         if (CE->isCast())
 | |
|           FP = CE->getOperand(0);
 | |
|       if (Function *F = dyn_cast<Function>(FP))
 | |
|         StaticTors.insert(F);
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum SpecialGlobalClass {
 | |
|   NotSpecial = 0,
 | |
|   GlobalCtors, GlobalDtors,
 | |
|   NotPrinted
 | |
| };
 | |
| 
 | |
| /// getGlobalVariableClass - If this is a global that is specially recognized
 | |
| /// by LLVM, return a code that indicates how we should handle it.
 | |
| static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
 | |
|   // If this is a global ctors/dtors list, handle it now.
 | |
|   if (GV->hasAppendingLinkage() && GV->use_empty()) {
 | |
|     if (GV->getName() == "llvm.global_ctors")
 | |
|       return GlobalCtors;
 | |
|     else if (GV->getName() == "llvm.global_dtors")
 | |
|       return GlobalDtors;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, it it is other metadata, don't print it.  This catches things
 | |
|   // like debug information.
 | |
|   if (GV->getSection() == "llvm.metadata")
 | |
|     return NotPrinted;
 | |
|   
 | |
|   return NotSpecial;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CWriter::doInitialization(Module &M) {
 | |
|   FunctionPass::doInitialization(M);
 | |
|   
 | |
|   // Initialize
 | |
|   TheModule = &M;
 | |
| 
 | |
|   TD = new TargetData(&M);
 | |
|   IL = new IntrinsicLowering(*TD);
 | |
|   IL->AddPrototypes(M);
 | |
| 
 | |
|   // Ensure that all structure types have names...
 | |
|   Mang = new Mangler(M);
 | |
|   Mang->markCharUnacceptable('.');
 | |
| 
 | |
|   // Keep track of which functions are static ctors/dtors so they can have
 | |
|   // an attribute added to their prototypes.
 | |
|   std::set<Function*> StaticCtors, StaticDtors;
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E; ++I) {
 | |
|     switch (getGlobalVariableClass(I)) {
 | |
|     default: break;
 | |
|     case GlobalCtors:
 | |
|       FindStaticTors(I, StaticCtors);
 | |
|       break;
 | |
|     case GlobalDtors:
 | |
|       FindStaticTors(I, StaticDtors);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // get declaration for alloca
 | |
|   Out << "/* Provide Declarations */\n";
 | |
|   Out << "#include <stdarg.h>\n";      // Varargs support
 | |
|   Out << "#include <setjmp.h>\n";      // Unwind support
 | |
|   generateCompilerSpecificCode(Out, TD);
 | |
| 
 | |
|   // Provide a definition for `bool' if not compiling with a C++ compiler.
 | |
|   Out << "\n"
 | |
|       << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
 | |
| 
 | |
|       << "\n\n/* Support for floating point constants */\n"
 | |
|       << "typedef unsigned long long ConstantDoubleTy;\n"
 | |
|       << "typedef unsigned int        ConstantFloatTy;\n"
 | |
|       << "typedef struct { unsigned long long f1; unsigned short f2; "
 | |
|          "unsigned short pad[3]; } ConstantFP80Ty;\n"
 | |
|       // This is used for both kinds of 128-bit long double; meaning differs.
 | |
|       << "typedef struct { unsigned long long f1; unsigned long long f2; }"
 | |
|          " ConstantFP128Ty;\n"
 | |
|       << "\n\n/* Global Declarations */\n";
 | |
| 
 | |
|   // First output all the declarations for the program, because C requires
 | |
|   // Functions & globals to be declared before they are used.
 | |
|   //
 | |
| 
 | |
|   // Loop over the symbol table, emitting all named constants...
 | |
|   printModuleTypes(M.getTypeSymbolTable());
 | |
| 
 | |
|   // Global variable declarations...
 | |
|   if (!M.global_empty()) {
 | |
|     Out << "\n/* External Global Variable Declarations */\n";
 | |
|     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
| 
 | |
|       if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || 
 | |
|           I->hasCommonLinkage())
 | |
|         Out << "extern ";
 | |
|       else if (I->hasDLLImportLinkage())
 | |
|         Out << "__declspec(dllimport) ";
 | |
|       else
 | |
|         continue; // Internal Global
 | |
| 
 | |
|       // Thread Local Storage
 | |
|       if (I->isThreadLocal())
 | |
|         Out << "__thread ";
 | |
| 
 | |
|       printType(Out, I->getType()->getElementType(), false, GetValueName(I));
 | |
| 
 | |
|       if (I->hasExternalWeakLinkage())
 | |
|          Out << " __EXTERNAL_WEAK__";
 | |
|       Out << ";\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Function declarations
 | |
|   Out << "\n/* Function Declarations */\n";
 | |
|   Out << "double fmod(double, double);\n";   // Support for FP rem
 | |
|   Out << "float fmodf(float, float);\n";
 | |
|   Out << "long double fmodl(long double, long double);\n";
 | |
|   
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|     // Don't print declarations for intrinsic functions.
 | |
|     if (!I->isIntrinsic() && I->getName() != "setjmp" &&
 | |
|         I->getName() != "longjmp" && I->getName() != "_setjmp") {
 | |
|       if (I->hasExternalWeakLinkage())
 | |
|         Out << "extern ";
 | |
|       printFunctionSignature(I, true);
 | |
|       if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 
 | |
|         Out << " __ATTRIBUTE_WEAK__";
 | |
|       if (I->hasExternalWeakLinkage())
 | |
|         Out << " __EXTERNAL_WEAK__";
 | |
|       if (StaticCtors.count(I))
 | |
|         Out << " __ATTRIBUTE_CTOR__";
 | |
|       if (StaticDtors.count(I))
 | |
|         Out << " __ATTRIBUTE_DTOR__";
 | |
|       if (I->hasHiddenVisibility())
 | |
|         Out << " __HIDDEN__";
 | |
|       
 | |
|       if (I->hasName() && I->getName()[0] == 1)
 | |
|         Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
 | |
|           
 | |
|       Out << ";\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Output the global variable declarations
 | |
|   if (!M.global_empty()) {
 | |
|     Out << "\n\n/* Global Variable Declarations */\n";
 | |
|     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I)
 | |
|       if (!I->isDeclaration()) {
 | |
|         // Ignore special globals, such as debug info.
 | |
|         if (getGlobalVariableClass(I))
 | |
|           continue;
 | |
| 
 | |
|         if (I->hasLocalLinkage())
 | |
|           Out << "static ";
 | |
|         else
 | |
|           Out << "extern ";
 | |
| 
 | |
|         // Thread Local Storage
 | |
|         if (I->isThreadLocal())
 | |
|           Out << "__thread ";
 | |
| 
 | |
|         printType(Out, I->getType()->getElementType(), false, 
 | |
|                   GetValueName(I));
 | |
| 
 | |
|         if (I->hasLinkOnceLinkage())
 | |
|           Out << " __attribute__((common))";
 | |
|         else if (I->hasCommonLinkage())     // FIXME is this right?
 | |
|           Out << " __ATTRIBUTE_WEAK__";
 | |
|         else if (I->hasWeakLinkage())
 | |
|           Out << " __ATTRIBUTE_WEAK__";
 | |
|         else if (I->hasExternalWeakLinkage())
 | |
|           Out << " __EXTERNAL_WEAK__";
 | |
|         if (I->hasHiddenVisibility())
 | |
|           Out << " __HIDDEN__";
 | |
|         Out << ";\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Output the global variable definitions and contents...
 | |
|   if (!M.global_empty()) {
 | |
|     Out << "\n\n/* Global Variable Definitions and Initialization */\n";
 | |
|     for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | |
|          I != E; ++I)
 | |
|       if (!I->isDeclaration()) {
 | |
|         // Ignore special globals, such as debug info.
 | |
|         if (getGlobalVariableClass(I))
 | |
|           continue;
 | |
| 
 | |
|         if (I->hasLocalLinkage())
 | |
|           Out << "static ";
 | |
|         else if (I->hasDLLImportLinkage())
 | |
|           Out << "__declspec(dllimport) ";
 | |
|         else if (I->hasDLLExportLinkage())
 | |
|           Out << "__declspec(dllexport) ";
 | |
| 
 | |
|         // Thread Local Storage
 | |
|         if (I->isThreadLocal())
 | |
|           Out << "__thread ";
 | |
| 
 | |
|         printType(Out, I->getType()->getElementType(), false, 
 | |
|                   GetValueName(I));
 | |
|         if (I->hasLinkOnceLinkage())
 | |
|           Out << " __attribute__((common))";
 | |
|         else if (I->hasWeakLinkage())
 | |
|           Out << " __ATTRIBUTE_WEAK__";
 | |
|         else if (I->hasCommonLinkage())
 | |
|           Out << " __ATTRIBUTE_WEAK__";
 | |
| 
 | |
|         if (I->hasHiddenVisibility())
 | |
|           Out << " __HIDDEN__";
 | |
|         
 | |
|         // If the initializer is not null, emit the initializer.  If it is null,
 | |
|         // we try to avoid emitting large amounts of zeros.  The problem with
 | |
|         // this, however, occurs when the variable has weak linkage.  In this
 | |
|         // case, the assembler will complain about the variable being both weak
 | |
|         // and common, so we disable this optimization.
