mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41050 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tool implements a just-in-time compiler for LLVM, allowing direct
 | |
| // execution of LLVM bitcode in an efficient manner.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "JIT.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| 
 | |
| #include "llvm/Config/config.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifdef __APPLE__ 
 | |
| // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
 | |
| // of atexit). It passes the address of linker generated symbol __dso_handle
 | |
| // to the function.
 | |
| // This configuration change happened at version 5330.
 | |
| # include <AvailabilityMacros.h>
 | |
| # if defined(MAC_OS_X_VERSION_10_4) && \
 | |
|      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
 | |
|       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
 | |
|        __APPLE_CC__ >= 5330))
 | |
| #  ifndef HAVE___DSO_HANDLE
 | |
| #   define HAVE___DSO_HANDLE 1
 | |
| #  endif
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if HAVE___DSO_HANDLE
 | |
| extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
 | |
| #endif
 | |
| 
 | |
| static struct RegisterJIT {
 | |
|   RegisterJIT() { JIT::Register(); }
 | |
| } JITRegistrator;
 | |
| 
 | |
| namespace llvm {
 | |
|   void LinkInJIT() {
 | |
|   }
 | |
| }
 | |
| 
 | |
| JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
 | |
|   : ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) {
 | |
|   setTargetData(TM.getTargetData());
 | |
| 
 | |
|   // Initialize MCE
 | |
|   MCE = createEmitter(*this);
 | |
| 
 | |
|   // Add target data
 | |
|   MutexGuard locked(lock);
 | |
|   FunctionPassManager &PM = jitstate.getPM(locked);
 | |
|   PM.add(new TargetData(*TM.getTargetData()));
 | |
| 
 | |
|   // Turn the machine code intermediate representation into bytes in memory that
 | |
|   // may be executed.
 | |
|   if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
 | |
|     cerr << "Target does not support machine code emission!\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   // Initialize passes.
 | |
|   PM.doInitialization();
 | |
| }
 | |
| 
 | |
| JIT::~JIT() {
 | |
|   delete MCE;
 | |
|   delete &TM;
 | |
| }
 | |
| 
 | |
| /// run - Start execution with the specified function and arguments.
 | |
| ///
 | |
| GenericValue JIT::runFunction(Function *F,
 | |
|                               const std::vector<GenericValue> &ArgValues) {
 | |
|   assert(F && "Function *F was null at entry to run()");
 | |
| 
 | |
|   void *FPtr = getPointerToFunction(F);
 | |
|   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
 | |
|          "Too many arguments passed into function!");
 | |
|   assert(FTy->getNumParams() == ArgValues.size() &&
 | |
|          "This doesn't support passing arguments through varargs (yet)!");
 | |
| 
 | |
|   // Handle some common cases first.  These cases correspond to common `main'
 | |
|   // prototypes.
 | |
|   if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
 | |
|     switch (ArgValues.size()) {
 | |
|     case 3:
 | |
|       if (FTy->getParamType(0) == Type::Int32Ty &&
 | |
|           isa<PointerType>(FTy->getParamType(1)) &&
 | |
|           isa<PointerType>(FTy->getParamType(2))) {
 | |
|         int (*PF)(int, char **, const char **) =
 | |
|           (int(*)(int, char **, const char **))(intptr_t)FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
 | |
|                                  (char **)GVTOP(ArgValues[1]),
 | |
|                                  (const char **)GVTOP(ArgValues[2])));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       if (FTy->getParamType(0) == Type::Int32Ty &&
 | |
|           isa<PointerType>(FTy->getParamType(1))) {
 | |
|         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
 | |
|                                  (char **)GVTOP(ArgValues[1])));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 1:
 | |
|       if (FTy->getNumParams() == 1 &&
 | |
|           FTy->getParamType(0) == Type::Int32Ty) {
 | |
|         GenericValue rv;
 | |
|         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle cases where no arguments are passed first.
