llvm-6502/lib/CodeGen
Duncan Sands 245741d2a1 Fix up the logic for result expanding the various extension
operations so they work right for integers with funky
bit-widths.  For example, consider extending i48 to i64
on a 32 bit machine.  The i64 result is expanded to 2 x i32.
We know that the i48 operand will be promoted to i64, then
also expanded to 2 x i32.  If we had the expanded promoted
operand to hand, then expanding the result would be trivial.
Unfortunately at this stage we can only get hold of the
promoted operand.  So instead we kind of hand-expand, doing
explicit shifting and truncating to get the top and bottom
halves of the i64 operand into 2 x i32, which are then used
to expand the result.  This is harmless, because when the
promoted operand is finally expanded all this bit fiddling
turns into trivial operations which are eliminated either
by the expansion code itself or the DAG combiner.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43223 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-22 18:26:21 +00:00
..
SelectionDAG Fix up the logic for result expanding the various extension 2007-10-22 18:26:21 +00:00
AsmPrinter.cpp Revert 42908 for now. 2007-10-14 05:57:21 +00:00
BranchFolding.cpp Don't branch fold inline asm statements. 2007-10-19 21:09:55 +00:00
Collector.cpp Collector is the base class for garbage collection code generators. 2007-09-29 02:13:43 +00:00
CollectorMetadata.cpp CollectorMetadata abstractly describes stack maps for a function. 2007-09-27 22:18:46 +00:00
Collectors.cpp My previous Registry.h header, as well as Collectors.h, which is the 2007-09-27 19:34:27 +00:00
DwarfWriter.cpp Move the code that emits the .file directives so that it runs after the 2007-10-01 22:40:20 +00:00
ELFWriter.cpp
ELFWriter.h
IfConversion.cpp
IntrinsicLowering.cpp Teach IntrinsicLowering.cpp about the sin, cos, and pow intrinsics. 2007-10-15 22:07:31 +00:00
LiveInterval.cpp Fix MergeValueInAsValue(). It allows overlapping live ranges but should replace 2007-10-17 02:13:29 +00:00
LiveIntervalAnalysis.cpp Apply Chris' suggestions. 2007-10-17 06:53:44 +00:00
LiveVariables.cpp
LLVMTargetMachine.cpp
LowerSubregs.cpp
MachineBasicBlock.cpp Use empty() member functions when that's what's being tested for instead 2007-10-03 19:26:29 +00:00
MachineFunction.cpp Use empty() member functions when that's what's being tested for instead 2007-10-03 19:26:29 +00:00
MachineInstr.cpp Optionally create a MachineInstr without default implicit operands. 2007-10-13 02:23:01 +00:00
MachineModuleInfo.cpp
MachinePassRegistry.cpp
MachOWriter.cpp
MachOWriter.h
Makefile
Passes.cpp
PHIElimination.cpp
PhysRegTracker.h
PostRASchedulerList.cpp
PrologEpilogInserter.cpp
README.txt This is done already. 2007-09-29 02:23:08 +00:00
RegAllocBigBlock.cpp
RegAllocLinearScan.cpp Apply Chris' suggestions. 2007-10-17 06:53:44 +00:00
RegAllocLocal.cpp
RegAllocSimple.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
SimpleRegisterCoalescing.cpp Really fix PR1734. Carefully track which register uses are sub-register uses by 2007-10-18 07:49:59 +00:00
TwoAddressInstructionPass.cpp Added missing curly braces which renders the if clause useless in debug build. 2007-10-20 04:01:47 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp - Only perform the unfolding optimization when the folding in question is modref. 2007-10-22 03:01:44 +00:00
VirtRegMap.h Local spiller optimization: 2007-10-13 02:50:24 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
	ldr r3, [sp, #+4]
	add r3, r3, #3
	ldr r2, [sp, #+8]
	add r2, r2, #2
	ldr r1, [sp, #+4]  <==
	add r1, r1, #1
	ldr r0, [sp, #+4]
	add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.