mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234064 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			671 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			671 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass converts vector operations into scalar operations, in order
 | 
						|
// to expose optimization opportunities on the individual scalar operations.
 | 
						|
// It is mainly intended for targets that do not have vector units, but it
 | 
						|
// may also be useful for revectorizing code to different vector widths.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalarizer"
 | 
						|
 | 
						|
namespace {
 | 
						|
// Used to store the scattered form of a vector.
 | 
						|
typedef SmallVector<Value *, 8> ValueVector;
 | 
						|
 | 
						|
// Used to map a vector Value to its scattered form.  We use std::map
 | 
						|
// because we want iterators to persist across insertion and because the
 | 
						|
// values are relatively large.
 | 
						|
typedef std::map<Value *, ValueVector> ScatterMap;
 | 
						|
 | 
						|
// Lists Instructions that have been replaced with scalar implementations,
 | 
						|
// along with a pointer to their scattered forms.
 | 
						|
typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
 | 
						|
 | 
						|
// Provides a very limited vector-like interface for lazily accessing one
 | 
						|
// component of a scattered vector or vector pointer.
 | 
						|
class Scatterer {
 | 
						|
public:
 | 
						|
  Scatterer() {}
 | 
						|
 | 
						|
  // Scatter V into Size components.  If new instructions are needed,
 | 
						|
  // insert them before BBI in BB.  If Cache is nonnull, use it to cache
 | 
						|
  // the results.
 | 
						|
  Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
 | 
						|
            ValueVector *cachePtr = nullptr);
 | 
						|
 | 
						|
  // Return component I, creating a new Value for it if necessary.
 | 
						|
  Value *operator[](unsigned I);
 | 
						|
 | 
						|
  // Return the number of components.
 | 
						|
  unsigned size() const { return Size; }
 | 
						|
 | 
						|
private:
 | 
						|
  BasicBlock *BB;
 | 
						|
  BasicBlock::iterator BBI;
 | 
						|
  Value *V;
 | 
						|
  ValueVector *CachePtr;
 | 
						|
  PointerType *PtrTy;
 | 
						|
  ValueVector Tmp;
 | 
						|
  unsigned Size;
 | 
						|
};
 | 
						|
 | 
						|
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
 | 
						|
// called Name that compares X and Y in the same way as FCI.
 | 
						|
struct FCmpSplitter {
 | 
						|
  FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
  FCmpInst &FCI;
 | 
						|
};
 | 
						|
 | 
						|
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
 | 
						|
// called Name that compares X and Y in the same way as ICI.
 | 
						|
struct ICmpSplitter {
 | 
						|
  ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
  ICmpInst &ICI;
 | 
						|
};
 | 
						|
 | 
						|
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
 | 
						|
// a binary operator like BO called Name with operands X and Y.
 | 
						|
struct BinarySplitter {
 | 
						|
  BinarySplitter(BinaryOperator &bo) : BO(bo) {}
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
  BinaryOperator &BO;
 | 
						|
};
 | 
						|
 | 
						|
// Information about a load or store that we're scalarizing.
 | 
						|
struct VectorLayout {
 | 
						|
  VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
 | 
						|
 | 
						|
  // Return the alignment of element I.
 | 
						|
  uint64_t getElemAlign(unsigned I) {
 | 
						|
    return MinAlign(VecAlign, I * ElemSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // The type of the vector.
 | 
						|
  VectorType *VecTy;
 | 
						|
 | 
						|
  // The type of each element.
 | 
						|
  Type *ElemTy;
 | 
						|
 | 
						|
  // The alignment of the vector.
 | 
						|
  uint64_t VecAlign;
 | 
						|
 | 
						|
  // The size of each element.
 | 
						|
  uint64_t ElemSize;
 | 
						|
};
 | 
						|
 | 
						|
class Scalarizer : public FunctionPass,
 | 
						|
                   public InstVisitor<Scalarizer, bool> {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  Scalarizer() :
 | 
						|
    FunctionPass(ID) {
 | 
						|
    initializeScalarizerPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override;
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  // InstVisitor methods.  They return true if the instruction was scalarized,
 | 
						|
  // false if nothing changed.
