mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88672 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			6107 lines
		
	
	
		
			238 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6107 lines
		
	
	
		
			238 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating from LLVM IR into SelectionDAG IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "SelectionDAGBuild.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/GCStrategy.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/DwarfWriter.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// LimitFloatPrecision - Generate low-precision inline sequences for
 | |
| /// some float libcalls (6, 8 or 12 bits).
 | |
| static unsigned LimitFloatPrecision;
 | |
| 
 | |
| static cl::opt<unsigned, true>
 | |
| LimitFPPrecision("limit-float-precision",
 | |
|                  cl::desc("Generate low-precision inline sequences "
 | |
|                           "for some float libcalls"),
 | |
|                  cl::location(LimitFloatPrecision),
 | |
|                  cl::init(0));
 | |
| 
 | |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | |
| /// of insertvalue or extractvalue indices that identify a member, return
 | |
| /// the linearized index of the start of the member.
 | |
| ///
 | |
| static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
 | |
|                                    const unsigned *Indices,
 | |
|                                    const unsigned *IndicesEnd,
 | |
|                                    unsigned CurIndex = 0) {
 | |
|   // Base case: We're done.
 | |
|   if (Indices && Indices == IndicesEnd)
 | |
|     return CurIndex;
 | |
| 
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|         EI != EE; ++EI) {
 | |
|       if (Indices && *Indices == unsigned(EI - EB))
 | |
|         return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | |
|       if (Indices && *Indices == i)
 | |
|         return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // We haven't found the type we're looking for, so keep searching.
 | |
|   return CurIndex + 1;
 | |
| }
 | |
| 
 | |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | |
| /// EVTs that represent all the individual underlying
 | |
| /// non-aggregate types that comprise it.
 | |
| ///
 | |
| /// If Offsets is non-null, it points to a vector to be filled in
 | |
| /// with the in-memory offsets of each of the individual values.
 | |
| ///
 | |
| static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
 | |
|                             SmallVectorImpl<EVT> &ValueVTs,
 | |
|                             SmallVectorImpl<uint64_t> *Offsets = 0,
 | |
|                             uint64_t StartingOffset = 0) {
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|          EI != EE; ++EI)
 | |
|       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | |
|                       StartingOffset + SL->getElementOffset(EI - EB));
 | |
|     return;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | |
|                       StartingOffset + i * EltSize);
 | |
|     return;
 | |
|   }
 | |
|   // Interpret void as zero return values.
 | |
|   if (Ty == Type::getVoidTy(Ty->getContext()))
 | |
|     return;
 | |
|   // Base case: we can get an EVT for this LLVM IR type.
 | |
|   ValueVTs.push_back(TLI.getValueType(Ty));
 | |
|   if (Offsets)
 | |
|     Offsets->push_back(StartingOffset);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   /// RegsForValue - This struct represents the registers (physical or virtual)
 | |
|   /// that a particular set of values is assigned, and the type information about
 | |
|   /// the value. The most common situation is to represent one value at a time,
 | |
|   /// but struct or array values are handled element-wise as multiple values.
 | |
|   /// The splitting of aggregates is performed recursively, so that we never
 | |
|   /// have aggregate-typed registers. The values at this point do not necessarily
 | |
|   /// have legal types, so each value may require one or more registers of some
 | |
|   /// legal type.
 | |
|   ///
 | |
|   struct VISIBILITY_HIDDEN RegsForValue {
 | |
|     /// TLI - The TargetLowering object.
 | |
|     ///
 | |
|     const TargetLowering *TLI;
 | |
| 
 | |
|     /// ValueVTs - The value types of the values, which may not be legal, and
 | |
|     /// may need be promoted or synthesized from one or more registers.
 | |
|     ///
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
| 
 | |
|     /// RegVTs - The value types of the registers. This is the same size as
 | |
|     /// ValueVTs and it records, for each value, what the type of the assigned
 | |
|     /// register or registers are. (Individual values are never synthesized
 | |
|     /// from more than one type of register.)
 | |
|     ///
 | |
|     /// With virtual registers, the contents of RegVTs is redundant with TLI's
 | |
|     /// getRegisterType member function, however when with physical registers
 | |
|     /// it is necessary to have a separate record of the types.
 | |
|     ///
 | |
|     SmallVector<EVT, 4> RegVTs;
 | |
| 
 | |
|     /// Regs - This list holds the registers assigned to the values.
 | |
|     /// Each legal or promoted value requires one register, and each
 | |
|     /// expanded value requires multiple registers.
 | |
|     ///
 | |
|     SmallVector<unsigned, 4> Regs;
 | |
| 
 | |
|     RegsForValue() : TLI(0) {}
 | |
| 
 | |
|     RegsForValue(const TargetLowering &tli,
 | |
|                  const SmallVector<unsigned, 4> ®s,
 | |
|                  EVT regvt, EVT valuevt)
 | |
|       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
 | |
|     RegsForValue(const TargetLowering &tli,
 | |
|                  const SmallVector<unsigned, 4> ®s,
 | |
|                  const SmallVector<EVT, 4> ®vts,
 | |
|                  const SmallVector<EVT, 4> &valuevts)
 | |
|       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
 | |
|     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
 | |
|                  unsigned Reg, const Type *Ty) : TLI(&tli) {
 | |
|       ComputeValueVTs(tli, Ty, ValueVTs);
 | |
| 
 | |
|       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|         EVT ValueVT = ValueVTs[Value];
 | |
|         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
 | |
|         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
 | |
|         for (unsigned i = 0; i != NumRegs; ++i)
 | |
|           Regs.push_back(Reg + i);
 | |
|         RegVTs.push_back(RegisterVT);
 | |
|         Reg += NumRegs;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// append - Add the specified values to this one.
 | |
|     void append(const RegsForValue &RHS) {
 | |
|       TLI = RHS.TLI;
 | |
|       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
 | |
|       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
 | |
|       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | |
|     /// this value and returns the result as a ValueVTs value.  This uses
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     /// If the Flag pointer is NULL, no flag is used.
 | |
|     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
 | |
|                               SDValue &Chain, SDValue *Flag) const;
 | |
| 
 | |
|     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
|     /// specified value into the registers specified by this object.  This uses
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     /// If the Flag pointer is NULL, no flag is used.
 | |
|     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
 | |
|                        SDValue &Chain, SDValue *Flag) const;
 | |
| 
 | |
|     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
|     /// operand list.  This adds the code marker, matching input operand index
 | |
|     /// (if applicable), and includes the number of values added into it.
 | |
|     void AddInlineAsmOperands(unsigned Code,
 | |
|                               bool HasMatching, unsigned MatchingIdx,
 | |
|                               SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a
 | |
| /// switch or atomic instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
 | |
|   // With FastISel active, we may be splitting blocks, so force creation
 | |
|   // of virtual registers for all non-dead arguments.
 | |
|   // Don't force virtual registers for byval arguments though, because
 | |
|   // fast-isel can't handle those in all cases.
 | |
|   if (EnableFastISel && !A->hasByValAttr())
 | |
|     return A->use_empty();
 | |
| 
 | |
|   BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | |
|       return false;  // Use not in entry block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
 | |
|   : TLI(tli) {
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
 | |
|                                SelectionDAG &DAG,
 | |
|                                bool EnableFastISel) {
 | |
|   Fn = &fn;
 | |
|   MF = &mf;
 | |
|   RegInfo = &MF->getRegInfo();
 | |
| 
 | |
|   // Create a vreg for each argument register that is not dead and is used
 | |
|   // outside of the entry block for the function.
 | |
|   for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
 | |
|        AI != E; ++AI)
 | |
|     if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
 | |
|       InitializeRegForValue(AI);
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::iterator BB = Fn->begin(), EB = Fn->end();
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         const Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
 | |
|         unsigned Align =
 | |
|           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF->push_back(MBB);
 | |
| 
 | |
|     // Transfer the address-taken flag. This is necessary because there could
 | |
|     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | |
|     // the first one should be marked.
 | |
|     if (BB->hasAddressTaken())
 | |
|       MBB->setHasAddressTaken();
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     PHINode *PN;
 | |
|     DebugLoc DL;
 | |
|     for (BasicBlock::iterator
 | |
|            I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
| 
 | |
|       PN = dyn_cast<PHINode>(I);
 | |
|       if (!PN || PN->use_empty()) continue;
 | |
| 
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
 | |
|         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
|         for (unsigned i = 0; i != NumRegisters; ++i)
 | |
|           BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
 | |
|         PHIReg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
 | |
|   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| ///
 | |
| /// In the case that the given value has struct or array type, this function
 | |
| /// will assign registers for each member or element.
 | |
| ///
 | |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, V->getType(), ValueVTs);
 | |
| 
 | |
|   unsigned FirstReg = 0;
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
 | |
| 
 | |
|     unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       unsigned R = MakeReg(RegisterVT);
 | |
|       if (!FirstReg) FirstReg = R;
 | |
|     }
 | |
|   }
 | |
|   return FirstReg;
 | |
| }
 | |
| 
 | |
| /// getCopyFromParts - Create a value that contains the specified legal parts
 | |
| /// combined into the value they represent.  If the parts combine to a type
 | |
| /// larger then ValueVT then AssertOp can be used to specify whether the extra
 | |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
 | |
| /// (ISD::AssertSext).
 | |
| static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                 const SDValue *Parts,
 | |
|                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
 | |
|                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
 | |
|   assert(NumParts > 0 && "No parts to assemble!");
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Val = Parts[0];
 | |
| 
 | |
|   if (NumParts > 1) {
 | |
|     // Assemble the value from multiple parts.
 | |
|     if (!ValueVT.isVector() && ValueVT.isInteger()) {
 | |
|       unsigned PartBits = PartVT.getSizeInBits();
 | |
|       unsigned ValueBits = ValueVT.getSizeInBits();
 | |
| 
 | |
|       // Assemble the power of 2 part.
 | |
|       unsigned RoundParts = NumParts & (NumParts - 1) ?
 | |
|         1 << Log2_32(NumParts) : NumParts;
 | |
|       unsigned RoundBits = PartBits * RoundParts;
 | |
|       EVT RoundVT = RoundBits == ValueBits ?
 | |
|         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
 | |
|       SDValue Lo, Hi;
 | |
| 
 | |
|       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
 | |
| 
 | |
|       if (RoundParts > 2) {
 | |
|         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
 | |
|         Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
 | |
|                               PartVT, HalfVT);
 | |
|       } else {
 | |
|         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
 | |
|         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
 | |
|       }
 | |
|       if (TLI.isBigEndian())
 | |
|         std::swap(Lo, Hi);
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
 | |
| 
 | |
|       if (RoundParts < NumParts) {
 | |
|         // Assemble the trailing non-power-of-2 part.
 | |
|         unsigned OddParts = NumParts - RoundParts;
 | |
|         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
 | |
|         Hi = getCopyFromParts(DAG, dl,
 | |
|                               Parts+RoundParts, OddParts, PartVT, OddVT);
 | |
| 
 | |
|         // Combine the round and odd parts.
 | |
|         Lo = Val;
 | |
|         if (TLI.isBigEndian())
 | |
|           std::swap(Lo, Hi);
 | |
|         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
 | |
|         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
 | |
|                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
 | |
|                                          TLI.getPointerTy()));
 | |
|         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
 | |
|         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
 | |
|       }
 | |
|     } else if (ValueVT.isVector()) {
 | |
|       // Handle a multi-element vector.
 | |
|       EVT IntermediateVT, RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       unsigned NumRegs =
 | |
|         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 
 | |
|                                    NumIntermediates, RegisterVT);
 | |
|       assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|       NumParts = NumRegs; // Silence a compiler warning.
 | |
|       assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
|       assert(RegisterVT == Parts[0].getValueType() &&
 | |
|              "Part type doesn't match part!");
 | |
| 
 | |
|       // Assemble the parts into intermediate operands.
 | |
|       SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|       if (NumIntermediates == NumParts) {
 | |
|         // If the register was not expanded, truncate or copy the value,
 | |
|         // as appropriate.
 | |
|         for (unsigned i = 0; i != NumParts; ++i)
 | |
|           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
 | |
|                                     PartVT, IntermediateVT);
 | |
|       } else if (NumParts > 0) {
 | |
|         // If the intermediate type was expanded, build the intermediate operands
 | |
|         // from the parts.
 | |
|         assert(NumParts % NumIntermediates == 0 &&
 | |
|                "Must expand into a divisible number of parts!");
 | |
|         unsigned Factor = NumParts / NumIntermediates;
 | |
|         for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
 | |
|                                     PartVT, IntermediateVT);
 | |
|       }
 | |
| 
 | |
|       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
 | |
|       // operands.
 | |
|       Val = DAG.getNode(IntermediateVT.isVector() ?
 | |
|                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
 | |
|                         ValueVT, &Ops[0], NumIntermediates);
 | |
|     } else if (PartVT.isFloatingPoint()) {
 | |
|       // FP split into multiple FP parts (for ppcf128)
 | |
|       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
 | |
|              "Unexpected split");
 | |
|       SDValue Lo, Hi;
 | |
|       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
 | |
|       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
 | |
|       if (TLI.isBigEndian())
 | |
|         std::swap(Lo, Hi);
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
 | |
|     } else {
 | |
|       // FP split into integer parts (soft fp)
 | |
|       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
 | |
|              !PartVT.isVector() && "Unexpected split");
 | |
|       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
 | |
|       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // There is now one part, held in Val.  Correct it to match ValueVT.
 | |
|   PartVT = Val.getValueType();
 | |
| 
 | |
|   if (PartVT == ValueVT)
 | |
|     return Val;
 | |
| 
 | |
|   if (PartVT.isVector()) {
 | |
|     assert(ValueVT.isVector() && "Unknown vector conversion!");
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (ValueVT.isVector()) {
 | |
|     assert(ValueVT.getVectorElementType() == PartVT &&
 | |
|            ValueVT.getVectorNumElements() == 1 &&
 | |
|            "Only trivial scalar-to-vector conversions should get here!");
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (PartVT.isInteger() &&
 | |
|       ValueVT.isInteger()) {
 | |
|     if (ValueVT.bitsLT(PartVT)) {
 | |
|       // For a truncate, see if we have any information to
 | |
|       // indicate whether the truncated bits will always be
 | |
|       // zero or sign-extension.
 | |
|       if (AssertOp != ISD::DELETED_NODE)
 | |
|         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
 | |
|                           DAG.getValueType(ValueVT));
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
 | |
|     } else {
 | |
|       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|     if (ValueVT.bitsLT(Val.getValueType()))
 | |
|       // FP_ROUND's are always exact here.
 | |
|       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
 | |
|                          DAG.getIntPtrConstant(1));
 | |
|     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
 | |
| 
 | |
|   llvm_unreachable("Unknown mismatch!");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// getCopyToParts - Create a series of nodes that contain the specified value
 | |
| /// split into legal parts.  If the parts contain more bits than Val, then, for
 | |
| /// integers, ExtendKind can be used to specify how to generate the extra bits.
 | |
| static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
 | |
|                            SDValue *Parts, unsigned NumParts, EVT PartVT,
 | |
|                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT PtrVT = TLI.getPointerTy();
 | |
|   EVT ValueVT = Val.getValueType();
 | |
|   unsigned PartBits = PartVT.getSizeInBits();
 | |
|   unsigned OrigNumParts = NumParts;
 | |
|   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
 | |
| 
 | |
|   if (!NumParts)
 | |
|     return;
 | |
| 
 | |
|   if (!ValueVT.isVector()) {
 | |
|     if (PartVT == ValueVT) {
 | |
|       assert(NumParts == 1 && "No-op copy with multiple parts!");
 | |
|       Parts[0] = Val;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
 | |
|       // If the parts cover more bits than the value has, promote the value.
 | |
|       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|         assert(NumParts == 1 && "Do not know what to promote to!");
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
 | |
|       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
 | |
|         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
 | |
|       } else {
 | |
|         llvm_unreachable("Unknown mismatch!");
 | |
|       }
 | |
|     } else if (PartBits == ValueVT.getSizeInBits()) {
 | |
|       // Different types of the same size.
 | |
|       assert(NumParts == 1 && PartVT != ValueVT);
 | |
|       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
 | |
|     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
 | |
|       // If the parts cover less bits than value has, truncate the value.
 | |
|       if (PartVT.isInteger() && ValueVT.isInteger()) {
 | |
|         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
 | |
|       } else {
 | |
|         llvm_unreachable("Unknown mismatch!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The value may have changed - recompute ValueVT.
 | |
|     ValueVT = Val.getValueType();
 | |
|     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
 | |
|            "Failed to tile the value with PartVT!");
 | |
| 
 | |
|     if (NumParts == 1) {
 | |
|       assert(PartVT == ValueVT && "Type conversion failed!");
 | |
|       Parts[0] = Val;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Expand the value into multiple parts.
 | |
|     if (NumParts & (NumParts - 1)) {
 | |
|       // The number of parts is not a power of 2.  Split off and copy the tail.
 | |
|       assert(PartVT.isInteger() && ValueVT.isInteger() &&
 | |
|              "Do not know what to expand to!");
 | |
|       unsigned RoundParts = 1 << Log2_32(NumParts);
 | |
|       unsigned RoundBits = RoundParts * PartBits;
 | |
|       unsigned OddParts = NumParts - RoundParts;
 | |
|       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
 | |
|                                    DAG.getConstant(RoundBits,
 | |
|                                                    TLI.getPointerTy()));
 | |
|       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
 | |
|       if (TLI.isBigEndian())
 | |
|         // The odd parts were reversed by getCopyToParts - unreverse them.
 | |
|         std::reverse(Parts + RoundParts, Parts + NumParts);
 | |
|       NumParts = RoundParts;
 | |
|       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
 | |
|     }
 | |
| 
 | |
|     // The number of parts is a power of 2.  Repeatedly bisect the value using
 | |
|     // EXTRACT_ELEMENT.
 | |
|     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
 | |
|                            Val);
 | |
|     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
 | |
|       for (unsigned i = 0; i < NumParts; i += StepSize) {
 | |
|         unsigned ThisBits = StepSize * PartBits / 2;
 | |
|         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
 | |
|         SDValue &Part0 = Parts[i];
 | |
|         SDValue &Part1 = Parts[i+StepSize/2];
 | |
| 
 | |
|         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                             ThisVT, Part0,
 | |
|                             DAG.getConstant(1, PtrVT));
 | |
|         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                             ThisVT, Part0,
 | |
|                             DAG.getConstant(0, PtrVT));
 | |
| 
 | |
|         if (ThisBits == PartBits && ThisVT != PartVT) {
 | |
|           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                 PartVT, Part0);
 | |
|           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                 PartVT, Part1);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TLI.isBigEndian())
 | |
|       std::reverse(Parts, Parts + OrigNumParts);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Vector ValueVT.
 | |
|   if (NumParts == 1) {
 | |
|     if (PartVT != ValueVT) {
 | |
|       if (PartVT.isVector()) {
 | |
|         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
 | |
|       } else {
 | |
|         assert(ValueVT.getVectorElementType() == PartVT &&
 | |
|                ValueVT.getVectorNumElements() == 1 &&
 | |
|                "Only trivial vector-to-scalar conversions should get here!");
 | |
|         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | |
|                           PartVT, Val,
 | |
|                           DAG.getConstant(0, PtrVT));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle a multi-element vector.
 | |
|   EVT IntermediateVT, RegisterVT;
 | |
|   unsigned NumIntermediates;
 | |
|   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
 | |
|                               IntermediateVT, NumIntermediates, RegisterVT);
 | |
|   unsigned NumElements = ValueVT.getVectorNumElements();
 | |
| 
 | |
|   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|   NumParts = NumRegs; // Silence a compiler warning.
 | |
|   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
| 
 | |
|   // Split the vector into intermediate operands.
 | |
|   SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|   for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|     if (IntermediateVT.isVector())
 | |
|       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
 | |
|                            IntermediateVT, Val,
 | |
|                            DAG.getConstant(i * (NumElements / NumIntermediates),
 | |
|                                            PtrVT));
 | |
|     else
 | |
|       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | |
|                            IntermediateVT, Val,
 | |
|                            DAG.getConstant(i, PtrVT));
 | |
| 
 | |
|   // Split the intermediate operands into legal parts.
 | |
|   if (NumParts == NumIntermediates) {
 | |
|     // If the register was not expanded, promote or copy the value,
 | |
|     // as appropriate.
 | |
|     for (unsigned i = 0; i != NumParts; ++i)
 | |
|       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
 | |
|   } else if (NumParts > 0) {
 | |
|     // If the intermediate type was expanded, split each the value into
 | |
|     // legal parts.
 | |
|     assert(NumParts % NumIntermediates == 0 &&
 | |
|            "Must expand into a divisible number of parts!");
 | |
|     unsigned Factor = NumParts / NumIntermediates;
 | |
|     for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|       getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
 | |
|   AA = &aa;
 | |
|   GFI = gfi;
 | |
|   TD = DAG.getTarget().getTargetData();
 | |
| }
 | |
| 
 | |
| /// clear - Clear out the curret SelectionDAG and the associated
 | |
| /// state and prepare this SelectionDAGLowering object to be used
 | |
| /// for a new block. This doesn't clear out information about
 | |
| /// additional blocks that are needed to complete switch lowering
 | |
| /// or PHI node updating; that information is cleared out as it is
 | |
| /// consumed.
 | |
| void SelectionDAGLowering::clear() {
 | |
|   NodeMap.clear();
 | |
|   PendingLoads.clear();
 | |
|   PendingExports.clear();
 | |
|   EdgeMapping.clear();
 | |
|   DAG.clear();
 | |
|   CurDebugLoc = DebugLoc::getUnknownLoc();
 | |
|   HasTailCall = false;
 | |
| }
 | |
| 
 | |
| /// getRoot - Return the current virtual root of the Selection DAG,
 | |
| /// flushing any PendingLoad items. This must be done before emitting
 | |
| /// a store or any other node that may need to be ordered after any
 | |
| /// prior load instructions.
 | |
| ///
 | |
| SDValue SelectionDAGLowering::getRoot() {
 | |
|   if (PendingLoads.empty())
 | |
|     return DAG.getRoot();
 | |
| 
 | |
|   if (PendingLoads.size() == 1) {
 | |
|     SDValue Root = PendingLoads[0];
 | |
|     DAG.setRoot(Root);
 | |
|     PendingLoads.clear();
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to make a token factor node.
 | |
|   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
 | |
|                                &PendingLoads[0], PendingLoads.size());
 | |
|   PendingLoads.clear();
 | |
|   DAG.setRoot(Root);
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| /// getControlRoot - Similar to getRoot, but instead of flushing all the
 | |
| /// PendingLoad items, flush all the PendingExports items. It is necessary
 | |
| /// to do this before emitting a terminator instruction.
 | |
| ///
 | |
| SDValue SelectionDAGLowering::getControlRoot() {
 | |
|   SDValue Root = DAG.getRoot();
 | |
| 
 | |
|   if (PendingExports.empty())
 | |
|     return Root;
 | |
| 
 | |
|   // Turn all of the CopyToReg chains into one factored node.
 | |
|   if (Root.getOpcode() != ISD::EntryToken) {
 | |
|     unsigned i = 0, e = PendingExports.size();
 | |
|     for (; i != e; ++i) {
 | |
|       assert(PendingExports[i].getNode()->getNumOperands() > 1);
 | |
|       if (PendingExports[i].getNode()->getOperand(0) == Root)
 | |
|         break;  // Don't add the root if we already indirectly depend on it.
 | |
|     }
 | |
| 
 | |
|     if (i == e)
 | |
|       PendingExports.push_back(Root);
 | |
|   }
 | |
| 
 | |
|   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
 | |
|                      &PendingExports[0],
 | |
|                      PendingExports.size());
 | |
|   PendingExports.clear();
 | |
|   DAG.setRoot(Root);
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visit(Instruction &I) {
 | |
|   visit(I.getOpcode(), I);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
 | |
|   // Note: this doesn't use InstVisitor, because it has to work with
 | |
|   // ConstantExpr's in addition to instructions.
