mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76280 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2510 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2510 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Constant* classes...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "ConstantFold.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/MDNode.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/System/Mutex.h"
 | 
						|
#include "llvm/System/RWMutex.h"
 | 
						|
#include "llvm/System/Threading.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Constant Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Becomes a no-op when multithreading is disabled.
 | 
						|
ManagedStatic<sys::SmartRWMutex<true> > ConstantsLock;
 | 
						|
 | 
						|
void Constant::destroyConstantImpl() {
 | 
						|
  // When a Constant is destroyed, there may be lingering
 | 
						|
  // references to the constant by other constants in the constant pool.  These
 | 
						|
  // constants are implicitly dependent on the module that is being deleted,
 | 
						|
  // but they don't know that.  Because we only find out when the CPV is
 | 
						|
  // deleted, we must now notify all of our users (that should only be
 | 
						|
  // Constants) that they are, in fact, invalid now and should be deleted.
 | 
						|
  //
 | 
						|
  while (!use_empty()) {
 | 
						|
    Value *V = use_back();
 | 
						|
#ifndef NDEBUG      // Only in -g mode...
 | 
						|
    if (!isa<Constant>(V))
 | 
						|
      DOUT << "While deleting: " << *this
 | 
						|
           << "\n\nUse still stuck around after Def is destroyed: "
 | 
						|
           << *V << "\n\n";
 | 
						|
#endif
 | 
						|
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | 
						|
    Constant *CV = cast<Constant>(V);
 | 
						|
    CV->destroyConstant();
 | 
						|
 | 
						|
    // The constant should remove itself from our use list...
 | 
						|
    assert((use_empty() || use_back() != V) && "Constant not removed!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Value has no outstanding references it is safe to delete it now...
 | 
						|
  delete this;
 | 
						|
}
 | 
						|
 | 
						|
/// canTrap - Return true if evaluation of this constant could trap.  This is
 | 
						|
/// true for things like constant expressions that could divide by zero.
 | 
						|
bool Constant::canTrap() const {
 | 
						|
  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
 | 
						|
  // The only thing that could possibly trap are constant exprs.
 | 
						|
  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
 | 
						|
  if (!CE) return false;
 | 
						|
  
 | 
						|
  // ConstantExpr traps if any operands can trap. 
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (getOperand(i)->canTrap()) 
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Otherwise, only specific operations can trap.
 | 
						|
  switch (CE->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::FDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::FRem:
 | 
						|
    // Div and rem can trap if the RHS is not known to be non-zero.
 | 
						|
    if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ContainsRelocations - Return true if the constant value contains relocations
 | 
						|
/// which cannot be resolved at compile time. Kind argument is used to filter
 | 
						|
/// only 'interesting' sorts of relocations.
 | 
						|
bool Constant::ContainsRelocations(unsigned Kind) const {
 | 
						|
  if (const GlobalValue* GV = dyn_cast<GlobalValue>(this)) {
 | 
						|
    bool isLocal = GV->hasLocalLinkage();
 | 
						|
    if ((Kind & Reloc::Local) && isLocal) {
 | 
						|
      // Global has local linkage and 'local' kind of relocations are
 | 
						|
      // requested
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((Kind & Reloc::Global) && !isLocal) {
 | 
						|
      // Global has non-local linkage and 'global' kind of relocations are
 | 
						|
      // requested
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (getOperand(i)->ContainsRelocations(Kind))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getVectorElements - This method, which is only valid on constant of vector
 | 
						|
/// type, returns the elements of the vector in the specified smallvector.
 | 
						|
/// This handles breaking down a vector undef into undef elements, etc.  For
 | 
						|
/// constant exprs and other cases we can't handle, we return an empty vector.
 | 
						|
void Constant::getVectorElements(LLVMContext &Context,
 | 
						|
                                 SmallVectorImpl<Constant*> &Elts) const {
 | 
						|
  assert(isa<VectorType>(getType()) && "Not a vector constant!");
 | 
						|
  
 | 
						|
  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
 | 
						|
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
 | 
						|
      Elts.push_back(CV->getOperand(i));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const VectorType *VT = cast<VectorType>(getType());
 | 
						|
  if (isa<ConstantAggregateZero>(this)) {
 | 
						|
    Elts.assign(VT->getNumElements(), 
 | 
						|
                Context.getNullValue(VT->getElementType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<UndefValue>(this)) {
 | 
						|
    Elts.assign(VT->getNumElements(), Context.getUndef(VT->getElementType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Unknown type, must be constant expr etc.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                ConstantInt
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
 | 
						|
  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
 | 
						|
  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt *ConstantInt::TheTrueVal = 0;
 | 
						|
ConstantInt *ConstantInt::TheFalseVal = 0;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void CleanupTrueFalse(void *) {
 | 
						|
    ConstantInt::ResetTrueFalse();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
 | 
						|
 | 
						|
ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
 | 
						|
  assert(TheTrueVal == 0 && TheFalseVal == 0);
 | 
						|
  TheTrueVal  = getGlobalContext().getConstantInt(Type::Int1Ty, 1);
 | 
						|
  TheFalseVal = getGlobalContext().getConstantInt(Type::Int1Ty, 0);
 | 
						|
  
 | 
						|
  // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
 | 
						|
  TrueFalseCleanup.Register();
 | 
						|
  
 | 
						|
  return WhichOne ? TheTrueVal : TheFalseVal;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                ConstantFP
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG 
 | 
						|
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
 | 
						|
  if (Ty == Type::FloatTy)
 | 
						|
    return &APFloat::IEEEsingle;
 | 
						|
  if (Ty == Type::DoubleTy)
 | 
						|
    return &APFloat::IEEEdouble;
 | 
						|
  if (Ty == Type::X86_FP80Ty)
 | 
						|
    return &APFloat::x87DoubleExtended;
 | 
						|
  else if (Ty == Type::FP128Ty)
 | 
						|
    return &APFloat::IEEEquad;
 | 
						|
  