 | |
|         // FIXME common linkage should avoid this problem.
 | |
|         if (!I->getInitializer()->isNullValue()) {
 | |
|           Out << " = " ;
 | |
|           writeOperand(I->getInitializer(), true);
 | |
|         } else if (I->hasWeakLinkage()) {
 | |
|           // We have to specify an initializer, but it doesn't have to be
 | |
|           // complete.  If the value is an aggregate, print out { 0 }, and let
 | |
|           // the compiler figure out the rest of the zeros.
 | |
|           Out << " = " ;
 | |
|           if (isa<StructType>(I->getInitializer()->getType()) ||
 | |
|               isa<VectorType>(I->getInitializer()->getType())) {
 | |
|             Out << "{ 0 }";
 | |
|           } else if (isa<ArrayType>(I->getInitializer()->getType())) {
 | |
|             // As with structs and vectors, but with an extra set of braces
 | |
|             // because arrays are wrapped in structs.
 | |
|             Out << "{ { 0 } }";
 | |
|           } else {
 | |
|             // Just print it out normally.
 | |
|             writeOperand(I->getInitializer(), true);
 | |
|           }
 | |
|         }
 | |
|         Out << ";\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (!M.empty())
 | |
|     Out << "\n\n/* Function Bodies */\n";
 | |
| 
 | |
|   // Emit some helper functions for dealing with FCMP instruction's 
 | |
|   // predicates
 | |
|   Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
 | |
|   Out << "return X == X && Y == Y; }\n";
 | |
|   Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
 | |
|   Out << "return X != X || Y != Y; }\n";
 | |
|   Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
 | |
|   Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
 | |
|   Out << "return X != Y; }\n";
 | |
|   Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
 | |
|   Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
 | |
|   Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
 | |
|   Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
 | |
|   Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
 | |
|   Out << "return X == Y ; }\n";
 | |
|   Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
 | |
|   Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
 | |
|   Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
 | |
|   Out << "return X <  Y ; }\n";
 | |
|   Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
 | |
|   Out << "return X >  Y ; }\n";
 | |
|   Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
 | |
|   Out << "return X <= Y ; }\n";
 | |
|   Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
 | |
|   Out << "return X >= Y ; }\n";
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Output all floating point constants that cannot be printed accurately...
 | |
| void CWriter::printFloatingPointConstants(Function &F) {
 | |
|   // Scan the module for floating point constants.  If any FP constant is used
 | |
|   // in the function, we want to redirect it here so that we do not depend on
 | |
|   // the precision of the printed form, unless the printed form preserves
 | |
|   // precision.
 | |
|   //
 | |
|   for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
 | |
|        I != E; ++I)
 | |
|     printFloatingPointConstants(*I);
 | |
| 
 | |
|   Out << '\n';
 | |
| }
 | |
| 
 | |
| void CWriter::printFloatingPointConstants(const Constant *C) {
 | |
|   // If this is a constant expression, recursively check for constant fp values.
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|       printFloatingPointConstants(CE->getOperand(i));
 | |
|     return;
 | |
|   }
 | |
|     
 | |
|   // Otherwise, check for a FP constant that we need to print.
 | |
|   const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
 | |
|   if (FPC == 0 ||
 | |
|       // Do not put in FPConstantMap if safe.
 | |
|       isFPCSafeToPrint(FPC) ||
 | |
|       // Already printed this constant?
 | |
|       FPConstantMap.count(FPC))
 | |
|     return;
 | |
| 
 | |
|   FPConstantMap[FPC] = FPCounter;  // Number the FP constants
 | |
|   
 | |
|   if (FPC->getType() == Type::DoubleTy) {
 | |
|     double Val = FPC->getValueAPF().convertToDouble();
 | |
|     uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
 | |
|     Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
 | |
|     << " = 0x" << utohexstr(i)
 | |
|     << "ULL;    /* " << Val << " */\n";
 | |
|   } else if (FPC->getType() == Type::FloatTy) {
 | |
|     float Val = FPC->getValueAPF().convertToFloat();
 | |
|     uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
 | |
|     getZExtValue();
 | |
|     Out << "static const ConstantFloatTy FPConstant" << FPCounter++
 | |
|     << " = 0x" << utohexstr(i)
 | |
|     << "U;    /* " << Val << " */\n";
 | |
|   } else if (FPC->getType() == Type::X86_FP80Ty) {
 | |
|     // api needed to prevent premature destruction
 | |
|     APInt api = FPC->getValueAPF().bitcastToAPInt();
 | |
|     const uint64_t *p = api.getRawData();
 | |
|     Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
 | |
|     << " = { 0x" << utohexstr(p[0]) 
 | |
|     << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
 | |
|     << "}; /* Long double constant */\n";
 | |
|   } else if (FPC->getType() == Type::PPC_FP128Ty) {
 | |
|     APInt api = FPC->getValueAPF().bitcastToAPInt();
 | |
|     const uint64_t *p = api.getRawData();
 | |
|     Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
 | |
|     << " = { 0x"
 | |
|     << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
 | |
|     << "}; /* Long double constant */\n";
 | |
|     
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown float type!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// printSymbolTable - Run through symbol table looking for type names.  If a
 | |
| /// type name is found, emit its declaration...
 | |
| ///
 | |
| void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
 | |
|   Out << "/* Helper union for bitcasts */\n";
 | |
|   Out << "typedef union {\n";
 | |
|   Out << "  unsigned int Int32;\n";
 | |
|   Out << "  unsigned long long Int64;\n";
 | |
|   Out << "  float Float;\n";
 | |
|   Out << "  double Double;\n";
 | |
|   Out << "} llvmBitCastUnion;\n";
 | |
| 
 | |
|   // We are only interested in the type plane of the symbol table.
 | |
|   TypeSymbolTable::const_iterator I   = TST.begin();
 | |
|   TypeSymbolTable::const_iterator End = TST.end();
 | |
| 
 | |
|   // If there are no type names, exit early.
 | |
|   if (I == End) return;
 | |
| 
 | |
|   // Print out forward declarations for structure types before anything else!
 | |
|   Out << "/* Structure forward decls */\n";
 | |
|   for (; I != End; ++I) {
 | |
|     std::string Name = "struct l_" + Mang->makeNameProper(I->first);
 | |
|     Out << Name << ";\n";
 | |
|     TypeNames.insert(std::make_pair(I->second, Name));
 | |
|   }
 | |
| 
 | |
|   Out << '\n';
 | |
| 
 | |
|   // Now we can print out typedefs.  Above, we guaranteed that this can only be
 | |
|   // for struct or opaque types.
 | |
|   Out << "/* Typedefs */\n";
 | |
|   for (I = TST.begin(); I != End; ++I) {
 | |
|     std::string Name = "l_" + Mang->makeNameProper(I->first);
 | |
|     Out << "typedef ";
 | |
|     printType(Out, I->second, false, Name);
 | |
|     Out << ";\n";
 | |
|   }
 | |
| 
 | |
|   Out << '\n';
 | |
| 
 | |
|   // Keep track of which structures have been printed so far...
 | |
|   std::set<const Type *> StructPrinted;
 | |
| 
 | |
|   // Loop over all structures then push them into the stack so they are
 | |
|   // printed in the correct order.
 | |
|   //
 | |
|   Out << "/* Structure contents */\n";
 | |
|   for (I = TST.begin(); I != End; ++I)
 | |
|     if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
 | |
|       // Only print out used types!
 | |
|       printContainedStructs(I->second, StructPrinted);
 | |
| }
 | |
| 
 | |
| // Push the struct onto the stack and recursively push all structs
 | |
| // this one depends on.
 | |
| //
 | |
| // TODO:  Make this work properly with vector types
 | |
| //
 | |
| void CWriter::printContainedStructs(const Type *Ty,
 | |
|                                     std::set<const Type*> &StructPrinted) {
 | |
|   // Don't walk through pointers.
 | |
|   if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
 | |
|   
 | |
|   // Print all contained types first.
 | |
|   for (Type::subtype_iterator I = Ty->subtype_begin(),
 | |
|        E = Ty->subtype_end(); I != E; ++I)
 | |
|     printContainedStructs(*I, StructPrinted);
 | |
|   
 | |
|   if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
 | |
|     // Check to see if we have already printed this struct.
 | |
|     if (StructPrinted.insert(Ty).second) {
 | |
|       // Print structure type out.