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unknown instruction type encountered!");
 | |
|     // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|   case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | |
| #include "llvm/Instruction.def"
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLowering::getValue(const Value *V) {
 | |
|   SDValue &N = NodeMap[V];
 | |
|   if (N.getNode()) return N;
 | |
| 
 | |
|   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
 | |
|     EVT VT = TLI.getValueType(V->getType(), true);
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|       return N = DAG.getConstant(*CI, VT);
 | |
| 
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|       return N = DAG.getGlobalAddress(GV, VT);
 | |
| 
 | |
|     if (isa<ConstantPointerNull>(C))
 | |
|       return N = DAG.getConstant(0, TLI.getPointerTy());
 | |
| 
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|       return N = DAG.getConstantFP(*CFP, VT);
 | |
| 
 | |
|     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
 | |
|       return N = DAG.getUNDEF(VT);
 | |
| 
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       visit(CE->getOpcode(), *CE);
 | |
|       SDValue N1 = NodeMap[V];
 | |
|       assert(N1.getNode() && "visit didn't populate the ValueMap!");
 | |
|       return N1;
 | |
|     }
 | |
| 
 | |
|     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
 | |
|       SmallVector<SDValue, 4> Constants;
 | |
|       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
 | |
|            OI != OE; ++OI) {
 | |
|         SDNode *Val = getValue(*OI).getNode();
 | |
|         // If the operand is an empty aggregate, there are no values.
 | |
|         if (!Val) continue;
 | |
|         // Add each leaf value from the operand to the Constants list
 | |
|         // to form a flattened list of all the values.
 | |
|         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
 | |
|           Constants.push_back(SDValue(Val, i));
 | |
|       }
 | |
|       return DAG.getMergeValues(&Constants[0], Constants.size(),
 | |
|                                 getCurDebugLoc());
 | |
|     }
 | |
| 
 | |
|     if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
 | |
|       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | |
|              "Unknown struct or array constant!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, C->getType(), ValueVTs);
 | |
|       unsigned NumElts = ValueVTs.size();
 | |
|       if (NumElts == 0)
 | |
|         return SDValue(); // empty struct
 | |
|       SmallVector<SDValue, 4> Constants(NumElts);
 | |
|       for (unsigned i = 0; i != NumElts; ++i) {
 | |
|         EVT EltVT = ValueVTs[i];
 | |
|         if (isa<UndefValue>(C))
 | |
|           Constants[i] = DAG.getUNDEF(EltVT);
 | |
|         else if (EltVT.isFloatingPoint())
 | |
|           Constants[i] = DAG.getConstantFP(0, EltVT);
 | |
|         else
 | |
|           Constants[i] = DAG.getConstant(0, EltVT);
 | |
|       }
 | |
|       return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
 | |
|     }
 | |
| 
 | |
|     if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | |
|       return DAG.getBlockAddress(BA, getCurDebugLoc());
 | |
| 
 | |
|     const VectorType *VecTy = cast<VectorType>(V->getType());
 | |
|     unsigned NumElements = VecTy->getNumElements();
 | |
| 
 | |
|     // Now that we know the number and type of the elements, get that number of
 | |
|     // elements into the Ops array based on what kind of constant it is.
 | |
|     SmallVector<SDValue, 16> Ops;
 | |
|     if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
 | |
|       for (unsigned i = 0; i != NumElements; ++i)
 | |
|         Ops.push_back(getValue(CP->getOperand(i)));
 | |
|     } else {
 | |
|       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
 | |
|       EVT EltVT = TLI.getValueType(VecTy->getElementType());
 | |
| 
 | |
|       SDValue Op;
 | |
|       if (EltVT.isFloatingPoint())
 | |
|         Op = DAG.getConstantFP(0, EltVT);
 | |
|       else
 | |
|         Op = DAG.getConstant(0, EltVT);
 | |
|       Ops.assign(NumElements, Op);
 | |
|     }
 | |
| 
 | |
|     // Create a BUILD_VECTOR node.
 | |
|     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
 | |
|                                     VT, &Ops[0], Ops.size());
 | |
|   }
 | |
| 
 | |
|   // If this is a static alloca, generate it as the frameindex instead of
 | |
|   // computation.
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | |
|   }
 | |
| 
 | |
|   unsigned InReg = FuncInfo.ValueMap[V];
 | |
|   assert(InReg && "Value not in map!");
 | |
| 
 | |
|   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
 | |
| }
 | |
| 
 | |
| /// Get the EVTs and ArgFlags collections that represent the return type
 | |
| /// of the given function.  This does not require a DAG or a return value, and
 | |
| /// is suitable for use before any DAGs for the function are constructed.
 | |
| static void getReturnInfo(const Type* ReturnType,
 | |
|                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
 | |
|                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
 | |
|                    TargetLowering &TLI,
 | |
|                    SmallVectorImpl<uint64_t> *Offsets = 0) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if ( NumValues == 0 ) return;
 | |
| 
 | |
|   for (unsigned j = 0, f = NumValues; j != f; ++j) {
 | |
|     EVT VT = ValueVTs[j];
 | |
|     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|     if (attr & Attribute::SExt)
 | |
|       ExtendKind = ISD::SIGN_EXTEND;
 | |
|     else if (attr & Attribute::ZExt)
 | |
|       ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|     // FIXME: C calling convention requires the return type to be promoted to
 | |
|     // at least 32-bit. But this is not necessary for non-C calling
 | |
|     // conventions. The frontend should mark functions whose return values
 | |
|     // require promoting with signext or zeroext attributes.
 | |
|     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
 | |
|       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
 | |
|       if (VT.bitsLT(MinVT))
 | |
|         VT = MinVT;
 | |
|     }
 | |
| 
 | |
|     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
 | |
|     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
 | |
|     // 'inreg' on function refers to return value
 | |
|     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|     if (attr & Attribute::InReg)
 | |
|       Flags.setInReg();
 | |
| 
 | |
|     // Propagate extension type if any
 | |
|     if (attr & Attribute::SExt)
 | |
|       Flags.setSExt();
 | |
|     else if (attr & Attribute::ZExt)
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     for (unsigned i = 0; i < NumParts; ++i) {
 | |
|       OutVTs.push_back(PartVT);
 | |
|       OutFlags.push_back(Flags);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | |
|   SDValue Chain = getControlRoot();
 | |
|   SmallVector<ISD::OutputArg, 8> Outs;
 | |
|   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
 | |
|   
 | |
|   if (!FLI.CanLowerReturn) {
 | |
|     unsigned DemoteReg = FLI.DemoteRegister;
 | |
|     const Function *F = I.getParent()->getParent();
 | |
| 
 | |
|     // Emit a store of the return value through the virtual register.
 | |
|     // Leave Outs empty so that LowerReturn won't try to load return
 | |
|     // registers the usual way.
 | |
|     SmallVector<EVT, 1> PtrValueVTs;
 | |
|     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 
 | |
|                     PtrValueVTs);
 | |
| 
 | |
|     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
 | |
|     SDValue RetOp = getValue(I.getOperand(0));
 | |
|   
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     SmallVector<uint64_t, 4> Offsets;
 | |
|     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
| 
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
|     EVT PtrVT = PtrValueVTs[0];
 | |
|     for (unsigned i = 0; i != NumValues; ++i)
 | |
|       Chains[i] = DAG.getStore(Chain, getCurDebugLoc(),
 | |
|                   SDValue(RetOp.getNode(), RetOp.getResNo() + i),
 | |
|                   DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
 | |
|                   DAG.getConstant(Offsets[i], PtrVT)),
 | |
|                   NULL, Offsets[i], false, 0);
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
 | |
|                         MVT::Other, &Chains[0], NumValues);
 | |
|   }
 | |
|   else {
 | |
|     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
 | |
|       unsigned NumValues = ValueVTs.size();
 | |
|       if (NumValues == 0) continue;
 | |
|   
 | |
|       SDValue RetOp = getValue(I.getOperand(i));
 | |
|       for (unsigned j = 0, f = NumValues; j != f; ++j) {
 | |
|         EVT VT = ValueVTs[j];
 | |
| 
 | |
|         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|         const Function *F = I.getParent()->getParent();
 | |
|         if (F->paramHasAttr(0, Attribute::SExt))
 | |
|           ExtendKind = ISD::SIGN_EXTEND;
 | |
|         else if (F->paramHasAttr(0, Attribute::ZExt))
 | |
|           ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|         // FIXME: C calling convention requires the return type to be promoted to
 | |
|         // at least 32-bit. But this is not necessary for non-C calling
 | |
|         // conventions. The frontend should mark functions whose return values
 | |
|         // require promoting with signext or zeroext attributes.
 | |
|         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
 | |
|           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
 | |
|           if (VT.bitsLT(MinVT))
 | |
|             VT = MinVT;
 | |
|         }
 | |
| 
 | |
|         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
 | |
|         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
 | |
|         SmallVector<SDValue, 4> Parts(NumParts);
 | |
|         getCopyToParts(DAG, getCurDebugLoc(),
 | |
|                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
 | |
|                        &Parts[0], NumParts, PartVT, ExtendKind);
 | |
| 
 | |
|         // 'inreg' on function refers to return value
 | |
|         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|         if (F->paramHasAttr(0, Attribute::InReg))
 | |
|           Flags.setInReg();
 | |
| 
 | |
|         // Propagate extension type if any
 | |
|         if (F->paramHasAttr(0, Attribute::SExt))
 | |
|           Flags.setSExt();
 | |
|         else if (F->paramHasAttr(0, Attribute::ZExt))
 | |
|           Flags.setZExt();
 | |
| 
 | |
|         for (unsigned i = 0; i < NumParts; ++i)
 | |
|           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
 | |
|   CallingConv::ID CallConv =
 | |
|     DAG.getMachineFunction().getFunction()->getCallingConv();
 | |
|   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
 | |
|                           Outs, getCurDebugLoc(), DAG);
 | |
| 
 | |
|   // Verify that the target's LowerReturn behaved as expected.
 | |
|   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
 | |
|          "LowerReturn didn't return a valid chain!");
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from return lowering.
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers
 | |
| /// created for it, emit nodes to copy the value into the virtual
 | |
| /// registers.
 | |
| void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) {
 | |
|   if (!V->use_empty()) {
 | |
|     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
 | |
|     if (VMI != FuncInfo.ValueMap.end())
 | |
|       CopyValueToVirtualRegister(V, VMI->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from
 | |
| /// the current basic block, add it to ValueMap now so that we'll get a
 | |
| /// CopyTo/FromReg.
 | |
| void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
 | |
|   // No need to export constants.
 | |
|   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
 | |
| 
 | |
|   // Already exported?
 | |
|   if (FuncInfo.isExportedInst(V)) return;
 | |
| 
 | |
|   unsigned Reg = FuncInfo.InitializeRegForValue(V);
 | |
|   CopyValueToVirtualRegister(V, Reg);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
 | |
|                                                     const BasicBlock *FromBB) {
 | |
|   // The operands of the setcc have to be in this block.  We don't know
 | |
|   // how to export them from some other block.
 | |
|   if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | |
|     // Can export from current BB.
 | |
|     if (VI->getParent() == FromBB)
 | |
|       return true;
 | |
| 
 | |
|     // Is already exported, noop.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // If this is an argument, we can export it if the BB is the entry block or
 | |
|   // if it is already exported.
 | |
|   if (isa<Argument>(V)) {
 | |
|     if (FromBB == &FromBB->getParent()->getEntryBlock())
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, can only export this if it is already exported.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, constants can always be exported.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool InBlock(const Value *V, const BasicBlock *BB) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == BB;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getFCmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR floating-point condition code.  This includes
 | |
| /// consideration of global floating-point math flags.
 | |
| ///
 | |
| static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
 | |
|   ISD::CondCode FPC, FOC;
 | |
|   switch (Pred) {
 | |
|   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | |
|   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | |
|   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | |
|   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | |
|   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | |
|   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | |
|   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | |
|   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
 | |
|   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
 | |
|   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | |
|   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | |
|   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | |
|   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | |
|   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | |
|   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | |
|   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid FCmp predicate opcode!");
 | |
|     FOC = FPC = ISD::SETFALSE;
 | |
|     break;
 | |
|   }
 | |
|   if (FiniteOnlyFPMath())
 | |
|     return FOC;
 | |
|   else
 | |
|     return FPC;
 | |
| }
 | |
| 
 | |
| /// getICmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR integer condition code.
 | |
| ///
 | |
| static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
 | |
|   case ICmpInst::ICMP_NE:  return ISD::SETNE;
 | |
|   case ICmpInst::ICMP_SLE: return ISD::SETLE;
 | |
|   case ICmpInst::ICMP_ULE: return ISD::SETULE;
 | |
|   case ICmpInst::ICMP_SGE: return ISD::SETGE;
 | |
|   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
 | |
|   case ICmpInst::ICMP_SLT: return ISD::SETLT;
 | |
|   case ICmpInst::ICMP_ULT: return ISD::SETULT;
 | |
|   case ICmpInst::ICMP_SGT: return ISD::SETGT;
 | |
|   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid ICmp predicate opcode!");
 | |
|     return ISD::SETNE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
 | |
| /// This function emits a branch and is used at the leaves of an OR or an
 | |
| /// AND operator tree.
 | |
| ///
 | |
| void
 | |
| SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
 | |
|                                                    MachineBasicBlock *TBB,
 | |
|                                                    MachineBasicBlock *FBB,
 | |
|                                                    MachineBasicBlock *CurBB) {
 | |
|   const BasicBlock *BB = CurBB->getBasicBlock();
 | |
| 
 | |
|   // If the leaf of the tree is a comparison, merge the condition into
 | |
|   // the caseblock.
 | |
|   if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
 | |
|     // The operands of the cmp have to be in this block.  We don't know
 | |
|     // how to export them from some other block.  If this is the first block
 | |
|     // of the sequence, no exporting is needed.
 | |
|     if (CurBB == CurMBB ||
 | |
|         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
 | |
|          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
 | |
|       ISD::CondCode Condition;
 | |
|       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
 | |
|         Condition = getICmpCondCode(IC->getPredicate());
 | |
|       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
 | |
|         Condition = getFCmpCondCode(FC->getPredicate());
 | |
|       } else {
 | |
|         Condition = ISD::SETEQ; // silence warning.
 | |
|         llvm_unreachable("Unknown compare instruction");
 | |
|       }
 | |
| 
 | |
|       CaseBlock CB(Condition, BOp->getOperand(0),
 | |
|                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
 | |
|       SwitchCases.push_back(CB);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                NULL, TBB, FBB, CurBB);
 | |
|   SwitchCases.push_back(CB);
 | |
| }
 | |
| 
 | |
| /// FindMergedConditions - If Cond is an expression like
 | |
| void SelectionDAGLowering::FindMergedConditions(Value *Cond,
 | |
|                                                 MachineBasicBlock *TBB,
 | |
|                                                 MachineBasicBlock *FBB,
 | |
|                                                 MachineBasicBlock *CurBB,
 | |
|                                                 unsigned Opc) {
 | |
|   // If this node is not part of the or/and tree, emit it as a branch.
 | |
|   Instruction *BOp = dyn_cast<Instruction>(Cond);
 | |
|   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
 | |
|       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
 | |
|       BOp->getParent() != CurBB->getBasicBlock() ||
 | |
|       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
 | |
|       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
 | |
|     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //  Create TmpBB after CurBB.
 | |
|   MachineFunction::iterator BBI = CurBB;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
 | |
|   CurBB->getParent()->insert(++BBI, TmpBB);
 | |
| 
 | |
|   if (Opc == Instruction::Or) {
 | |
|     // Codegen X | Y as:
 | |
|     //   jmp_if_X TBB
 | |
|     //   jmp TmpBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
| 
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
 | |
| 
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | |
|   } else {
 | |
|     assert(Opc == Instruction::And && "Unknown merge op!");
 | |
|     // Codegen X & Y as:
 | |
|     //   jmp_if_X TmpBB
 | |
|     //   jmp FBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
|     //  This requires creation of TmpBB after CurBB.
 | |
| 
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
 | |
| 
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the set of cases should be emitted as a series of branches, return true.
 | |
| /// If we should emit this as a bunch of and/or'd together conditions, return
 | |
| /// false.
 | |
| bool
 | |
| SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
 | |
|   if (Cases.size() != 2) return true;
 | |
| 
 | |
|   // If this is two comparisons of the same values or'd or and'd together, they
 | |
|   // will get folded into a single comparison, so don't emit two blocks.
 | |
|   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
 | |
|       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBr(BranchInst &I) {
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // Update machine-CFG edges.
 | |
|     CurMBB->addSuccessor(Succ0MBB);
 | |
| 
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (Succ0MBB != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this condition is one of the special cases we handle, do special stuff
 | |
|   // now.
 | |
|   Value *CondVal = I.getCondition();
 | |
|   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   // If this is a series of conditions that are or'd or and'd together, emit
 | |
|   // this as a sequence of branches instead of setcc's with and/or operations.
 | |
|   // For example, instead of something like:
 | |
|   //     cmp A, B
 | |
|   //     C = seteq
 | |
|   //     cmp D, E
 | |
|   //     F = setle
 | |
|   //     or C, F
 | |
|   //     jnz foo
 | |
|   // Emit:
 | |
|   //     cmp A, B
 | |
|   //     je foo
 | |
|   //     cmp D, E
 | |
|   //     jle foo
 | |
|   //
 | |
|   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
 | |
|     if (BOp->hasOneUse() &&
 | |
|         (BOp->getOpcode() == Instruction::And ||
 | |
|          BOp->getOpcode() == Instruction::Or)) {
 | |
|       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
 | |
|       // If the compares in later blocks need to use values not currently
 | |
|       // exported from this block, export them now.  This block should always
 | |
|       // be the first entry.
 | |
|       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
 | |
| 
 | |
|       // Allow some cases to be rejected.
 | |
|       if (ShouldEmitAsBranches(SwitchCases)) {
 | |
|         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
 | |
|         }
 | |
| 
 | |
|         // Emit the branch for this block.
 | |
|         visitSwitchCase(SwitchCases[0]);
 | |
|         SwitchCases.erase(SwitchCases.begin());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Okay, we decided not to do this, remove any inserted MBB's and clear
 | |
|       // SwitchCases.
 | |
|       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
 | |
|         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
 | |
| 
 | |
|       SwitchCases.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                NULL, Succ0MBB, Succ1MBB, CurMBB);
 | |
|   // Use visitSwitchCase to actually insert the fast branch sequence for this
 | |
|   // cond branch.
 | |
|   visitSwitchCase(CB);
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
 | |
|   SDValue Cond;
 | |
|   SDValue CondLHS = getValue(CB.CmpLHS);
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   // Build the setcc now.
 | |
|   if (CB.CmpMHS == NULL) {
 | |
|     // Fold "(X == true)" to X and "(X == false)" to !X to
 | |
|     // handle common cases produced by branch lowering.
 | |
|     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
 | |
|         CB.CC == ISD::SETEQ)
 | |
|       Cond = CondLHS;
 | |
|     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
 | |
|              CB.CC == ISD::SETEQ) {
 | |
|       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
 | |
|     } else
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
 | |
|   } else {
 | |
|     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
 | |
| 
 | |
|     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
 | |
|     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
 | |
| 
 | |
|     SDValue CmpOp = getValue(CB.CmpMHS);
 | |
|     EVT VT = CmpOp.getValueType();
 | |
| 
 | |
|     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
 | |
|                           ISD::SETLE);
 | |
|     } else {
 | |
|       SDValue SUB = DAG.getNode(ISD::SUB, dl,
 | |
|                                 VT, CmpOp, DAG.getConstant(Low, VT));
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
 | |
|                           DAG.getConstant(High-Low, VT), ISD::SETULE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update successor info
 | |
|   CurMBB->addSuccessor(CB.TrueBB);
 | |
|   CurMBB->addSuccessor(CB.FalseBB);
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   // If the lhs block is the next block, invert the condition so that we can
 | |
|   // fall through to the lhs instead of the rhs block.