 | 
						|
  assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
 | 
						|
  return &APFloat::PPCDoubleDouble;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
 | 
						|
  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
 | 
						|
  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
 | 
						|
         "FP type Mismatch");
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isNullValue() const {
 | 
						|
  return Val.isZero() && !Val.isNegative();
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isExactlyValue(const APFloat& V) const {
 | 
						|
  return Val.bitwiseIsEqual(V);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            ConstantXXX Classes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
ConstantArray::ConstantArray(const ArrayType *T,
 | 
						|
                             const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantArrayVal,
 | 
						|
             OperandTraits<ConstantArray>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  assert(V.size() == T->getNumElements() &&
 | 
						|
         "Invalid initializer vector for constant array");
 | 
						|
  Use *OL = OperandList;
 | 
						|
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
       I != E; ++I, ++OL) {
 | 
						|
    Constant *C = *I;
 | 
						|
    assert((C->getType() == T->getElementType() ||
 | 
						|
            (T->isAbstract() &&
 | 
						|
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | 
						|
           "Initializer for array element doesn't match array element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ConstantStruct::ConstantStruct(const StructType *T,
 | 
						|
                               const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantStructVal,
 | 
						|
             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  assert(V.size() == T->getNumElements() &&
 | 
						|
         "Invalid initializer vector for constant structure");
 | 
						|
  Use *OL = OperandList;
 | 
						|
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
       I != E; ++I, ++OL) {
 | 
						|
    Constant *C = *I;
 | 
						|
    assert((C->getType() == T->getElementType(I-V.begin()) ||
 | 
						|
            ((T->getElementType(I-V.begin())->isAbstract() ||
 | 
						|
              C->getType()->isAbstract()) &&
 | 
						|
             T->getElementType(I-V.begin())->getTypeID() == 
 | 
						|
                   C->getType()->getTypeID())) &&
 | 
						|
           "Initializer for struct element doesn't match struct element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ConstantVector::ConstantVector(const VectorType *T,
 | 
						|
                               const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantVectorVal,
 | 
						|
             OperandTraits<ConstantVector>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  Use *OL = OperandList;
 | 
						|
    for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
         I != E; ++I, ++OL) {
 | 
						|
      Constant *C = *I;
 | 
						|
      assert((C->getType() == T->getElementType() ||
 | 
						|
            (T->isAbstract() &&
 | 
						|
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | 
						|
           "Initializer for vector element doesn't match vector element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
// We declare several classes private to this file, so use an anonymous
 | 
						|
// namespace
 | 
						|
namespace {
 | 
						|
 | 
						|
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | 
						|
/// behind the scenes to implement unary constant exprs.
 | 
						|
class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly one operand
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 1);
 | 
						|
  }
 | 
						|
  UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | 
						|
    : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
 | 
						|
    Op<0>() = C;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | 
						|
/// behind the scenes to implement binary constant exprs.
 | 
						|
class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly two operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 2);
 | 
						|
  }
 | 
						|
  BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | 
						|
    : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
 | 
						|
    Op<0>() = C1;
 | 
						|
    Op<1>() = C2;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | 
						|
/// behind the scenes to implement select constant exprs.
 | 
						|
class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly three operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 3);
 | 
						|
  }
 | 
						|
  SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | 
						|
    : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
 | 
						|
    Op<0>() = C1;
 | 
						|
    Op<1>() = C2;
 | 
						|
    Op<2>() = C3;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// ExtractElementConstantExpr - This class is private to
 | 
						|
/// Constants.cpp, and is used behind the scenes to implement
 | 
						|
/// extractelement constant exprs.
 | 
						|
class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly two operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 2);
 | 
						|
  }
 | 
						|
  ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | 
						|
    : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
 | 
						|
                   Instruction::ExtractElement, &Op<0>(), 2) {
 | 
						|
    Op<0>() = C1;
 | 
						|
    Op<1>() = C2;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// InsertElementConstantExpr - This class is private to
 | 
						|
/// Constants.cpp, and is used behind the scenes to implement
 | 
						|
/// insertelement constant exprs.
 | 
						|
class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly three operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 3);
 | 
						|
  }
 | 
						|
  InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | 
						|
    : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | 
						|
                   &Op<0>(), 3) {
 | 
						|
    Op<0>() = C1;
 | 
						|
    Op<1>() = C2;
 | 
						|
    Op<2>() = C3;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// ShuffleVectorConstantExpr - This class is private to
 | 
						|
/// Constants.cpp, and is used behind the scenes to implement
 | 
						|
/// shufflevector constant exprs.
 | 
						|
class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly three operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 3);
 | 
						|
  }
 | 
						|
  ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | 
						|
  : ConstantExpr(VectorType::get(
 | 
						|
                   cast<VectorType>(C1->getType())->getElementType(),
 | 
						|
                   cast<VectorType>(C3->getType())->getNumElements()),
 | 
						|
                 Instruction::ShuffleVector, 
 | 
						|
                 &Op<0>(), 3) {
 | 
						|
    Op<0>() = C1;
 | 
						|
    Op<1>() = C2;
 | 
						|
    Op<2>() = C3;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// ExtractValueConstantExpr - This class is private to
 | 
						|
/// Constants.cpp, and is used behind the scenes to implement
 | 
						|
/// extractvalue constant exprs.
 | 
						|
class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly one operand
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 1);
 | 
						|
  }
 | 
						|
  ExtractValueConstantExpr(Constant *Agg,
 | 
						|
                           const SmallVector<unsigned, 4> &IdxList,
 | 
						|
                           const Type *DestTy)
 | 
						|
    : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
 | 
						|
      Indices(IdxList) {
 | 
						|
    Op<0>() = Agg;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Indices - These identify which value to extract.
 | 
						|
  const SmallVector<unsigned, 4> Indices;
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
/// InsertValueConstantExpr - This class is private to
 | 
						|
/// Constants.cpp, and is used behind the scenes to implement
 | 
						|
/// insertvalue constant exprs.
 | 
						|
class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  // allocate space for exactly one operand
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 2);
 | 
						|
  }
 | 
						|
  InsertValueConstantExpr(Constant *Agg, Constant *Val,
 | 
						|
                          const SmallVector<unsigned, 4> &IdxList,
 | 
						|
                          const Type *DestTy)
 | 
						|
    : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
 | 
						|
      Indices(IdxList) {
 | 
						|
    Op<0>() = Agg;
 | 
						|
    Op<1>() = Val;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Indices - These identify the position for the insertion.
 | 
						|
  const SmallVector<unsigned, 4> Indices;
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | 
						|
/// used behind the scenes to implement getelementpr constant exprs.
 | 
						|
class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
 | 
						|
  GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | 
						|
                            const Type *DestTy);
 | 
						|
public:
 | 
						|
  static GetElementPtrConstantExpr *Create(Constant *C,
 | 
						|
                                           const std::vector<Constant*>&IdxList,
 | 
						|
                                           const Type *DestTy) {
 | 
						|
    GetElementPtrConstantExpr *Result = new(IdxList.size() + 1)
 | 
						|
      GetElementPtrConstantExpr(C, IdxList, DestTy);
 | 
						|
    // Getelementptr defaults to having no pointer overflow.
 | 
						|
    cast<GEPOperator>(Result)->setHasNoPointerOverflow(true);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
// CompareConstantExpr - This class is private to Constants.cpp, and is used
 | 
						|
// behind the scenes to implement ICmp and FCmp constant expressions. This is
 | 
						|
// needed in order to store the predicate value for these instructions.
 | 
						|
struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
 | 
						|
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | 
						|
  // allocate space for exactly two operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 2);
 | 
						|
  }
 | 
						|
  unsigned short predicate;
 | 
						|
  CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
 | 
						|
                      unsigned short pred,  Constant* LHS, Constant* RHS)
 | 
						|
    : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
 | 
						|
    Op<0>() = LHS;
 | 
						|
    Op<1>() = RHS;
 | 
						|
  }
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
 | 
						|
};
 | 
						|
 | 
						|
GetElementPtrConstantExpr::GetElementPtrConstantExpr
 | 
						|
  (Constant *C,
 | 
						|
   const std::vector<Constant*> &IdxList,
 | 
						|
   const Type *DestTy)
 | 
						|
    : ConstantExpr(DestTy, Instruction::GetElementPtr,
 | 
						|
                   OperandTraits<GetElementPtrConstantExpr>::op_end(this)
 | 
						|
                   - (IdxList.size()+1),
 | 
						|
                   IdxList.size()+1) {
 | 
						|
  OperandList[0] = C;
 | 
						|
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | 
						|
    OperandList[i+1] = IdxList[i];
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
 | 
						|
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
 | 
						|
};
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
 | 
						|
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
 | 
						|
// Utility function for determining if a ConstantExpr is a CastOp or not. This
 | 
						|
// can't be inline because we don't want to #include Instruction.h into
 | 
						|
// Constant.h
 | 
						|
bool ConstantExpr::isCast() const {
 | 
						|
  return Instruction::isCast(getOpcode());
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantExpr::isCompare() const {
 | 
						|
  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantExpr::hasIndices() const {
 | 
						|
  return getOpcode() == Instruction::ExtractValue ||
 | 
						|
         getOpcode() == Instruction::InsertValue;
 | 
						|
}
 | 
						|
 | 
						|
const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
 | 
						|
  if (const ExtractValueConstantExpr *EVCE =
 | 
						|
        dyn_cast<ExtractValueConstantExpr>(this))
 | 
						|
    return EVCE->Indices;
 | 
						|
 | 
						|
  return cast<InsertValueConstantExpr>(this)->Indices;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ConstantExpr::getPredicate() const {
 | 
						|
  assert(getOpcode() == Instruction::FCmp || 
 | 
						|
         getOpcode() == Instruction::ICmp);
 | 
						|
  return ((const CompareConstantExpr*)this)->predicate;
 | 
						|
}
 | 
						|
 | 
						|
/// getWithOperandReplaced - Return a constant expression identical to this
 | 
						|
/// one, but with the specified operand set to the specified value.
 | 
						|
Constant *
 | 
						|
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
 | 
						|
  assert(OpNo < getNumOperands() && "Operand num is out of range!");
 | 
						|
  assert(Op->getType() == getOperand(OpNo)->getType() &&
 | 
						|
         "Replacing operand with value of different type!");
 | 
						|
  if (getOperand(OpNo) == Op)
 | 
						|
    return const_cast<ConstantExpr*>(this);
 | 
						|
  