 | |
|       std::string Name = TypeNames[Ty];
 | |
|       printType(Out, Ty, false, Name, true);
 | |
|       Out << ";\n\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
 | |
|   /// isStructReturn - Should this function actually return a struct by-value?
 | |
|   bool isStructReturn = F->hasStructRetAttr();
 | |
|   
 | |
|   if (F->hasLocalLinkage()) Out << "static ";
 | |
|   if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
 | |
|   if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";  
 | |
|   switch (F->getCallingConv()) {
 | |
|    case CallingConv::X86_StdCall:
 | |
|     Out << "__attribute__((stdcall)) ";
 | |
|     break;
 | |
|    case CallingConv::X86_FastCall:
 | |
|     Out << "__attribute__((fastcall)) ";
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Loop over the arguments, printing them...
 | |
|   const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
 | |
|   const AttrListPtr &PAL = F->getAttributes();
 | |
| 
 | |
|   std::stringstream FunctionInnards;
 | |
| 
 | |
|   // Print out the name...
 | |
|   FunctionInnards << GetValueName(F) << '(';
 | |
| 
 | |
|   bool PrintedArg = false;
 | |
|   if (!F->isDeclaration()) {
 | |
|     if (!F->arg_empty()) {
 | |
|       Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|       unsigned Idx = 1;
 | |
|       
 | |
|       // If this is a struct-return function, don't print the hidden
 | |
|       // struct-return argument.
 | |
|       if (isStructReturn) {
 | |
|         assert(I != E && "Invalid struct return function!");
 | |
|         ++I;
 | |
|         ++Idx;
 | |
|       }
 | |
|       
 | |
|       std::string ArgName;
 | |
|       for (; I != E; ++I) {
 | |
|         if (PrintedArg) FunctionInnards << ", ";
 | |
|         if (I->hasName() || !Prototype)
 | |
|           ArgName = GetValueName(I);
 | |
|         else
 | |
|           ArgName = "";
 | |
|         const Type *ArgTy = I->getType();
 | |
|         if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|           ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|           ByValParams.insert(I);
 | |
|         }
 | |
|         printType(FunctionInnards, ArgTy,
 | |
|             /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
 | |
|             ArgName);
 | |
|         PrintedArg = true;
 | |
|         ++Idx;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Loop over the arguments, printing them.
 | |
|     FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
 | |
|     unsigned Idx = 1;
 | |
|     
 | |
|     // If this is a struct-return function, don't print the hidden
 | |
|     // struct-return argument.
 | |
|     if (isStructReturn) {
 | |
|       assert(I != E && "Invalid struct return function!");
 | |
|       ++I;
 | |
|       ++Idx;
 | |
|     }
 | |
|     
 | |
|     for (; I != E; ++I) {
 | |
|       if (PrintedArg) FunctionInnards << ", ";
 | |
|       const Type *ArgTy = *I;
 | |
|       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|         assert(isa<PointerType>(ArgTy));
 | |
|         ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|       }
 | |
|       printType(FunctionInnards, ArgTy,
 | |
|              /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
 | |
|       PrintedArg = true;
 | |
|       ++Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish printing arguments... if this is a vararg function, print the ...,
 | |
|   // unless there are no known types, in which case, we just emit ().
 | |
|   //
 | |
|   if (FT->isVarArg() && PrintedArg) {
 | |
|     if (PrintedArg) FunctionInnards << ", ";
 | |
|     FunctionInnards << "...";  // Output varargs portion of signature!
 | |
|   } else if (!FT->isVarArg() && !PrintedArg) {
 | |
|     FunctionInnards << "void"; // ret() -> ret(void) in C.
 | |
|   }
 | |
|   FunctionInnards << ')';
 | |
|   
 | |
|   // Get the return tpe for the function.
 | |
|   const Type *RetTy;
 | |
|   if (!isStructReturn)
 | |
|     RetTy = F->getReturnType();
 | |
|   else {
 | |
|     // If this is a struct-return function, print the struct-return type.
 | |
|     RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
 | |
|   }
 | |
|     
 | |
|   // Print out the return type and the signature built above.
 | |
|   printType(Out, RetTy, 
 | |
|             /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
 | |
|             FunctionInnards.str());
 | |
| }
 | |
| 
 | |
| static inline bool isFPIntBitCast(const Instruction &I) {
 | |
|   if (!isa<BitCastInst>(I))
 | |
|     return false;
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DstTy = I.getType();
 | |
|   return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
 | |
|          (DstTy->isFloatingPoint() && SrcTy->isInteger());
 | |
| }
 | |
| 
 | |
| void CWriter::printFunction(Function &F) {
 | |
|   /// isStructReturn - Should this function actually return a struct by-value?
 | |
|   bool isStructReturn = F.hasStructRetAttr();
 | |
| 
 | |
|   printFunctionSignature(&F, false);
 | |
|   Out << " {\n";
 | |
|   
 | |
|   // If this is a struct return function, handle the result with magic.
 | |
|   if (isStructReturn) {
 | |
|     const Type *StructTy =
 | |
|       cast<PointerType>(F.arg_begin()->getType())->getElementType();
 | |
|     Out << "  ";
 | |
|     printType(Out, StructTy, false, "StructReturn");
 | |
|     Out << ";  /* Struct return temporary */\n";
 | |
| 
 | |
|     Out << "  ";
 | |
|     printType(Out, F.arg_begin()->getType(), false, 
 | |
|               GetValueName(F.arg_begin()));
 | |
|     Out << " = &StructReturn;\n";
 | |
|   }
 | |
| 
 | |
|   bool PrintedVar = false;
 | |
|   
 | |
|   // print local variable information for the function
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
 | |
|     if (const AllocaInst *AI = isDirectAlloca(&*I)) {
 | |
|       Out << "  ";
 | |
|       printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
 | |
|       Out << ";    /* Address-exposed local */\n";
 | |
|       PrintedVar = true;
 | |
|     } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
 | |
|       Out << "  ";
 | |
|       printType(Out, I->getType(), false, GetValueName(&*I));
 | |
|       Out << ";\n";
 | |
| 
 | |
|       if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
 | |
|         Out << "  ";
 | |
|         printType(Out, I->getType(), false,
 | |
|                   GetValueName(&*I)+"__PHI_TEMPORARY");
 | |
|         Out << ";\n";
 | |
|       }
 | |
|       PrintedVar = true;
 | |
|     }
 | |
|     // We need a temporary for the BitCast to use so it can pluck a value out
 | |
|     // of a union to do the BitCast. This is separate from the need for a
 | |
|     // variable to hold the result of the BitCast. 
 | |
|     if (isFPIntBitCast(*I)) {
 | |
|       Out << "  llvmBitCastUnion " << GetValueName(&*I)
 | |
|           << "__BITCAST_TEMPORARY;\n";
 | |
|       PrintedVar = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PrintedVar)
 | |
|     Out << '\n';
 | |
| 
 | |
|   if (F.hasExternalLinkage() && F.getName() == "main")
 | |
|     Out << "  CODE_FOR_MAIN();\n";
 | |
| 
 | |
|   // print the basic blocks
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (Loop *L = LI->getLoopFor(BB)) {
 | |
|       if (L->getHeader() == BB && L->getParentLoop() == 0)
 | |
|         printLoop(L);
 | |
|     } else {
 | |
|       printBasicBlock(BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << "}\n\n";
 | |
| }
 | |
| 
 | |
| void CWriter::printLoop(Loop *L) {
 | |
|   Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
 | |
|       << "' to make GCC happy */\n";
 | |
|   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
 | |
|     BasicBlock *BB = L->getBlocks()[i];
 | |
|     Loop *BBLoop = LI->getLoopFor(BB);
 | |
|     if (BBLoop == L)
 | |
|       printBasicBlock(BB);
 | |
|     else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
 | |
|       printLoop(BBLoop);
 | |
|   }
 | |
|   Out << "  } while (1); /* end of syntactic loop '"
 | |
|       << L->getHeader()->getName() << "' */\n";
 | |
| }
 | |
| 
 | |
| void CWriter::printBasicBlock(BasicBlock *BB) {
 | |
| 
 | |
|   // Don't print the label for the basic block if there are no uses, or if
 | |
|   // the only terminator use is the predecessor basic block's terminator.
 | |
|   // We have to scan the use list because PHI nodes use basic blocks too but
 | |
|   // do not require a label to be generated.
 | |
|   //
 | |
|   bool NeedsLabel = false;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|     if (isGotoCodeNecessary(*PI, BB)) {
 | |
|       NeedsLabel = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   if (NeedsLabel) Out << GetValueName(BB) << ":\n";
 | |
| 
 | |
|   // Output all of the instructions in the basic block...
 | |
|   for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
 | |
|        ++II) {
 | |
|     if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
 | |
|       if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
 | |
|         outputLValue(II);
 | |
|       else
 | |
|         Out << "  ";
 | |
|       writeInstComputationInline(*II);
 | |
|       Out << ";\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't emit prefix or suffix for the terminator.