 | 
						|
  bool visitInstruction(Instruction &) { return false; }
 | 
						|
  bool visitSelectInst(SelectInst &SI);
 | 
						|
  bool visitICmpInst(ICmpInst &);
 | 
						|
  bool visitFCmpInst(FCmpInst &);
 | 
						|
  bool visitBinaryOperator(BinaryOperator &);
 | 
						|
  bool visitGetElementPtrInst(GetElementPtrInst &);
 | 
						|
  bool visitCastInst(CastInst &);
 | 
						|
  bool visitBitCastInst(BitCastInst &);
 | 
						|
  bool visitShuffleVectorInst(ShuffleVectorInst &);
 | 
						|
  bool visitPHINode(PHINode &);
 | 
						|
  bool visitLoadInst(LoadInst &);
 | 
						|
  bool visitStoreInst(StoreInst &);
 | 
						|
 | 
						|
  static void registerOptions() {
 | 
						|
    // This is disabled by default because having separate loads and stores
 | 
						|
    // makes it more likely that the -combiner-alias-analysis limits will be
 | 
						|
    // reached.
 | 
						|
    OptionRegistry::registerOption<bool, Scalarizer,
 | 
						|
                                 &Scalarizer::ScalarizeLoadStore>(
 | 
						|
        "scalarize-load-store",
 | 
						|
        "Allow the scalarizer pass to scalarize loads and store", false);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  Scatterer scatter(Instruction *, Value *);
 | 
						|
  void gather(Instruction *, const ValueVector &);
 | 
						|
  bool canTransferMetadata(unsigned Kind);
 | 
						|
  void transferMetadata(Instruction *, const ValueVector &);
 | 
						|
  bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
 | 
						|
  bool finish();
 | 
						|
 | 
						|
  template<typename T> bool splitBinary(Instruction &, const T &);
 | 
						|
 | 
						|
  ScatterMap Scattered;
 | 
						|
  GatherList Gathered;
 | 
						|
  unsigned ParallelLoopAccessMDKind;
 | 
						|
  bool ScalarizeLoadStore;
 | 
						|
};
 | 
						|
 | 
						|
char Scalarizer::ID = 0;
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
 | 
						|
                             "Scalarize vector operations", false, false)
 | 
						|
 | 
						|
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
 | 
						|
                     ValueVector *cachePtr)
 | 
						|
  : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
 | 
						|
  Type *Ty = V->getType();
 | 
						|
  PtrTy = dyn_cast<PointerType>(Ty);
 | 
						|
  if (PtrTy)
 | 
						|
    Ty = PtrTy->getElementType();
 | 
						|
  Size = Ty->getVectorNumElements();
 | 
						|
  if (!CachePtr)
 | 
						|
    Tmp.resize(Size, nullptr);
 | 
						|
  else if (CachePtr->empty())
 | 
						|
    CachePtr->resize(Size, nullptr);
 | 
						|
  else
 | 
						|
    assert(Size == CachePtr->size() && "Inconsistent vector sizes");
 | 
						|
}
 | 
						|
 | 
						|
// Return component I, creating a new Value for it if necessary.
 | 
						|
Value *Scatterer::operator[](unsigned I) {
 | 
						|
  ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
 | 
						|
  // Try to reuse a previous value.
 | 
						|
  if (CV[I])
 | 
						|
    return CV[I];
 | 
						|
  IRBuilder<> Builder(BB, BBI);
 | 
						|
  if (PtrTy) {
 | 
						|
    if (!CV[0]) {
 | 
						|
      Type *Ty =
 | 
						|
        PointerType::get(PtrTy->getElementType()->getVectorElementType(),
 | 
						|
                         PtrTy->getAddressSpace());
 | 
						|
      CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
 | 
						|
    }
 | 
						|
    if (I != 0)
 | 
						|
      CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
 | 
						|
                                         V->getName() + ".i" + Twine(I));
 | 
						|
  } else {
 | 
						|
    // Search through a chain of InsertElementInsts looking for element I.