 | |
|   if (CB.TrueBB == NextBlock) {
 | |
|     std::swap(CB.TrueBB, CB.FalseBB);
 | |
|     SDValue True = DAG.getConstant(1, Cond.getValueType());
 | |
|     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
 | |
|   }
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, getControlRoot(), Cond,
 | |
|                                DAG.getBasicBlock(CB.TrueBB));
 | |
| 
 | |
|   // If the branch was constant folded, fix up the CFG.
 | |
|   if (BrCond.getOpcode() == ISD::BR) {
 | |
|     CurMBB->removeSuccessor(CB.FalseBB);
 | |
|     DAG.setRoot(BrCond);
 | |
|   } else {
 | |
|     // Otherwise, go ahead and insert the false branch.
 | |
|     if (BrCond == getControlRoot())
 | |
|       CurMBB->removeSuccessor(CB.TrueBB);
 | |
| 
 | |
|     if (CB.FalseBB == NextBlock)
 | |
|       DAG.setRoot(BrCond);
 | |
|     else
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
 | |
|                               DAG.getBasicBlock(CB.FalseBB)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitJumpTable - Emit JumpTable node in the current MBB
 | |
| void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
 | |
|   // Emit the code for the jump table
 | |
|   assert(JT.Reg != -1U && "Should lower JT Header first!");
 | |
|   EVT PTy = TLI.getPointerTy();
 | |
|   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
 | |
|                                      JT.Reg, PTy);
 | |
|   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
 | |
|                           MVT::Other, Index.getValue(1),
 | |
|                           Table, Index));
 | |
| }
 | |
| 
 | |
| /// visitJumpTableHeader - This function emits necessary code to produce index
 | |
| /// in the JumpTable from switch case.
 | |
| void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
 | |
|                                                 JumpTableHeader &JTH) {
 | |
|   // Subtract the lowest switch case value from the value being switched on and
 | |
|   // conditional branch to default mbb if the result is greater than the
 | |
|   // difference between smallest and largest cases.
 | |
|   SDValue SwitchOp = getValue(JTH.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
 | |
|                             DAG.getConstant(JTH.First, VT));
 | |
| 
 | |
|   // The SDNode we just created, which holds the value being switched on minus
 | |
|   // the the smallest case value, needs to be copied to a virtual register so it
 | |
|   // can be used as an index into the jump table in a subsequent basic block.
 | |
|   // This value may be smaller or larger than the target's pointer type, and
 | |
|   // therefore require extension or truncating.
 | |
|   SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
 | |
| 
 | |
|   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
 | |
|                                     JumpTableReg, SwitchOp);
 | |
|   JT.Reg = JumpTableReg;
 | |
| 
 | |
|   // Emit the range check for the jump table, and branch to the default block
 | |
|   // for the switch statement if the value being switched on exceeds the largest
 | |
|   // case in the switch.
 | |
|   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
 | |
|                              TLI.getSetCCResultType(SUB.getValueType()), SUB,
 | |
|                              DAG.getConstant(JTH.Last-JTH.First,VT),
 | |
|                              ISD::SETUGT);
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
 | |
|                                MVT::Other, CopyTo, CMP,
 | |
|                                DAG.getBasicBlock(JT.Default));
 | |
| 
 | |
|   if (JT.MBB == NextBlock)
 | |
|     DAG.setRoot(BrCond);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
 | |
|                             DAG.getBasicBlock(JT.MBB)));
 | |
| }
 | |
| 
 | |
| /// visitBitTestHeader - This function emits necessary code to produce value
 | |
| /// suitable for "bit tests"
 | |
| void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
 | |
|   // Subtract the minimum value
 | |
|   SDValue SwitchOp = getValue(B.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
 | |
|                             DAG.getConstant(B.First, VT));
 | |
| 
 | |
|   // Check range
 | |
|   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
 | |
|                                   TLI.getSetCCResultType(SUB.getValueType()),
 | |
|                                   SUB, DAG.getConstant(B.Range, VT),
 | |
|                                   ISD::SETUGT);
 | |
| 
 | |
|   SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
 | |
| 
 | |
|   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
 | |
|                                     B.Reg, ShiftOp);
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
 | |
| 
 | |
|   CurMBB->addSuccessor(B.Default);
 | |
|   CurMBB->addSuccessor(MBB);
 | |
| 
 | |
|   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
 | |
|                                 MVT::Other, CopyTo, RangeCmp,
 | |
|                                 DAG.getBasicBlock(B.Default));
 | |
| 
 | |
|   if (MBB == NextBlock)
 | |
|     DAG.setRoot(BrRange);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
 | |
|                             DAG.getBasicBlock(MBB)));
 | |
| }
 | |
| 
 | |
| /// visitBitTestCase - this function produces one "bit test"
 | |
| void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
 | |
|                                             unsigned Reg,
 | |
|                                             BitTestCase &B) {
 | |
|   // Make desired shift
 | |
|   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
 | |
|                                        TLI.getPointerTy());
 | |
|   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
 | |
|                                   TLI.getPointerTy(),
 | |
|                                   DAG.getConstant(1, TLI.getPointerTy()),
 | |
|                                   ShiftOp);
 | |
| 
 | |
|   // Emit bit tests and jumps
 | |
|   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
 | |
|                               TLI.getPointerTy(), SwitchVal,
 | |
|                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
 | |
|   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
 | |
|                                 TLI.getSetCCResultType(AndOp.getValueType()),
 | |
|                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
 | |
|                                 ISD::SETNE);
 | |
| 
 | |
|   CurMBB->addSuccessor(B.TargetBB);
 | |
|   CurMBB->addSuccessor(NextMBB);
 | |
| 
 | |
|   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               AndCmp, DAG.getBasicBlock(B.TargetBB));
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (NextMBB == NextBlock)
 | |
|     DAG.setRoot(BrAnd);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
 | |
|                             DAG.getBasicBlock(NextMBB)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
 | |
|   // Retrieve successors.
 | |
|   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
|   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   const Value *Callee(I.getCalledValue());
 | |
|   if (isa<InlineAsm>(Callee))
 | |
|     visitInlineAsm(&I);
 | |
|   else
 | |
|     LowerCallTo(&I, getValue(Callee), false, LandingPad);
 | |
| 
 | |
|   // If the value of the invoke is used outside of its defining block, make it
 | |
|   // available as a virtual register.
 | |
|   CopyToExportRegsIfNeeded(&I);
 | |
| 
 | |
|   // Update successor info
 | |
|   CurMBB->addSuccessor(Return);
 | |
|   CurMBB->addSuccessor(LandingPad);
 | |
| 
 | |
|   // Drop into normal successor.
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           DAG.getBasicBlock(Return)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
 | |
| }
 | |
| 
 | |
| /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
 | |
| /// small case ranges).
 | |
| bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
 | |
|                                                   CaseRecVector& WorkList,
 | |
|                                                   Value* SV,
 | |
|                                                   MachineBasicBlock* Default) {
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
| 
 | |
|   // Size is the number of Cases represented by this range.
 | |
|   size_t Size = CR.Range.second - CR.Range.first;
 | |
|   if (Size > 3)
 | |
|     return false;
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
| 
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   // TODO: If any two of the cases has the same destination, and if one value
 | |
|   // is the same as the other, but has one bit unset that the other has set,
 | |
|   // use bit manipulation to do two compares at once.  For example:
 | |
|   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
 | |
| 
 | |
|   // Rearrange the case blocks so that the last one falls through if possible.
 | |
|   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
 | |
|     // The last case block won't fall through into 'NextBlock' if we emit the
 | |
|     // branches in this order.  See if rearranging a case value would help.
 | |
|     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
 | |
|       if (I->BB == NextBlock) {
 | |
|         std::swap(*I, BackCase);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing a conditional branch to
 | |
|   // the Case's target mbb if the value being switched on SV is equal
 | |
|   // to C.
 | |
|   MachineBasicBlock *CurBlock = CR.CaseBB;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
 | |
|     MachineBasicBlock *FallThrough;
 | |
|     if (I != E-1) {
 | |
|       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
 | |
|       CurMF->insert(BBI, FallThrough);
 | |
| 
 | |
|       // Put SV in a virtual register to make it available from the new blocks.
 | |
|       ExportFromCurrentBlock(SV);
 | |
|     } else {
 | |
|       // If the last case doesn't match, go to the default block.
 | |
|       FallThrough = Default;
 | |
|     }
 | |
| 
 | |
|     Value *RHS, *LHS, *MHS;
 | |
|     ISD::CondCode CC;
 | |
|     if (I->High == I->Low) {
 | |
|       // This is just small small case range :) containing exactly 1 case
 | |
|       CC = ISD::SETEQ;
 | |
|       LHS = SV; RHS = I->High; MHS = NULL;
 | |
|     } else {
 | |
|       CC = ISD::SETLE;
 | |
|       LHS = I->Low; MHS = SV; RHS = I->High;
 | |
|     }
 | |
|     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
 | |
| 
 | |
|     // If emitting the first comparison, just call visitSwitchCase to emit the
 | |
|     // code into the current block.  Otherwise, push the CaseBlock onto the
 | |
|     // vector to be later processed by SDISel, and insert the node's MBB
 | |
|     // before the next MBB.
 | |
|     if (CurBlock == CurMBB)
 | |
|       visitSwitchCase(CB);
 | |
|     else
 | |
|       SwitchCases.push_back(CB);
 | |
| 
 | |
|     CurBlock = FallThrough;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static inline bool areJTsAllowed(const TargetLowering &TLI) {
 | |
|   return !DisableJumpTables &&
 | |
|           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
 | |
|            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
 | |
| }
 | |
| 
 | |
| static APInt ComputeRange(const APInt &First, const APInt &Last) {
 | |
|   APInt LastExt(Last), FirstExt(First);
 | |
|   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
 | |
|   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
 | |
|   return (LastExt - FirstExt + 1ULL);
 | |
| }
 | |
| 
 | |
| /// handleJTSwitchCase - Emit jumptable for current switch case range
 | |
| bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
 | |
|                                               CaseRecVector& WorkList,
 | |
|                                               Value* SV,
 | |
|                                               MachineBasicBlock* Default) {
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
| 
 | |
|   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
 | |
|   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
 | |
| 
 | |
|   APInt TSize(First.getBitWidth(), 0);
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I)
 | |
|     TSize += I->size();
 | |
| 
 | |
|   if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
 | |
|     return false;
 | |
| 
 | |
|   APInt Range = ComputeRange(First, Last);
 | |
|   double Density = TSize.roundToDouble() / Range.roundToDouble();
 | |
|   if (Density < 0.4)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(errs() << "Lowering jump table\n"
 | |
|                << "First entry: " << First << ". Last entry: " << Last << '\n'
 | |
|                << "Range: " << Range
 | |
|                << "Size: " << TSize << ". Density: " << Density << "\n\n");
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
|   ++BBI;
 | |
| 
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   // Create a new basic block to hold the code for loading the address
 | |
|   // of the jump table, and jumping to it.  Update successor information;
 | |
|   // we will either branch to the default case for the switch, or the jump
 | |
|   // table.
 | |
|   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
 | |
|   CurMF->insert(BBI, JumpTableBB);
 | |
|   CR.CaseBB->addSuccessor(Default);
 | |
|   CR.CaseBB->addSuccessor(JumpTableBB);
 | |
| 
 | |
|   // Build a vector of destination BBs, corresponding to each target
 | |
|   // of the jump table. If the value of the jump table slot corresponds to
 | |
|   // a case statement, push the case's BB onto the vector, otherwise, push
 | |
|   // the default BB.
 | |
|   std::vector<MachineBasicBlock*> DestBBs;
 | |
|   APInt TEI = First;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
 | |
|     const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
 | |
|     const APInt& High = cast<ConstantInt>(I->High)->getValue();
 | |
| 
 | |
|     if (Low.sle(TEI) && TEI.sle(High)) {
 | |
|       DestBBs.push_back(I->BB);
 | |
|       if (TEI==High)
 | |
|         ++I;
 | |
|     } else {
 | |
|       DestBBs.push_back(Default);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update successor info. Add one edge to each unique successor.
 | |
|   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
 | |
|   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
 | |
|          E = DestBBs.end(); I != E; ++I) {
 | |
|     if (!SuccsHandled[(*I)->getNumber()]) {
 | |
|       SuccsHandled[(*I)->getNumber()] = true;
 | |
|       JumpTableBB->addSuccessor(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a jump table index for this jump table, or return an existing
 | |
|   // one.
 | |
|   unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
 | |
| 
 | |
|   // Set the jump table information so that we can codegen it as a second
 | |
|   // MachineBasicBlock
 | |
|   JumpTable JT(-1U, JTI, JumpTableBB, Default);
 | |
|   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitJumpTableHeader(JT, JTH);
 | |
| 
 | |
|   JTCases.push_back(JumpTableBlock(JTH, JT));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
 | |
| /// 2 subtrees.
 | |
| bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
 | |
|                                                    CaseRecVector& WorkList,
 | |
|                                                    Value* SV,
 | |
|                                                    MachineBasicBlock* Default) {
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
|   ++BBI;
 | |
| 
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   // Size is the number of Cases represented by this range.
 | |
|   unsigned Size = CR.Range.second - CR.Range.first;
 | |
| 
 | |
|   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
 | |
|   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
 | |
|   double FMetric = 0;
 | |
|   CaseItr Pivot = CR.Range.first + Size/2;
 | |
| 
 | |
|   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
 | |
|   // (heuristically) allow us to emit JumpTable's later.
 | |
|   APInt TSize(First.getBitWidth(), 0);
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I)
 | |
|     TSize += I->size();
 | |
| 
 | |
|   APInt LSize = FrontCase.size();
 | |
|   APInt RSize = TSize-LSize;
 | |
|   DEBUG(errs() << "Selecting best pivot: \n"
 | |
|                << "First: " << First << ", Last: " << Last <<'\n'
 | |
|                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
 | |
|   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
 | |
|        J!=E; ++I, ++J) {
 | |
|     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
 | |
|     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
 | |
|     APInt Range = ComputeRange(LEnd, RBegin);
 | |
|     assert((Range - 2ULL).isNonNegative() &&
 | |
|            "Invalid case distance");
 | |
|     double LDensity = (double)LSize.roundToDouble() / 
 | |
|                            (LEnd - First + 1ULL).roundToDouble();
 | |
|     double RDensity = (double)RSize.roundToDouble() /
 | |
|                            (Last - RBegin + 1ULL).roundToDouble();
 | |
|     double Metric = Range.logBase2()*(LDensity+RDensity);
 | |
|     // Should always split in some non-trivial place
 | |
|     DEBUG(errs() <<"=>Step\n"
 | |
|                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
 | |
|                  << "LDensity: " << LDensity
 | |
|                  << ", RDensity: " << RDensity << '\n'
 | |
|                  << "Metric: " << Metric << '\n');
 | |
|     if (FMetric < Metric) {
 | |
|       Pivot = J;
 | |
|       FMetric = Metric;
 | |
|       DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
 | |
|     }
 | |
| 
 | |
|     LSize += J->size();
 | |
|     RSize -= J->size();
 | |
|   }
 | |
|   if (areJTsAllowed(TLI)) {
 | |
|     // If our case is dense we *really* should handle it earlier!
 | |
|     assert((FMetric > 0) && "Should handle dense range earlier!");
 | |
|   } else {
 | |
|     Pivot = CR.Range.first + Size/2;
 | |
|   }
 | |
| 
 | |
|   CaseRange LHSR(CR.Range.first, Pivot);
 | |
|   CaseRange RHSR(Pivot, CR.Range.second);
 | |
|   Constant *C = Pivot->Low;
 | |
|   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
 | |
| 
 | |
|   // We know that we branch to the LHS if the Value being switched on is
 | |
|   // less than the Pivot value, C.  We use this to optimize our binary
 | |
|   // tree a bit, by recognizing that if SV is greater than or equal to the
 | |
|   // LHS's Case Value, and that Case Value is exactly one less than the
 | |
|   // Pivot's Value, then we can branch directly to the LHS's Target,
 | |
|   // rather than creating a leaf node for it.
 | |
|   if ((LHSR.second - LHSR.first) == 1 &&
 | |
|       LHSR.first->High == CR.GE &&
 | |
|       cast<ConstantInt>(C)->getValue() ==
 | |
|       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
 | |
|     TrueBB = LHSR.first->BB;
 | |
|   } else {
 | |
|     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
 | |
|     CurMF->insert(BBI, TrueBB);
 | |
|     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
 | |
| 
 | |
|     // Put SV in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(SV);
 | |
|   }
 | |
| 
 | |
|   // Similar to the optimization above, if the Value being switched on is
 | |
|   // known to be less than the Constant CR.LT, and the current Case Value
 | |
|   // is CR.LT - 1, then we can branch directly to the target block for
 | |
|   // the current Case Value, rather than emitting a RHS leaf node for it.
 | |
|   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
 | |
|       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
 | |
|       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
 | |
|     FalseBB = RHSR.first->BB;
 | |
|   } else {
 | |
|     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
 | |
|     CurMF->insert(BBI, FalseBB);
 | |
|     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
 | |
| 
 | |
|     // Put SV in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(SV);
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing a conditional branch to
 | |
|   // the LHS node if the value being switched on SV is less than C.
 | |
|   // Otherwise, branch to LHS.
 | |
|   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
 | |
| 
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitSwitchCase(CB);
 | |
|   else
 | |
|     SwitchCases.push_back(CB);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// handleBitTestsSwitchCase - if current case range has few destination and
 | |
| /// range span less, than machine word bitwidth, encode case range into series
 | |
| /// of masks and emit bit tests with these masks.
 | |
| bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
 | |
|                                                     CaseRecVector& WorkList,
 | |
|                                                     Value* SV,
 | |
|                                                     MachineBasicBlock* Default){
 | |
|   EVT PTy = TLI.getPointerTy();
 | |
|   unsigned IntPtrBits = PTy.getSizeInBits();
 | |
| 
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
| 
 | |
|   // If target does not have legal shift left, do not emit bit tests at all.
 | |
|   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
 | |
|     return false;
 | |
| 
 | |
|   size_t numCmps = 0;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I) {
 | |
|     // Single case counts one, case range - two.
 | |
|     numCmps += (I->Low == I->High ? 1 : 2);
 | |
|   }
 | |
| 
 | |
|   // Count unique destinations
 | |
|   SmallSet<MachineBasicBlock*, 4> Dests;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | |
|     Dests.insert(I->BB);
 | |
|     if (Dests.size() > 3)
 | |
|       // Don't bother the code below, if there are too much unique destinations
 | |
|       return false;
 | |
|   }
 | |
|   DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
 | |
|                << "Total number of comparisons: " << numCmps << '\n');
 | |
| 
 | |
|   // Compute span of values.
 | |
|   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
 | |
|   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
 | |
|   APInt cmpRange = maxValue - minValue;
 | |
| 
 | |
|   DEBUG(errs() << "Compare range: " << cmpRange << '\n'
 | |
|                << "Low bound: " << minValue << '\n'
 | |
|                << "High bound: " << maxValue << '\n');
 | |
| 
 | |
|   if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
 | |
|       (!(Dests.size() == 1 && numCmps >= 3) &&
 | |
|        !(Dests.size() == 2 && numCmps >= 5) &&
 | |
|        !(Dests.size() >= 3 && numCmps >= 6)))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(errs() << "Emitting bit tests\n");
 | |
|   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
 | |
| 
 | |
|   // Optimize the case where all the case values fit in a
 | |
|   // word without having to subtract minValue. In this case,
 | |
|   // we can optimize away the subtraction.
 | |
|   if (minValue.isNonNegative() &&
 | |
|       maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
 | |
|     cmpRange = maxValue;
 | |
|   } else {
 | |
|     lowBound = minValue;
 | |
|   }
 | |
| 
 | |
|   CaseBitsVector CasesBits;
 | |
|   unsigned i, count = 0;
 | |
| 
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | |
|     MachineBasicBlock* Dest = I->BB;
 | |
|     for (i = 0; i < count; ++i)
 | |
|       if (Dest == CasesBits[i].BB)
 | |
|         break;
 | |
| 
 | |
|     if (i == count) {
 | |
|       assert((count < 3) && "Too much destinations to test!");
 | |
|       CasesBits.push_back(CaseBits(0, Dest, 0));
 | |
|       count++;
 | |
|     }
 | |
| 
 | |
|     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
 | |
|     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
 | |
| 
 | |
|     uint64_t lo = (lowValue - lowBound).getZExtValue();
 | |
|     uint64_t hi = (highValue - lowBound).getZExtValue();
 | |
| 
 | |
|     for (uint64_t j = lo; j <= hi; j++) {
 | |
|       CasesBits[i].Mask |=  1ULL << j;
 | |
|       CasesBits[i].Bits++;
 | |
|     }
 | |
| 
 | |
|   }
 | |
|   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
 | |
| 
 | |
|   BitTestInfo BTC;
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
|   ++BBI;
 | |
| 
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   DEBUG(errs() << "Cases:\n");
 | |
|   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
 | |
|     DEBUG(errs() << "Mask: " << CasesBits[i].Mask
 | |
|                  << ", Bits: " << CasesBits[i].Bits
 | |
|                  << ", BB: " << CasesBits[i].BB << '\n');
 | |
| 
 | |
|     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
 | |
|     CurMF->insert(BBI, CaseBB);
 | |
|     BTC.push_back(BitTestCase(CasesBits[i].Mask,
 | |
|                               CaseBB,
 | |
|                               CasesBits[i].BB));
 | |
| 
 | |
|     // Put SV in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(SV);
 | |
|   }
 | |
| 
 | |
|   BitTestBlock BTB(lowBound, cmpRange, SV,
 | |
|                    -1U, (CR.CaseBB == CurMBB),
 | |
|                    CR.CaseBB, Default, BTC);
 | |
| 
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitBitTestHeader(BTB);
 | |
| 
 | |
|   BitTestCases.push_back(BTB);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Clusterify - Transform simple list of Cases into list of CaseRange's
 | |
| size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
 | |
|                                           const SwitchInst& SI) {
 | |
|   size_t numCmps = 0;
 | |
| 
 | |
|   // Start with "simple" cases
 | |
|   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
 | |
|     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
 | |
|     Cases.push_back(Case(SI.getSuccessorValue(i),
 | |
|                          SI.getSuccessorValue(i),
 | |
|                          SMBB));
 | |
|   }
 | |
|   std::sort(Cases.begin(), Cases.end(), CaseCmp());
 | |
| 
 | |
|   // Merge case into clusters
 | |
|   if (Cases.size() >= 2)
 | |
|     // Must recompute end() each iteration because it may be
 | |
|     // invalidated by erase if we hold on to it
 | |
|     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
 | |
|       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
 | |
|       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
 | |
|       MachineBasicBlock* nextBB = J->BB;
 | |
|       MachineBasicBlock* currentBB = I->BB;
 | |
| 
 | |
|       // If the two neighboring cases go to the same destination, merge them
 | |
|       // into a single case.