 | 
						|
  Constant *Op0, *Op1, *Op2;
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return ConstantExpr::getCast(getOpcode(), Op, getType());
 | 
						|
  case Instruction::Select:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getSelect(Op0, Op1, Op2);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getInsertElement(Op0, Op1, Op2);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    return ConstantExpr::getExtractElement(Op0, Op1);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    SmallVector<Constant*, 8> Ops;
 | 
						|
    Ops.resize(getNumOperands()-1);
 | 
						|
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
 | 
						|
      Ops[i-1] = getOperand(i);
 | 
						|
    if (OpNo == 0)
 | 
						|
      return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
 | 
						|
    Ops[OpNo-1] = Op;
 | 
						|
    return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(getNumOperands() == 2 && "Must be binary operator?");
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    return ConstantExpr::get(getOpcode(), Op0, Op1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getWithOperands - This returns the current constant expression with the
 | 
						|
/// operands replaced with the specified values.  The specified operands must
 | 
						|
/// match count and type with the existing ones.
 | 
						|
Constant *ConstantExpr::
 | 
						|
getWithOperands(Constant* const *Ops, unsigned NumOps) const {
 | 
						|
  assert(NumOps == getNumOperands() && "Operand count mismatch!");
 | 
						|
  bool AnyChange = false;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    assert(Ops[i]->getType() == getOperand(i)->getType() &&
 | 
						|
           "Operand type mismatch!");
 | 
						|
    AnyChange |= Ops[i] != getOperand(i);
 | 
						|
  }
 | 
						|
  if (!AnyChange)  // No operands changed, return self.
 | 
						|
    return const_cast<ConstantExpr*>(this);
 | 
						|
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
 | 
						|
  default:
 | 
						|
    assert(getNumOperands() == 2 && "Must be binary operator?");
 | 
						|
    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      isValueValidForType implementations
 | 
						|
 | 
						|
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | 
						|
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | 
						|
  if (Ty == Type::Int1Ty)
 | 
						|
    return Val == 0 || Val == 1;
 | 
						|
  if (NumBits >= 64)
 | 
						|
    return true; // always true, has to fit in largest type
 | 
						|
  uint64_t Max = (1ll << NumBits) - 1;
 | 
						|
  return Val <= Max;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | 
						|
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | 
						|
  if (Ty == Type::Int1Ty)
 | 
						|
    return Val == 0 || Val == 1 || Val == -1;
 | 
						|
  if (NumBits >= 64)
 | 
						|
    return true; // always true, has to fit in largest type
 | 
						|
  int64_t Min = -(1ll << (NumBits-1));
 | 
						|
  int64_t Max = (1ll << (NumBits-1)) - 1;
 | 
						|
  return (Val >= Min && Val <= Max);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
 | 
						|
  // convert modifies in place, so make a copy.
 | 
						|
  APFloat Val2 = APFloat(Val);
 | 
						|
  bool losesInfo;
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  default:
 | 
						|
    return false;         // These can't be represented as floating point!
 | 
						|
 | 
						|
  // FIXME rounding mode needs to be more flexible
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
 | 
						|
      return true;
 | 
						|
    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
    return !losesInfo;
 | 
						|
  }
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
 | 
						|
        &Val2.getSemantics() == &APFloat::IEEEdouble)
 | 
						|
      return true;
 | 
						|
    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
    return !losesInfo;
 | 
						|
  }
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
 | 
						|
  case Type::FP128TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEquad;
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Factory Function Implementation
 | 
						|
 | 
						|
 | 
						|
// The number of operands for each ConstantCreator::create method is
 | 
						|
// determined by the ConstantTraits template.
 | 
						|
// ConstantCreator - A class that is used to create constants by
 | 
						|
// ValueMap*.  This class should be partially specialized if there is
 | 
						|
// something strange that needs to be done to interface to the ctor for the
 | 
						|
// constant.
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantTraits;
 | 
						|
 | 
						|
  template<typename T, typename Alloc>
 | 
						|
  struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
 | 
						|
    static unsigned uses(const std::vector<T, Alloc>& v) {
 | 
						|
      return v.size();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class ConstantClass, class TypeClass, class ValType>
 | 
						|
  struct VISIBILITY_HIDDEN ConstantCreator {
 | 
						|
    static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | 
						|
      return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class ConstantClass, class TypeClass>
 | 
						|
  struct VISIBILITY_HIDDEN ConvertConstantType {
 | 
						|
    static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | 
						|
      llvm_unreachable("This type cannot be converted!");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class ValType, class TypeClass, class ConstantClass,
 | 
						|
           bool HasLargeKey = false  /*true for arrays and structs*/ >
 | 
						|
  class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
 | 
						|
  public:
 | 
						|
    typedef std::pair<const Type*, ValType> MapKey;
 | 
						|
    typedef std::map<MapKey, Constant *> MapTy;
 | 
						|
    typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
 | 
						|
    typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
 | 
						|
  private:
 | 
						|
    /// Map - This is the main map from the element descriptor to the Constants.
 | 
						|
    /// This is the primary way we avoid creating two of the same shape
 | 
						|
    /// constant.
 | 
						|
    MapTy Map;
 | 
						|
    
 | 
						|
    /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | 
						|
    /// from the constants to their element in Map.  This is important for
 | 
						|
    /// removal of constants from the array, which would otherwise have to scan
 | 
						|
    /// through the map with very large keys.
 | 
						|
    InverseMapTy InverseMap;
 | 
						|
 | 
						|
    /// AbstractTypeMap - Map for abstract type constants.
 | 
						|
    ///
 | 
						|
    AbstractTypeMapTy AbstractTypeMap;
 | 
						|
    
 | 
						|
    /// ValueMapLock - Mutex for this map.
 | 
						|
    sys::SmartMutex<true> ValueMapLock;
 | 
						|
 | 
						|
  public:
 | 
						|
    // NOTE: This function is not locked.  It is the caller's responsibility
 | 
						|
    // to enforce proper synchronization.
 | 
						|
    typename MapTy::iterator map_end() { return Map.end(); }
 | 
						|
    
 | 
						|
    /// InsertOrGetItem - Return an iterator for the specified element.
 | 
						|
    /// If the element exists in the map, the returned iterator points to the
 | 
						|
    /// entry and Exists=true.  If not, the iterator points to the newly
 | 
						|
    /// inserted entry and returns Exists=false.  Newly inserted entries have
 | 
						|
    /// I->second == 0, and should be filled in.
 | 
						|
    /// NOTE: This function is not locked.  It is the caller's responsibility
 | 
						|
    // to enforce proper synchronization.
 | 
						|
    typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
 | 
						|
                                   &InsertVal,
 | 
						|
                                   bool &Exists) {
 | 
						|
      std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
 | 
						|
      Exists = !IP.second;
 | 
						|
      return IP.first;
 | 
						|
    }
 | 
						|
    
 | 
						|
private:
 | 
						|
    typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
 | 
						|
      if (HasLargeKey) {
 | 
						|
        typename InverseMapTy::iterator IMI = InverseMap.find(CP);
 | 
						|
        assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | 
						|
               IMI->second->second == CP &&
 | 
						|
               "InverseMap corrupt!");
 | 
						|
        return IMI->second;
 | 
						|
      }
 | 
						|
      
 | 
						|
      typename MapTy::iterator I =
 | 
						|
        Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
 | 
						|
                        getValType(CP)));
 | 
						|
      if (I == Map.end() || I->second != CP) {
 | 
						|
        // FIXME: This should not use a linear scan.  If this gets to be a
 | 
						|
        // performance problem, someone should look at this.
 | 
						|
        for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | 
						|
          /* empty */;
 | 
						|
      }
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    
 | 
						|
    ConstantClass* Create(const TypeClass *Ty, const ValType &V,
 | 
						|
                          typename MapTy::iterator I) {
 | 
						|
      ConstantClass* Result =
 | 
						|
        ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | 
						|
 | 
						|
      assert(Result->getType() == Ty && "Type specified is not correct!");
 | 
						|
      I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | 
						|
 | 
						|
      if (HasLargeKey)  // Remember the reverse mapping if needed.
 | 
						|
        InverseMap.insert(std::make_pair(Result, I));
 | 
						|
 | 
						|
      // If the type of the constant is abstract, make sure that an entry
 | 
						|
      // exists for it in the AbstractTypeMap.
 | 
						|
      if (Ty->isAbstract()) {
 | 
						|
        typename AbstractTypeMapTy::iterator TI = 
 | 
						|
                                                 AbstractTypeMap.find(Ty);
 | 
						|
 | 
						|
        if (TI == AbstractTypeMap.end()) {
 | 
						|
          // Add ourselves to the ATU list of the type.
 | 
						|
          cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | 
						|
 | 
						|
          AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
public:
 | 
						|
    
 | 
						|
    /// getOrCreate - Return the specified constant from the map, creating it if
 | 
						|
    /// necessary.
 | 
						|
    ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | 
						|
      sys::SmartScopedLock<true> Lock(ValueMapLock);
 | 
						|
      MapKey Lookup(Ty, V);
 | 
						|
      ConstantClass* Result = 0;
 | 
						|
      
 | 
						|
      typename MapTy::iterator I = Map.find(Lookup);
 | 
						|
      // Is it in the map?  
 | 
						|
      if (I != Map.end())
 | 
						|
        Result = static_cast<ConstantClass *>(I->second);
 | 
						|
        
 | 
						|
      if (!Result) {
 | 
						|
        // If no preexisting value, create one now...
 | 
						|
        Result = Create(Ty, V, I);
 | 
						|
      }
 | 
						|
        