 | |
|   visit(*BB->getTerminator());
 | |
| }
 | |
| 
 | |
| 
 | |
| // Specific Instruction type classes... note that all of the casts are
 | |
| // necessary because we use the instruction classes as opaque types...
 | |
| //
 | |
| void CWriter::visitReturnInst(ReturnInst &I) {
 | |
|   // If this is a struct return function, return the temporary struct.
 | |
|   bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
 | |
| 
 | |
|   if (isStructReturn) {
 | |
|     Out << "  return StructReturn;\n";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Don't output a void return if this is the last basic block in the function
 | |
|   if (I.getNumOperands() == 0 &&
 | |
|       &*--I.getParent()->getParent()->end() == I.getParent() &&
 | |
|       !I.getParent()->size() == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (I.getNumOperands() > 1) {
 | |
|     Out << "  {\n";
 | |
|     Out << "    ";
 | |
|     printType(Out, I.getParent()->getParent()->getReturnType());
 | |
|     Out << "   llvm_cbe_mrv_temp = {\n";
 | |
|     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|       Out << "      ";
 | |
|       writeOperand(I.getOperand(i));
 | |
|       if (i != e - 1)
 | |
|         Out << ",";
 | |
|       Out << "\n";
 | |
|     }
 | |
|     Out << "    };\n";
 | |
|     Out << "    return llvm_cbe_mrv_temp;\n";
 | |
|     Out << "  }\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Out << "  return";
 | |
|   if (I.getNumOperands()) {
 | |
|     Out << ' ';
 | |
|     writeOperand(I.getOperand(0));
 | |
|   }
 | |
|   Out << ";\n";
 | |
| }
 | |
| 
 | |
| void CWriter::visitSwitchInst(SwitchInst &SI) {
 | |
| 
 | |
|   Out << "  switch (";
 | |
|   writeOperand(SI.getOperand(0));
 | |
|   Out << ") {\n  default:\n";
 | |
|   printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
 | |
|   printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
 | |
|   Out << ";\n";
 | |
|   for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
 | |
|     Out << "  case ";
 | |
|     writeOperand(SI.getOperand(i));
 | |
|     Out << ":\n";
 | |
|     BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
 | |
|     printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
 | |
|     printBranchToBlock(SI.getParent(), Succ, 2);
 | |
|     if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
 | |
|       Out << "    break;\n";
 | |
|   }
 | |
|   Out << "  }\n";
 | |
| }
 | |
| 
 | |
| void CWriter::visitUnreachableInst(UnreachableInst &I) {
 | |
|   Out << "  /*UNREACHABLE*/;\n";
 | |
| }
 | |
| 
 | |
| bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
 | |
|   /// FIXME: This should be reenabled, but loop reordering safe!!
 | |
|   return true;
 | |
| 
 | |
|   if (next(Function::iterator(From)) != Function::iterator(To))
 | |
|     return true;  // Not the direct successor, we need a goto.
 | |
| 
 | |
|   //isa<SwitchInst>(From->getTerminator())
 | |
| 
 | |
|   if (LI->getLoopFor(From) != LI->getLoopFor(To))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
 | |
|                                           BasicBlock *Successor,
 | |
|                                           unsigned Indent) {
 | |
|   for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     // Now we have to do the printing.
 | |
|     Value *IV = PN->getIncomingValueForBlock(CurBlock);
 | |
|     if (!isa<UndefValue>(IV)) {
 | |
|       Out << std::string(Indent, ' ');
 | |
|       Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
 | |
|       writeOperand(IV);
 | |
|       Out << ";   /* for PHI node */\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
 | |
|                                  unsigned Indent) {
 | |
|   if (isGotoCodeNecessary(CurBB, Succ)) {
 | |
|     Out << std::string(Indent, ' ') << "  goto ";
 | |
|     writeOperand(Succ);
 | |
|     Out << ";\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Branch instruction printing - Avoid printing out a branch to a basic block
 | |
| // that immediately succeeds the current one.
 | |
| //
 | |
| void CWriter::visitBranchInst(BranchInst &I) {
 | |
| 
 | |
|   if (I.isConditional()) {
 | |
|     if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
 | |
|       Out << "  if (";
 | |
|       writeOperand(I.getCondition());
 | |
|       Out << ") {\n";
 | |
| 
 | |
|       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
 | |
|       printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
 | |
| 
 | |
|       if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
 | |
|         Out << "  } else {\n";
 | |
|         printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | |
|         printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | |
|       }
 | |
|     } else {
 | |
|       // First goto not necessary, assume second one is...
 | |
|       Out << "  if (!";
 | |
|       writeOperand(I.getCondition());
 | |
|       Out << ") {\n";
 | |
| 
 | |
|       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | |
|       printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | |
|     }
 | |
| 
 | |
|     Out << "  }\n";
 | |
|   } else {
 | |
|     printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
 | |
|     printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
 | |
|   }
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| // PHI nodes get copied into temporary values at the end of predecessor basic
 | |
| // blocks.  We now need to copy these temporary values into the REAL value for
 | |
| // the PHI.
 | |
| void CWriter::visitPHINode(PHINode &I) {
 | |
|   writeOperand(&I);
 | |
|   Out << "__PHI_TEMPORARY";
 | |
| }
 | |
| 
 | |
| 
 | |
| void CWriter::visitBinaryOperator(Instruction &I) {
 | |
|   // binary instructions, shift instructions, setCond instructions.
 | |
|   assert(!isa<PointerType>(I.getType()));
 | |
| 
 | |
|   // We must cast the results of binary operations which might be promoted.
 | |
|   bool needsCast = false;
 | |
|   if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty) 
 | |
|       || (I.getType() == Type::FloatTy)) {
 | |
|     needsCast = true;
 | |
|     Out << "((";
 | |
|     printType(Out, I.getType(), false);
 | |
|     Out << ")(";
 | |
|   }
 | |
| 
 | |
|   // If this is a negation operation, print it out as such.  For FP, we don't
 | |
|   // want to print "-0.0 - X".
 | |
|   if (BinaryOperator::isNeg(&I)) {
 | |
|     Out << "-(";
 | |
|     writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
 | |
|     Out << ")";
 | |
|   } else if (BinaryOperator::isFNeg(&I)) {
 | |
|     Out << "-(";
 | |
|     writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
 | |
|     Out << ")";
 | |
|   } else if (I.getOpcode() == Instruction::FRem) {
 | |
|     // Output a call to fmod/fmodf instead of emitting a%b
 | |
|     if (I.getType() == Type::FloatTy)
 | |
|       Out << "fmodf(";
 | |
|     else if (I.getType() == Type::DoubleTy)
 | |
|       Out << "fmod(";
 | |
|     else  // all 3 flavors of long double
 | |
|       Out << "fmodl(";
 | |
|     writeOperand(I.getOperand(0));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ")";
 | |
|   } else {
 | |
| 
 | |
|     // Write out the cast of the instruction's value back to the proper type
 | |
|     // if necessary.
 | |
|     bool NeedsClosingParens = writeInstructionCast(I);
 | |
| 
 | |
|     // Certain instructions require the operand to be forced to a specific type
 | |
|     // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | |
|     // below for operand 1
 | |
|     writeOperandWithCast(I.getOperand(0), I.getOpcode());
 | |
| 
 | |
|     switch (I.getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd: Out << " + "; break;
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub: Out << " - "; break;
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul: Out << " * "; break;
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem: Out << " % "; break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv: 
 | |
|     case Instruction::FDiv: Out << " / "; break;
 | |
|     case Instruction::And:  Out << " & "; break;
 | |
|     case Instruction::Or:   Out << " | "; break;
 | |
|     case Instruction::Xor:  Out << " ^ "; break;
 | |
|     case Instruction::Shl : Out << " << "; break;
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr: Out << " >> "; break;
 | |
|     default: 
 | |
| #ifndef NDEBUG
 | |
|        cerr << "Invalid operator type!" << I;
 | |
| #endif
 | |
|        llvm_unreachable(0);
 | |
|     }
 | |
| 
 | |
|     writeOperandWithCast(I.getOperand(1), I.getOpcode());
 | |
|     if (NeedsClosingParens)
 | |
|       Out << "))";
 | |
|   }
 | |
| 
 | |
|   if (needsCast) {
 | |
|     Out << "))";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitICmpInst(ICmpInst &I) {
 | |
|   // We must cast the results of icmp which might be promoted.
 | |
|   bool needsCast = false;
 | |
| 
 | |
|   // Write out the cast of the instruction's value back to the proper type
 | |
|   // if necessary.