 | |
|       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
 | |
|         I->High = J->High;
 | |
|         J = Cases.erase(J);
 | |
|       } else {
 | |
|         I = J++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
 | |
|     if (I->Low != I->High)
 | |
|       // A range counts double, since it requires two compares.
 | |
|       ++numCmps;
 | |
|   }
 | |
| 
 | |
|   return numCmps;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
| 
 | |
|   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
 | |
| 
 | |
|   // If there is only the default destination, branch to it if it is not the
 | |
|   // next basic block.  Otherwise, just fall through.
 | |
|   if (SI.getNumOperands() == 2) {
 | |
|     // Update machine-CFG edges.
 | |
| 
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     CurMBB->addSuccessor(Default);
 | |
|     if (Default != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               DAG.getBasicBlock(Default)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there are any non-default case statements, create a vector of Cases
 | |
|   // representing each one, and sort the vector so that we can efficiently
 | |
|   // create a binary search tree from them.
 | |
|   CaseVector Cases;
 | |
|   size_t numCmps = Clusterify(Cases, SI);
 | |
|   DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
 | |
|                << ". Total compares: " << numCmps << '\n');
 | |
|   numCmps = 0;
 | |
| 
 | |
|   // Get the Value to be switched on and default basic blocks, which will be
 | |
|   // inserted into CaseBlock records, representing basic blocks in the binary
 | |
|   // search tree.
 | |
|   Value *SV = SI.getOperand(0);
 | |
| 
 | |
|   // Push the initial CaseRec onto the worklist
 | |
|   CaseRecVector WorkList;
 | |
|   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     // Grab a record representing a case range to process off the worklist
 | |
|     CaseRec CR = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
| 
 | |
|     // If the range has few cases (two or less) emit a series of specific
 | |
|     // tests.
 | |
|     if (handleSmallSwitchRange(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
| 
 | |
|     // If the switch has more than 5 blocks, and at least 40% dense, and the
 | |
|     // target supports indirect branches, then emit a jump table rather than
 | |
|     // lowering the switch to a binary tree of conditional branches.
 | |
|     if (handleJTSwitchCase(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
| 
 | |
|     // Emit binary tree. We need to pick a pivot, and push left and right ranges
 | |
|     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
 | |
|     handleBTSplitSwitchCase(CR, WorkList, SV, Default);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitIndirectBr(IndirectBrInst &I) {
 | |
|   // Update machine-CFG edges.
 | |
|   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
 | |
|     CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           getValue(I.getAddress())));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitFSub(User &I) {
 | |
|   // -0.0 - X --> fneg
 | |
|   const Type *Ty = I.getType();
 | |
|   if (isa<VectorType>(Ty)) {
 | |
|     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
 | |
|       const VectorType *DestTy = cast<VectorType>(I.getType());
 | |
|       const Type *ElTy = DestTy->getElementType();
 | |
|       unsigned VL = DestTy->getNumElements();
 | |
|       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
 | |
|       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
 | |
|       if (CV == CNZ) {
 | |
|         SDValue Op2 = getValue(I.getOperand(1));
 | |
|         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
 | |
|                                  Op2.getValueType(), Op2));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | |
|     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
 | |
|       SDValue Op2 = getValue(I.getOperand(1));
 | |
|       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
 | |
|                                Op2.getValueType(), Op2));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   visitBinary(I, ISD::FSUB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
 | |
|                            Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   if (!isa<VectorType>(I.getType()) &&
 | |
|       Op2.getValueType() != TLI.getShiftAmountTy()) {
 | |
|     // If the operand is smaller than the shift count type, promote it.
 | |
|     EVT PTy = TLI.getPointerTy();
 | |
|     EVT STy = TLI.getShiftAmountTy();
 | |
|     if (STy.bitsGT(Op2.getValueType()))
 | |
|       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
 | |
|                         TLI.getShiftAmountTy(), Op2);
 | |
|     // If the operand is larger than the shift count type but the shift
 | |
|     // count type has enough bits to represent any shift value, truncate
 | |
|     // it now. This is a common case and it exposes the truncate to
 | |
|     // optimization early.
 | |
|     else if (STy.getSizeInBits() >=
 | |
|              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
 | |
|       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
 | |
|                         TLI.getShiftAmountTy(), Op2);
 | |
|     // Otherwise we'll need to temporarily settle for some other
 | |
|     // convenient type; type legalization will make adjustments as
 | |
|     // needed.
 | |
|     else if (PTy.bitsLT(Op2.getValueType()))
 | |
|       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
 | |
|                         TLI.getPointerTy(), Op2);
 | |
|     else if (PTy.bitsGT(Op2.getValueType()))
 | |
|       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
 | |
|                         TLI.getPointerTy(), Op2);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
 | |
|                            Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitICmp(User &I) {
 | |
|   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
 | |
|     predicate = IC->getPredicate();
 | |
|   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = ICmpInst::Predicate(IC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode = getICmpCondCode(predicate);
 | |
|   
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFCmp(User &I) {
 | |
|   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | |
|   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
 | |
|     predicate = FC->getPredicate();
 | |
|   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = FCmpInst::Predicate(FC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Condition = getFCmpCondCode(predicate);
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSelect(User &I) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, I.getType(), ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues != 0) {
 | |
|     SmallVector<SDValue, 4> Values(NumValues);
 | |
|     SDValue Cond     = getValue(I.getOperand(0));
 | |
|     SDValue TrueVal  = getValue(I.getOperand(1));
 | |
|     SDValue FalseVal = getValue(I.getOperand(2));
 | |
| 
 | |
|     for (unsigned i = 0; i != NumValues; ++i)
 | |
|       Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
 | |
|                               TrueVal.getValueType(), Cond,
 | |
|                               SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
 | |
|                               SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
 | |
| 
 | |
|     setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
 | |
|                              DAG.getVTList(&ValueVTs[0], NumValues),
 | |
|                              &Values[0], NumValues));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitTrunc(User &I) {
 | |
|   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitZExt(User &I) {
 | |
|   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSExt(User &I) {
 | |
|   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // SExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPTrunc(User &I) {
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
 | |
|                            DestVT, N, DAG.getIntPtrConstant(0)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPExt(User &I){
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPToUI(User &I) {
 | |
|   // FPToUI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPToSI(User &I) {
 | |
|   // FPToSI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitUIToFP(User &I) {
 | |
|   // UIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSIToFP(User &I){
 | |
|   // SIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitPtrToInt(User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT SrcVT = N.getValueType();
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
 | |
|   setValue(&I, Result);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitIntToPtr(User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT SrcVT = N.getValueType();
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBitCast(User &I) {
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
| 
 | |
|   // BitCast assures us that source and destination are the same size so this
 | |
|   // is either a BIT_CONVERT or a no-op.
 | |
|   if (DestVT != N.getValueType())
 | |
|     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
 | |
|                              DestVT, N)); // convert types
 | |
|   else
 | |
|     setValue(&I, N); // noop cast.
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInsertElement(User &I) {
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InVal = getValue(I.getOperand(1));
 | |
|   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
 | |
|                                 TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(2)));
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
 | |
|                            TLI.getValueType(I.getType()),
 | |
|                            InVec, InVal, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitExtractElement(User &I) {
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
 | |
|                                 TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(1)));
 | |
|   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
 | |
|                            TLI.getValueType(I.getType()), InVec, InIdx));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Utility for visitShuffleVector - Returns true if the mask is mask starting
 | |
| // from SIndx and increasing to the element length (undefs are allowed).
 | |
| static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
 | |
|   unsigned MaskNumElts = Mask.size();
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i)
 | |
|     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShuffleVector(User &I) {
 | |
|   SmallVector<int, 8> Mask;
 | |
|   SDValue Src1 = getValue(I.getOperand(0));
 | |
|   SDValue Src2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   // Convert the ConstantVector mask operand into an array of ints, with -1
 | |
|   // representing undef values.
 | |
|   SmallVector<Constant*, 8> MaskElts;
 | |
|   cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 
 | |
|                                                      MaskElts);
 | |
|   unsigned MaskNumElts = MaskElts.size();
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     if (isa<UndefValue>(MaskElts[i]))
 | |
|       Mask.push_back(-1);
 | |
|     else
 | |
|       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
 | |
|   }
 | |
|   
 | |
|   EVT VT = TLI.getValueType(I.getType());
 | |
|   EVT SrcVT = Src1.getValueType();
 | |
|   unsigned SrcNumElts = SrcVT.getVectorNumElements();
 | |
| 
 | |
|   if (SrcNumElts == MaskNumElts) {
 | |
|     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
 | |
|                                       &Mask[0]));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Normalize the shuffle vector since mask and vector length don't match.
 | |
|   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
 | |
|     // Mask is longer than the source vectors and is a multiple of the source
 | |
|     // vectors.  We can use concatenate vector to make the mask and vectors
 | |
|     // lengths match.
 | |
|     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
 | |
|       // The shuffle is concatenating two vectors together.
 | |
|       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
 | |
|                                VT, Src1, Src2));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Pad both vectors with undefs to make them the same length as the mask.
 | |
|     unsigned NumConcat = MaskNumElts / SrcNumElts;
 | |
|     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
 | |
|     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
 | |
|     SDValue UndefVal = DAG.getUNDEF(SrcVT);
 | |
| 
 | |
|     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
 | |
|     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
 | |
|     MOps1[0] = Src1;
 | |
|     MOps2[0] = Src2;
 | |
|     
 | |
|     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 
 | |
|                                                   getCurDebugLoc(), VT, 
 | |
|                                                   &MOps1[0], NumConcat);
 | |
|     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
 | |
|                                                   getCurDebugLoc(), VT, 
 | |
|                                                   &MOps2[0], NumConcat);
 | |
| 
 | |
|     // Readjust mask for new input vector length.
 | |
|     SmallVector<int, 8> MappedOps;
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       int Idx = Mask[i];
 | |
|       if (Idx < (int)SrcNumElts)
 | |
|         MappedOps.push_back(Idx);
 | |
|       else
 | |
|         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
 | |
|     }
 | |
|     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 
 | |
|                                       &MappedOps[0]));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (SrcNumElts > MaskNumElts) {
 | |
|     // Analyze the access pattern of the vector to see if we can extract
 | |
|     // two subvectors and do the shuffle. The analysis is done by calculating
 | |
|     // the range of elements the mask access on both vectors.
 | |
|     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
 | |
|     int MaxRange[2] = {-1, -1};
 | |
| 
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       int Idx = Mask[i];
 | |
|       int Input = 0;
 | |
|       if (Idx < 0)
 | |
|         continue;
 | |
|       
 | |
|       if (Idx >= (int)SrcNumElts) {
 | |
|         Input = 1;
 | |
|         Idx -= SrcNumElts;
 | |
|       }
 | |
|       if (Idx > MaxRange[Input])
 | |
|         MaxRange[Input] = Idx;
 | |
|       if (Idx < MinRange[Input])
 | |
|         MinRange[Input] = Idx;
 | |
|     }
 | |
| 
 | |
|     // Check if the access is smaller than the vector size and can we find
 | |
|     // a reasonable extract index.
 | |
|     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract.
 | |
|     int StartIdx[2];  // StartIdx to extract from
 | |
|     for (int Input=0; Input < 2; ++Input) {
 | |
|       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
 | |
|         RangeUse[Input] = 0; // Unused
 | |
|         StartIdx[Input] = 0;
 | |
|       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
 | |
|         // Fits within range but we should see if we can find a good
 | |
|         // start index that is a multiple of the mask length.
 | |
|         if (MaxRange[Input] < (int)MaskNumElts) {
 | |
|           RangeUse[Input] = 1; // Extract from beginning of the vector
 | |
|           StartIdx[Input] = 0;
 | |
|         } else {
 | |
|           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
 | |
|           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
 | |
|               StartIdx[Input] + MaskNumElts < SrcNumElts)
 | |
|             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
 | |
|       setValue(&I, DAG.getUNDEF(VT));  // Vectors are not used.
 | |
|       return;
 | |
|     }
 | |
|     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
 | |
|       // Extract appropriate subvector and generate a vector shuffle
 | |
|       for (int Input=0; Input < 2; ++Input) {
 | |
|         SDValue& Src = Input == 0 ? Src1 : Src2;
 | |
|         if (RangeUse[Input] == 0) {
 | |
|           Src = DAG.getUNDEF(VT);
 | |
|         } else {
 | |
|           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
 | |
|                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
 | |
|         }
 | |
|       }
 | |
|       // Calculate new mask.
 | |
|       SmallVector<int, 8> MappedOps;
 | |
|       for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|         int Idx = Mask[i];
 | |
|         if (Idx < 0)
 | |
|           MappedOps.push_back(Idx);
 | |
|         else if (Idx < (int)SrcNumElts)
 | |
|           MappedOps.push_back(Idx - StartIdx[0]);
 | |
|         else
 | |
|           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
 | |
|       }
 | |
|       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
 | |
|                                         &MappedOps[0]));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't use either concat vectors or extract subvectors so fall back to
 | |
|   // replacing the shuffle with extract and build vector.
 | |
|   // to insert and build vector.
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   EVT PtrVT = TLI.getPointerTy();
 | |
|   SmallVector<SDValue,8> Ops;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     if (Mask[i] < 0) {
 | |
|       Ops.push_back(DAG.getUNDEF(EltVT));
 | |
|     } else {
 | |
|       int Idx = Mask[i];
 | |
|       if (Idx < (int)SrcNumElts)
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
 | |
|                                   EltVT, Src1, DAG.getConstant(Idx, PtrVT)));
 | |
|       else
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
 | |
|                                   EltVT, Src2,
 | |
|                                   DAG.getConstant(Idx - SrcNumElts, PtrVT)));
 | |
|     }
 | |
|   }
 | |
|   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
 | |
|                            VT, &Ops[0], Ops.size()));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   const Value *Op1 = I.getOperand(1);
 | |
|   const Type *AggTy = I.getType();
 | |
|   const Type *ValTy = Op1->getType();
 | |
|   bool IntoUndef = isa<UndefValue>(Op0);
 | |
|   bool FromUndef = isa<UndefValue>(Op1);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
 | |
|                                             I.idx_begin(), I.idx_end());
 | |
| 
 | |
|   SmallVector<EVT, 4> AggValueVTs;
 | |
|   ComputeValueVTs(TLI, AggTy, AggValueVTs);
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumAggValues = AggValueVTs.size();
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
|   SmallVector<SDValue, 4> Values(NumAggValues);
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   SDValue Val = getValue(Op1);
 | |
|   unsigned i = 0;
 | |
|   // Copy the beginning value(s) from the original aggregate.
 | |
|   for (; i != LinearIndex; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
|   // Copy values from the inserted value(s).
 | |
|   for (; i != LinearIndex + NumValValues; ++i)
 | |
|     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
 | |
|   // Copy remaining value(s) from the original aggregate.
 | |
|   for (; i != NumAggValues; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
 | |
|                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
 | |
|                            &Values[0], NumAggValues));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   const Type *AggTy = Op0->getType();
 | |
|   const Type *ValTy = I.getType();
 | |
|   bool OutOfUndef = isa<UndefValue>(Op0);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
 | |
|                                             I.idx_begin(), I.idx_end());
 | |
| 
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
|   SmallVector<SDValue, 4> Values(NumValValues);
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   // Copy out the selected value(s).
 | |
|   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
 | |
|     Values[i - LinearIndex] =
 | |
|       OutOfUndef ?
 | |
|         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
 | |
|         SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
 | |
|                            DAG.getVTList(&ValValueVTs[0], NumValValues),
 | |
|                            &Values[0], NumValValues));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   const Type *Ty = I.getOperand(0)->getType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | |
|        OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
 | |
|         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
 | |
|                         DAG.getIntPtrConstant(Offset));
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getZExtValue() == 0) continue;
 | |
|         uint64_t Offs =
 | |
|             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | |
|         SDValue OffsVal;
 | |
|         EVT PTy = TLI.getPointerTy();
 | |
|         unsigned PtrBits = PTy.getSizeInBits();
 | |
|         if (PtrBits < 64) {
 | |
|           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
 | |
|                                 TLI.getPointerTy(),
 | |
|                                 DAG.getConstant(Offs, MVT::i64));
 | |
|         } else
 | |
|           OffsVal = DAG.getIntPtrConstant(Offs);
 | |
|         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
 | |
|                         OffsVal);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // N = N + Idx * ElementSize;
 | |
|       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
 | |
|                                 TD->getTypeAllocSize(Ty));
 | |
|       SDValue IdxN = getValue(Idx);
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
 | |
| 
 | |
|       // If this is a multiply by a power of two, turn it into a shl
 | |
|       // immediately.  This is a very common case.
 | |
|       if (ElementSize != 1) {
 | |
|         if (ElementSize.isPowerOf2()) {
 | |
|           unsigned Amt = ElementSize.logBase2();
 | |
|           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
 | |
|                              N.getValueType(), IdxN,
 | |
|                              DAG.getConstant(Amt, TLI.getPointerTy()));
 | |
|         } else {
 | |
|           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
 | |
|           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
 | |
|                              N.getValueType(), IdxN, Scale);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
 | |
|                       N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
 | |
|   unsigned Align =
 | |
|     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | |
|              I.getAlignment());
 | |
| 
 | |
|   SDValue AllocSize = getValue(I.getArraySize());
 | |
|   
 | |
|   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
 | |
|                           AllocSize,
 | |
|                           DAG.getConstant(TySize, AllocSize.getValueType()));
 | |
|   
 | |
|   
 | |
|   
 | |
|   EVT IntPtr = TLI.getPointerTy();
 | |
|   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to
 | |
|   // the stack alignment, ignore it.  If the size is greater than or equal to
 | |
|   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
 | |
|   unsigned StackAlign =
 | |
|     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (Align <= StackAlign)
 | |
|     Align = 0;
 | |
| 
 | |
|   // Round the size of the allocation up to the stack alignment size
 | |
|   // by add SA-1 to the size.
 | |
|   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
 | |
|                           AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getIntPtrConstant(StackAlign-1));
 | |
|   // Mask out the low bits for alignment purposes.
 | |
|   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
 | |
|                           AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | |
| 
 | |
|   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
 | |
|   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
 | |
|   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
 | |
|                             VTs, Ops, 3);
 | |
|   setValue(&I, DSA);
 | |
|   DAG.setRoot(DSA.getValue(1));
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   SDValue Ptr = getValue(SV);
 | |
| 
 | |
|   const Type *Ty = I.getType();
 | |
|   bool isVolatile = I.isVolatile();
 | |
|   unsigned Alignment = I.getAlignment();
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   SDValue Root;
 | |
|   bool ConstantMemory = false;
 | |
|   if (I.isVolatile())
 | |
|     // Serialize volatile loads with other side effects.
 | |
|     Root = getRoot();
 | |
|   else if (AA->pointsToConstantMemory(SV)) {
 | |
|     // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|     Root = DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   } else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SmallVector<SDValue, 4> Chains(NumValues);
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   for (unsigned i = 0; i != NumValues; ++i) {
 | |
|     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
 | |
|                             DAG.getNode(ISD::ADD, getCurDebugLoc(),
 | |
|                                         PtrVT, Ptr,
 | |
|                                         DAG.getConstant(Offsets[i], PtrVT)),
 | |
|                             SV, Offsets[i], isVolatile, Alignment);
 | |
|     Values[i] = L;
 | |
|     Chains[i] = L.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (!ConstantMemory) {
 | |
|     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
 | |
|                                   MVT::Other,
 | |
|                                   &Chains[0], NumValues);
 | |
|     if (isVolatile)
 | |
|       DAG.setRoot(Chain);
 | |
|     else
 | |
|       PendingLoads.push_back(Chain);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
 | |
|                            DAG.getVTList(&ValueVTs[0], NumValues),
 | |
|                            &Values[0], NumValues));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitStore(StoreInst &I) {
 | |
|   Value *SrcV = I.getOperand(0);
 | |
|   Value *PtrV = I.getOperand(1);
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   // Get the lowered operands. Note that we do this after
 | |
|   // checking if NumResults is zero, because with zero results
 | |
|   // the operands won't have values in the map.
 | |
|   SDValue Src = getValue(SrcV);
 | |
|   SDValue Ptr = getValue(PtrV);
 | |
| 
 | |
|   SDValue Root = getRoot();
 | |
|   SmallVector<SDValue, 4> Chains(NumValues);
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   bool isVolatile = I.isVolatile();
 | |
|   unsigned Alignment = I.getAlignment();
 | |
|   for (unsigned i = 0; i != NumValues; ++i)
 | |
|     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
 | |
|                              SDValue(Src.getNode(), Src.getResNo() + i),
 | |
|                              DAG.getNode(ISD::ADD, getCurDebugLoc(),
 | |
|                                          PtrVT, Ptr,
 | |
|                                          DAG.getConstant(Offsets[i], PtrVT)),
 | |
|                              PtrV, Offsets[i], isVolatile, Alignment);
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
 | |
|                           MVT::Other, &Chains[0], NumValues));
 | |
| }
 | |
| 
 | |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | |
| /// node.
 | |
| void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
 | |
|                                                 unsigned Intrinsic) {
 | |
|   bool HasChain = !I.doesNotAccessMemory();
 | |
|   bool OnlyLoad = HasChain && I.onlyReadsMemory();
 | |
| 
 | |
|   // Build the operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | |
|     if (OnlyLoad) {
 | |
|       // We don't need to serialize loads against other loads.
 | |
|       Ops.push_back(DAG.getRoot());
 | |
|     } else {
 | |
|       Ops.push_back(getRoot());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Info is set by getTgtMemInstrinsic
 | |
|   TargetLowering::IntrinsicInfo Info;
 | |
|   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
 | |
| 
 | |
|   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
 | |
|   if (!IsTgtIntrinsic)
 | |
|     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
 | |
| 
 | |
|   // Add all operands of the call to the operand list.
 | |
|   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | |
|     SDValue Op = getValue(I.getOperand(i));
 | |
|     assert(TLI.isTypeLegal(Op.getValueType()) &&
 | |
|            "Intrinsic uses a non-legal type?");
 | |
|     Ops.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, I.getType(), ValueVTs);
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
 | |
|     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
 | |
|            "Intrinsic uses a non-legal type?");
 | |
|   }
 | |
| #endif // NDEBUG
 | |
|   if (HasChain)
 | |
|     ValueVTs.push_back(MVT::Other);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
 | |
| 
 | |
|   // Create the node.
 | |
|   SDValue Result;
 | |
|   if (IsTgtIntrinsic) {
 | |
|     // This is target intrinsic that touches memory
 | |
|     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
 | |
|                                      VTs, &Ops[0], Ops.size(),
 | |
|                                      Info.memVT, Info.ptrVal, Info.offset,
 | |
|                                      Info.align, Info.vol,
 | |
|                                      Info.readMem, Info.writeMem);
 | |
|   }
 | |
|   else if (!HasChain)
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
 | |
|                          VTs, &Ops[0], Ops.size());
 | |
|   else if (I.getType() != Type::getVoidTy(*DAG.getContext()))
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
 | |
|                          VTs, &Ops[0], Ops.size());
 | |
|   else
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
 | |
|                          VTs, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (HasChain) {
 | |
|     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
 | |
|     if (OnlyLoad)
 | |
|       PendingLoads.push_back(Chain);
 | |
|     else
 | |
|       DAG.setRoot(Chain);
 | |
|   }
 | |
|   if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
 | |
|     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
 | |
|       EVT VT = TLI.getValueType(PTy);
 | |
|       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
 | |
|     }
 | |
|     setValue(&I, Result);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | |
| static GlobalVariable *ExtractTypeInfo(Value *V) {
 | |
|   V = V->stripPointerCasts();
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | |
|   assert ((GV || isa<ConstantPointerNull>(V)) &&
 | |
|           "TypeInfo must be a global variable or NULL");
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// AddCatchInfo - Extract the personality and type infos from an eh.selector
 | |
| /// call, and add them to the specified machine basic block.
 | |
| void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
 | |
|                   MachineBasicBlock *MBB) {
 | |
|   // Inform the MachineModuleInfo of the personality for this landing pad.