 | 
						|
    // Record other elements in the cache.  The new V is still suitable
 | 
						|
    // for all uncached indices.
 | 
						|
    for (;;) {
 | 
						|
      InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
 | 
						|
      if (!Insert)
 | 
						|
        break;
 | 
						|
      ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
 | 
						|
      if (!Idx)
 | 
						|
        break;
 | 
						|
      unsigned J = Idx->getZExtValue();
 | 
						|
      CV[J] = Insert->getOperand(1);
 | 
						|
      V = Insert->getOperand(0);
 | 
						|
      if (I == J)
 | 
						|
        return CV[J];
 | 
						|
    }
 | 
						|
    CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
 | 
						|
                                         V->getName() + ".i" + Twine(I));
 | 
						|
  }
 | 
						|
  return CV[I];
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::doInitialization(Module &M) {
 | 
						|
  ParallelLoopAccessMDKind =
 | 
						|
      M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
 | 
						|
  ScalarizeLoadStore =
 | 
						|
      M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::runOnFunction(Function &F) {
 | 
						|
  for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = BBI;
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
 | 
						|
      Instruction *I = II;
 | 
						|
      bool Done = visit(I);
 | 
						|
      ++II;
 | 
						|
      if (Done && I->getType()->isVoidTy())
 | 
						|
        I->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return finish();
 | 
						|
}
 | 
						|
 | 
						|
// Return a scattered form of V that can be accessed by Point.  V must be a
 | 
						|
// vector or a pointer to a vector.
 | 
						|
Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
 | 
						|
  if (Argument *VArg = dyn_cast<Argument>(V)) {
 | 
						|
    // Put the scattered form of arguments in the entry block,
 | 
						|
    // so that it can be used everywhere.
 | 
						|
    Function *F = VArg->getParent();
 | 
						|
    BasicBlock *BB = &F->getEntryBlock();
 | 
						|
    return Scatterer(BB, BB->begin(), V, &Scattered[V]);
 | 
						|
  }
 | 
						|
  if (Instruction *VOp = dyn_cast<Instruction>(V)) {
 | 
						|
    // Put the scattered form of an instruction directly after the
 | 
						|
    // instruction.
 | 
						|
    BasicBlock *BB = VOp->getParent();
 | 
						|
    return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
 | 
						|
                     V, &Scattered[V]);
 | 
						|
  }
 | 
						|
  // In the fallback case, just put the scattered before Point and
 | 
						|
  // keep the result local to Point.
 | 
						|
  return Scatterer(Point->getParent(), Point, V);
 | 
						|
}
 | 
						|
 | 
						|
// Replace Op with the gathered form of the components in CV.  Defer the
 | 
						|
// deletion of Op and creation of the gathered form to the end of the pass,
 | 
						|
// so that we can avoid creating the gathered form if all uses of Op are
 | 
						|
// replaced with uses of CV.
 | 
						|
void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
 | 
						|
  // Since we're not deleting Op yet, stub out its operands, so that it
 | 
						|
  // doesn't make anything live unnecessarily.
 | 
						|
  for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
 | 
						|
    Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
 | 
						|
 | 
						|
  transferMetadata(Op, CV);
 | 
						|
 | 
						|
  // If we already have a scattered form of Op (created from ExtractElements
 | 
						|
  // of Op itself), replace them with the new form.
 | 
						|
  ValueVector &SV = Scattered[Op];
 | 
						|
  if (!SV.empty()) {
 | 
						|
    for (unsigned I = 0, E = SV.size(); I != E; ++I) {
 | 
						|
      Instruction *Old = cast<Instruction>(SV[I]);
 | 
						|
      CV[I]->takeName(Old);
 | 
						|
      Old->replaceAllUsesWith(CV[I]);
 | 
						|
      Old->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SV = CV;
 | 
						|
  Gathered.push_back(GatherList::value_type(Op, &SV));
 | 
						|
}
 | 
						|
 | 
						|
// Return true if it is safe to transfer the given metadata tag from
 | 
						|
// vector to scalar instructions.