 | |
|   bool NeedsClosingParens = writeInstructionCast(I);
 | |
| 
 | |
|   // Certain icmp predicate require the operand to be forced to a specific type
 | |
|   // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | |
|   // below for operand 1
 | |
|   writeOperandWithCast(I.getOperand(0), I);
 | |
| 
 | |
|   switch (I.getPredicate()) {
 | |
|   case ICmpInst::ICMP_EQ:  Out << " == "; break;
 | |
|   case ICmpInst::ICMP_NE:  Out << " != "; break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|   case ICmpInst::ICMP_SLE: Out << " <= "; break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|   case ICmpInst::ICMP_SGE: Out << " >= "; break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_SLT: Out << " < "; break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_SGT: Out << " > "; break;
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     cerr << "Invalid icmp predicate!" << I; 
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| 
 | |
|   writeOperandWithCast(I.getOperand(1), I);
 | |
|   if (NeedsClosingParens)
 | |
|     Out << "))";
 | |
| 
 | |
|   if (needsCast) {
 | |
|     Out << "))";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitFCmpInst(FCmpInst &I) {
 | |
|   if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
 | |
|     Out << "0";
 | |
|     return;
 | |
|   }
 | |
|   if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
 | |
|     Out << "1";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const char* op = 0;
 | |
|   switch (I.getPredicate()) {
 | |
|   default: llvm_unreachable("Illegal FCmp predicate");
 | |
|   case FCmpInst::FCMP_ORD: op = "ord"; break;
 | |
|   case FCmpInst::FCMP_UNO: op = "uno"; break;
 | |
|   case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | |
|   case FCmpInst::FCMP_UNE: op = "une"; break;
 | |
|   case FCmpInst::FCMP_ULT: op = "ult"; break;
 | |
|   case FCmpInst::FCMP_ULE: op = "ule"; break;
 | |
|   case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | |
|   case FCmpInst::FCMP_UGE: op = "uge"; break;
 | |
|   case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | |
|   case FCmpInst::FCMP_ONE: op = "one"; break;
 | |
|   case FCmpInst::FCMP_OLT: op = "olt"; break;
 | |
|   case FCmpInst::FCMP_OLE: op = "ole"; break;
 | |
|   case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | |
|   case FCmpInst::FCMP_OGE: op = "oge"; break;
 | |
|   }
 | |
| 
 | |
|   Out << "llvm_fcmp_" << op << "(";
 | |
|   // Write the first operand
 | |
|   writeOperand(I.getOperand(0));
 | |
|   Out << ", ";
 | |
|   // Write the second operand
 | |
|   writeOperand(I.getOperand(1));
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| static const char * getFloatBitCastField(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     default: llvm_unreachable("Invalid Type");
 | |
|     case Type::FloatTyID:  return "Float";
 | |
|     case Type::DoubleTyID: return "Double";
 | |
|     case Type::IntegerTyID: {
 | |
|       unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | |
|       if (NumBits <= 32)
 | |
|         return "Int32";
 | |
|       else
 | |
|         return "Int64";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitCastInst(CastInst &I) {
 | |
|   const Type *DstTy = I.getType();
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   if (isFPIntBitCast(I)) {
 | |
|     Out << '(';
 | |
|     // These int<->float and long<->double casts need to be handled specially
 | |
|     Out << GetValueName(&I) << "__BITCAST_TEMPORARY." 
 | |
|         << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
 | |
|     writeOperand(I.getOperand(0));
 | |
|     Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
 | |
|         << getFloatBitCastField(I.getType());
 | |
|     Out << ')';
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   Out << '(';
 | |
|   printCast(I.getOpcode(), SrcTy, DstTy);
 | |
| 
 | |
|   // Make a sext from i1 work by subtracting the i1 from 0 (an int).
 | |
|   if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
 | |
|     Out << "0-";
 | |
|   
 | |
|   writeOperand(I.getOperand(0));
 | |
|     
 | |
|   if (DstTy == Type::Int1Ty && 
 | |
|       (I.getOpcode() == Instruction::Trunc ||
 | |
|        I.getOpcode() == Instruction::FPToUI ||
 | |
|        I.getOpcode() == Instruction::FPToSI ||
 | |
|        I.getOpcode() == Instruction::PtrToInt)) {
 | |
|     // Make sure we really get a trunc to bool by anding the operand with 1 
 | |
|     Out << "&1u";
 | |
|   }
 | |
|   Out << ')';
 | |
| }
 | |
| 
 | |
| void CWriter::visitSelectInst(SelectInst &I) {
 | |
|   Out << "((";
 | |
|   writeOperand(I.getCondition());
 | |
|   Out << ") ? (";
 | |
|   writeOperand(I.getTrueValue());
 | |
|   Out << ") : (";
 | |
|   writeOperand(I.getFalseValue());
 | |
|   Out << "))";
 | |
| }
 | |
| 
 | |
| 
 | |
| void CWriter::lowerIntrinsics(Function &F) {
 | |
|   // This is used to keep track of intrinsics that get generated to a lowered
 | |
|   // function. We must generate the prototypes before the function body which
 | |
|   // will only be expanded on first use (by the loop below).
 | |
|   std::vector<Function*> prototypesToGen;
 | |
| 
 | |
|   // Examine all the instructions in this function to find the intrinsics that
 | |
|   // need to be lowered.
 | |
|   for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(I++))
 | |
|         if (Function *F = CI->getCalledFunction())
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           case Intrinsic::not_intrinsic:
 | |
|           case Intrinsic::memory_barrier:
 | |
|           case Intrinsic::vastart:
 | |
|           case Intrinsic::vacopy:
 | |
|           case Intrinsic::vaend:
 | |
|           case Intrinsic::returnaddress:
 | |
|           case Intrinsic::frameaddress:
 | |
|           case Intrinsic::setjmp:
 | |
|           case Intrinsic::longjmp:
 | |
|           case Intrinsic::prefetch:
 | |
|           case Intrinsic::dbg_stoppoint:
 | |
|           case Intrinsic::powi:
 | |
|           case Intrinsic::x86_sse_cmp_ss:
 | |
|           case Intrinsic::x86_sse_cmp_ps:
 | |
|           case Intrinsic::x86_sse2_cmp_sd:
 | |
|           case Intrinsic::x86_sse2_cmp_pd:
 | |
|           case Intrinsic::ppc_altivec_lvsl:
 | |
|               // We directly implement these intrinsics
 | |
|             break;
 | |
|           default:
 | |
|             // If this is an intrinsic that directly corresponds to a GCC
 | |
|             // builtin, we handle it.
 | |
|             const char *BuiltinName = "";
 | |
| #define GET_GCC_BUILTIN_NAME
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_GCC_BUILTIN_NAME
 | |
|             // If we handle it, don't lower it.
 | |
|             if (BuiltinName[0]) break;
 | |
|             
 | |
|             // All other intrinsic calls we must lower.
 | |
|             Instruction *Before = 0;
 | |
|             if (CI != &BB->front())
 | |
|               Before = prior(BasicBlock::iterator(CI));
 | |
| 
 | |
|             IL->LowerIntrinsicCall(CI);
 | |
|             if (Before) {        // Move iterator to instruction after call
 | |
|               I = Before; ++I;
 | |
|             } else {
 | |
|               I = BB->begin();
 | |
|             }
 | |
|             // If the intrinsic got lowered to another call, and that call has
 | |
|             // a definition then we need to make sure its prototype is emitted
 | |
|             // before any calls to it.
 | |
|             if (CallInst *Call = dyn_cast<CallInst>(I))
 | |
|               if (Function *NewF = Call->getCalledFunction())
 | |
|                 if (!NewF->isDeclaration())
 | |
|                   prototypesToGen.push_back(NewF);
 | |
| 
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|   // We may have collected some prototypes to emit in the loop above. 
 | |
|   // Emit them now, before the function that uses them is emitted. But,
 | |
|   // be careful not to emit them twice.
 | |
|   std::vector<Function*>::iterator I = prototypesToGen.begin();
 | |
|   std::vector<Function*>::iterator E = prototypesToGen.end();
 | |
|   for ( ; I != E; ++I) {
 | |
|     if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
 | |
|       Out << '\n';
 | |
|       printFunctionSignature(*I, true);
 | |
|       Out << ";\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitCallInst(CallInst &I) {
 | |
|   if (isa<InlineAsm>(I.getOperand(0)))
 | |
|     return visitInlineAsm(I);
 | |
| 
 | |
|   bool WroteCallee = false;
 | |
| 
 | |
|   // Handle intrinsic function calls first...
 | |
|   if (Function *F = I.getCalledFunction())
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       if (visitBuiltinCall(I, ID, WroteCallee))
 | |
|         return;
 | |
| 
 | |
|   Value *Callee = I.getCalledValue();
 | |
| 
 | |
|   const PointerType  *PTy   = cast<PointerType>(Callee->getType());
 | |
|   const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
 | |
| 
 | |
|   // If this is a call to a struct-return function, assign to the first
 | |
|   // parameter instead of passing it to the call.