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
 | |
|   assert(CE->getOpcode() == Instruction::BitCast &&
 | |
|          isa<Function>(CE->getOperand(0)) &&
 | |
|          "Personality should be a function");
 | |
|   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
 | |
| 
 | |
|   // Gather all the type infos for this landing pad and pass them along to
 | |
|   // MachineModuleInfo.
 | |
|   std::vector<GlobalVariable *> TyInfo;
 | |
|   unsigned N = I.getNumOperands();
 | |
| 
 | |
|   for (unsigned i = N - 1; i > 2; --i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
 | |
|       unsigned FilterLength = CI->getZExtValue();
 | |
|       unsigned FirstCatch = i + FilterLength + !FilterLength;
 | |
|       assert (FirstCatch <= N && "Invalid filter length");
 | |
| 
 | |
|       if (FirstCatch < N) {
 | |
|         TyInfo.reserve(N - FirstCatch);
 | |
|         for (unsigned j = FirstCatch; j < N; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|         MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       if (!FilterLength) {
 | |
|         // Cleanup.
 | |
|         MMI->addCleanup(MBB);
 | |
|       } else {
 | |
|         // Filter.
 | |
|         TyInfo.reserve(FilterLength - 1);
 | |
|         for (unsigned j = i + 1; j < FirstCatch; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|         MMI->addFilterTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       N = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N > 3) {
 | |
|     TyInfo.reserve(N - 3);
 | |
|     for (unsigned j = 3; j < N; ++j)
 | |
|       TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|     MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// GetSignificand - Get the significand and build it into a floating-point
 | |
| /// number with exponent of 1:
 | |
| ///
 | |
| ///   Op = (Op & 0x007fffff) | 0x3f800000;
 | |
| ///
 | |
| /// where Op is the hexidecimal representation of floating point value.
 | |
| static SDValue
 | |
| GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
 | |
|   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x007fffff, MVT::i32));
 | |
|   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(0x3f800000, MVT::i32));
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// GetExponent - Get the exponent:
 | |
| ///
 | |
| ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
 | |
| ///
 | |
| /// where Op is the hexidecimal representation of floating point value.
 | |
| static SDValue
 | |
| GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
 | |
|             DebugLoc dl) {
 | |
|   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x7f800000, MVT::i32));
 | |
|   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
 | |
|                            DAG.getConstant(23, TLI.getPointerTy()));
 | |
|   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(127, MVT::i32));
 | |
|   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// getF32Constant - Get 32-bit floating point constant.
 | |
| static SDValue
 | |
| getF32Constant(SelectionDAG &DAG, unsigned Flt) {
 | |
|   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
 | |
| }
 | |
| 
 | |
| /// Inlined utility function to implement binary input atomic intrinsics for
 | |
| /// visitIntrinsicCall: I is a call instruction
 | |
| ///                     Op is the associated NodeType for I
 | |
| const char *
 | |
| SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
 | |
|   SDValue Root = getRoot();
 | |
|   SDValue L =
 | |
|     DAG.getAtomic(Op, getCurDebugLoc(),
 | |
|                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
 | |
|                   Root,
 | |
|                   getValue(I.getOperand(1)),
 | |
|                   getValue(I.getOperand(2)),
 | |
|                   I.getOperand(1));
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(L.getValue(1));
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
 | |
| const char *
 | |
| SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
 | |
|   SDValue Op1 = getValue(I.getOperand(1));
 | |
|   SDValue Op2 = getValue(I.getOperand(2));
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
 | |
|   SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
 | |
| 
 | |
|   setValue(&I, Result);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// visitExp - Lower an exp intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| void
 | |
| SelectionDAGLowering::visitExp(CallInst &I) {
 | |
|   SDValue result;
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(1));
 | |
| 
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     //   #define LOG2OFe 1.4426950f
 | |
|     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
 | |
|                              getF32Constant(DAG, 0x3fb8aa3b));
 | |
|     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
 | |
| 
 | |
|     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
 | |
|     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
 | |
|     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
 | |
| 
 | |
|     //   IntegerPartOfX <<= 23;
 | |
|     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
 | |
|                                  DAG.getConstant(23, TLI.getPointerTy()));
 | |
| 
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.997535578f +
 | |
|       //       (0.735607626f + 0.252464424f * x) * x;
 | |
|       //
 | |
|       // error 0.0144103317, which is 6 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3e814304));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f3c50c8));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f7f5e7e));
 | |
|       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
 | |
| 
 | |
|       // Add the exponent into the result in integer domain.
 | |
|       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | |
|                                TwoToFracPartOfX, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999892986f +
 | |
|       //       (0.696457318f +
 | |
|       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
 | |
|       //
 | |
|       // 0.000107046256 error, which is 13 to 14 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3da235e3));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3e65b8f3));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f324b07));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3f7ff8fd));
 | |
|       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
 | |
| 
 | |
|       // Add the exponent into the result in integer domain.
 | |
|       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | |
|                                TwoToFracPartOfX, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999999982f +
 | |
|       //       (0.693148872f +
 | |
|       //         (0.240227044f +
 | |
|       //           (0.554906021e-1f +
 | |
|       //             (0.961591928e-2f +
 | |
|       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
 | |
|       //
 | |
|       // error 2.47208000*10^(-7), which is better than 18 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3924b03e));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3ab24b87));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3c1d8c17));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3d634a1d));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x3e75fe14));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
 | |
|                                 getF32Constant(DAG, 0x3f317234));
 | |
|       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
 | |
|       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
 | |
|                                 getF32Constant(DAG, 0x3f800000));
 | |
|       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                              MVT::i32, t13);
 | |
| 
 | |
|       // Add the exponent into the result in integer domain.
 | |
|       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | |
|                                 TwoToFracPartOfX, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FEXP, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitLog - Lower a log intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| void
 | |
| SelectionDAGLowering::visitLog(CallInst &I) {
 | |
|   SDValue result;
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(1));
 | |
|     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log(2) [0.69314718f].
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                                         getF32Constant(DAG, 0x3f317218));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   LogofMantissa =
 | |
|       //     -1.1609546f +
 | |
|       //       (1.4034025f - 0.23903021f * x) * x;
 | |
|       //
 | |
|       // error 0.0034276066, which is better than 8 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbe74c456));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3fb3a2b1));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                           getF32Constant(DAG, 0x3f949a29));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, LogOfMantissa);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -1.7417939f +
 | |
|       //       (2.8212026f +
 | |
|       //         (-1.4699568f +
 | |
|       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.000061011436, which is 14 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbd67b6d6));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ee4f4b8));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fbc278b));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40348e95));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                           getF32Constant(DAG, 0x3fdef31a));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, LogOfMantissa);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -2.1072184f +
 | |
|       //       (4.2372794f +
 | |
|       //         (-3.7029485f +
 | |
|       //           (2.2781945f +
 | |
|       //             (-0.87823314f +
 | |
|       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
 | |
|       //
 | |
|       // error 0.0000023660568, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbc91e5ac));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e4350aa));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f60d3e3));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x4011cdf0));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x406cfd1c));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x408797cb));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                           getF32Constant(DAG, 0x4006dcab));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, LogOfMantissa);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FLOG, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| void
 | |
| SelectionDAGLowering::visitLog2(CallInst &I) {
 | |
|   SDValue result;
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(1));
 | |
|     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Get the exponent.
 | |
|     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     // Different possible minimax approximations of significand in
 | |
|     // floating-point for various degrees of accuracy over [1,2].
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
 | |
|       //
 | |
|       // error 0.0049451742, which is more than 7 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbeb08fe0));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x40019463));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                            getF32Constant(DAG, 0x3fd6633d));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log2ofMantissa);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -2.51285454f +
 | |
|       //       (4.07009056f +
 | |
|       //         (-2.12067489f +
 | |
|       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000876136000, which is better than 13 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbda7262e));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f25280b));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x4007b923));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40823e2f));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                            getF32Constant(DAG, 0x4020d29c));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log2ofMantissa);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -3.0400495f +
 | |
|       //       (6.1129976f +
 | |
|       //         (-5.3420409f +
 | |
|       //           (3.2865683f +
 | |
|       //             (-1.2669343f +
 | |
|       //               (0.27515199f -
 | |
|       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000018516, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbcd2769e));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e8ce0b9));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fa22ae7));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40525723));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x40aaf200));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x40c39dad));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                            getF32Constant(DAG, 0x4042902c));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log2ofMantissa);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FLOG2, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| void
 | |
| SelectionDAGLowering::visitLog10(CallInst &I) {
 | |
|   SDValue result;
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(1));
 | |
|     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log10(2) [0.30102999f].
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                                         getF32Constant(DAG, 0x3e9a209a));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.50419619f +
 | |
|       //       (0.60948995f - 0.10380950f * x) * x;
 | |
|       //
 | |
|       // error 0.0014886165, which is 6 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbdd49a13));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f1c0789));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                             getF32Constant(DAG, 0x3f011300));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log10ofMantissa);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.64831180f +
 | |
|       //       (0.91751397f +
 | |
|       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
 | |
|       //
 | |
|       // error 0.00019228036, which is better than 12 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3d431f31));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ea21fb2));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f6ae232));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                             getF32Constant(DAG, 0x3f25f7c3));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log10ofMantissa);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.84299375f +
 | |
|       //       (1.5327582f +
 | |
|       //         (-1.0688956f +
 | |
|       //           (0.49102474f +
 | |
|       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000037995730, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3c5d51ce));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e00685a));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3efb6798));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f88d192));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3fc4316c));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
 | |
|                                             getF32Constant(DAG, 0x3f57ce70));
 | |
| 
 | |
|       result = DAG.getNode(ISD::FADD, dl,
 | |
|                            MVT::f32, LogOfExponent, Log10ofMantissa);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FLOG10, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| void
 | |
| SelectionDAGLowering::visitExp2(CallInst &I) {
 | |
|   SDValue result;
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
| 
 | |
|   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(1));
 | |
| 
 | |
|     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
 | |
| 
 | |
|     //   FractionalPartOfX = x - (float)IntegerPartOfX;
 | |
|     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
 | |
|     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
 | |
| 
 | |
|     //   IntegerPartOfX <<= 23;
 | |
|     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
 | |
|                                  DAG.getConstant(23, TLI.getPointerTy()));
 | |
| 
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.997535578f +
 | |
|       //       (0.735607626f + 0.252464424f * x) * x;
 | |
|       //
 | |
|       // error 0.0144103317, which is 6 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3e814304));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f3c50c8));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f7f5e7e));
 | |
|       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999892986f +
 | |
|       //       (0.696457318f +
 | |
|       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
 | |
|       //
 | |
|       // error 0.000107046256, which is 13 to 14 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3da235e3));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3e65b8f3));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f324b07));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3f7ff8fd));
 | |
|       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999999982f +
 | |
|       //       (0.693148872f +
 | |
|       //         (0.240227044f +
 | |
|       //           (0.554906021e-1f +
 | |
|       //             (0.961591928e-2f +
 | |
|       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
 | |
|       // error 2.47208000*10^(-7), which is better than 18 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3924b03e));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3ab24b87));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3c1d8c17));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3d634a1d));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x3e75fe14));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
 | |
|                                 getF32Constant(DAG, 0x3f317234));
 | |
|       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
 | |
|       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
 | |
|                                 getF32Constant(DAG, 0x3f800000));
 | |
|       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FEXP2, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode with x == 10.0f.
 | |
| void
 | |
| SelectionDAGLowering::visitPow(CallInst &I) {
 | |
|   SDValue result;
 | |
|   Value *Val = I.getOperand(1);
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
|   bool IsExp10 = false;
 | |
| 
 | |
|   if (getValue(Val).getValueType() == MVT::f32 &&
 | |
|       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
 | |
|       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|         APFloat Ten(10.0f);
 | |
|         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op = getValue(I.getOperand(2));
 | |
| 
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     //   #define LOG2OF10 3.3219281f
 | |
|     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
 | |
|                              getF32Constant(DAG, 0x40549a78));
 | |
|     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
 | |
| 
 | |
|     //   FractionalPartOfX = x - (float)IntegerPartOfX;
 | |
|     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
 | |
|     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
 | |
| 
 | |
|     //   IntegerPartOfX <<= 23;
 | |
|     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
 | |
|                                  DAG.getConstant(23, TLI.getPointerTy()));
 | |
| 
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   twoToFractionalPartOfX =
 | |
|       //     0.997535578f +
 | |
|       //       (0.735607626f + 0.252464424f * x) * x;
 | |
|       //
 | |
|       // error 0.0144103317, which is 6 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3e814304));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f3c50c8));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f7f5e7e));
 | |
|       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999892986f +
 | |
|       //       (0.696457318f +
 | |
|       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
 | |
|       //
 | |
|       // error 0.000107046256, which is 13 to 14 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3da235e3));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3e65b8f3));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f324b07));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3f7ff8fd));
 | |
|       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   TwoToFractionalPartOfX =
 | |
|       //     0.999999982f +
 | |
|       //       (0.693148872f +
 | |
|       //         (0.240227044f +
 | |
|       //           (0.554906021e-1f +
 | |
|       //             (0.961591928e-2f +
 | |
|       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
 | |
|       // error 2.47208000*10^(-7), which is better than 18 bits
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3924b03e));
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3ab24b87));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3c1d8c17));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3d634a1d));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x3e75fe14));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
 | |
|                                 getF32Constant(DAG, 0x3f317234));
 | |
|       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
 | |
|       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
 | |
|                                 getF32Constant(DAG, 0x3f800000));
 | |
|       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
 | |
|       SDValue TwoToFractionalPartOfX =
 | |
|         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
 | |
| 
 | |
|       result = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                            MVT::f32, TwoToFractionalPartOfX);
 | |
|     }
 | |
|   } else {
 | |
|     // No special expansion.
 | |
|     result = DAG.getNode(ISD::FPOW, dl,
 | |
|                          getValue(I.getOperand(1)).getValueType(),
 | |
|                          getValue(I.getOperand(1)),
 | |
|                          getValue(I.getOperand(2)));
 | |
|   }
 | |
| 
 | |
|   setValue(&I, result);
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | |
| /// we want to emit this as a call to a named external function, return the name
 | |
| /// otherwise lower it and return null.
 | |
| const char *
 | |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     // By default, turn this into a target intrinsic node.
 | |
|     visitTargetIntrinsic(I, Intrinsic);
 | |
|     return 0;
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return 0;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | |
|   case Intrinsic::returnaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::frameaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::setjmp:
 | |
|     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
 | |
|     break;
 | |
|   case Intrinsic::longjmp:
 | |
|     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::memcpy: {
 | |
|     SDValue Op1 = getValue(I.getOperand(1));
 | |
|     SDValue Op2 = getValue(I.getOperand(2));
 | |
|     SDValue Op3 = getValue(I.getOperand(3));
 | |
|     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | |
|     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
 | |
|                               I.getOperand(1), 0, I.getOperand(2), 0));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     SDValue Op1 = getValue(I.getOperand(1));
 | |
|     SDValue Op2 = getValue(I.getOperand(2));
 | |
|     SDValue Op3 = getValue(I.getOperand(3));
 | |
|     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | |
|     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
 | |
|                               I.getOperand(1), 0));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::memmove: {
 | |
|     SDValue Op1 = getValue(I.getOperand(1));
 | |
|     SDValue Op2 = getValue(I.getOperand(2));
 | |
|     SDValue Op3 = getValue(I.getOperand(3));
 | |
|     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | |
| 
 | |
|     // If the source and destination are known to not be aliases, we can
 | |
|     // lower memmove as memcpy.
 | |
|     uint64_t Size = -1ULL;
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
 | |
|       Size = C->getZExtValue();
 | |
|     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
 | |
|         AliasAnalysis::NoAlias) {
 | |
|       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
 | |
|                                 I.getOperand(1), 0, I.getOperand(2), 0));
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
 | |
|                                I.getOperand(1), 0, I.getOperand(2), 0));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_stoppoint: 
 | |
|   case Intrinsic::dbg_region_start:
 | |
|   case Intrinsic::dbg_region_end:
 | |
|   case Intrinsic::dbg_func_start:
 | |
|     // FIXME - Remove this instructions once the dust settles.
 | |
|     return 0;
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     if (OptLevel != CodeGenOpt::None) 
 | |
|       // FIXME: Variable debug info is not supported here.
 | |
|       return 0;
 | |
|     DwarfWriter *DW = DAG.getDwarfWriter();
 | |
|     if (!DW)
 | |
|       return 0;
 | |
|     DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
 | |
|     if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
 | |
|       return 0;
 | |
| 
 | |
|     MDNode *Variable = DI.getVariable();
 | |
|     Value *Address = DI.getAddress();
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|       Address = BCI->getOperand(0);
 | |
|     AllocaInst *AI = dyn_cast<AllocaInst>(Address);
 | |
|     // Don't handle byval struct arguments or VLAs, for example.
 | |
|     if (!AI)
 | |
|       return 0;
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI == FuncInfo.StaticAllocaMap.end()) 
 | |
|       return 0; // VLAs.
 | |
|     int FI = SI->second;
 | |
| 
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     if (MMI) {
 | |
|       MetadataContext &TheMetadata = 
 | |
|         DI.getParent()->getContext().getMetadata();
 | |
|       unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
 | |
|       MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
 | |
|       MMI->setVariableDbgInfo(Variable, FI, Dbg);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::eh_exception: {
 | |
|     // Insert the EXCEPTIONADDR instruction.
 | |
|     assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
 | |
|     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
 | |
|     SDValue Ops[1];
 | |
|     Ops[0] = DAG.getRoot();
 | |
|     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
 | |
|     setValue(&I, Op);
 | |
|     DAG.setRoot(Op.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_selector: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
| 
 | |
|     if (CurMBB->isLandingPad())
 | |
|       AddCatchInfo(I, MMI, CurMBB);
 | |
|     else {
 | |
| #ifndef NDEBUG
 | |
|       FuncInfo.CatchInfoLost.insert(&I);
 | |
| #endif
 | |
|       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
 | |
|       unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|       if (Reg) CurMBB->addLiveIn(Reg);
 | |
|     }
 | |
| 
 | |
|     // Insert the EHSELECTION instruction.
 | |
|     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
 | |
|     SDValue Ops[2];
 | |
|     Ops[0] = getValue(I.getOperand(1));
 | |
|     Ops[1] = getRoot();
 | |
|     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
 | |
| 
 | |
|     DAG.setRoot(Op.getValue(1));
 | |
| 
 | |
|     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_typeid_for: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
| 
 | |
|     if (MMI) {
 | |
|       // Find the type id for the given typeinfo.
 | |
|       GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
 | |
| 
 | |
|       unsigned TypeID = MMI->getTypeIDFor(GV);
 | |
|       setValue(&I, DAG.getConstant(TypeID, MVT::i32));
 | |
|     } else {
 | |
|       // Return something different to eh_selector.