 | 
						|
bool Scalarizer::canTransferMetadata(unsigned Tag) {
 | 
						|
  return (Tag == LLVMContext::MD_tbaa
 | 
						|
          || Tag == LLVMContext::MD_fpmath
 | 
						|
          || Tag == LLVMContext::MD_tbaa_struct
 | 
						|
          || Tag == LLVMContext::MD_invariant_load
 | 
						|
          || Tag == LLVMContext::MD_alias_scope
 | 
						|
          || Tag == LLVMContext::MD_noalias
 | 
						|
          || Tag == ParallelLoopAccessMDKind);
 | 
						|
}
 | 
						|
 | 
						|
// Transfer metadata from Op to the instructions in CV if it is known
 | 
						|
// to be safe to do so.
 | 
						|
void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  Op->getAllMetadataOtherThanDebugLoc(MDs);
 | 
						|
  for (unsigned I = 0, E = CV.size(); I != E; ++I) {
 | 
						|
    if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
 | 
						|
      for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
 | 
						|
               MI = MDs.begin(),
 | 
						|
               ME = MDs.end();
 | 
						|
           MI != ME; ++MI)
 | 
						|
        if (canTransferMetadata(MI->first))
 | 
						|
          New->setMetadata(MI->first, MI->second);
 | 
						|
      New->setDebugLoc(Op->getDebugLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Try to fill in Layout from Ty, returning true on success.  Alignment is
 | 
						|
// the alignment of the vector, or 0 if the ABI default should be used.
 | 
						|
bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
 | 
						|
                                 VectorLayout &Layout, const DataLayout &DL) {
 | 
						|
  // Make sure we're dealing with a vector.
 | 
						|
  Layout.VecTy = dyn_cast<VectorType>(Ty);
 | 
						|
  if (!Layout.VecTy)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that we're dealing with full-byte elements.
 | 
						|
  Layout.ElemTy = Layout.VecTy->getElementType();
 | 
						|
  if (DL.getTypeSizeInBits(Layout.ElemTy) !=
 | 
						|
      DL.getTypeStoreSizeInBits(Layout.ElemTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Alignment)
 | 
						|
    Layout.VecAlign = Alignment;
 | 
						|
  else
 | 
						|
    Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
 | 
						|
  Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
 | 
						|
// to create an instruction like I with operands X and Y and name Name.
 | 
						|
template<typename Splitter>
 | 
						|
bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(I.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  IRBuilder<> Builder(I.getParent(), &I);
 | 
						|
  Scatterer Op0 = scatter(&I, I.getOperand(0));
 | 
						|
  Scatterer Op1 = scatter(&I, I.getOperand(1));
 | 
						|
  assert(Op0.size() == NumElems && "Mismatched binary operation");
 | 
						|
  assert(Op1.size() == NumElems && "Mismatched binary operation");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned Elem = 0; Elem < NumElems; ++Elem)
 | 
						|
    Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
 | 
						|
                      I.getName() + ".i" + Twine(Elem));
 | 
						|
  gather(&I, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitSelectInst(SelectInst &SI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(SI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  IRBuilder<> Builder(SI.getParent(), &SI);
 | 
						|
  Scatterer Op1 = scatter(&SI, SI.getOperand(1));
 | 
						|
  Scatterer Op2 = scatter(&SI, SI.getOperand(2));
 | 
						|
  assert(Op1.size() == NumElems && "Mismatched select");
 | 
						|
  assert(Op2.size() == NumElems && "Mismatched select");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  if (SI.getOperand(0)->getType()->isVectorTy()) {
 | 
						|
    Scatterer Op0 = scatter(&SI, SI.getOperand(0));
 | 
						|
    assert(Op0.size() == NumElems && "Mismatched select");