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    void remove(ConstantClass *CP) {
 | 
						|
      sys::SmartScopedLock<true> Lock(ValueMapLock);
 | 
						|
      typename MapTy::iterator I = FindExistingElement(CP);
 | 
						|
      assert(I != Map.end() && "Constant not found in constant table!");
 | 
						|
      assert(I->second == CP && "Didn't find correct element?");
 | 
						|
 | 
						|
      if (HasLargeKey)  // Remember the reverse mapping if needed.
 | 
						|
        InverseMap.erase(CP);
 | 
						|
      
 | 
						|
      // Now that we found the entry, make sure this isn't the entry that
 | 
						|
      // the AbstractTypeMap points to.
 | 
						|
      const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
 | 
						|
      if (Ty->isAbstract()) {
 | 
						|
        assert(AbstractTypeMap.count(Ty) &&
 | 
						|
               "Abstract type not in AbstractTypeMap?");
 | 
						|
        typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
 | 
						|
        if (ATMEntryIt == I) {
 | 
						|
          // Yes, we are removing the representative entry for this type.
 | 
						|
          // See if there are any other entries of the same type.
 | 
						|
          typename MapTy::iterator TmpIt = ATMEntryIt;
 | 
						|
 | 
						|
          // First check the entry before this one...
 | 
						|
          if (TmpIt != Map.begin()) {
 | 
						|
            --TmpIt;
 | 
						|
            if (TmpIt->first.first != Ty) // Not the same type, move back...
 | 
						|
              ++TmpIt;
 | 
						|
          }
 | 
						|
 | 
						|
          // If we didn't find the same type, try to move forward...
 | 
						|
          if (TmpIt == ATMEntryIt) {
 | 
						|
            ++TmpIt;
 | 
						|
            if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | 
						|
              --TmpIt;   // No entry afterwards with the same type
 | 
						|
          }
 | 
						|
 | 
						|
          // If there is another entry in the map of the same abstract type,
 | 
						|
          // update the AbstractTypeMap entry now.
 | 
						|
          if (TmpIt != ATMEntryIt) {
 | 
						|
            ATMEntryIt = TmpIt;
 | 
						|
          } else {
 | 
						|
            // Otherwise, we are removing the last instance of this type
 | 
						|
            // from the table.  Remove from the ATM, and from user list.
 | 
						|
            cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | 
						|
            AbstractTypeMap.erase(Ty);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Map.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    
 | 
						|
    /// MoveConstantToNewSlot - If we are about to change C to be the element
 | 
						|
    /// specified by I, update our internal data structures to reflect this
 | 
						|
    /// fact.
 | 
						|
    /// NOTE: This function is not locked. It is the responsibility of the
 | 
						|
    /// caller to enforce proper synchronization if using this method.
 | 
						|
    void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
 | 
						|
      // First, remove the old location of the specified constant in the map.
 | 
						|
      typename MapTy::iterator OldI = FindExistingElement(C);
 | 
						|
      assert(OldI != Map.end() && "Constant not found in constant table!");
 | 
						|
      assert(OldI->second == C && "Didn't find correct element?");
 | 
						|
      
 | 
						|
      // If this constant is the representative element for its abstract type,
 | 
						|
      // update the AbstractTypeMap so that the representative element is I.
 | 
						|
      if (C->getType()->isAbstract()) {
 | 
						|
        typename AbstractTypeMapTy::iterator ATI =
 | 
						|
            AbstractTypeMap.find(C->getType());
 | 
						|
        assert(ATI != AbstractTypeMap.end() &&
 | 
						|
               "Abstract type not in AbstractTypeMap?");
 | 
						|
        if (ATI->second == OldI)
 | 
						|
          ATI->second = I;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Remove the old entry from the map.
 | 
						|
      Map.erase(OldI);
 | 
						|
      
 | 
						|
      // Update the inverse map so that we know that this constant is now
 | 
						|
      // located at descriptor I.
 | 
						|
      if (HasLargeKey) {
 | 
						|
        assert(I->second == C && "Bad inversemap entry!");
 | 
						|
        InverseMap[C] = I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | 
						|
      sys::SmartScopedLock<true> Lock(ValueMapLock);
 | 
						|
      typename AbstractTypeMapTy::iterator I =
 | 
						|
        AbstractTypeMap.find(cast<Type>(OldTy));
 | 
						|
 | 
						|
      assert(I != AbstractTypeMap.end() &&
 | 
						|
             "Abstract type not in AbstractTypeMap?");
 | 
						|
 | 
						|
      // Convert a constant at a time until the last one is gone.  The last one
 | 
						|
      // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | 
						|
      // eliminated eventually.
 | 
						|
      do {
 | 
						|
        ConvertConstantType<ConstantClass,
 | 
						|
                            TypeClass>::convert(
 | 
						|
                                static_cast<ConstantClass *>(I->second->second),
 | 
						|
                                                cast<TypeClass>(NewTy));
 | 
						|
 | 
						|
        I = AbstractTypeMap.find(cast<Type>(OldTy));
 | 
						|
      } while (I != AbstractTypeMap.end());
 | 
						|
    }
 | 
						|
 | 
						|
    // If the type became concrete without being refined to any other existing
 | 
						|
    // type, we just remove ourselves from the ATU list.
 | 
						|
    void typeBecameConcrete(const DerivedType *AbsTy) {
 | 
						|
      AbsTy->removeAbstractTypeUser(this);
 | 
						|
    }
 | 
						|
 | 
						|
    void dump() const {
 | 
						|
      DOUT << "Constant.cpp: ValueMap\n";
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---- ConstantAggregateZero::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  // ConstantAggregateZero does not take extra "value" argument...
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | 
						|
    static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | 
						|
      return new ConstantAggregateZero(Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantAggregateZero, Type> {
 | 
						|
    static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      Constant *New = ConstantAggregateZero::get(NewTy);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();     // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<ValueMap<char, Type, 
 | 
						|
                              ConstantAggregateZero> > AggZeroConstants;
 | 
						|
 | 
						|
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
 | 
						|
 | 
						|
ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
 | 
						|
  assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
 | 
						|
         "Cannot create an aggregate zero of non-aggregate type!");
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return AggZeroConstants->getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// destroyConstant - Remove the constant from the constant table...
 | 
						|
///
 | 
						|
void ConstantAggregateZero::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  AggZeroConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantArray::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantArray, ArrayType> {
 | 
						|
    static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      std::vector<Constant*> C;
 | 
						|
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
        C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
      Constant *New = ConstantArray::get(NewTy, C);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<Constant*> getValType(ConstantArray *CA) {
 | 
						|
  std::vector<Constant*> Elements;
 | 
						|
  Elements.reserve(CA->getNumOperands());
 | 
						|
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
 | 
						|
    Elements.push_back(cast<Constant>(CA->getOperand(i)));
 | 
						|
  return Elements;
 | 
						|
}
 | 
						|
 | 
						|
typedef ValueMap<std::vector<Constant*>, ArrayType, 
 | 
						|
                 ConstantArray, true /*largekey*/> ArrayConstantsTy;
 | 
						|
static ManagedStatic<ArrayConstantsTy> ArrayConstants;
 | 
						|
 | 
						|
Constant *ConstantArray::get(const ArrayType *Ty,
 | 
						|
                             const std::vector<Constant*> &V) {
 | 
						|
  // If this is an all-zero array, return a ConstantAggregateZero object
 | 
						|
  if (!V.empty()) {
 | 
						|
    Constant *C = V[0];
 | 
						|
    if (!C->isNullValue()) {
 | 
						|
      // Implicitly locked.
 | 
						|
      return ArrayConstants->getOrCreate(Ty, V);
 | 
						|
    }
 | 
						|
    for (unsigned i = 1, e = V.size(); i != e; ++i)
 | 
						|
      if (V[i] != C) {
 | 
						|
        // Implicitly locked.
 | 
						|
        return ArrayConstants->getOrCreate(Ty, V);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ConstantAggregateZero::get(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// destroyConstant - Remove the constant from the constant table...
 | 
						|
///
 | 
						|
void ConstantArray::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  ArrayConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
/// isString - This method returns true if the array is an array of i8, and 
 | 
						|
/// if the elements of the array are all ConstantInt's.
 | 
						|
bool ConstantArray::isString() const {
 | 
						|
  // Check the element type for i8...
 | 
						|
  if (getType()->getElementType() != Type::Int8Ty)
 | 
						|
    return false;
 | 
						|
  // Check the elements to make sure they are all integers, not constant
 | 
						|
  // expressions.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isCString - This method returns true if the array is a string (see
 | 
						|
/// isString) and it ends in a null byte \\0 and does not contains any other
 | 
						|
/// null bytes except its terminator.
 | 
						|
bool ConstantArray::isCString() const {
 | 
						|
  // Check the element type for i8...
 | 
						|
  if (getType()->getElementType() != Type::Int8Ty)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Last element must be a null.
 | 
						|
  if (!getOperand(getNumOperands()-1)->isNullValue())
 | 
						|
    return false;
 | 
						|
  // Other elements must be non-null integers.
 | 
						|
  for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
    if (getOperand(i)->isNullValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getAsString - If the sub-element type of this array is i8
 | 
						|
/// then this method converts the array to an std::string and returns it.
 | 
						|
/// Otherwise, it asserts out.
 | 
						|
///
 | 
						|
std::string ConstantArray::getAsString() const {
 | 
						|
  assert(isString() && "Not a string!");
 | 
						|
  std::string Result;
 | 
						|
  Result.reserve(getNumOperands());
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- ConstantStruct::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantStruct, StructType> {
 | 
						|
    static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      std::vector<Constant*> C;
 | 
						|
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
        C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
      Constant *New = ConstantStruct::get(NewTy, C);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
typedef ValueMap<std::vector<Constant*>, StructType,
 | 
						|
                 ConstantStruct, true /*largekey*/> StructConstantsTy;
 | 
						|
static ManagedStatic<StructConstantsTy> StructConstants;
 | 
						|
 | 
						|
static std::vector<Constant*> getValType(ConstantStruct *CS) {
 | 
						|
  std::vector<Constant*> Elements;
 | 
						|
  Elements.reserve(CS->getNumOperands());
 | 
						|
  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
 | 
						|
    Elements.push_back(cast<Constant>(CS->getOperand(i)));
 | 
						|
  return Elements;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantStruct::get(const StructType *Ty,
 | 
						|
                              const std::vector<Constant*> &V) {
 | 
						|
  // Create a ConstantAggregateZero value if all elements are zeros...
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i)
 | 
						|
    if (!V[i]->isNullValue())
 | 
						|
      // Implicitly locked.
 | 
						|
      return StructConstants->getOrCreate(Ty, V);
 | 
						|
 | 
						|
  return ConstantAggregateZero::get(Ty);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantStruct::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  StructConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantVector::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantVector, VectorType> {
 | 
						|
    static void convert(ConstantVector *OldC, const VectorType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      std::vector<Constant*> C;
 | 
						|
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
        C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
      Constant *New = ConstantVector::get(NewTy, C);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<Constant*> getValType(ConstantVector *CP) {
 | 
						|
  std::vector<Constant*> Elements;
 | 
						|
  Elements.reserve(CP->getNumOperands());
 | 
						|
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | 
						|
    Elements.push_back(CP->getOperand(i));
 | 
						|
  return Elements;
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
 | 
						|
                              ConstantVector> > VectorConstants;
 | 
						|
 | 
						|
Constant *ConstantVector::get(const VectorType *Ty,
 | 
						|
                              const std::vector<Constant*> &V) {
 | 
						|
  assert(!V.empty() && "Vectors can't be empty");
 | 
						|
  // If this is an all-undef or alll-zero vector, return a
 | 
						|
  // ConstantAggregateZero or UndefValue.
 | 
						|
  Constant *C = V[0];
 | 
						|
  bool isZero = C->isNullValue();
 | 
						|
  bool isUndef = isa<UndefValue>(C);
 | 
						|
 | 
						|
  if (isZero || isUndef) {
 | 
						|
    for (unsigned i = 1, e = V.size(); i != e; ++i)
 | 
						|
      if (V[i] != C) {
 | 
						|
        isZero = isUndef = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isZero)
 | 
						|
    return ConstantAggregateZero::get(Ty);
 | 
						|
  if (isUndef)
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
    