 | |
|   if (ArgValues.empty()) {
 | |
|     GenericValue rv;
 | |
|     switch (RetTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown return type for function call!");
 | |
|     case Type::IntegerTyID: {
 | |
|       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
 | |
|       if (BitWidth == 1)
 | |
|         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 8)
 | |
|         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 16)
 | |
|         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 32)
 | |
|         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 64)
 | |
|         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
 | |
|       else 
 | |
|         assert(0 && "Integer types > 64 bits not supported");
 | |
|       return rv;
 | |
|     }
 | |
|     case Type::VoidTyID:
 | |
|       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
 | |
|       return rv;
 | |
|     case Type::FloatTyID:
 | |
|       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
 | |
|       return rv;
 | |
|     case Type::DoubleTyID:
 | |
|       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
 | |
|       return rv;
 | |
|     case Type::PointerTyID:
 | |
|       return PTOGV(((void*(*)())(intptr_t)FPtr)());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, this is not one of our quick and easy cases.  Because we don't have a
 | |
|   // full FFI, we have to codegen a nullary stub function that just calls the
 | |
|   // function we are interested in, passing in constants for all of the
 | |
|   // arguments.  Make this function and return.
 | |
| 
 | |
|   // First, create the function.
 | |
|   FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
 | |
|   Function *Stub = new Function(STy, Function::InternalLinkage, "",
 | |
|                                 F->getParent());
 | |
| 
 | |
|   // Insert a basic block.
 | |
|   BasicBlock *StubBB = new BasicBlock("", Stub);
 | |
| 
 | |
|   // Convert all of the GenericValue arguments over to constants.  Note that we
 | |
|   // currently don't support varargs.
 | |
|   SmallVector<Value*, 8> Args;
 | |
|   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
 | |
|     Constant *C = 0;
 | |
|     const Type *ArgTy = FTy->getParamType(i);
 | |
|     const GenericValue &AV = ArgValues[i];
 | |
|     switch (ArgTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown argument type for function call!");
 | |
|     case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
 | |
|     case Type::FloatTyID:   C = ConstantFP ::get(ArgTy, AV.FloatVal);  break;
 | |
|     case Type::DoubleTyID:  C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
 | |
|     case Type::PointerTyID:
 | |
|       void *ArgPtr = GVTOP(AV);
 | |
|       if (sizeof(void*) == 4) {
 | |
|         C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
 | |
|       } else {
 | |
|         C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
 | |
|       }
 | |
|       C = ConstantExpr::getIntToPtr(C, ArgTy);  // Cast the integer to pointer
 | |
|       break;
 | |
|     }
 | |
|     Args.push_back(C);
 | |
|   }
 | |
| 
 | |
|   CallInst *TheCall = new CallInst(F, Args.begin(), Args.end(), "", StubBB);
 | |
|   TheCall->setTailCall();
 | |
|   if (TheCall->getType() != Type::VoidTy)
 | |
|     new ReturnInst(TheCall, StubBB);             // Return result of the call.
 | |
|   else
 | |
|     new ReturnInst(StubBB);                      // Just return void.
 | |
| 
 | |
|   // Finally, return the value returned by our nullary stub function.
 | |
|   return runFunction(Stub, std::vector<GenericValue>());
 | |
| }
 | |
| 
 | |
| /// runJITOnFunction - Run the FunctionPassManager full of
 | |
| /// just-in-time compilation passes on F, hopefully filling in
 | |
| /// GlobalAddress[F] with the address of F's machine code.
 | |
| ///
 | |
| void JIT::runJITOnFunction(Function *F) {
 | |
|   static bool isAlreadyCodeGenerating = false;
 | |
| 
 | |
|   MutexGuard locked(lock);
 | |
|   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
 | |
| 
 | |
|   // JIT the function
 | |
|   isAlreadyCodeGenerating = true;
 | |
|   jitstate.getPM(locked).run(*F);
 | |
|   isAlreadyCodeGenerating = false;
 | |
| 
 | |
|   // If the function referred to a global variable that had not yet been
 | |
|   // emitted, it allocates memory for the global, but doesn't emit it yet.  Emit
 | |
|   // all of these globals now.