 | |
|   const AttrListPtr &PAL = I.getAttributes();
 | |
|   bool hasByVal = I.hasByValArgument();
 | |
|   bool isStructRet = I.hasStructRetAttr();
 | |
|   if (isStructRet) {
 | |
|     writeOperandDeref(I.getOperand(1));
 | |
|     Out << " = ";
 | |
|   }
 | |
|   
 | |
|   if (I.isTailCall()) Out << " /*tail*/ ";
 | |
|   
 | |
|   if (!WroteCallee) {
 | |
|     // If this is an indirect call to a struct return function, we need to cast
 | |
|     // the pointer. Ditto for indirect calls with byval arguments.
 | |
|     bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
 | |
| 
 | |
|     // GCC is a real PITA.  It does not permit codegening casts of functions to
 | |
|     // function pointers if they are in a call (it generates a trap instruction
 | |
|     // instead!).  We work around this by inserting a cast to void* in between
 | |
|     // the function and the function pointer cast.  Unfortunately, we can't just
 | |
|     // form the constant expression here, because the folder will immediately
 | |
|     // nuke it.
 | |
|     //
 | |
|     // Note finally, that this is completely unsafe.  ANSI C does not guarantee
 | |
|     // that void* and function pointers have the same size. :( To deal with this
 | |
|     // in the common case, we handle casts where the number of arguments passed
 | |
|     // match exactly.
 | |
|     //
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
 | |
|       if (CE->isCast())
 | |
|         if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
 | |
|           NeedsCast = true;
 | |
|           Callee = RF;
 | |
|         }
 | |
|   
 | |
|     if (NeedsCast) {
 | |
|       // Ok, just cast the pointer type.
 | |
|       Out << "((";
 | |
|       if (isStructRet)
 | |
|         printStructReturnPointerFunctionType(Out, PAL,
 | |
|                              cast<PointerType>(I.getCalledValue()->getType()));
 | |
|       else if (hasByVal)
 | |
|         printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
 | |
|       else
 | |
|         printType(Out, I.getCalledValue()->getType());
 | |
|       Out << ")(void*)";
 | |
|     }
 | |
|     writeOperand(Callee);
 | |
|     if (NeedsCast) Out << ')';
 | |
|   }
 | |
| 
 | |
|   Out << '(';
 | |
| 
 | |
|   unsigned NumDeclaredParams = FTy->getNumParams();
 | |
| 
 | |
|   CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
 | |
|   unsigned ArgNo = 0;
 | |
|   if (isStructRet) {   // Skip struct return argument.
 | |
|     ++AI;
 | |
|     ++ArgNo;
 | |
|   }
 | |
|       
 | |
|   bool PrintedArg = false;
 | |
|   for (; AI != AE; ++AI, ++ArgNo) {
 | |
|     if (PrintedArg) Out << ", ";
 | |
|     if (ArgNo < NumDeclaredParams &&
 | |
|         (*AI)->getType() != FTy->getParamType(ArgNo)) {
 | |
|       Out << '(';
 | |
|       printType(Out, FTy->getParamType(ArgNo), 
 | |
|             /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
 | |
|       Out << ')';
 | |
|     }
 | |
|     // Check if the argument is expected to be passed by value.
 | |
|     if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
 | |
|       writeOperandDeref(*AI);
 | |
|     else
 | |
|       writeOperand(*AI);
 | |
|     PrintedArg = true;
 | |
|   }
 | |
|   Out << ')';
 | |
| }
 | |
| 
 | |
| /// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
 | |
| /// if the entire call is handled, return false it it wasn't handled, and
 | |
| /// optionally set 'WroteCallee' if the callee has already been printed out.
 | |
| bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
 | |
|                                bool &WroteCallee) {
 | |
|   switch (ID) {
 | |
|   default: {
 | |
|     // If this is an intrinsic that directly corresponds to a GCC
 | |
|     // builtin, we emit it here.
 | |
|     const char *BuiltinName = "";
 | |
|     Function *F = I.getCalledFunction();
 | |
| #define GET_GCC_BUILTIN_NAME
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_GCC_BUILTIN_NAME
 | |
|     assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
 | |
|     
 | |
|     Out << BuiltinName;
 | |
|     WroteCallee = true;
 | |
|     return false;
 | |
|   }
 | |
|   case Intrinsic::memory_barrier:
 | |
|     Out << "__sync_synchronize()";
 | |
|     return true;
 | |
|   case Intrinsic::vastart:
 | |
|     Out << "0; ";
 | |
|       
 | |
|     Out << "va_start(*(va_list*)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", ";
 | |
|     // Output the last argument to the enclosing function.
 | |
|     if (I.getParent()->getParent()->arg_empty()) {
 | |
|       std::string msg;
 | |
|       raw_string_ostream Msg(msg);
 | |
|       Msg << "The C backend does not currently support zero "
 | |
|            << "argument varargs functions, such as '"
 | |
|            << I.getParent()->getParent()->getName() << "'!";
 | |
|       llvm_report_error(Msg.str());
 | |
|     }
 | |
|     writeOperand(--I.getParent()->getParent()->arg_end());
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::vaend:
 | |
|     if (!isa<ConstantPointerNull>(I.getOperand(1))) {
 | |
|       Out << "0; va_end(*(va_list*)";
 | |
|       writeOperand(I.getOperand(1));
 | |
|       Out << ')';
 | |
|     } else {
 | |
|       Out << "va_end(*(va_list*)0)";
 | |
|     }
 | |
|     return true;
 | |
|   case Intrinsic::vacopy:
 | |
|     Out << "0; ";
 | |
|     Out << "va_copy(*(va_list*)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", *(va_list*)";
 | |
|     writeOperand(I.getOperand(2));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::returnaddress:
 | |
|     Out << "__builtin_return_address(";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::frameaddress:
 | |
|     Out << "__builtin_frame_address(";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::powi:
 | |
|     Out << "__builtin_powi(";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(2));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::setjmp:
 | |
|     Out << "setjmp(*(jmp_buf*)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::longjmp:
 | |
|     Out << "longjmp(*(jmp_buf*)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(2));
 | |
|     Out << ')';
 | |
|     return true;
 | |
|   case Intrinsic::prefetch:
 | |
|     Out << "LLVM_PREFETCH((const void *)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(2));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(3));
 | |
|     Out << ")";
 | |
|     return true;
 | |
|   case Intrinsic::stacksave:
 | |
|     // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
 | |
|     // to work around GCC bugs (see PR1809).
 | |
|     Out << "0; *((void**)&" << GetValueName(&I)
 | |
|         << ") = __builtin_stack_save()";
 | |
|     return true;
 | |
|   case Intrinsic::dbg_stoppoint: {
 | |
|     // If we use writeOperand directly we get a "u" suffix which is rejected
 | |
|     // by gcc.
 | |
|     std::stringstream SPIStr;
 | |
|     DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
 | |
|     SPI.getDirectory()->print(SPIStr);
 | |
|     Out << "\n#line "
 | |
|         << SPI.getLine()
 | |
|         << " \"";
 | |
|     Out << SPIStr.str();
 | |
|     SPIStr.clear();
 | |
|     SPI.getFileName()->print(SPIStr);
 | |
|     Out << SPIStr.str() << "\"\n";
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::x86_sse_cmp_ss:
 | |
|   case Intrinsic::x86_sse_cmp_ps:
 | |
|   case Intrinsic::x86_sse2_cmp_sd:
 | |
|   case Intrinsic::x86_sse2_cmp_pd:
 | |
|     Out << '(';
 | |
|     printType(Out, I.getType());
 | |
|     Out << ')';  
 | |
|     // Multiple GCC builtins multiplex onto this intrinsic.
 | |
|     switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
 | |
|     default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
 | |
|     case 0: Out << "__builtin_ia32_cmpeq"; break;
 | |
|     case 1: Out << "__builtin_ia32_cmplt"; break;
 | |
|     case 2: Out << "__builtin_ia32_cmple"; break;
 | |
|     case 3: Out << "__builtin_ia32_cmpunord"; break;
 | |
|     case 4: Out << "__builtin_ia32_cmpneq"; break;
 | |
|     case 5: Out << "__builtin_ia32_cmpnlt"; break;
 | |
|     case 6: Out << "__builtin_ia32_cmpnle"; break;
 | |
|     case 7: Out << "__builtin_ia32_cmpord"; break;
 | |
|     }
 | |
|     if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
 | |
|       Out << 'p';
 | |
|     else
 | |
|       Out << 's';
 | |
|     if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
 | |
|       Out << 's';
 | |
|     else
 | |
|       Out << 'd';
 | |
|       
 | |
|     Out << "(";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(2));
 | |
|     Out << ")";
 | |
|     return true;
 | |
|   case Intrinsic::ppc_altivec_lvsl:
 | |
|     Out << '(';
 | |
|     printType(Out, I.getType());
 | |
|     Out << ')';  
 | |
|     Out << "__builtin_altivec_lvsl(0, (void*)";
 | |
|     writeOperand(I.getOperand(1));
 | |
|     Out << ")";
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //This converts the llvm constraint string to something gcc is expecting.