 | |
|       setValue(&I, DAG.getConstant(1, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_return_i32:
 | |
|   case Intrinsic::eh_return_i64:
 | |
|     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
 | |
|       MMI->setCallsEHReturn(true);
 | |
|       DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
 | |
|                               MVT::Other,
 | |
|                               getControlRoot(),
 | |
|                               getValue(I.getOperand(1)),
 | |
|                               getValue(I.getOperand(2))));
 | |
|     } else {
 | |
|       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   case Intrinsic::eh_unwind_init:
 | |
|     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
 | |
|       MMI->setCallsUnwindInit(true);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
|   case Intrinsic::eh_dwarf_cfa: {
 | |
|     EVT VT = getValue(I.getOperand(1)).getValueType();
 | |
|     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
 | |
|                                         TLI.getPointerTy());
 | |
| 
 | |
|     SDValue Offset = DAG.getNode(ISD::ADD, dl,
 | |
|                                  TLI.getPointerTy(),
 | |
|                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
 | |
|                                              TLI.getPointerTy()),
 | |
|                                  CfaArg);
 | |
|     setValue(&I, DAG.getNode(ISD::ADD, dl,
 | |
|                              TLI.getPointerTy(),
 | |
|                              DAG.getNode(ISD::FRAMEADDR, dl,
 | |
|                                          TLI.getPointerTy(),
 | |
|                                          DAG.getConstant(0,
 | |
|                                                          TLI.getPointerTy())),
 | |
|                              Offset));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::convertff:
 | |
|   case Intrinsic::convertfsi:
 | |
|   case Intrinsic::convertfui:
 | |
|   case Intrinsic::convertsif:
 | |
|   case Intrinsic::convertuif:
 | |
|   case Intrinsic::convertss:
 | |
|   case Intrinsic::convertsu:
 | |
|   case Intrinsic::convertus:
 | |
|   case Intrinsic::convertuu: {
 | |
|     ISD::CvtCode Code = ISD::CVT_INVALID;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
 | |
|     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
 | |
|     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
 | |
|     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
 | |
|     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
 | |
|     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
 | |
|     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
 | |
|     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
 | |
|     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
 | |
|     }
 | |
|     EVT DestVT = TLI.getValueType(I.getType());
 | |
|     Value* Op1 = I.getOperand(1);
 | |
|     setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
 | |
|                                 DAG.getValueType(DestVT),
 | |
|                                 DAG.getValueType(getValue(Op1).getValueType()),
 | |
|                                 getValue(I.getOperand(2)),
 | |
|                                 getValue(I.getOperand(3)),
 | |
|                                 Code));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::sqrt:
 | |
|     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::powi:
 | |
|     setValue(&I, DAG.getNode(ISD::FPOWI, dl,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1)),
 | |
|                              getValue(I.getOperand(2))));
 | |
|     return 0;
 | |
|   case Intrinsic::sin:
 | |
|     setValue(&I, DAG.getNode(ISD::FSIN, dl,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::cos:
 | |
|     setValue(&I, DAG.getNode(ISD::FCOS, dl,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::log:
 | |
|     visitLog(I);
 | |
|     return 0;
 | |
|   case Intrinsic::log2:
 | |
|     visitLog2(I);
 | |
|     return 0;
 | |
|   case Intrinsic::log10:
 | |
|     visitLog10(I);
 | |
|     return 0;
 | |
|   case Intrinsic::exp:
 | |
|     visitExp(I);
 | |
|     return 0;
 | |
|   case Intrinsic::exp2:
 | |
|     visitExp2(I);
 | |
|     return 0;
 | |
|   case Intrinsic::pow:
 | |
|     visitPow(I);
 | |
|     return 0;
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDValue Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     SDValue Op = getRoot();
 | |
|     SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl,
 | |
|                               DAG.getVTList(MVT::i64, MVT::Other),
 | |
|                               &Op, 1);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::bswap:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::cttz: {
 | |
|     SDValue Arg = getValue(I.getOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::ctlz: {
 | |
|     SDValue Arg = getValue(I.getOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::ctpop: {
 | |
|     SDValue Arg = getValue(I.getOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stacksave: {
 | |
|     SDValue Op = getRoot();
 | |
|     SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl,
 | |
|               DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     SDValue Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stackprotector: {
 | |
|     // Emit code into the DAG to store the stack guard onto the stack.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|     EVT PtrTy = TLI.getPointerTy();
 | |
| 
 | |
|     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
 | |
|     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
 | |
| 
 | |
|     int FI = FuncInfo.StaticAllocaMap[Slot];
 | |
|     MFI->setStackProtectorIndex(FI);
 | |
| 
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
 | |
| 
 | |
|     // Store the stack protector onto the stack.
 | |
|     SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
 | |
|                                   PseudoSourceValue::getFixedStack(FI),
 | |
|                                   0, true);
 | |
|     setValue(&I, Result);
 | |
|     DAG.setRoot(Result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::objectsize: {
 | |
|     // If we don't know by now, we're never going to know.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
 | |
| 
 | |
|     assert(CI && "Non-constant type in __builtin_object_size?");
 | |
| 
 | |
|     SDValue Arg = getValue(I.getOperand(0));
 | |
|     EVT Ty = Arg.getValueType();
 | |
| 
 | |
|     if (CI->getZExtValue() < 2)
 | |
|       setValue(&I, DAG.getConstant(-1ULL, Ty));
 | |
|     else
 | |
|       setValue(&I, DAG.getConstant(0, Ty));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::var_annotation:
 | |
|     // Discard annotate attributes
 | |
|     return 0;
 | |
| 
 | |
|   case Intrinsic::init_trampoline: {
 | |
|     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
 | |
| 
 | |
|     SDValue Ops[6];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getOperand(1));
 | |
|     Ops[2] = getValue(I.getOperand(2));
 | |
|     Ops[3] = getValue(I.getOperand(3));
 | |
|     Ops[4] = DAG.getSrcValue(I.getOperand(1));
 | |
|     Ops[5] = DAG.getSrcValue(F);
 | |
| 
 | |
|     SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl,
 | |
|                               DAG.getVTList(TLI.getPointerTy(), MVT::Other),
 | |
|                               Ops, 6);
 | |
| 
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::gcroot:
 | |
|     if (GFI) {
 | |
|       Value *Alloca = I.getOperand(1);
 | |
|       Constant *TypeMap = cast<Constant>(I.getOperand(2));
 | |
| 
 | |
|       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
 | |
|       GFI->addStackRoot(FI->getIndex(), TypeMap);
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
|   case Intrinsic::gcread:
 | |
|   case Intrinsic::gcwrite:
 | |
|     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
 | |
|     return 0;
 | |
| 
 | |
|   case Intrinsic::flt_rounds: {
 | |
|     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::trap: {
 | |
|     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::UADDO);
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::SADDO);
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::USUBO);
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::SSUBO);
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::UMULO);
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|     return implVisitAluOverflow(I, ISD::SMULO);
 | |
| 
 | |
|   case Intrinsic::prefetch: {
 | |
|     SDValue Ops[4];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getOperand(1));
 | |
|     Ops[2] = getValue(I.getOperand(2));
 | |
|     Ops[3] = getValue(I.getOperand(3));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::memory_barrier: {
 | |
|     SDValue Ops[6];
 | |
|     Ops[0] = getRoot();
 | |
|     for (int x = 1; x < 6; ++x)
 | |
|       Ops[x] = getValue(I.getOperand(x));
 | |
| 
 | |
|     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::atomic_cmp_swap: {
 | |
|     SDValue Root = getRoot();
 | |
|     SDValue L =
 | |
|       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
 | |
|                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
 | |
|                     Root,
 | |
|                     getValue(I.getOperand(1)),
 | |
|                     getValue(I.getOperand(2)),
 | |
|                     getValue(I.getOperand(3)),
 | |
|                     I.getOperand(1));
 | |
|     setValue(&I, L);
 | |
|     DAG.setRoot(L.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::atomic_load_add:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
 | |
|   case Intrinsic::atomic_load_sub:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
 | |
|   case Intrinsic::atomic_load_or:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
 | |
|   case Intrinsic::atomic_load_xor:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
 | |
|   case Intrinsic::atomic_load_and:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
 | |
|   case Intrinsic::atomic_load_nand:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
 | |
|   case Intrinsic::atomic_load_max:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
 | |
|   case Intrinsic::atomic_load_min:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
 | |
|   case Intrinsic::atomic_load_umin:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
 | |
|   case Intrinsic::atomic_load_umax:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
 | |
|   case Intrinsic::atomic_swap:
 | |
|     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
 | |
| 
 | |
|   case Intrinsic::invariant_start:
 | |
|   case Intrinsic::lifetime_start:
 | |
|     // Discard region information.
 | |
|     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
 | |
|     return 0;
 | |
|   case Intrinsic::invariant_end:
 | |
|   case Intrinsic::lifetime_end:
 | |
|     // Discard region information.
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Test if the given instruction is in a position to be optimized
 | |
| /// with a tail-call. This roughly means that it's in a block with
 | |
| /// a return and there's nothing that needs to be scheduled
 | |
| /// between it and the return.
 | |
| ///
 | |
| /// This function only tests target-independent requirements.
 | |
| /// For target-dependent requirements, a target should override
 | |
| /// TargetLowering::IsEligibleForTailCallOptimization.
 | |
| ///
 | |
| static bool
 | |
| isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
 | |
|                      const TargetLowering &TLI) {
 | |
|   const BasicBlock *ExitBB = I->getParent();
 | |
|   const TerminatorInst *Term = ExitBB->getTerminator();
 | |
|   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
 | |
|   const Function *F = ExitBB->getParent();
 | |
| 
 | |
|   // The block must end in a return statement or an unreachable.
 | |
|   if (!Ret && !isa<UnreachableInst>(Term)) return false;
 | |
| 
 | |
|   // If I will have a chain, make sure no other instruction that will have a
 | |
|   // chain interposes between I and the return.
 | |
|   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
 | |
|       !I->isSafeToSpeculativelyExecute())
 | |
|     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
 | |
|          --BBI) {
 | |
|       if (&*BBI == I)
 | |
|         break;
 | |
|       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
 | |
|           !BBI->isSafeToSpeculativelyExecute())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // If the block ends with a void return or unreachable, it doesn't matter
 | |
|   // what the call's return type is.
 | |
|   if (!Ret || Ret->getNumOperands() == 0) return true;
 | |
| 
 | |
|   // Conservatively require the attributes of the call to match those of
 | |
|   // the return. Ignore noalias because it doesn't affect the call sequence.
 | |
|   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
 | |
|   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, make sure the unmodified return value of I is the return value.
 | |
|   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
 | |
|        U = dyn_cast<Instruction>(U->getOperand(0))) {
 | |
|     if (!U)
 | |
|       return false;
 | |
|     if (!U->hasOneUse())
 | |
|       return false;
 | |
|     if (U == I)
 | |
|       break;
 | |
|     // Check for a truly no-op truncate.
 | |
|     if (isa<TruncInst>(U) &&
 | |
|         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
 | |
|       continue;
 | |
|     // Check for a truly no-op bitcast.
 | |
|     if (isa<BitCastInst>(U) &&
 | |
|         (U->getOperand(0)->getType() == U->getType() ||
 | |
|          (isa<PointerType>(U->getOperand(0)->getType()) &&
 | |
|           isa<PointerType>(U->getType()))))
 | |
|       continue;
 | |
|     // Otherwise it's not a true no-op.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
 | |
|                                        bool isTailCall,
 | |
|                                        MachineBasicBlock *LandingPad) {
 | |
|   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
|   MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|   unsigned BeginLabel = 0, EndLabel = 0;
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Args.reserve(CS.arg_size());
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<EVT, 4> OutVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 
 | |
|     OutVTs, OutsFlags, TLI, &Offsets);
 | |
|   
 | |
| 
 | |
|   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 
 | |
|                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
 | |
| 
 | |
|   SDValue DemoteStackSlot;
 | |
| 
 | |
|   if (!CanLowerReturn) {
 | |
|     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
 | |
|                       FTy->getReturnType());
 | |
|     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
 | |
|                       FTy->getReturnType());
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
 | |
| 
 | |
|     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
 | |
|     Entry.Node = DemoteStackSlot;
 | |
|     Entry.Ty = StackSlotPtrType;
 | |
|     Entry.isSExt = false;
 | |
|     Entry.isZExt = false;
 | |
|     Entry.isInReg = false;
 | |
|     Entry.isSRet = true;
 | |
|     Entry.isNest = false;
 | |
|     Entry.isByVal = false;
 | |
|     Entry.Alignment = Align;
 | |
|     Args.push_back(Entry);
 | |
|     RetTy = Type::getVoidTy(FTy->getContext());
 | |
|   }
 | |
| 
 | |
|   for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|        i != e; ++i) {
 | |
|     SDValue ArgNode = getValue(*i);
 | |
|     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
 | |
| 
 | |
|     unsigned attrInd = i - CS.arg_begin() + 1;
 | |
|     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
 | |
|     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
 | |
|     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
 | |
|     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
 | |
|     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
 | |
|     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
 | |
|     Entry.Alignment = CS.getParamAlignment(attrInd);
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   if (LandingPad && MMI) {
 | |
|     // Insert a label before the invoke call to mark the try range.  This can be
 | |
|     // used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|     BeginLabel = MMI->NextLabelID();
 | |
| 
 | |
|     // Both PendingLoads and PendingExports must be flushed here;
 | |
|     // this call might not return.
 | |
|     (void)getRoot();
 | |
|     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
 | |
|                              getControlRoot(), BeginLabel));
 | |
|   }
 | |
| 
 | |
|   // Check if target-independent constraints permit a tail call here.
 | |
|   // Target-dependent constraints are checked within TLI.LowerCallTo.
 | |
|   if (isTailCall &&
 | |
|       !isInTailCallPosition(CS.getInstruction(),
 | |
|                             CS.getAttributes().getRetAttributes(),
 | |
|                             TLI))
 | |
|     isTailCall = false;
 | |
| 
 | |
|   std::pair<SDValue,SDValue> Result =
 | |
|     TLI.LowerCallTo(getRoot(), RetTy,
 | |
|                     CS.paramHasAttr(0, Attribute::SExt),
 | |
|                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
 | |
|                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
 | |
|                     CS.getCallingConv(),
 | |
|                     isTailCall,
 | |
|                     !CS.getInstruction()->use_empty(),
 | |
|                     Callee, Args, DAG, getCurDebugLoc());
 | |
|   assert((isTailCall || Result.second.getNode()) &&
 | |
|          "Non-null chain expected with non-tail call!");
 | |
|   assert((Result.second.getNode() || !Result.first.getNode()) &&
 | |
|          "Null value expected with tail call!");
 | |
|   if (Result.first.getNode())
 | |
|     setValue(CS.getInstruction(), Result.first);
 | |
|   else if (!CanLowerReturn && Result.second.getNode()) {
 | |
|     // The instruction result is the result of loading from the
 | |
|     // hidden sret parameter.
 | |
|     SmallVector<EVT, 1> PVTs;
 | |
|     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
 | |
| 
 | |
|     ComputeValueVTs(TLI, PtrRetTy, PVTs);
 | |
|     assert(PVTs.size() == 1 && "Pointers should fit in one register");
 | |
|     EVT PtrVT = PVTs[0];
 | |
|     unsigned NumValues = OutVTs.size();
 | |
|     SmallVector<SDValue, 4> Values(NumValues);
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
| 
 | |
|     for (unsigned i = 0; i < NumValues; ++i) {
 | |
|       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
 | |
|         DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot,
 | |
|         DAG.getConstant(Offsets[i], PtrVT)),
 | |
|         NULL, Offsets[i], false, 1);
 | |
|       Values[i] = L;
 | |
|       Chains[i] = L.getValue(1);
 | |
|     }
 | |
|     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
 | |
|                                 MVT::Other, &Chains[0], NumValues);
 | |
|     PendingLoads.push_back(Chain);
 | |
| 
 | |
|     setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES,
 | |
|              getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues),
 | |
|              &Values[0], NumValues));
 | |
|   }
 | |
|   // As a special case, a null chain means that a tail call has
 | |
|   // been emitted and the DAG root is already updated.
 | |
|   if (Result.second.getNode())
 | |
|     DAG.setRoot(Result.second);
 | |
|   else
 | |
|     HasTailCall = true;
 | |
| 
 | |
|   if (LandingPad && MMI) {
 | |
|     // Insert a label at the end of the invoke call to mark the try range.  This
 | |
|     // can be used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|     EndLabel = MMI->NextLabelID();
 | |
|     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
 | |
|                              getRoot(), EndLabel));
 | |
| 
 | |
|     // Inform MachineModuleInfo of range.
 | |
|     MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitCall(CallInst &I) {
 | |
|   const char *RenameFn = 0;
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     if (F->isDeclaration()) {
 | |
|       const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
 | |
|       if (II) {
 | |
|         if (unsigned IID = II->getIntrinsicID(F)) {
 | |
|           RenameFn = visitIntrinsicCall(I, IID);
 | |
|           if (!RenameFn)
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
|       if (unsigned IID = F->getIntrinsicID()) {
 | |
|         RenameFn = visitIntrinsicCall(I, IID);
 | |
|         if (!RenameFn)
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for well-known libc/libm calls.  If the function is internal, it
 | |
|     // can't be a library call.
 | |
|     if (!F->hasLocalLinkage() && F->hasName()) {
 | |
|       StringRef Name = F->getName();
 | |
|       if (Name == "copysign" || Name == "copysignf") {
 | |
|         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
 | |
|             I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|             I.getType() == I.getOperand(1)->getType() &&
 | |
|             I.getType() == I.getOperand(2)->getType()) {
 | |
|           SDValue LHS = getValue(I.getOperand(1));
 | |
|           SDValue RHS = getValue(I.getOperand(2));
 | |
|           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
 | |
|                                    LHS.getValueType(), LHS, RHS));
 | |
|           return;
 | |
|         }
 | |
|       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
 | |
|         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|             I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|             I.getType() == I.getOperand(1)->getType()) {
 | |
|           SDValue Tmp = getValue(I.getOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
 | |
|                                    Tmp.getValueType(), Tmp));
 | |
|           return;
 | |
|         }
 | |
|       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
 | |
|         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|             I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|             I.getType() == I.getOperand(1)->getType() &&
 | |
|             I.onlyReadsMemory()) {
 | |
|           SDValue Tmp = getValue(I.getOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
 | |
|                                    Tmp.getValueType(), Tmp));
 | |
|           return;
 | |
|         }
 | |
|       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
 | |
|         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|             I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|             I.getType() == I.getOperand(1)->getType() &&
 | |
|             I.onlyReadsMemory()) {
 | |
|           SDValue Tmp = getValue(I.getOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
 | |
|                                    Tmp.getValueType(), Tmp));
 | |
|           return;
 | |
|         }
 | |
|       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
 | |
|         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|             I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|             I.getType() == I.getOperand(1)->getType() &&
 | |
|             I.onlyReadsMemory()) {
 | |
|           SDValue Tmp = getValue(I.getOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
 | |
|                                    Tmp.getValueType(), Tmp));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (isa<InlineAsm>(I.getOperand(0))) {
 | |
|     visitInlineAsm(&I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue Callee;
 | |
|   if (!RenameFn)
 | |
|     Callee = getValue(I.getOperand(0));
 | |
|   else
 | |
|     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | |
| 
 | |
|   // Check if we can potentially perform a tail call. More detailed
 | |
|   // checking is be done within LowerCallTo, after more information
 | |
|   // about the call is known.
 | |
|   bool isTailCall = PerformTailCallOpt && I.isTailCall();
 | |
| 
 | |
|   LowerCallTo(&I, Callee, isTailCall);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | |
| /// this value and returns the result as a ValueVT value.  This uses
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| /// If the Flag pointer is NULL, no flag is used.
 | |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                       SDValue &Chain,
 | |
|                                       SDValue *Flag) const {
 | |
|   // Assemble the legal parts into the final values.
 | |
|   SmallVector<SDValue, 4> Values(ValueVTs.size());
 | |
|   SmallVector<SDValue, 8> Parts;
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     // Copy the legal parts from the registers.