 | 
						|
  // Implicitly locked.
 | 
						|
  return VectorConstants->getOrCreate(Ty, V);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantVector::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  VectorConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
/// This function will return true iff every element in this vector constant
 | 
						|
/// is set to all ones.
 | 
						|
/// @returns true iff this constant's emements are all set to all ones.
 | 
						|
/// @brief Determine if the value is all ones.
 | 
						|
bool ConstantVector::isAllOnesValue() const {
 | 
						|
  // Check out first element.
 | 
						|
  const Constant *Elt = getOperand(0);
 | 
						|
  const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | 
						|
  if (!CI || !CI->isAllOnesValue()) return false;
 | 
						|
  // Then make sure all remaining elements point to the same value.
 | 
						|
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
 | 
						|
    if (getOperand(I) != Elt) return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getSplatValue - If this is a splat constant, where all of the
 | 
						|
/// elements have the same value, return that value. Otherwise return null.
 | 
						|
Constant *ConstantVector::getSplatValue() {
 | 
						|
  // Check out first element.
 | 
						|
  Constant *Elt = getOperand(0);
 | 
						|
  // Then make sure all remaining elements point to the same value.
 | 
						|
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
 | 
						|
    if (getOperand(I) != Elt) return 0;
 | 
						|
  return Elt;
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantPointerNull::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  // ConstantPointerNull does not take extra "value" argument...
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | 
						|
    static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | 
						|
      return new ConstantPointerNull(Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | 
						|
    static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      Constant *New = ConstantPointerNull::get(NewTy);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();     // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<ValueMap<char, PointerType, 
 | 
						|
                              ConstantPointerNull> > NullPtrConstants;
 | 
						|
 | 
						|
static char getValType(ConstantPointerNull *) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | 
						|
  // Implicitly locked.
 | 
						|
  return NullPtrConstants->getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantPointerNull::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  NullPtrConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- UndefValue::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  // UndefValue does not take extra "value" argument...
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantCreator<UndefValue, Type, ValType> {
 | 
						|
    static UndefValue *create(const Type *Ty, const ValType &V) {
 | 
						|
      return new UndefValue(Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<UndefValue, Type> {
 | 
						|
    static void convert(UndefValue *OldC, const Type *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type.
 | 
						|
      Constant *New = UndefValue::get(NewTy);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();     // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
 | 
						|
 | 
						|
static char getValType(UndefValue *) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
UndefValue *UndefValue::get(const Type *Ty) {
 | 
						|
  // Implicitly locked.
 | 
						|
  return UndefValueConstants->getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table.
 | 
						|
//
 | 
						|
void UndefValue::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  UndefValueConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- MDString::get() implementation
 | 
						|
//
 | 
						|
 | 
						|
MDString::MDString(const char *begin, const char *end)
 | 
						|
  : Constant(Type::MetadataTy, MDStringVal, 0, 0),
 | 
						|
    StrBegin(begin), StrEnd(end) {}
 | 
						|
 | 
						|
void MDString::destroyConstant() {
 | 
						|
  getType()->getContext().erase(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- MDNode::get() implementation
 | 
						|
//
 | 
						|
 | 
						|
MDNode::MDNode(Value*const* Vals, unsigned NumVals)
 | 
						|
  : Constant(Type::MetadataTy, MDNodeVal, 0, 0) {
 | 
						|
  for (unsigned i = 0; i != NumVals; ++i)
 | 
						|
    Node.push_back(ElementVH(Vals[i], this));
 | 
						|
}
 | 
						|
 | 
						|
void MDNode::Profile(FoldingSetNodeID &ID) const {
 | 
						|
  for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I)
 | 
						|
    ID.AddPointer(*I);
 | 
						|
}
 | 
						|
 | 
						|
void MDNode::destroyConstant() {
 | 
						|
  getType()->getContext().erase(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantExpr::get() implementations...
 | 
						|
//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct ExprMapKeyType {
 | 
						|
  typedef SmallVector<unsigned, 4> IndexList;
 | 
						|
 | 
						|
  ExprMapKeyType(unsigned opc,
 | 
						|
      const std::vector<Constant*> &ops,
 | 
						|
      unsigned short pred = 0,
 | 
						|
      const IndexList &inds = IndexList())
 | 
						|
        : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
 | 
						|
  uint16_t opcode;
 | 
						|
  uint16_t predicate;
 | 
						|
  std::vector<Constant*> operands;
 | 
						|
  IndexList indices;
 | 
						|
  bool operator==(const ExprMapKeyType& that) const {
 | 
						|
    return this->opcode == that.opcode &&
 | 
						|
           this->predicate == that.predicate &&
 | 
						|
           this->operands == that.operands &&
 | 
						|
           this->indices == that.indices;
 | 
						|
  }
 | 
						|
  bool operator<(const ExprMapKeyType & that) const {
 | 
						|
    return this->opcode < that.opcode ||
 | 
						|
      (this->opcode == that.opcode && this->predicate < that.predicate) ||
 | 
						|
      (this->opcode == that.opcode && this->predicate == that.predicate &&
 | 
						|
       this->operands < that.operands) ||
 | 
						|
      (this->opcode == that.opcode && this->predicate == that.predicate &&
 | 
						|
       this->operands == that.operands && this->indices < that.indices);
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const ExprMapKeyType& that) const {
 | 
						|
    return !(*this == that);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | 
						|
    static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
 | 
						|
        unsigned short pred = 0) {
 | 
						|
      if (Instruction::isCast(V.opcode))
 | 
						|
        return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
 | 
						|
      if ((V.opcode >= Instruction::BinaryOpsBegin &&
 | 
						|
           V.opcode < Instruction::BinaryOpsEnd))
 | 
						|
        return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
 | 
						|
      if (V.opcode == Instruction::Select)
 | 
						|
        return new SelectConstantExpr(V.operands[0], V.operands[1], 
 | 
						|
                                      V.operands[2]);
 | 
						|
      if (V.opcode == Instruction::ExtractElement)
 | 
						|
        return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
 | 
						|
      if (V.opcode == Instruction::InsertElement)
 | 
						|
        return new InsertElementConstantExpr(V.operands[0], V.operands[1],
 | 
						|
                                             V.operands[2]);
 | 
						|
      if (V.opcode == Instruction::ShuffleVector)
 | 
						|
        return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
 | 
						|
                                             V.operands[2]);
 | 
						|
      if (V.opcode == Instruction::InsertValue)
 | 
						|
        return new InsertValueConstantExpr(V.operands[0], V.operands[1],
 | 
						|
                                           V.indices, Ty);
 | 
						|
      if (V.opcode == Instruction::ExtractValue)
 | 
						|
        return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
 | 
						|
      if (V.opcode == Instruction::GetElementPtr) {
 | 
						|
        std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
 | 
						|
        return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
 | 
						|
      }
 | 
						|
 | 
						|
      // The compare instructions are weird. We have to encode the predicate
 | 
						|
      // value and it is combined with the instruction opcode by multiplying
 | 
						|
      // the opcode by one hundred. We must decode this to get the predicate.
 | 
						|
      if (V.opcode == Instruction::ICmp)
 | 
						|
        return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, 
 | 
						|
                                       V.operands[0], V.operands[1]);
 | 
						|
      if (V.opcode == Instruction::FCmp) 
 | 
						|
        return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, 
 | 
						|
                                       V.operands[0], V.operands[1]);
 | 
						|
      llvm_unreachable("Invalid ConstantExpr!");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantExpr, Type> {
 | 
						|
    static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | 
						|
      Constant *New;
 | 
						|
      switch (OldC->getOpcode()) {
 | 
						|
      case Instruction::Trunc:
 | 
						|
      case Instruction::ZExt:
 | 
						|
      case Instruction::SExt:
 | 
						|
      case Instruction::FPTrunc:
 | 
						|
      case Instruction::FPExt:
 | 
						|
      case Instruction::UIToFP:
 | 
						|
      case Instruction::SIToFP:
 | 
						|
      case Instruction::FPToUI:
 | 
						|
      case Instruction::FPToSI:
 | 
						|
      case Instruction::PtrToInt:
 | 
						|
      case Instruction::IntToPtr:
 | 
						|
      case Instruction::BitCast:
 | 
						|
        New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), 
 | 
						|
                                    NewTy);
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
 | 
						|
                                        OldC->getOperand(1),
 | 
						|
                                        OldC->getOperand(2));
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | 
						|
               OldC->getOpcode() <  Instruction::BinaryOpsEnd);
 | 
						|
        New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | 
						|
                                  OldC->getOperand(1));
 | 
						|
        break;
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
        // Make everyone now use a constant of the new type...
 | 
						|
        std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
 | 
						|
        New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
 | 
						|
                                               &Idx[0], Idx.size());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
 | 
						|
static ExprMapKeyType getValType(ConstantExpr *CE) {
 | 
						|
  std::vector<Constant*> Operands;
 | 
						|
  Operands.reserve(CE->getNumOperands());
 | 
						|
  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | 
						|
    Operands.push_back(cast<Constant>(CE->getOperand(i)));
 | 
						|
  return ExprMapKeyType(CE->getOpcode(), Operands, 
 | 
						|
      CE->isCompare() ? CE->getPredicate() : 0,
 | 
						|
      CE->hasIndices() ?
 | 
						|
        CE->getIndices() : SmallVector<unsigned, 4>());
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<ValueMap<ExprMapKeyType, Type,
 | 
						|
                              ConstantExpr> > ExprConstants;
 | 
						|
 | 
						|
/// This is a utility function to handle folding of casts and lookup of the
 | 
						|
/// cast in the ExprConstants map. It is used by the various get* methods below.
 | 
						|
static inline Constant *getFoldedCast(
 | 
						|
  Instruction::CastOps opc, Constant *C, const Type *Ty) {
 | 
						|
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | 
						|
  // Fold a few common cases
 | 
						|
  if (Constant *FC = 
 | 
						|
                    ConstantFoldCastInstruction(getGlobalContext(), opc, C, Ty))
 | 
						|
    return FC;
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> argVec(1, C);
 | 
						|
  ExprMapKeyType Key(opc, argVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(Ty, Key);
 | 
						|
}
 | 
						|
 