 | |
| //TODO: work out platform independent constraints and factor those out
 | |
| //      of the per target tables
 | |
| //      handle multiple constraint codes
 | |
| std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
 | |
| 
 | |
|   assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
 | |
| 
 | |
|   const char *const *table = 0;
 | |
|   
 | |
|   // Grab the translation table from TargetAsmInfo if it exists.
 | |
|   if (!TAsm) {
 | |
|     std::string E;
 | |
|     const Target *Match =
 | |
|       TargetRegistry::getClosestStaticTargetForModule(*TheModule, E);
 | |
|     if (Match) {
 | |
|       // Per platform Target Machines don't exist, so create it;
 | |
|       // this must be done only once.
 | |
|       const TargetMachine* TM = Match->createTargetMachine(*TheModule, "");
 | |
|       TAsm = TM->getTargetAsmInfo();
 | |
|     }
 | |
|   }
 | |
|   if (TAsm)
 | |
|     table = TAsm->getAsmCBE();
 | |
| 
 | |
|   // Search the translation table if it exists.
 | |
|   for (int i = 0; table && table[i]; i += 2)
 | |
|     if (c.Codes[0] == table[i])
 | |
|       return table[i+1];
 | |
| 
 | |
|   // Default is identity.
 | |
|   return c.Codes[0];
 | |
| }
 | |
| 
 | |
| //TODO: import logic from AsmPrinter.cpp
 | |
| static std::string gccifyAsm(std::string asmstr) {
 | |
|   for (std::string::size_type i = 0; i != asmstr.size(); ++i)
 | |
|     if (asmstr[i] == '\n')
 | |
|       asmstr.replace(i, 1, "\\n");
 | |
|     else if (asmstr[i] == '\t')
 | |
|       asmstr.replace(i, 1, "\\t");
 | |
|     else if (asmstr[i] == '$') {
 | |
|       if (asmstr[i + 1] == '{') {
 | |
|         std::string::size_type a = asmstr.find_first_of(':', i + 1);
 | |
|         std::string::size_type b = asmstr.find_first_of('}', i + 1);
 | |
|         std::string n = "%" + 
 | |
|           asmstr.substr(a + 1, b - a - 1) +
 | |
|           asmstr.substr(i + 2, a - i - 2);
 | |
|         asmstr.replace(i, b - i + 1, n);
 | |
|         i += n.size() - 1;
 | |
|       } else
 | |
|         asmstr.replace(i, 1, "%");
 | |
|     }
 | |
|     else if (asmstr[i] == '%')//grr
 | |
|       { asmstr.replace(i, 1, "%%"); ++i;}
 | |
|   
 | |
|   return asmstr;
 | |
| }
 | |
| 
 | |
| //TODO: assumptions about what consume arguments from the call are likely wrong
 | |
| //      handle communitivity
 | |
| void CWriter::visitInlineAsm(CallInst &CI) {
 | |
|   InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
 | |
|   std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
 | |
|   
 | |
|   std::vector<std::pair<Value*, int> > ResultVals;
 | |
|   if (CI.getType() == Type::VoidTy)
 | |
|     ;
 | |
|   else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
 | |
|     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
 | |
|       ResultVals.push_back(std::make_pair(&CI, (int)i));
 | |
|   } else {
 | |
|     ResultVals.push_back(std::make_pair(&CI, -1));
 | |
|   }
 | |
|   
 | |
|   // Fix up the asm string for gcc and emit it.
 | |
|   Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
 | |
|   Out << "        :";
 | |
| 
 | |
|   unsigned ValueCount = 0;
 | |
|   bool IsFirst = true;
 | |
|   
 | |
|   // Convert over all the output constraints.
 | |
|   for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
 | |
|        E = Constraints.end(); I != E; ++I) {
 | |
|     
 | |
|     if (I->Type != InlineAsm::isOutput) {
 | |
|       ++ValueCount;
 | |
|       continue;  // Ignore non-output constraints.
 | |
|     }
 | |
|     
 | |
|     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | |
|     std::string C = InterpretASMConstraint(*I);
 | |
|     if (C.empty()) continue;
 | |
|     
 | |
|     if (!IsFirst) {
 | |
|       Out << ", ";
 | |
|       IsFirst = false;
 | |
|     }
 | |
| 
 | |
|     // Unpack the dest.
 | |
|     Value *DestVal;
 | |
|     int DestValNo = -1;
 | |
|     
 | |
|     if (ValueCount < ResultVals.size()) {
 | |
|       DestVal = ResultVals[ValueCount].first;
 | |
|       DestValNo = ResultVals[ValueCount].second;
 | |
|     } else
 | |
|       DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
 | |
| 
 | |
|     if (I->isEarlyClobber)
 | |
|       C = "&"+C;
 | |
|       
 | |
|     Out << "\"=" << C << "\"(" << GetValueName(DestVal);
 | |
|     if (DestValNo != -1)
 | |
|       Out << ".field" << DestValNo; // Multiple retvals.
 | |
|     Out << ")";
 | |
|     ++ValueCount;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Convert over all the input constraints.
 | |
|   Out << "\n        :";
 | |
|   IsFirst = true;
 | |
|   ValueCount = 0;
 | |
|   for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
 | |
|        E = Constraints.end(); I != E; ++I) {
 | |
|     if (I->Type != InlineAsm::isInput) {
 | |
|       ++ValueCount;
 | |
|       continue;  // Ignore non-input constraints.
 | |
|     }
 | |
|     
 | |
|     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | |
|     std::string C = InterpretASMConstraint(*I);
 | |
|     if (C.empty()) continue;
 | |
|     
 | |
|     if (!IsFirst) {
 | |
|       Out << ", ";
 | |
|       IsFirst = false;
 | |
|     }
 | |
|     
 | |
|     assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
 | |
|     Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
 | |
|     
 | |
|     Out << "\"" << C << "\"(";
 | |
|     if (!I->isIndirect)
 | |
|       writeOperand(SrcVal);
 | |
|     else
 | |
|       writeOperandDeref(SrcVal);
 | |
|     Out << ")";
 | |
|   }
 | |
|   
 | |
|   // Convert over the clobber constraints.
 | |
|   IsFirst = true;
 | |
|   ValueCount = 0;
 | |
|   for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
 | |
|        E = Constraints.end(); I != E; ++I) {
 | |
|     if (I->Type != InlineAsm::isClobber)
 | |
|       continue;  // Ignore non-input constraints.
 | |
| 
 | |
|     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | |
|     std::string C = InterpretASMConstraint(*I);
 | |
|     if (C.empty()) continue;
 | |
|     
 | |
|     if (!IsFirst) {
 | |
|       Out << ", ";
 | |
|       IsFirst = false;
 | |
|     }
 | |
|     
 | |
|     Out << '\"' << C << '"';
 | |
|   }
 | |
|   
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::visitMallocInst(MallocInst &I) {
 | |
|   llvm_unreachable("lowerallocations pass didn't work!");
 | |
| }
 | |
| 
 | |
| void CWriter::visitAllocaInst(AllocaInst &I) {
 | |
|   Out << '(';
 | |
|   printType(Out, I.getType());
 | |
|   Out << ") alloca(sizeof(";
 | |
|   printType(Out, I.getType()->getElementType());
 | |
|   Out << ')';
 | |
|   if (I.isArrayAllocation()) {
 | |
|     Out << " * " ;
 | |
|     writeOperand(I.getOperand(0));
 | |
|   }
 | |
|   Out << ')';
 | |
| }
 | |
| 
 | |
| void CWriter::visitFreeInst(FreeInst &I) {
 | |
|   llvm_unreachable("lowerallocations pass didn't work!");
 | |
| }
 | |
| 
 | |
| void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
 | |
|                                  gep_type_iterator E, bool Static) {
 | |
|   
 | |
|   // If there are no indices, just print out the pointer.
 | |
|   if (I == E) {
 | |
|     writeOperand(Ptr);
 | |
|     return;
 | |
|   }
 | |
|     
 | |
|   // Find out if the last index is into a vector.  If so, we have to print this
 | |
|   // specially.  Since vectors can't have elements of indexable type, only the
 | |
|   // last index could possibly be of a vector element.
 | |
|   const VectorType *LastIndexIsVector = 0;
 | |
|   {
 | |
|     for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
 | |
|       LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
 | |
|   }
 | |
|   
 | |
|   Out << "(";
 | |
|   
 | |
|   // If the last index is into a vector, we can't print it as &a[i][j] because
 | |
|   // we can't index into a vector with j in GCC.  Instead, emit this as
 | |
|   // (((float*)&a[i])+j)
 | |
|   if (LastIndexIsVector) {
 | |
|     Out << "((";
 | |
|     printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
 | |
|     Out << ")(";
 | |
|   }
 | |
|   
 | |
|   Out << '&';
 | |
| 
 | |
|   // If the first index is 0 (very typical) we can do a number of
 | |
|   // simplifications to clean up the code.