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
      Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
 | 
						|
                                    SI.getName() + ".i" + Twine(I));
 | 
						|
  } else {
 | 
						|
    Value *Op0 = SI.getOperand(0);
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
      Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
 | 
						|
                                    SI.getName() + ".i" + Twine(I));
 | 
						|
  }
 | 
						|
  gather(&SI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
 | 
						|
  return splitBinary(ICI, ICmpSplitter(ICI));
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
 | 
						|
  return splitBinary(FCI, FCmpSplitter(FCI));
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
 | 
						|
  return splitBinary(BO, BinarySplitter(BO));
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(GEPI.getParent(), &GEPI);
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  unsigned NumIndices = GEPI.getNumIndices();
 | 
						|
 | 
						|
  Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
 | 
						|
 | 
						|
  SmallVector<Scatterer, 8> Ops;
 | 
						|
  Ops.resize(NumIndices);
 | 
						|
  for (unsigned I = 0; I < NumIndices; ++I)
 | 
						|
    Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
 | 
						|
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    SmallVector<Value *, 8> Indices;
 | 
						|
    Indices.resize(NumIndices);
 | 
						|
    for (unsigned J = 0; J < NumIndices; ++J)
 | 
						|
      Indices[J] = Ops[J][I];
 | 
						|
    Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
 | 
						|
                               GEPI.getName() + ".i" + Twine(I));
 | 
						|
    if (GEPI.isInBounds())
 | 
						|
      if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
 | 
						|
        NewGEPI->setIsInBounds();
 | 
						|
  }
 | 
						|
  gather(&GEPI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitCastInst(CastInst &CI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  IRBuilder<> Builder(CI.getParent(), &CI);
 | 
						|
  Scatterer Op0 = scatter(&CI, CI.getOperand(0));
 | 
						|
  assert(Op0.size() == NumElems && "Mismatched cast");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
 | 
						|
                                CI.getName() + ".i" + Twine(I));
 | 
						|
  gather(&CI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
 | 
						|
  VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
 | 
						|
  VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
 | 
						|
  if (!DstVT || !SrcVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DstNumElems = DstVT->getNumElements();
 | 
						|
  unsigned SrcNumElems = SrcVT->getNumElements();
 | 
						|
  IRBuilder<> Builder(BCI.getParent(), &BCI);
 | 
						|
  Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(DstNumElems);
 | 
						|
 | 
						|
  if (DstNumElems == SrcNumElems) {
 | 
						|
    for (unsigned I = 0; I < DstNumElems; ++I)
 | 
						|
      Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
 | 
						|
                                     BCI.getName() + ".i" + Twine(I));
 | 
						|
  } else if (DstNumElems > SrcNumElems) {
 | 
						|
    // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
 | 
						|
    // individual elements to the destination.
 | 
						|
    unsigned FanOut = DstNumElems / SrcNumElems;
 | 
						|
    Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
 | 
						|
    unsigned ResI = 0;
 | 
						|
    for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
 | 
						|
      Value *V = Op0[Op0I];
 | 
						|
      Instruction *VI;
 | 
						|
      // Look through any existing bitcasts before converting to <N x t2>.
 | 
						|
      // In the best case, the resulting conversion might be a no-op.
 | 
						|
      while ((VI = dyn_cast<Instruction>(V)) &&
 | 
						|
             VI->getOpcode() == Instruction::BitCast)
 | 
						|
        V = VI->getOperand(0);
 | 
						|
      V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
 | 
						|
      Scatterer Mid = scatter(&BCI, V);
 | 
						|
      for (unsigned MidI = 0; MidI < FanOut; ++MidI)
 | 
						|
        Res[ResI++] = Mid[MidI];
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
 | 
						|
    unsigned FanIn = SrcNumElems / DstNumElems;
 | 
						|
    Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
 | 
						|
    unsigned Op0I = 0;
 | 
						|
    for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
 | 
						|
      Value *V = UndefValue::get(MidTy);
 | 
						|
      for (unsigned MidI = 0; MidI < FanIn; ++MidI)
 | 
						|
        V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
 | 
						|
                                        BCI.getName() + ".i" + Twine(ResI)
 | 
						|
                                        + ".upto" + Twine(MidI));
 | 
						|
      Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
 | 
						|
                                        BCI.getName() + ".i" + Twine(ResI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  gather(&BCI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(SVI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
 | 
						|
  Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    int Selector = SVI.getMaskValue(I);
 | 
						|
    if (Selector < 0)
 | 
						|
      Res[I] = UndefValue::get(VT->getElementType());
 | 
						|
    else if (unsigned(Selector) < Op0.size())
 | 
						|
      Res[I] = Op0[Selector];
 | 
						|
    else
 | 
						|
      Res[I] = Op1[Selector - Op0.size()];
 | 
						|
  }
 | 
						|
  gather(&SVI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitPHINode(PHINode &PHI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(PHI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = VT->getNumElements();
 | 
						|
  IRBuilder<> Builder(PHI.getParent(), &PHI);
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  unsigned NumOps = PHI.getNumOperands();
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
 | 
						|
                               PHI.getName() + ".i" + Twine(I));
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumOps; ++I) {
 | 
						|
    Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
 | 
						|
    BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
 | 
						|
    for (unsigned J = 0; J < NumElems; ++J)
 | 
						|
      cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
 | 
						|
  }
 | 
						|
  gather(&PHI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitLoadInst(LoadInst &LI) {
 | 
						|
  if (!ScalarizeLoadStore)
 | 
						|
    return false;
 | 
						|
  if (!LI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  VectorLayout Layout;
 | 
						|
  if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
 | 
						|
                       LI.getModule()->getDataLayout()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = Layout.VecTy->getNumElements();
 | 
						|
  IRBuilder<> Builder(LI.getParent(), &LI);
 | 
						|
  Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
 | 
						|
                                       LI.getName() + ".i" + Twine(I));
 | 
						|
  gather(&LI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scalarizer::visitStoreInst(StoreInst &SI) {
 | 
						|
  if (!ScalarizeLoadStore)
 | 
						|
    return false;
 | 
						|
  if (!SI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  VectorLayout Layout;
 | 
						|
  Value *FullValue = SI.getValueOperand();
 | 
						|
  if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
 | 
						|
                       SI.getModule()->getDataLayout()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = Layout.VecTy->getNumElements();
 | 
						|
  IRBuilder<> Builder(SI.getParent(), &SI);
 | 
						|
  Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
 | 
						|
  Scatterer Val = scatter(&SI, FullValue);
 | 
						|
 | 
						|
  ValueVector Stores;
 | 
						|
  Stores.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    unsigned Align = Layout.getElemAlign(I);
 | 
						|
    Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
 | 
						|
  }
 | 
						|
  transferMetadata(&SI, Stores);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Delete the instructions that we scalarized.  If a full vector result
 | 
						|
// is still needed, recreate it using InsertElements.
 | 
						|
bool Scalarizer::finish() {
 | 
						|
  if (Gathered.empty())
 | 
						|
    return false;
 | 
						|
  for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
 | 
						|
       GMI != GME; ++GMI) {
 | 
						|
    Instruction *Op = GMI->first;
 | 
						|
    ValueVector &CV = *GMI->second;
 | 
						|
    if (!Op->use_empty()) {
 | 
						|
      // The value is still needed, so recreate it using a series of
 | 
						|
      // InsertElements.
 | 
						|
      Type *Ty = Op->getType();
 | 
						|
      Value *Res = UndefValue::get(Ty);
 | 
						|
      BasicBlock *BB = Op->getParent();
 | 
						|
      unsigned Count = Ty->getVectorNumElements();
 | 
						|
      IRBuilder<> Builder(BB, Op);
 | 
						|
      if (isa<PHINode>(Op))
 | 
						|
        Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
 | 
						|
      for (unsigned I = 0; I < Count; ++I)
 | 
						|
        Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
 | 
						|
                                          Op->getName() + ".upto" + Twine(I));
 | 
						|
      Res->takeName(Op);
 | 
						|
      Op->replaceAllUsesWith(Res);
 | 
						|
    }
 | 
						|
    Op->eraseFromParent();
 | 
						|
  }
 | 
						|
  Gathered.clear();
 | 
						|
  Scattered.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createScalarizerPass() {
 | 
						|
  return new Scalarizer();
 | 
						|
}
 |