 | 
						|
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
 | 
						|
  Instruction::CastOps opc = Instruction::CastOps(oc);
 | 
						|
  assert(Instruction::isCast(opc) && "opcode out of range");
 | 
						|
  assert(C && Ty && "Null arguments to getCast");
 | 
						|
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | 
						|
 | 
						|
  switch (opc) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid cast opcode");
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:    return getTrunc(C, Ty);
 | 
						|
    case Instruction::ZExt:     return getZExt(C, Ty);
 | 
						|
    case Instruction::SExt:     return getSExt(C, Ty);
 | 
						|
    case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
 | 
						|
    case Instruction::FPExt:    return getFPExtend(C, Ty);
 | 
						|
    case Instruction::UIToFP:   return getUIToFP(C, Ty);
 | 
						|
    case Instruction::SIToFP:   return getSIToFP(C, Ty);
 | 
						|
    case Instruction::FPToUI:   return getFPToUI(C, Ty);
 | 
						|
    case Instruction::FPToSI:   return getFPToSI(C, Ty);
 | 
						|
    case Instruction::PtrToInt: return getPtrToInt(C, Ty);
 | 
						|
    case Instruction::IntToPtr: return getIntToPtr(C, Ty);
 | 
						|
    case Instruction::BitCast:  return getBitCast(C, Ty);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
} 
 | 
						|
 | 
						|
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::ZExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::SExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::Trunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
 | 
						|
  assert(isa<PointerType>(S->getType()) && "Invalid cast");
 | 
						|
  assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
 | 
						|
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return getCast(Instruction::PtrToInt, S, Ty);
 | 
						|
  return getCast(Instruction::BitCast, S, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, 
 | 
						|
                                       bool isSigned) {
 | 
						|
  assert(C->getType()->isIntOrIntVector() &&
 | 
						|
         Ty->isIntOrIntVector() && "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::Trunc :
 | 
						|
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | 
						|
  return getCast(opcode, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  if (SrcBits == DstBits)
 | 
						|
    return C; // Avoid a useless cast
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
 | 
						|
  return getCast(opcode, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
 | 
						|
  assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be larger than DestTy for Trunc!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::Trunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
 | 
						|
  assert(Ty->isIntOrIntVector() && "SExt produces only integer");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be smaller than DestTy for SExt!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::SExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
 | 
						|
  assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be smaller than DestTy for ZExt!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::ZExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | 
						|
         "This is an illegal floating point truncation!");
 | 
						|
  return getFoldedCast(Instruction::FPTrunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "This is an illegal floating point extension!");
 | 
						|
  return getFoldedCast(Instruction::FPExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "This is an illegal uint to floating point cast!");
 | 
						|
  return getFoldedCast(Instruction::UIToFP, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "This is an illegal sint to floating point cast!");
 | 
						|
  return getFoldedCast(Instruction::SIToFP, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | 
						|
         "This is an illegal floating point to uint cast!");
 | 
						|
  return getFoldedCast(Instruction::FPToUI, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | 
						|
         "This is an illegal floating point to sint cast!");
 | 
						|
  return getFoldedCast(Instruction::FPToSI, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
 | 
						|
  assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
 | 
						|
  assert(DstTy->isInteger() && "PtrToInt destination must be integral");
 | 
						|
  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
 | 
						|
  assert(C->getType()->isInteger() && "IntToPtr source must be integral");
 | 
						|
  assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
 | 
						|
  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 | 
						|
  // BitCast implies a no-op cast of type only. No bits change.  However, you 
 | 
						|
  // can't cast pointers to anything but pointers.
 | 
						|
#ifndef NDEBUG
 | 
						|
  const Type *SrcTy = C->getType();
 | 
						|
  assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
 | 
						|
         "BitCast cannot cast pointer to non-pointer and vice versa");
 | 
						|
 | 
						|
  // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
 | 
						|
  // or nonptr->ptr). For all the other types, the cast is okay if source and 
 | 
						|
  // destination bit widths are identical.
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
 | 
						|
#endif
 | 
						|
  assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
 | 
						|
  
 | 
						|
  // It is common to ask for a bitcast of a value to its own type, handle this
 | 
						|
  // speedily.
 | 
						|
  if (C->getType() == DstTy) return C;
 | 
						|
  
 | 
						|
  return getFoldedCast(Instruction::BitCast, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | 
						|
                              Constant *C1, Constant *C2) {
 | 
						|
  // Check the operands for consistency first
 | 
						|
  assert(Opcode >= Instruction::BinaryOpsBegin &&
 | 
						|
         Opcode <  Instruction::BinaryOpsEnd   &&
 | 
						|
         "Invalid opcode in binary constant expression");
 | 
						|
  assert(C1->getType() == C2->getType() &&
 | 
						|
         "Operand types in binary constant expression should match");
 | 
						|
 | 
						|
  if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
 | 
						|
    if (Constant *FC = ConstantFoldBinaryInstruction(
 | 
						|
                                            getGlobalContext(), Opcode, C1, C2))
 | 
						|
      return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | 
						|
  ExprMapKeyType Key(Opcode, argVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
 | 
						|
                                     Constant *C1, Constant *C2) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: llvm_unreachable("Invalid CmpInst predicate");
 | 
						|
    case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
 | 
						|
    case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
 | 
						|
    case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
 | 
						|
    case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
 | 
						|
    case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
 | 
						|
    case CmpInst::FCMP_TRUE:
 | 
						|
      return getFCmp(predicate, C1, C2);
 | 
						|
 | 
						|
    case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
 | 
						|
    case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
 | 
						|
    case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
 | 
						|
    case CmpInst::ICMP_SLE:
 | 
						|
      return getICmp(predicate, C1, C2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
 | 
						|
  // API compatibility: Adjust integer opcodes to floating-point opcodes.
 | 
						|
  if (C1->getType()->isFPOrFPVector()) {
 | 
						|
    if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
 | 
						|
    else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
 | 
						|
    else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an integer operation on a non-integer type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FAdd:
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FMul:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create a floating-point operation on a "
 | 
						|
           "non-floating-point type!");
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv: 
 | 
						|
  case Instruction::SDiv: 
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FDiv:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::URem: 
 | 
						|
  case Instruction::SRem: 
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FRem:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create a logical operation on a non-integral type!");
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create a shift operation on a non-integer type!");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return getTy(C1->getType(), Opcode, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getCompare(unsigned short pred, 
 | 
						|
                            Constant *C1, Constant *C2) {
 | 
						|
  assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
  return getCompareTy(pred, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | 
						|
                                    Constant *V1, Constant *V2) {
 | 
						|
  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
 | 
						|
 | 
						|
  if (ReqTy == V1->getType())
 | 
						|
    if (Constant *SC = ConstantFoldSelectInstruction(
 | 
						|
                                                getGlobalContext(), C, V1, V2))
 | 
						|
      return SC;        // Fold common cases
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(3, C);
 | 
						|
  argVec[1] = V1;
 | 
						|
  argVec[2] = V2;
 | 
						|
  ExprMapKeyType Key(Instruction::Select, argVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | 
						|
                                           Value* const *Idxs,
 | 
						|
                                           unsigned NumIdx) {
 | 
						|
  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | 
						|
                                           Idxs+NumIdx) ==
 | 
						|
         cast<PointerType>(ReqTy)->getElementType() &&
 | 
						|
         "GEP indices invalid!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldGetElementPtr(
 | 
						|
                               getGlobalContext(), C, (Constant**)Idxs, NumIdx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  assert(isa<PointerType>(C->getType()) &&
 | 
						|
         "Non-pointer type for constant GetElementPtr expression");
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.reserve(NumIdx+1);
 | 
						|
  ArgVec.push_back(C);
 | 
						|
  for (unsigned i = 0; i != NumIdx; ++i)
 | 
						|
    ArgVec.push_back(cast<Constant>(Idxs[i]));
 | 
						|
  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
 | 
						|
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
 | 
						|
                                         unsigned NumIdx) {
 | 
						|
  // Get the result type of the getelementptr!
 | 
						|
  const Type *Ty = 
 | 
						|
    GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | 
						|
  assert(Ty && "GEP indices invalid!");
 | 
						|
  unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | 
						|
  return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
 | 
						|
                                         unsigned NumIdx) {
 | 
						|
  return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant *
 | 
						|
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | 
						|
  assert(LHS->getType() == RHS->getType());
 | 
						|
  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | 
						|
         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldCompareInstruction(
 | 
						|
                                             getGlobalContext(),pred, LHS, RHS))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.push_back(LHS);
 | 
						|
  ArgVec.push_back(RHS);
 | 
						|
  // Get the key type with both the opcode and predicate
 | 
						|
  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
 | 
						|
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(Type::Int1Ty, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *
 | 
						|
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | 
						|
  assert(LHS->getType() == RHS->getType());
 | 
						|
  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldCompareInstruction(
 | 
						|
                                            getGlobalContext(), pred, LHS, RHS))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.push_back(LHS);
 | 
						|
  ArgVec.push_back(RHS);
 | 
						|
  // Get the key type with both the opcode and predicate
 | 
						|
  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(Type::Int1Ty, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 | 
						|
                                            Constant *Idx) {
 | 
						|
  if (Constant *FC = ConstantFoldExtractElementInstruction(
 | 
						|
                                                  getGlobalContext(), Val, Idx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, Val);
 | 
						|
  ArgVec.push_back(Idx);
 | 
						|
  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
 | 
						|
  assert(isa<VectorType>(Val->getType()) &&
 | 
						|
         "Tried to create extractelement operation on non-vector type!");
 | 
						|
  assert(Idx->getType() == Type::Int32Ty &&
 | 
						|
         "Extractelement index must be i32 type!");
 | 
						|
  return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
 | 
						|
                             Val, Idx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 | 
						|
                                           Constant *Elt, Constant *Idx) {
 | 
						|
  if (Constant *FC = ConstantFoldInsertElementInstruction(
 | 
						|
                                            getGlobalContext(), Val, Elt, Idx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, Val);
 | 
						|
  ArgVec.push_back(Elt);
 | 
						|
  ArgVec.push_back(Idx);
 | 
						|
  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
 | 
						|
                                         Constant *Idx) {
 | 
						|
  assert(isa<VectorType>(Val->getType()) &&
 | 
						|
         "Tried to create insertelement operation on non-vector type!");
 | 
						|
  assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
 | 
						|
         && "Insertelement types must match!");
 | 
						|
  assert(Idx->getType() == Type::Int32Ty &&
 | 
						|
         "Insertelement index must be i32 type!");
 | 
						|
  return getInsertElementTy(Val->getType(), Val, Elt, Idx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
 | 
						|
                                           Constant *V2, Constant *Mask) {
 | 
						|
  if (Constant *FC = ConstantFoldShuffleVectorInstruction(
 | 
						|
                                              getGlobalContext(), V1, V2, Mask))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, V1);
 | 
						|
  ArgVec.push_back(V2);
 | 
						|
  ArgVec.push_back(Mask);
 | 
						|
  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return ExprConstants->getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
 | 
						|
                                         Constant *Mask) {
 | 
						|
  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
 | 
						|
         "Invalid shuffle vector constant expr operands!");
 | 
						|
 | 
						|
  unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
 | 
						|
  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
 | 
						|
  const Type *ShufTy = VectorType::get(EltTy, NElts);
 | 
						|
  return getShuffleVectorTy(ShufTy, V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
 | 
						|
                                         Constant *Val,
 | 
						|
                                        const unsigned *Idxs, unsigned NumIdx) {
 | 
						|
  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | 
						|
                                          Idxs+NumIdx) == Val->getType() &&
 | 
						|
         "insertvalue indices invalid!");
 | 
						|
  assert(Agg->getType() == ReqTy &&
 | 
						|
         "insertvalue type invalid!");
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Non-first-class type for constant InsertValue expression");
 | 
						|
  Constant *FC = ConstantFoldInsertValueInstruction(
 | 
						|
                                    getGlobalContext(), Agg, Val, Idxs, NumIdx);
 | 
						|
  assert(FC && "InsertValue constant expr couldn't be folded!");
 | 
						|
  return FC;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
 | 
						|
                                     const unsigned *IdxList, unsigned NumIdx) {
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Tried to create insertelement operation on non-first-class type!");
 | 
						|
 | 
						|
  const Type *ReqTy = Agg->getType();
 | 
						|
#ifndef NDEBUG
 | 
						|
  const Type *ValTy =
 | 
						|
    ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | 
						|
#endif
 | 
						|
  assert(ValTy == Val->getType() && "insertvalue indices invalid!");
 | 
						|
  return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
 | 
						|
                                        const unsigned *Idxs, unsigned NumIdx) {
 | 
						|
  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | 
						|
                                          Idxs+NumIdx) == ReqTy &&
 | 
						|
         "extractvalue indices invalid!");
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Non-first-class type for constant extractvalue expression");
 | 
						|
  Constant *FC = ConstantFoldExtractValueInstruction(
 | 
						|
                                         getGlobalContext(), Agg, Idxs, NumIdx);
 | 
						|
  assert(FC && "ExtractValue constant expr couldn't be folded!");
 | 
						|
  return FC;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractValue(Constant *Agg,
 | 
						|
                                     const unsigned *IdxList, unsigned NumIdx) {
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Tried to create extractelement operation on non-first-class type!");
 | 
						|
 | 
						|
  const Type *ReqTy =
 | 
						|
    ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | 
						|
  assert(ReqTy && "extractvalue indices invalid!");
 | 
						|
  return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantExpr::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  ExprConstants->remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
const char *ConstantExpr::getOpcodeName() const {
 | 
						|
  return Instruction::getOpcodeName(getOpcode());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                replaceUsesOfWithOnConstant implementations
 | 
						|
 | 
						|
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
 | 
						|
/// 'From' to be uses of 'To'.  This must update the uniquing data structures
 | 
						|
/// etc.
 | 
						|
///
 | 
						|
/// Note that we intentionally replace all uses of From with To here.  Consider
 | 
						|
/// a large array that uses 'From' 1000 times.  By handling this case all here,
 | 
						|
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
 | 
						|
/// single invocation handles all 1000 uses.  Handling them one at a time would
 | 
						|
/// work, but would be really slow because it would have to unique each updated
 | 
						|
/// array instance.
 | 
						|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *ToC = cast<Constant>(To);
 | 
						|
 | 
						|
  std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
 | 
						|
  Lookup.first.first = getType();
 | 
						|
  Lookup.second = this;
 | 
						|
 | 
						|
  std::vector<Constant*> &Values = Lookup.first.second;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement array.
 | 
						|
 | 
						|
  // Fill values with the modified operands of the constant array.  Also, 
 | 
						|
  // compute whether this turns into an all-zeros array.
 | 
						|
  bool isAllZeros = false;
 | 
						|
  unsigned NumUpdated = 0;
 | 
						|
  if (!ToC->isNullValue()) {
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      if (Val == From) {
 | 
						|
        Val = ToC;
 | 
						|
        ++NumUpdated;
 | 
						|
      }
 | 
						|
      Values.push_back(Val);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    isAllZeros = true;
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      if (Val == From) {
 | 
						|
        Val = ToC;
 | 
						|
        ++NumUpdated;
 | 
						|
      }
 | 
						|
      Values.push_back(Val);
 | 
						|
      if (isAllZeros) isAllZeros = Val->isNullValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (isAllZeros) {
 | 
						|
    Replacement = ConstantAggregateZero::get(getType());
 | 
						|
  } else {
 | 
						|
    // Check to see if we have this array type already.
 | 
						|
    sys::SmartScopedWriter<true> Writer(*ConstantsLock);
 | 
						|
    bool Exists;
 | 
						|
    ArrayConstantsTy::MapTy::iterator I =
 | 
						|
      ArrayConstants->InsertOrGetItem(Lookup, Exists);
 | 
						|
    