 | |
|   while (!jitstate.getPendingGlobals(locked).empty()) {
 | |
|     const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back();
 | |
|     jitstate.getPendingGlobals(locked).pop_back();
 | |
|     EmitGlobalVariable(GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPointerToFunction - This method is used to get the address of the
 | |
| /// specified function, compiling it if neccesary.
 | |
| ///
 | |
| void *JIT::getPointerToFunction(Function *F) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;   // Check if function already code gen'd
 | |
| 
 | |
|   // Make sure we read in the function if it exists in this Module.
 | |
|   if (F->hasNotBeenReadFromBitcode()) {
 | |
|     // Determine the module provider this function is provided by.
 | |
|     Module *M = F->getParent();
 | |
|     ModuleProvider *MP = 0;
 | |
|     for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | |
|       if (Modules[i]->getModule() == M) {
 | |
|         MP = Modules[i];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(MP && "Function isn't in a module we know about!");
 | |
|     
 | |
|     std::string ErrorMsg;
 | |
|     if (MP->materializeFunction(F, &ErrorMsg)) {
 | |
|       cerr << "Error reading function '" << F->getName()
 | |
|            << "' from bitcode file: " << ErrorMsg << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (F->isDeclaration()) {
 | |
|     void *Addr = getPointerToNamedFunction(F->getName());
 | |
|     addGlobalMapping(F, Addr);
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   runJITOnFunction(F);
 | |
| 
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// getOrEmitGlobalVariable - Return the address of the specified global
 | |
| /// variable, possibly emitting it to memory if needed.  This is used by the
 | |
| /// Emitter.
 | |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   void *Ptr = getPointerToGlobalIfAvailable(GV);
 | |
|   if (Ptr) return Ptr;
 | |
| 
 | |
|   // If the global is external, just remember the address.
 | |
|   if (GV->isDeclaration()) {
 | |
| #if HAVE___DSO_HANDLE
 | |
|     if (GV->getName() == "__dso_handle")
 | |
|       return (void*)&__dso_handle;
 | |
| #endif
 | |
|     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
 | |
|     if (Ptr == 0) {
 | |
|       cerr << "Could not resolve external global address: "
 | |
|            << GV->getName() << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   } else {
 | |
|     // If the global hasn't been emitted to memory yet, allocate space.  We will
 | |
|     // actually initialize the global after current function has finished
 | |
|     // compilation.
 | |
|     const Type *GlobalType = GV->getType()->getElementType();
 | |
|     size_t S = getTargetData()->getTypeSize(GlobalType);
 | |
|     size_t A = getTargetData()->getPrefTypeAlignment(GlobalType);
 | |
|     if (A <= 8) {
 | |
|       Ptr = malloc(S);
 | |
|     } else {
 | |
|       // Allocate S+A bytes of memory, then use an aligned pointer within that
 | |
|       // space.
 | |
|       Ptr = malloc(S+A);
 | |
|       unsigned MisAligned = ((intptr_t)Ptr & (A-1));
 | |
|       Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
 | |
|     }
 | |
|     jitstate.getPendingGlobals(locked).push_back(GV);
 | |
|   }
 | |
|   addGlobalMapping(GV, Ptr);
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// recompileAndRelinkFunction - This method is used to force a function
 | |
| /// which has already been compiled, to be compiled again, possibly
 | |
| /// after it has been modified. Then the entry to the old copy is overwritten
 | |
| /// with a branch to the new copy. If there was no old copy, this acts
 | |
| /// just like JIT::getPointerToFunction().
 | |
| ///
 | |
| void *JIT::recompileAndRelinkFunction(Function *F) {
 | |
|   void *OldAddr = getPointerToGlobalIfAvailable(F);
 | |
| 
 | |
|   // If it's not already compiled there is no reason to patch it up.
 | |
|   if (OldAddr == 0) { return getPointerToFunction(F); }
 | |
| 
 | |
|   // Delete the old function mapping.
 | |
|   addGlobalMapping(F, 0);
 | |
| 
 | |
|   // Recodegen the function
 | |
|   runJITOnFunction(F);
 | |
| 
 | |
|   // Update state, forward the old function to the new function.
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
 | |
|   return Addr;
 | |
| }
 | |
| 
 |