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
 | |
|     EVT RegisterVT = RegVTs[Value];
 | |
| 
 | |
|     Parts.resize(NumRegs);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       SDValue P;
 | |
|       if (Flag == 0)
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
 | |
|       else {
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
 | |
|         *Flag = P.getValue(2);
 | |
|       }
 | |
|       Chain = P.getValue(1);
 | |
| 
 | |
|       // If the source register was virtual and if we know something about it,
 | |
|       // add an assert node.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
 | |
|           RegisterVT.isInteger() && !RegisterVT.isVector()) {
 | |
|         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
 | |
|         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
 | |
|         if (FLI.LiveOutRegInfo.size() > SlotNo) {
 | |
|           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
 | |
| 
 | |
|           unsigned RegSize = RegisterVT.getSizeInBits();
 | |
|           unsigned NumSignBits = LOI.NumSignBits;
 | |
|           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
 | |
| 
 | |
|           // FIXME: We capture more information than the dag can represent.  For
 | |
|           // now, just use the tightest assertzext/assertsext possible.
 | |
|           bool isSExt = true;
 | |
|           EVT FromVT(MVT::Other);
 | |
|           if (NumSignBits == RegSize)
 | |
|             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
 | |
|           else if (NumZeroBits >= RegSize-1)
 | |
|             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
 | |
|           else if (NumSignBits > RegSize-8)
 | |
|             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
 | |
|           else if (NumZeroBits >= RegSize-8)
 | |
|             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
 | |
|           else if (NumSignBits > RegSize-16)
 | |
|             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
 | |
|           else if (NumZeroBits >= RegSize-16)
 | |
|             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
 | |
|           else if (NumSignBits > RegSize-32)
 | |
|             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
 | |
|           else if (NumZeroBits >= RegSize-32)
 | |
|             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
 | |
| 
 | |
|           if (FromVT != MVT::Other) {
 | |
|             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
 | |
|                             RegisterVT, P, DAG.getValueType(FromVT));
 | |
| 
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Parts[i] = P;
 | |
|     }
 | |
| 
 | |
|     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
 | |
|                                      NumRegs, RegisterVT, ValueVT);
 | |
|     Part += NumRegs;
 | |
|     Parts.clear();
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
 | |
|                      &Values[0], ValueVTs.size());
 | |
| }
 | |
| 
 | |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
| /// specified value into the registers specified by this object.  This uses
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| /// If the Flag pointer is NULL, no flag is used.
 | |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
 | |
|                                  SDValue &Chain, SDValue *Flag) const {
 | |
|   // Get the list of the values's legal parts.
 | |
|   unsigned NumRegs = Regs.size();
 | |
|   SmallVector<SDValue, 8> Parts(NumRegs);
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
 | |
|     EVT RegisterVT = RegVTs[Value];
 | |
| 
 | |
|     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
 | |
|                    &Parts[Part], NumParts, RegisterVT);
 | |
|     Part += NumParts;
 | |
|   }
 | |
| 
 | |
|   // Copy the parts into the registers.
 | |
|   SmallVector<SDValue, 8> Chains(NumRegs);
 | |
|   for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|     SDValue Part;
 | |
|     if (Flag == 0)
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
 | |
|     else {
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
 | |
|       *Flag = Part.getValue(1);
 | |
|     }
 | |
|     Chains[i] = Part.getValue(0);
 | |
|   }
 | |
| 
 | |
|   if (NumRegs == 1 || Flag)
 | |
|     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
 | |
|     // flagged to it. That is the CopyToReg nodes and the user are considered
 | |
|     // a single scheduling unit. If we create a TokenFactor and return it as
 | |
|     // chain, then the TokenFactor is both a predecessor (operand) of the
 | |
|     // user as well as a successor (the TF operands are flagged to the user).
 | |
|     // c1, f1 = CopyToReg
 | |
|     // c2, f2 = CopyToReg
 | |
|     // c3     = TokenFactor c1, c2
 | |
|     // ...
 | |
|     //        = op c3, ..., f2
 | |
|     Chain = Chains[NumRegs-1];
 | |
|   else
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
 | |
| }
 | |
| 
 | |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
| /// operand list.  This adds the code marker and includes the number of
 | |
| /// values added into it.
 | |
| void RegsForValue::AddInlineAsmOperands(unsigned Code,
 | |
|                                         bool HasMatching,unsigned MatchingIdx,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         std::vector<SDValue> &Ops) const {
 | |
|   EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
 | |
|   unsigned Flag = Code | (Regs.size() << 3);
 | |
|   if (HasMatching)
 | |
|     Flag |= 0x80000000 | (MatchingIdx << 16);
 | |
|   Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
 | |
|   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
 | |
|     EVT RegisterVT = RegVTs[Value];
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       assert(Reg < Regs.size() && "Mismatch in # registers expected");
 | |
|       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isAllocatableRegister - If the specified register is safe to allocate,
 | |
| /// i.e. it isn't a stack pointer or some other special register, return the
 | |
| /// register class for the register.  Otherwise, return null.
 | |
| static const TargetRegisterClass *
 | |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF,
 | |
|                       const TargetLowering &TLI,
 | |
|                       const TargetRegisterInfo *TRI) {
 | |
|   EVT FoundVT = MVT::Other;
 | |
|   const TargetRegisterClass *FoundRC = 0;
 | |
|   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
 | |
|        E = TRI->regclass_end(); RCI != E; ++RCI) {
 | |
|     EVT ThisVT = MVT::Other;
 | |
| 
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     // If none of the the value types for this register class are valid, we
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (TLI.isTypeLegal(*I)) {
 | |
|         // If we have already found this register in a different register class,
 | |
|         // choose the one with the largest VT specified.  For example, on
 | |
|         // PowerPC, we favor f64 register classes over f32.
 | |
|         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
 | |
|           ThisVT = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ThisVT == MVT::Other) continue;
 | |
| 
 | |
|     // NOTE: This isn't ideal.  In particular, this might allocate the
 | |
|     // frame pointer in functions that need it (due to them not being taken
 | |
|     // out of allocation, because a variable sized allocation hasn't been seen
 | |
|     // yet).  This is a slight code pessimization, but should still work.
 | |
|     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
 | |
|          E = RC->allocation_order_end(MF); I != E; ++I)
 | |
|       if (*I == Reg) {
 | |
|         // We found a matching register class.  Keep looking at others in case
 | |
|         // we find one with larger registers that this physreg is also in.
 | |
|         FoundRC = RC;
 | |
|         FoundVT = ThisVT;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return FoundRC;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
| /// AsmOperandInfo - This contains information for each constraint that we are
 | |
| /// lowering.
 | |
| class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
 | |
|     public TargetLowering::AsmOperandInfo {
 | |
| public:
 | |
|   /// CallOperand - If this is the result output operand or a clobber
 | |
|   /// this is null, otherwise it is the incoming operand to the CallInst.
 | |
|   /// This gets modified as the asm is processed.
 | |
|   SDValue CallOperand;
 | |
| 
 | |
|   /// AssignedRegs - If this is a register or register class operand, this
 | |
|   /// contains the set of register corresponding to the operand.
 | |
|   RegsForValue AssignedRegs;
 | |
| 
 | |
|   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
 | |
|     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
 | |
|   }
 | |
| 
 | |
|   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
 | |
|   /// busy in OutputRegs/InputRegs.
 | |
|   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
 | |
|                          std::set<unsigned> &OutputRegs,
 | |
|                          std::set<unsigned> &InputRegs,
 | |
|                          const TargetRegisterInfo &TRI) const {
 | |
|     if (isOutReg) {
 | |
|       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
 | |
|         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
 | |
|     }
 | |
|     if (isInReg) {
 | |
|       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
 | |
|         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
 | |
|   /// corresponds to.  If there is no Value* for this operand, it returns
 | |
|   /// MVT::Other.
 | |
|   EVT getCallOperandValEVT(LLVMContext &Context, 
 | |
|                            const TargetLowering &TLI,
 | |
|                            const TargetData *TD) const {
 | |
|     if (CallOperandVal == 0) return MVT::Other;
 | |
| 
 | |
|     if (isa<BasicBlock>(CallOperandVal))
 | |
|       return TLI.getPointerTy();
 | |
| 
 | |
|     const llvm::Type *OpTy = CallOperandVal->getType();
 | |
| 
 | |
|     // If this is an indirect operand, the operand is a pointer to the
 | |
|     // accessed type.
 | |
|     if (isIndirect)
 | |
|       OpTy = cast<PointerType>(OpTy)->getElementType();
 | |
| 
 | |
|     // If OpTy is not a single value, it may be a struct/union that we
 | |
|     // can tile with integers.
 | |
|     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | |
|       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
 | |
|       switch (BitSize) {
 | |
|       default: break;
 | |
|       case 1:
 | |
|       case 8:
 | |
|       case 16:
 | |
|       case 32:
 | |
|       case 64:
 | |
|       case 128:
 | |
|         OpTy = IntegerType::get(Context, BitSize);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return TLI.getValueType(OpTy, true);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// MarkRegAndAliases - Mark the specified register and all aliases in the
 | |
|   /// specified set.
 | |
|   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
 | |
|                                 const TargetRegisterInfo &TRI) {
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
 | |
|     Regs.insert(Reg);
 | |
|     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
 | |
|       for (; *Aliases; ++Aliases)
 | |
|         Regs.insert(*Aliases);
 | |
|   }
 | |
| };
 | |
| } // end llvm namespace.
 | |
| 
 | |
| 
 | |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the
 | |
| /// specified operand.  We prefer to assign virtual registers, to allow the
 | |
| /// register allocator handle the assignment process.  However, if the asm uses
 | |
| /// features that we can't model on machineinstrs, we have SDISel do the
 | |
| /// allocation.  This produces generally horrible, but correct, code.
 | |
| ///
 | |
| ///   OpInfo describes the operand.
 | |
| ///   Input and OutputRegs are the set of already allocated physical registers.
 | |
| ///
 | |
| void SelectionDAGLowering::
 | |
| GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
 | |
|                      std::set<unsigned> &OutputRegs,
 | |
|                      std::set<unsigned> &InputRegs) {
 | |
|   LLVMContext &Context = FuncInfo.Fn->getContext();
 | |
| 
 | |
|   // Compute whether this value requires an input register, an output register,
 | |
|   // or both.
 | |
|   bool isOutReg = false;
 | |
|   bool isInReg = false;
 | |
|   switch (OpInfo.Type) {
 | |
|   case InlineAsm::isOutput:
 | |
|     isOutReg = true;
 | |
| 
 | |
|     // If there is an input constraint that matches this, we need to reserve
 | |
|     // the input register so no other inputs allocate to it.
 | |
|     isInReg = OpInfo.hasMatchingInput();
 | |
|     break;
 | |
|   case InlineAsm::isInput:
 | |
|     isInReg = true;
 | |
|     isOutReg = false;
 | |
|     break;
 | |
|   case InlineAsm::isClobber:
 | |
|     isOutReg = true;
 | |
|     isInReg = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SmallVector<unsigned, 4> Regs;
 | |
| 
 | |
|   // If this is a constraint for a single physreg, or a constraint for a
 | |
|   // register class, find it.
 | |
|   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
 | |
|     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
 | |
|                                      OpInfo.ConstraintVT);
 | |
| 
 | |
|   unsigned NumRegs = 1;
 | |
|   if (OpInfo.ConstraintVT != MVT::Other) {
 | |
|     // If this is a FP input in an integer register (or visa versa) insert a bit
 | |
|     // cast of the input value.  More generally, handle any case where the input
 | |
|     // value disagrees with the register class we plan to stick this in.
 | |
|     if (OpInfo.Type == InlineAsm::isInput &&
 | |
|         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
 | |
|       // Try to convert to the first EVT that the reg class contains.  If the
 | |
|       // types are identical size, use a bitcast to convert (e.g. two differing
 | |
|       // vector types).
 | |
|       EVT RegVT = *PhysReg.second->vt_begin();
 | |
|       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
 | |
|         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
 | |
|                                          RegVT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = RegVT;
 | |
|       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
 | |
|         // If the input is a FP value and we want it in FP registers, do a
 | |
|         // bitcast to the corresponding integer type.  This turns an f64 value
 | |
|         // into i64, which can be passed with two i32 values on a 32-bit
 | |
|         // machine.
 | |
|         RegVT = EVT::getIntegerVT(Context, 
 | |
|                                   OpInfo.ConstraintVT.getSizeInBits());
 | |
|         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
 | |
|                                          RegVT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = RegVT;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
 | |
|   }
 | |
| 
 | |
|   EVT RegVT;
 | |
|   EVT ValueVT = OpInfo.ConstraintVT;
 | |
| 
 | |
|   // If this is a constraint for a specific physical register, like {r17},
 | |
|   // assign it now.
 | |
|   if (unsigned AssignedReg = PhysReg.first) {
 | |
|     const TargetRegisterClass *RC = PhysReg.second;
 | |
|     if (OpInfo.ConstraintVT == MVT::Other)
 | |
|       ValueVT = *RC->vt_begin();
 | |
| 
 | |
|     // Get the actual register value type.  This is important, because the user
 | |
|     // may have asked for (e.g.) the AX register in i32 type.  We need to
 | |
|     // remember that AX is actually i16 to get the right extension.
 | |
|     RegVT = *RC->vt_begin();
 | |
| 
 | |
|     // This is a explicit reference to a physical register.
 | |
|     Regs.push_back(AssignedReg);
 | |
| 
 | |
|     // If this is an expanded reference, add the rest of the regs to Regs.
 | |
|     if (NumRegs != 1) {
 | |
|       TargetRegisterClass::iterator I = RC->begin();
 | |
|       for (; *I != AssignedReg; ++I)
 | |
|         assert(I != RC->end() && "Didn't find reg!");
 | |
| 
 | |
|       // Already added the first reg.
 | |
|       --NumRegs; ++I;
 | |
|       for (; NumRegs; --NumRegs, ++I) {
 | |
|         assert(I != RC->end() && "Ran out of registers to allocate!");
 | |
|         Regs.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
 | |
|     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
 | |
|     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this was a reference to an LLVM register class, create vregs
 | |
|   // for this reference.
 | |
|   if (const TargetRegisterClass *RC = PhysReg.second) {
 | |
|     RegVT = *RC->vt_begin();
 | |
|     if (OpInfo.ConstraintVT == MVT::Other)
 | |
|       ValueVT = RegVT;
 | |
| 
 | |
|     // Create the appropriate number of virtual registers.
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|     for (; NumRegs; --NumRegs)
 | |
|       Regs.push_back(RegInfo.createVirtualRegister(RC));
 | |
| 
 | |
|     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // This is a reference to a register class that doesn't directly correspond
 | |
|   // to an LLVM register class.  Allocate NumRegs consecutive, available,
 | |
|   // registers from the class.
 | |
|   std::vector<unsigned> RegClassRegs
 | |
|     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
 | |
|                                             OpInfo.ConstraintVT);
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
 | |
|   unsigned NumAllocated = 0;
 | |
|   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegClassRegs[i];
 | |
|     // See if this register is available.
 | |
|     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
 | |
|         (isInReg  && InputRegs.count(Reg))) {    // Already used.
 | |
|       // Make sure we find consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if this register is allocatable (i.e. don't give out the
 | |
|     // stack pointer).
 | |
|     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
 | |
|     if (!RC) {        // Couldn't allocate this register.
 | |
|       // Reset NumAllocated to make sure we return consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Okay, this register is good, we can use it.
 | |
|     ++NumAllocated;
 | |
| 
 | |
|     // If we allocated enough consecutive registers, succeed.
 | |
|     if (NumAllocated == NumRegs) {
 | |
|       unsigned RegStart = (i-NumAllocated)+1;
 | |
|       unsigned RegEnd   = i+1;
 | |
|       // Mark all of the allocated registers used.
 | |
|       for (unsigned i = RegStart; i != RegEnd; ++i)
 | |
|         Regs.push_back(RegClassRegs[i]);
 | |
| 
 | |
|       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
 | |
|                                          OpInfo.ConstraintVT);
 | |
|       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we couldn't allocate enough registers for this.
 | |
| }
 | |
| 
 | |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
 | |
| /// processed uses a memory 'm' constraint.
 | |
| static bool
 | |
| hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
 | |
|                           const TargetLowering &TLI) {
 | |
|   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
 | |
|     InlineAsm::ConstraintInfo &CI = CInfos[i];
 | |
|     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
 | |
|       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
 | |
|       if (CType == TargetLowering::C_Memory)
 | |
|         return true;
 | |
|     }
 | |
|     
 | |
|     // Indirect operand accesses access memory.
 | |
|     if (CI.isIndirect)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitInlineAsm - Handle a call to an InlineAsm object.
 | |
| ///
 | |
| void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
 | |
|   InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | |
| 
 | |
|   /// ConstraintOperands - Information about all of the constraints.
 | |
|   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
 | |
| 
 | |
|   std::set<unsigned> OutputRegs, InputRegs;
 | |
| 
 | |
|   // Do a prepass over the constraints, canonicalizing them, and building up the
 | |
|   // ConstraintOperands list.
 | |
|   std::vector<InlineAsm::ConstraintInfo>
 | |
|     ConstraintInfos = IA->ParseConstraints();
 | |
| 
 | |
|   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
 | |
|   
 | |
|   SDValue Chain, Flag;
 | |
|   
 | |
|   // We won't need to flush pending loads if this asm doesn't touch
 | |
|   // memory and is nonvolatile.
 | |
|   if (hasMemory || IA->hasSideEffects())
 | |
|     Chain = getRoot();
 | |
|   else
 | |
|     Chain = DAG.getRoot();
 | |
| 
 | |
|   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | |
|   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | |
|   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
 | |
|     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
| 
 | |
|     EVT OpVT = MVT::Other;
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       // Indirect outputs just consume an argument.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The return value of the call is this value.  As such, there is no
 | |
|       // corresponding argument.
 | |
|       assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
 | |
|              "Bad inline asm!");
 | |
|       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
 | |
|         OpVT = TLI.getValueType(STy->getElementType(ResNo));
 | |
|       } else {
 | |
|         assert(ResNo == 0 && "Asm only has one result!");
 | |
|         OpVT = TLI.getValueType(CS.getType());
 | |
|       }
 | |
|       ++ResNo;
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Nothing to do.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is an input or an indirect output, process the call argument.
 | |
|     // BasicBlocks are labels, currently appearing only in asm's.
 | |
|     if (OpInfo.CallOperandVal) {
 | |
|       // Strip bitcasts, if any.  This mostly comes up for functions.
 | |
|       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
 | |
| 
 | |
|       if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
 | |
|         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
 | |
|       } else {
 | |
|         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
 | |
|       }
 | |
| 
 | |
|       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
 | |
|     }
 | |
| 
 | |
|     OpInfo.ConstraintVT = OpVT;
 | |
|   }
 | |
| 
 | |
|   // Second pass over the constraints: compute which constraint option to use
 | |
|   // and assign registers to constraints that want a specific physreg.
 | |
|   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     // If this is an output operand with a matching input operand, look up the
 | |
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | |
|     // other is floating point, or their sizes are different, flag it as an
 | |
|     // error.
 | |
|     if (OpInfo.hasMatchingInput()) {
 | |
|       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
|       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
|         if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|              Input.ConstraintVT.isInteger()) ||
 | |
|             (OpInfo.ConstraintVT.getSizeInBits() !=
 | |
|              Input.ConstraintVT.getSizeInBits())) {
 | |
|           llvm_report_error("Unsupported asm: input constraint"
 | |
|                             " with a matching output constraint of incompatible"
 | |
|                             " type!");
 | |
|         }
 | |
|         Input.ConstraintVT = OpInfo.ConstraintVT;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
 | |
| 
 | |
|     // If this is a memory input, and if the operand is not indirect, do what we
 | |
|     // need to to provide an address for the memory input.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         !OpInfo.isIndirect) {
 | |
|       assert(OpInfo.Type == InlineAsm::isInput &&
 | |
|              "Can only indirectify direct input operands!");
 | |
| 
 | |
|       // Memory operands really want the address of the value.  If we don't have
 | |
|       // an indirect input, put it in the constpool if we can, otherwise spill
 | |
|       // it to a stack slot.
 | |
| 
 | |
|       // If the operand is a float, integer, or vector constant, spill to a
 | |
|       // constant pool entry to get its address.
 | |
|       Value *OpVal = OpInfo.CallOperandVal;
 | |
|       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
 | |
|           isa<ConstantVector>(OpVal)) {
 | |
|         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
 | |
|                                                  TLI.getPointerTy());
 | |
|       } else {
 | |
|         // Otherwise, create a stack slot and emit a store to it before the
 | |
|         // asm.
 | |
|         const Type *Ty = OpVal->getType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
 | |
|         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
 | |
|         Chain = DAG.getStore(Chain, getCurDebugLoc(),
 | |
|                              OpInfo.CallOperand, StackSlot, NULL, 0);
 | |
|         OpInfo.CallOperand = StackSlot;
 | |
|       }
 | |
| 
 | |
|       // There is no longer a Value* corresponding to this operand.
 | |
|       OpInfo.CallOperandVal = 0;
 | |
|       // It is now an indirect operand.
 | |
|       OpInfo.isIndirect = true;
 | |
|     }
 | |
| 
 | |
|     // If this constraint is for a specific register, allocate it before
 | |
|     // anything else.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Register)
 | |
|       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
 | |
|   }
 | |
|   ConstraintInfos.clear();
 | |
| 
 | |
| 
 | |
|   // Second pass - Loop over all of the operands, assigning virtual or physregs
 | |
|   // to register class operands.
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     // C_Register operands have already been allocated, Other/Memory don't need
 | |
|     // to be.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
 | |
|       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
 | |
|   }
 | |
| 
 | |
|   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
 | |
|   std::vector<SDValue> AsmNodeOperands;
 | |
|   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
 | |
|   AsmNodeOperands.push_back(
 | |
|           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
 | |
| 
 | |
| 
 | |
|   // Loop over all of the inputs, copying the operand values into the
 | |
|   // appropriate registers and processing the output regs.
 | |
|   RegsForValue RetValRegs;
 | |
| 
 | |
|   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
 | |
|   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | |
| 
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput: {
 | |
|       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
 | |
|           OpInfo.ConstraintType != TargetLowering::C_Register) {
 | |
|         // Memory output, or 'other' output (e.g. 'X' constraint).
 | |
|         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this output.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1<<3);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         TLI.getPointerTy()));
 | |
|         AsmNodeOperands.push_back(OpInfo.CallOperand);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this is a register or register class output.
 | |
| 
 | |
|       // Copy the output from the appropriate register.  Find a register that
 | |
|       // we can use.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         llvm_report_error("Couldn't allocate output reg for"
 | |
|                           " constraint '" + OpInfo.ConstraintCode + "'!");
 | |
|       }
 | |
| 
 | |
|       // If this is an indirect operand, store through the pointer after the
 | |
|       // asm.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
 | |
|                                                       OpInfo.CallOperandVal));
 | |
|       } else {
 | |
|         // This is the result value of the call.
 | |
|         assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
 | |
|                "Bad inline asm!");
 | |
|         // Concatenate this output onto the outputs list.
 | |
|         RetValRegs.append(OpInfo.AssignedRegs);
 | |
|       }
 | |
| 
 | |
|       // Add information to the INLINEASM node to know that this register is
 | |
|       // set.