 | 
						|
    if (Exists) {
 | 
						|
      Replacement = I->second;
 | 
						|
    } else {
 | 
						|
      // Okay, the new shape doesn't exist in the system yet.  Instead of
 | 
						|
      // creating a new constant array, inserting it, replaceallusesof'ing the
 | 
						|
      // old with the new, then deleting the old... just update the current one
 | 
						|
      // in place!
 | 
						|
      ArrayConstants->MoveConstantToNewSlot(this, I);
 | 
						|
      
 | 
						|
      // Update to the new value.  Optimize for the case when we have a single
 | 
						|
      // operand that we're changing, but handle bulk updates efficiently.
 | 
						|
      if (NumUpdated == 1) {
 | 
						|
        unsigned OperandToUpdate = U-OperandList;
 | 
						|
        assert(getOperand(OperandToUpdate) == From &&
 | 
						|
               "ReplaceAllUsesWith broken!");
 | 
						|
        setOperand(OperandToUpdate, ToC);
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
          if (getOperand(i) == From)
 | 
						|
            setOperand(i, ToC);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 
 | 
						|
  // Otherwise, I do need to replace this with an existing value.
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                 Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *ToC = cast<Constant>(To);
 | 
						|
 | 
						|
  unsigned OperandToUpdate = U-OperandList;
 | 
						|
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | 
						|
 | 
						|
  std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
 | 
						|
  Lookup.first.first = getType();
 | 
						|
  Lookup.second = this;
 | 
						|
  std::vector<Constant*> &Values = Lookup.first.second;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement struct.
 | 
						|
  
 | 
						|
  
 | 
						|
  // Fill values with the modified operands of the constant struct.  Also, 
 | 
						|
  // compute whether this turns into an all-zeros struct.
 | 
						|
  bool isAllZeros = false;
 | 
						|
  if (!ToC->isNullValue()) {
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
 | 
						|
      Values.push_back(cast<Constant>(O->get()));
 | 
						|
  } else {
 | 
						|
    isAllZeros = true;
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      Values.push_back(Val);
 | 
						|
      if (isAllZeros) isAllZeros = Val->isNullValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Values[OperandToUpdate] = ToC;
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (isAllZeros) {
 | 
						|
    Replacement = ConstantAggregateZero::get(getType());
 | 
						|
  } else {
 | 
						|
    // Check to see if we have this array type already.
 | 
						|
    sys::SmartScopedWriter<true> Writer(*ConstantsLock);
 | 
						|
    bool Exists;
 | 
						|
    StructConstantsTy::MapTy::iterator I =
 | 
						|
      StructConstants->InsertOrGetItem(Lookup, Exists);
 | 
						|
    
 | 
						|
    if (Exists) {
 | 
						|
      Replacement = I->second;
 | 
						|
    } else {
 | 
						|
      // Okay, the new shape doesn't exist in the system yet.  Instead of
 | 
						|
      // creating a new constant struct, inserting it, replaceallusesof'ing the
 | 
						|
      // old with the new, then deleting the old... just update the current one
 | 
						|
      // in place!
 | 
						|
      StructConstants->MoveConstantToNewSlot(this, I);
 | 
						|
      
 | 
						|
      // Update to the new value.
 | 
						|
      setOperand(OperandToUpdate, ToC);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                 Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  
 | 
						|
  std::vector<Constant*> Values;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement array...
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    Constant *Val = getOperand(i);
 | 
						|
    if (Val == From) Val = cast<Constant>(To);
 | 
						|
    Values.push_back(Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = ConstantVector::get(getType(), Values);
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | 
						|
                                               Use *U) {
 | 
						|
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *To = cast<Constant>(ToV);
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    SmallVector<Constant*, 8> Indices;
 | 
						|
    Constant *Pointer = getOperand(0);
 | 
						|
    Indices.reserve(getNumOperands()-1);
 | 
						|
    if (Pointer == From) Pointer = To;
 | 
						|
    
 | 
						|
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
      Constant *Val = getOperand(i);
 | 
						|
      if (Val == From) Val = To;
 | 
						|
      Indices.push_back(Val);
 | 
						|
    }
 | 
						|
    Replacement = ConstantExpr::getGetElementPtr(Pointer,
 | 
						|
                                                 &Indices[0], Indices.size());
 | 
						|
  } else if (getOpcode() == Instruction::ExtractValue) {
 | 
						|
    Constant *Agg = getOperand(0);
 | 
						|
    if (Agg == From) Agg = To;
 | 
						|
    
 | 
						|
    const SmallVector<unsigned, 4> &Indices = getIndices();
 | 
						|
    Replacement = ConstantExpr::getExtractValue(Agg,
 | 
						|
                                                &Indices[0], Indices.size());
 | 
						|
  } else if (getOpcode() == Instruction::InsertValue) {
 | 
						|
    Constant *Agg = getOperand(0);
 | 
						|
    Constant *Val = getOperand(1);
 | 
						|
    if (Agg == From) Agg = To;
 | 
						|
    if (Val == From) Val = To;
 | 
						|
    
 | 
						|
    const SmallVector<unsigned, 4> &Indices = getIndices();
 | 
						|
    Replacement = ConstantExpr::getInsertValue(Agg, Val,
 | 
						|
                                               &Indices[0], Indices.size());
 | 
						|
  } else if (isCast()) {
 | 
						|
    assert(getOperand(0) == From && "Cast only has one use!");
 | 
						|
    Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
 | 
						|
  } else if (getOpcode() == Instruction::Select) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(2);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | 
						|
  } else if (getOpcode() == Instruction::ExtractElement) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    Replacement = ConstantExpr::getExtractElement(C1, C2);
 | 
						|
  } else if (getOpcode() == Instruction::InsertElement) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
 | 
						|
  } else if (getOpcode() == Instruction::ShuffleVector) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(2);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
 | 
						|
  } else if (isCompare()) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (getOpcode() == Instruction::ICmp)
 | 
						|
      Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
 | 
						|
    else {
 | 
						|
      assert(getOpcode() == Instruction::FCmp);
 | 
						|
      Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
 | 
						|
    }
 | 
						|
  } else if (getNumOperands() == 2) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    Replacement = ConstantExpr::get(getOpcode(), C1, C2);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown ConstantExpr type!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void MDNode::replaceElement(Value *From, Value *To) {
 | 
						|
  SmallVector<Value*, 4> Values;
 | 
						|
  Values.reserve(getNumElements());  // Build replacement array...
 | 
						|
  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
 | 
						|
    Value *Val = getElement(i);
 | 
						|
    if (Val == From) Val = To;
 | 
						|
    Values.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  MDNode *Replacement =
 | 
						|
    getType()->getContext().getMDNode(&Values[0], Values.size());
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
 | 
						|
  destroyConstant();
 | 
						|
}
 |