 | |
|   Value *FirstOp = I.getOperand();
 | |
|   if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
 | |
|     // First index isn't simple, print it the hard way.
 | |
|     writeOperand(Ptr);
 | |
|   } else {
 | |
|     ++I;  // Skip the zero index.
 | |
| 
 | |
|     // Okay, emit the first operand. If Ptr is something that is already address
 | |
|     // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
 | |
|     if (isAddressExposed(Ptr)) {
 | |
|       writeOperandInternal(Ptr, Static);
 | |
|     } else if (I != E && isa<StructType>(*I)) {
 | |
|       // If we didn't already emit the first operand, see if we can print it as
 | |
|       // P->f instead of "P[0].f"
 | |
|       writeOperand(Ptr);
 | |
|       Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
 | |
|       ++I;  // eat the struct index as well.
 | |
|     } else {
 | |
|       // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
 | |
|       Out << "(*";
 | |
|       writeOperand(Ptr);
 | |
|       Out << ")";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     if (isa<StructType>(*I)) {
 | |
|       Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
 | |
|     } else if (isa<ArrayType>(*I)) {
 | |
|       Out << ".array[";
 | |
|       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | |
|       Out << ']';
 | |
|     } else if (!isa<VectorType>(*I)) {
 | |
|       Out << '[';
 | |
|       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | |
|       Out << ']';
 | |
|     } else {
 | |
|       // If the last index is into a vector, then print it out as "+j)".  This
 | |
|       // works with the 'LastIndexIsVector' code above.
 | |
|       if (isa<Constant>(I.getOperand()) &&
 | |
|           cast<Constant>(I.getOperand())->isNullValue()) {
 | |
|         Out << "))";  // avoid "+0".
 | |
|       } else {
 | |
|         Out << ")+(";
 | |
|         writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | |
|         Out << "))";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
 | |
|                                 bool IsVolatile, unsigned Alignment) {
 | |
| 
 | |
|   bool IsUnaligned = Alignment &&
 | |
|     Alignment < TD->getABITypeAlignment(OperandType);
 | |
| 
 | |
|   if (!IsUnaligned)
 | |
|     Out << '*';
 | |
|   if (IsVolatile || IsUnaligned) {
 | |
|     Out << "((";
 | |
|     if (IsUnaligned)
 | |
|       Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
 | |
|     printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
 | |
|     if (IsUnaligned) {
 | |
|       Out << "; } ";
 | |
|       if (IsVolatile) Out << "volatile ";
 | |
|       Out << "*";
 | |
|     }
 | |
|     Out << ")";
 | |
|   }
 | |
| 
 | |
|   writeOperand(Operand);
 | |
| 
 | |
|   if (IsVolatile || IsUnaligned) {
 | |
|     Out << ')';
 | |
|     if (IsUnaligned)
 | |
|       Out << "->data";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitLoadInst(LoadInst &I) {
 | |
|   writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
 | |
|                     I.getAlignment());
 | |
| 
 | |
| }
 | |
| 
 | |
| void CWriter::visitStoreInst(StoreInst &I) {
 | |
|   writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
 | |
|                     I.isVolatile(), I.getAlignment());
 | |
|   Out << " = ";
 | |
|   Value *Operand = I.getOperand(0);
 | |
|   Constant *BitMask = 0;
 | |
|   if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
 | |
|     if (!ITy->isPowerOf2ByteWidth())
 | |
|       // We have a bit width that doesn't match an even power-of-2 byte
 | |
|       // size. Consequently we must & the value with the type's bit mask
 | |
|       BitMask = Context->getConstantInt(ITy, ITy->getBitMask());
 | |
|   if (BitMask)
 | |
|     Out << "((";
 | |
|   writeOperand(Operand);
 | |
|   if (BitMask) {
 | |
|     Out << ") & ";
 | |
|     printConstant(BitMask, false);
 | |
|     Out << ")"; 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
 | |
|                      gep_type_end(I), false);
 | |
| }
 | |
| 
 | |
| void CWriter::visitVAArgInst(VAArgInst &I) {
 | |
|   Out << "va_arg(*(va_list*)";
 | |
|   writeOperand(I.getOperand(0));
 | |
|   Out << ", ";
 | |
|   printType(Out, I.getType());
 | |
|   Out << ");\n ";
 | |
| }
 | |
| 
 | |
| void CWriter::visitInsertElementInst(InsertElementInst &I) {
 | |
|   const Type *EltTy = I.getType()->getElementType();
 | |
|   writeOperand(I.getOperand(0));
 | |
|   Out << ";\n  ";
 | |
|   Out << "((";
 | |
|   printType(Out, PointerType::getUnqual(EltTy));
 | |
|   Out << ")(&" << GetValueName(&I) << "))[";
 | |
|   writeOperand(I.getOperand(2));
 | |
|   Out << "] = (";
 | |
|   writeOperand(I.getOperand(1));
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   // We know that our operand is not inlined.
 | |
|   Out << "((";
 | |
|   const Type *EltTy = 
 | |
|     cast<VectorType>(I.getOperand(0)->getType())->getElementType();
 | |
|   printType(Out, PointerType::getUnqual(EltTy));
 | |
|   Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
 | |
|   writeOperand(I.getOperand(1));
 | |
|   Out << "]";
 | |
| }
 | |
| 
 | |
| void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Out << "(";
 | |
|   printType(Out, SVI.getType());
 | |
|   Out << "){ ";
 | |
|   const VectorType *VT = SVI.getType();
 | |
|   unsigned NumElts = VT->getNumElements();
 | |
|   const Type *EltTy = VT->getElementType();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (i) Out << ", ";
 | |
|     int SrcVal = SVI.getMaskValue(i);
 | |
|     if ((unsigned)SrcVal >= NumElts*2) {
 | |
|       Out << " 0/*undef*/ ";
 | |
|     } else {
 | |
|       Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
 | |
|       if (isa<Instruction>(Op)) {
 | |
|         // Do an extractelement of this value from the appropriate input.
 | |
|         Out << "((";
 | |
|         printType(Out, PointerType::getUnqual(EltTy));
 | |
|         Out << ")(&" << GetValueName(Op)
 | |
|             << "))[" << (SrcVal & (NumElts-1)) << "]";
 | |
|       } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
 | |
|         Out << "0";
 | |
|       } else {
 | |
|         printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
 | |
|                                                            (NumElts-1)),
 | |
|                       false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   Out << "}";
 | |
| }
 | |
| 
 | |
| void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   // Start by copying the entire aggregate value into the result variable.
 | |
|   writeOperand(IVI.getOperand(0));
 | |
|   Out << ";\n  ";
 | |
| 
 | |
|   // Then do the insert to update the field.
 | |
|   Out << GetValueName(&IVI);
 | |
|   for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
 | |
|        i != e; ++i) {
 | |
|     const Type *IndexedTy =
 | |
|       ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
 | |
|     if (isa<ArrayType>(IndexedTy))
 | |
|       Out << ".array[" << *i << "]";
 | |
|     else
 | |
|       Out << ".field" << *i;
 | |
|   }
 | |
|   Out << " = ";
 | |
|   writeOperand(IVI.getOperand(1));
 | |
| }
 | |
| 
 | |
| void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   Out << "(";
 | |
|   if (isa<UndefValue>(EVI.getOperand(0))) {
 | |
|     Out << "(";
 | |
|     printType(Out, EVI.getType());
 | |
|     Out << ") 0/*UNDEF*/";
 | |
|   } else {
 | |
|     Out << GetValueName(EVI.getOperand(0));
 | |
|     for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
 | |
|          i != e; ++i) {
 | |
|       const Type *IndexedTy =
 | |
|         ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
 | |
|       if (isa<ArrayType>(IndexedTy))
 | |
|         Out << ".array[" << *i << "]";
 | |
|       else
 | |
|         Out << ".field" << *i;
 | |
|     }
 | |
|   }
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       External Interface declaration
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
 | |
|                                               formatted_raw_ostream &o,
 | |
|                                               CodeGenFileType FileType,
 | |
|                                               CodeGenOpt::Level OptLevel) {
 | |
|   if (FileType != TargetMachine::AssemblyFile) return true;
 | |
| 
 | |
|   PM.add(createGCLoweringPass());
 | |
|   PM.add(createLowerAllocationsPass(true));
 | |
|   PM.add(createLowerInvokePass());
 | |
|   PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
 | |
|   PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
 | |
|   PM.add(new CWriter(o));
 | |
|   PM.add(createGCInfoDeleter());
 | |
|   return false;
 | |
| }
 |