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
 | |
|                                                6 /* EARLYCLOBBER REGDEF */ :
 | |
|                                                2 /* REGDEF */ ,
 | |
|                                                false,
 | |
|                                                0,
 | |
|                                                DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isInput: {
 | |
|       SDValue InOperandVal = OpInfo.CallOperand;
 | |
| 
 | |
|       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
 | |
|         // If this is required to match an output register we have already set,
 | |
|         // just use its register.
 | |
|         unsigned OperandNo = OpInfo.getMatchedOperand();
 | |
| 
 | |
|         // Scan until we find the definition we already emitted of this operand.
 | |
|         // When we find it, create a RegsForValue operand.
 | |
|         unsigned CurOp = 2;  // The first operand.
 | |
|         for (; OperandNo; --OperandNo) {
 | |
|           // Advance to the next operand.
 | |
|           unsigned OpFlag =
 | |
|             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|           assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
 | |
|                   (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
 | |
|                   (OpFlag & 7) == 4 /*MEM*/) &&
 | |
|                  "Skipped past definitions?");
 | |
|           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
 | |
|         }
 | |
| 
 | |
|         unsigned OpFlag =
 | |
|           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|         if ((OpFlag & 7) == 2 /*REGDEF*/
 | |
|             || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
 | |
|           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
 | |
|           if (OpInfo.isIndirect) {
 | |
|             llvm_report_error("Don't know how to handle tied indirect "
 | |
|                               "register inputs yet!");
 | |
|           }
 | |
|           RegsForValue MatchedRegs;
 | |
|           MatchedRegs.TLI = &TLI;
 | |
|           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
 | |
|           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
 | |
|           MatchedRegs.RegVTs.push_back(RegVT);
 | |
|           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
 | |
|           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
 | |
|                i != e; ++i)
 | |
|             MatchedRegs.Regs.
 | |
|               push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
 | |
| 
 | |
|           // Use the produced MatchedRegs object to
 | |
|           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
 | |
|                                     Chain, &Flag);
 | |
|           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
 | |
|                                            true, OpInfo.getMatchedOperand(),
 | |
|                                            DAG, AsmNodeOperands);
 | |
|           break;
 | |
|         } else {
 | |
|           assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
 | |
|           assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
 | |
|                  "Unexpected number of operands");
 | |
|           // Add information to the INLINEASM node to know about this input.
 | |
|           // See InlineAsm.h isUseOperandTiedToDef.
 | |
|           OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
 | |
|           AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
 | |
|                                                           TLI.getPointerTy()));
 | |
|           AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|         assert(!OpInfo.isIndirect &&
 | |
|                "Don't know how to handle indirect other inputs yet!");
 | |
| 
 | |
|         std::vector<SDValue> Ops;
 | |
|         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
 | |
|                                          hasMemory, Ops, DAG);
 | |
|         if (Ops.empty()) {
 | |
|           llvm_report_error("Invalid operand for inline asm"
 | |
|                             " constraint '" + OpInfo.ConstraintCode + "'!");
 | |
|         }
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         TLI.getPointerTy()));
 | |
|         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
 | |
|         break;
 | |
|       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
 | |
|         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
 | |
|         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
 | |
|                "Memory operands expect pointer values");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1<<3);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         TLI.getPointerTy()));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
 | |
|               OpInfo.ConstraintType == TargetLowering::C_Register) &&
 | |
|              "Unknown constraint type!");
 | |
|       assert(!OpInfo.isIndirect &&
 | |
|              "Don't know how to handle indirect register inputs yet!");
 | |
| 
 | |
|       // Copy the input into the appropriate registers.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         llvm_report_error("Couldn't allocate input reg for"
 | |
|                           " constraint '"+ OpInfo.ConstraintCode +"'!");
 | |
|       }
 | |
| 
 | |
|       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
 | |
|                                         Chain, &Flag);
 | |
| 
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
 | |
|                                                DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isClobber: {
 | |
|       // Add the clobbered value to the operand list, so that the register
 | |
|       // allocator is aware that the physreg got clobbered.
 | |
|       if (!OpInfo.AssignedRegs.Regs.empty())
 | |
|         OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
 | |
|                                                  false, 0, DAG,AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish up input operands.
 | |
|   AsmNodeOperands[0] = Chain;
 | |
|   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
 | |
| 
 | |
|   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
 | |
|                       DAG.getVTList(MVT::Other, MVT::Flag),
 | |
|                       &AsmNodeOperands[0], AsmNodeOperands.size());
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   // If this asm returns a register value, copy the result from that register
 | |
|   // and set it as the value of the call.
 | |
|   if (!RetValRegs.Regs.empty()) {
 | |
|     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
 | |
|                                              Chain, &Flag);
 | |
| 
 | |
|     // FIXME: Why don't we do this for inline asms with MRVs?
 | |
|     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
 | |
|       EVT ResultType = TLI.getValueType(CS.getType());
 | |
| 
 | |
|       // If any of the results of the inline asm is a vector, it may have the
 | |
|       // wrong width/num elts.  This can happen for register classes that can
 | |
|       // contain multiple different value types.  The preg or vreg allocated may
 | |
|       // not have the same VT as was expected.  Convert it to the right type
 | |
|       // with bit_convert.
 | |
|       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
 | |
|         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
 | |
|                           ResultType, Val);
 | |
| 
 | |
|       } else if (ResultType != Val.getValueType() &&
 | |
|                  ResultType.isInteger() && Val.getValueType().isInteger()) {
 | |
|         // If a result value was tied to an input value, the computed result may
 | |
|         // have a wider width than the expected result.  Extract the relevant
 | |
|         // portion.
 | |
|         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
 | |
|       }
 | |
| 
 | |
|       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
 | |
|     }
 | |
| 
 | |
|     setValue(CS.getInstruction(), Val);
 | |
|     // Don't need to use this as a chain in this case.
 | |
|     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   std::vector<std::pair<SDValue, Value*> > StoresToEmit;
 | |
| 
 | |
|   // Process indirect outputs, first output all of the flagged copies out of
 | |
|   // physregs.
 | |
|   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | |
|     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | |
|     Value *Ptr = IndirectStoresToEmit[i].second;
 | |
|     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
 | |
|                                              Chain, &Flag);
 | |
|     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Emit the non-flagged stores from the physregs.
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
 | |
|     OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
 | |
|                                     StoresToEmit[i].first,
 | |
|                                     getValue(StoresToEmit[i].second),
 | |
|                                     StoresToEmit[i].second, 0));
 | |
|   if (!OutChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
 | |
|                         &OutChains[0], OutChains.size());
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getOperand(1)),
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | |
|   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
 | |
|                            getRoot(), getValue(I.getOperand(0)),
 | |
|                            DAG.getSrcValue(I.getOperand(0)));
 | |
|   setValue(&I, V);
 | |
|   DAG.setRoot(V.getValue(1));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getOperand(1)),
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getOperand(1)),
 | |
|                           getValue(I.getOperand(2)),
 | |
|                           DAG.getSrcValue(I.getOperand(1)),
 | |
|                           DAG.getSrcValue(I.getOperand(2))));
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo
 | |
| /// implementation, which just calls LowerCall.
 | |
| /// FIXME: When all targets are
 | |
| /// migrated to using LowerCall, this hook should be integrated into SDISel.
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
 | |
|                             bool RetSExt, bool RetZExt, bool isVarArg,
 | |
|                             bool isInreg, unsigned NumFixedArgs,
 | |
|                             CallingConv::ID CallConv, bool isTailCall,
 | |
|                             bool isReturnValueUsed,
 | |
|                             SDValue Callee,
 | |
|                             ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
 | |
| 
 | |
|   assert((!isTailCall || PerformTailCallOpt) &&
 | |
|          "isTailCall set when tail-call optimizations are disabled!");
 | |
| 
 | |
|   // Handle all of the outgoing arguments.
 | |
|   SmallVector<ISD::OutputArg, 32> Outs;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size();
 | |
|          Value != NumValues; ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
 | |
|       SDValue Op = SDValue(Args[i].Node.getNode(),
 | |
|                            Args[i].Node.getResNo() + Value);
 | |
|       ISD::ArgFlagsTy Flags;
 | |
|       unsigned OriginalAlignment =
 | |
|         getTargetData()->getABITypeAlignment(ArgTy);
 | |
| 
 | |
|       if (Args[i].isZExt)
 | |
|         Flags.setZExt();
 | |
|       if (Args[i].isSExt)
 | |
|         Flags.setSExt();
 | |
|       if (Args[i].isInReg)
 | |
|         Flags.setInReg();
 | |
|       if (Args[i].isSRet)
 | |
|         Flags.setSRet();
 | |
|       if (Args[i].isByVal) {
 | |
|         Flags.setByVal();
 | |
|         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
 | |
|         const Type *ElementTy = Ty->getElementType();
 | |
|         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
 | |
|         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
 | |
|         // For ByVal, alignment should come from FE.  BE will guess if this
 | |
|         // info is not there but there are cases it cannot get right.
 | |
|         if (Args[i].Alignment)
 | |
|           FrameAlign = Args[i].Alignment;
 | |
|         Flags.setByValAlign(FrameAlign);
 | |
|         Flags.setByValSize(FrameSize);
 | |
|       }
 | |
|       if (Args[i].isNest)
 | |
|         Flags.setNest();
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
 | |
|       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
 | |
|       SmallVector<SDValue, 4> Parts(NumParts);
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|       if (Args[i].isSExt)
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       else if (Args[i].isZExt)
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
 | |
| 
 | |
|       for (unsigned j = 0; j != NumParts; ++j) {
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
 | |
|         if (NumParts > 1 && j == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         else if (j != 0)
 | |
|           MyFlags.Flags.setOrigAlign(1);
 | |
| 
 | |
|         Outs.push_back(MyFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle the incoming return values from the call.
 | |
|   SmallVector<ISD::InputArg, 32> Ins;
 | |
|   SmallVector<EVT, 4> RetTys;
 | |
|   ComputeValueVTs(*this, RetTy, RetTys);
 | |
|   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|     EVT VT = RetTys[I];
 | |
|     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
 | |
|     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       ISD::InputArg MyFlags;
 | |
|       MyFlags.VT = RegisterVT;
 | |
|       MyFlags.Used = isReturnValueUsed;
 | |
|       if (RetSExt)
 | |
|         MyFlags.Flags.setSExt();
 | |
|       if (RetZExt)
 | |
|         MyFlags.Flags.setZExt();
 | |
|       if (isInreg)
 | |
|         MyFlags.Flags.setInReg();
 | |
|       Ins.push_back(MyFlags);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if target-dependent constraints permit a tail call here.
 | |
|   // Target-independent constraints should be checked by the caller.
 | |
|   if (isTailCall &&
 | |
|       !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
 | |
|     isTailCall = false;
 | |
| 
 | |
|   SmallVector<SDValue, 4> InVals;
 | |
|   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
 | |
|                     Outs, Ins, dl, DAG, InVals);
 | |
| 
 | |
|   // Verify that the target's LowerCall behaved as expected.
 | |
|   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
 | |
|          "LowerCall didn't return a valid chain!");
 | |
|   assert((!isTailCall || InVals.empty()) &&
 | |
|          "LowerCall emitted a return value for a tail call!");
 | |
|   assert((isTailCall || InVals.size() == Ins.size()) &&
 | |
|          "LowerCall didn't emit the correct number of values!");
 | |
|   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|           assert(InVals[i].getNode() &&
 | |
|                  "LowerCall emitted a null value!");
 | |
|           assert(Ins[i].VT == InVals[i].getValueType() &&
 | |
|                  "LowerCall emitted a value with the wrong type!");
 | |
|         });
 | |
| 
 | |
|   // For a tail call, the return value is merely live-out and there aren't
 | |
|   // any nodes in the DAG representing it. Return a special value to
 | |
|   // indicate that a tail call has been emitted and no more Instructions
 | |
|   // should be processed in the current block.
 | |
|   if (isTailCall) {
 | |
|     DAG.setRoot(Chain);
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
|   }
 | |
| 
 | |
|   // Collect the legal value parts into potentially illegal values
 | |
|   // that correspond to the original function's return values.
 | |
|   ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|   if (RetSExt)
 | |
|     AssertOp = ISD::AssertSext;
 | |
|   else if (RetZExt)
 | |
|     AssertOp = ISD::AssertZext;
 | |
|   SmallVector<SDValue, 4> ReturnValues;
 | |
|   unsigned CurReg = 0;
 | |
|   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|     EVT VT = RetTys[I];
 | |
|     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
 | |
|     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
 | |
| 
 | |
|     SDValue ReturnValue =
 | |
|       getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
 | |
|                        AssertOp);
 | |
|     ReturnValues.push_back(ReturnValue);
 | |
|     CurReg += NumRegs;
 | |
|   }
 | |
| 
 | |
|   // For a function returning void, there is no return value. We can't create
 | |
|   // such a node, so we just return a null return value in that case. In
 | |
|   // that case, nothing will actualy look at the value.
 | |
|   if (ReturnValues.empty())
 | |
|     return std::make_pair(SDValue(), Chain);
 | |
| 
 | |
|   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                             DAG.getVTList(&RetTys[0], RetTys.size()),
 | |
|                             &ReturnValues[0], ReturnValues.size());
 | |
| 
 | |
|   return std::make_pair(Res, Chain);
 | |
| }
 | |
| 
 | |
| void TargetLowering::LowerOperationWrapper(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue> &Results,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
 | |
|   if (Res.getNode())
 | |
|     Results.push_back(Res);
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 | |
|   llvm_unreachable("LowerOperation not implemented for this target!");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
 | |
|   SDValue Op = getValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
 | |
| 
 | |
|   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
 | |
|   PendingExports.push_back(Chain);
 | |
| }
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| 
 | |
| void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
 | |
|   // If this is the entry block, emit arguments.
 | |
|   Function &F = *LLVMBB->getParent();
 | |
|   SelectionDAG &DAG = SDL->DAG;
 | |
|   SDValue OldRoot = DAG.getRoot();
 | |
|   DebugLoc dl = SDL->getCurDebugLoc();
 | |
|   const TargetData *TD = TLI.getTargetData();
 | |
|   SmallVector<ISD::InputArg, 16> Ins;
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<EVT, 4> OutVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
 | |
|   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 
 | |
|                 OutVTs, OutsFlags, TLI);
 | |
|   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
 | |
| 
 | |
|   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 
 | |
|     OutVTs, OutsFlags, DAG);
 | |
|   if (!FLI.CanLowerReturn) {
 | |
|     // Put in an sret pointer parameter before all the other parameters.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
 | |
| 
 | |
|     // NOTE: Assuming that a pointer will never break down to more than one VT
 | |
|     // or one register.
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     Flags.setSRet();
 | |
|     EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
 | |
|     ISD::InputArg RetArg(Flags, RegisterVT, true);
 | |
|     Ins.push_back(RetArg);
 | |
|   }
 | |
| 
 | |
|   // Set up the incoming argument description vector.
 | |
|   unsigned Idx = 1;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(TLI, I->getType(), ValueVTs);
 | |
|     bool isArgValueUsed = !I->use_empty();
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size();
 | |
|          Value != NumValues; ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
 | |
|       ISD::ArgFlagsTy Flags;
 | |
|       unsigned OriginalAlignment =
 | |
|         TD->getABITypeAlignment(ArgTy);
 | |
| 
 | |
|       if (F.paramHasAttr(Idx, Attribute::ZExt))
 | |
|         Flags.setZExt();
 | |
|       if (F.paramHasAttr(Idx, Attribute::SExt))
 | |
|         Flags.setSExt();
 | |
|       if (F.paramHasAttr(Idx, Attribute::InReg))
 | |
|         Flags.setInReg();
 | |
|       if (F.paramHasAttr(Idx, Attribute::StructRet))
 | |
|         Flags.setSRet();
 | |
|       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
 | |
|         Flags.setByVal();
 | |
|         const PointerType *Ty = cast<PointerType>(I->getType());
 | |
|         const Type *ElementTy = Ty->getElementType();
 | |
|         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
 | |
|         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
 | |
|         // For ByVal, alignment should be passed from FE.  BE will guess if
 | |
|         // this info is not there but there are cases it cannot get right.
 | |
|         if (F.getParamAlignment(Idx))
 | |
|           FrameAlign = F.getParamAlignment(Idx);
 | |
|         Flags.setByValAlign(FrameAlign);
 | |
|         Flags.setByValSize(FrameSize);
 | |
|       }
 | |
|       if (F.paramHasAttr(Idx, Attribute::Nest))
 | |
|         Flags.setNest();
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
 | |
|       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
 | |
|       for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
 | |
|         if (NumRegs > 1 && i == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         else if (i > 0)
 | |
|           MyFlags.Flags.setOrigAlign(1);
 | |
|         Ins.push_back(MyFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Call the target to set up the argument values.
 | |
|   SmallVector<SDValue, 8> InVals;
 | |
|   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
 | |
|                                              F.isVarArg(), Ins,
 | |
|                                              dl, DAG, InVals);
 | |
| 
 | |
|   // Verify that the target's LowerFormalArguments behaved as expected.
 | |
|   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
 | |
|          "LowerFormalArguments didn't return a valid chain!");
 | |
|   assert(InVals.size() == Ins.size() &&
 | |
|          "LowerFormalArguments didn't emit the correct number of values!");
 | |
|   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|           assert(InVals[i].getNode() &&
 | |
|                  "LowerFormalArguments emitted a null value!");
 | |
|           assert(Ins[i].VT == InVals[i].getValueType() &&
 | |
|                  "LowerFormalArguments emitted a value with the wrong type!");
 | |
|         });
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from argument lowering.
 | |
|   DAG.setRoot(NewRoot);
 | |
| 
 | |
|   // Set up the argument values.
 | |
|   unsigned i = 0;
 | |
|   Idx = 1;
 | |
|   if (!FLI.CanLowerReturn) {
 | |
|     // Create a virtual register for the sret pointer, and put in a copy
 | |
|     // from the sret argument into it.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
 | |
|     EVT VT = ValueVTs[0];
 | |
|     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
 | |
|     ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT,
 | |
|                                         VT, AssertOp);
 | |
| 
 | |
|     MachineFunction& MF = SDL->DAG.getMachineFunction();
 | |
|     MachineRegisterInfo& RegInfo = MF.getRegInfo();
 | |
|     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
 | |
|     FLI.DemoteRegister = SRetReg;
 | |
|     NewRoot = SDL->DAG.getCopyToReg(NewRoot, SDL->getCurDebugLoc(), SRetReg, ArgValue);
 | |
|     DAG.setRoot(NewRoot);
 | |
|     
 | |
|     // i indexes lowered arguments.  Bump it past the hidden sret argument.
 | |
|     // Idx indexes LLVM arguments.  Don't touch it.
 | |
|     ++i;
 | |
|   }
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
 | |
|       ++I, ++Idx) {
 | |
|     SmallVector<SDValue, 4> ArgValues;
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(TLI, I->getType(), ValueVTs);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
|     for (unsigned Value = 0; Value != NumValues; ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
 | |
|       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
 | |
| 
 | |
|       if (!I->use_empty()) {
 | |
|         ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|         if (F.paramHasAttr(Idx, Attribute::SExt))
 | |
|           AssertOp = ISD::AssertSext;
 | |
|         else if (F.paramHasAttr(Idx, Attribute::ZExt))
 | |
|           AssertOp = ISD::AssertZext;
 | |
| 
 | |
|         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
 | |
|                                              PartVT, VT, AssertOp));
 | |
|       }
 | |
|       i += NumParts;
 | |
|     }
 | |
|     if (!I->use_empty()) {
 | |
|       SDL->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
 | |
|                                           SDL->getCurDebugLoc()));
 | |
|       // If this argument is live outside of the entry block, insert a copy from
 | |
|       // whereever we got it to the vreg that other BB's will reference it as.
 | |
|       SDL->CopyToExportRegsIfNeeded(I);
 | |
|     }
 | |
|   }
 | |
|   assert(i == InVals.size() && "Argument register count mismatch!");
 | |
| 
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   // FIXME: this should insert code into the DAG!
 | |
|   EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
 | |
| }
 | |
| 
 | |
| /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
| /// ensure constants are generated when needed.  Remember the virtual registers
 | |
| /// that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
| /// directly add them, because expansion might result in multiple MBB's for one
 | |
| /// BB.  As such, the start of the BB might correspond to a different MBB than
 | |
| /// the end.
 | |
| ///
 | |
| void
 | |
| SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
| 
 | |
|   // Check successor nodes' PHI nodes that expect a constant to be available
 | |
|   // from this block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB)) continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
|     PHINode *PN;
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::iterator I = SuccBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       unsigned Reg;
 | |
|       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|         unsigned &RegOut = SDL->ConstantsOut[C];
 | |
|         if (RegOut == 0) {
 | |
|           RegOut = FuncInfo->CreateRegForValue(C);
 | |
|           SDL->CopyValueToVirtualRegister(C, RegOut);
 | |
|         }
 | |
|         Reg = RegOut;
 | |
|       } else {
 | |
|         Reg = FuncInfo->ValueMap[PHIOp];
 | |
|         if (Reg == 0) {
 | |
|           assert(isa<AllocaInst>(PHIOp) &&
 | |
|                  FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                  "Didn't codegen value into a register!??");
 | |
|           Reg = FuncInfo->CreateRegForValue(PHIOp);
 | |
|           SDL->CopyValueToVirtualRegister(PHIOp, Reg);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remember that this register needs to added to the machine PHI node as
 | |
|       // the input for this MBB.
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
 | |
|         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
 | |
|           SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | |
|         Reg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDL->ConstantsOut.clear();
 | |
| }
 | |
| 
 | |
| /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
 | |
| /// supports legal types, and it emits MachineInstrs directly instead of
 | |
| /// creating SelectionDAG nodes.
 | |
| ///
 | |
| bool
 | |
| SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
 | |
|                                                       FastISel *F) {
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
|   unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
 | |
| 
 | |
|   // Check successor nodes' PHI nodes that expect a constant to be available
 | |
|   // from this block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB)) continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
|     PHINode *PN;
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::iterator I = SuccBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Only handle legal types. Two interesting things to note here. First,
 | |
|       // by bailing out early, we may leave behind some dead instructions,
 | |
|       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
 | |
|       // own moves. Second, this check is necessary becuase FastISel doesn't
 | |
|       // use CreateRegForValue to create registers, so it always creates
 | |
|       // exactly one register for each non-void instruction.
 | |
|       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
 | |
|       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
 | |
|         // Promote MVT::i1.
 | |
|         if (VT == MVT::i1)
 | |
|           VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
 | |
|         else {
 | |
|           SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       unsigned Reg = F->getRegForValue(PHIOp);
 | |
|       if (Reg == 0) {
 | |
|         SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|         return false;
 | |
|       }
 | |
|       SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |