mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6194 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1322 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1322 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Execution.cpp - Implement code to simulate the program ------------===//
 | 
						|
// 
 | 
						|
//  This file contains the actual instruction interpreter.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Interpreter.h"
 | 
						|
#include "ExecutionAnnotations.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "Support/CommandLine.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <math.h>  // For fmod
 | 
						|
#include <signal.h>
 | 
						|
#include <setjmp.h>
 | 
						|
 | 
						|
Interpreter *TheEE = 0;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
 | 
						|
 | 
						|
  cl::opt<bool>
 | 
						|
  QuietMode("quiet", cl::desc("Do not emit any non-program output"),
 | 
						|
	    cl::init(true));
 | 
						|
 | 
						|
  cl::alias 
 | 
						|
  QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));
 | 
						|
 | 
						|
  cl::opt<bool>
 | 
						|
  ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks"));
 | 
						|
 | 
						|
  cl::opt<bool>
 | 
						|
  AbortOnExceptions("abort-on-exception",
 | 
						|
                    cl::desc("Halt execution on a machine exception"));
 | 
						|
}
 | 
						|
 | 
						|
// Create a TargetData structure to handle memory addressing and size/alignment
 | 
						|
// computations
 | 
						|
//
 | 
						|
CachedWriter CW;     // Object to accelerate printing of LLVM
 | 
						|
 | 
						|
#ifdef PROFILE_STRUCTURE_FIELDS
 | 
						|
static cl::opt<bool>
 | 
						|
ProfileStructureFields("profilestructfields", 
 | 
						|
                       cl::desc("Profile Structure Field Accesses"));
 | 
						|
#include <map>
 | 
						|
static std::map<const StructType *, std::vector<unsigned> > FieldAccessCounts;
 | 
						|
#endif
 | 
						|
 | 
						|
sigjmp_buf SignalRecoverBuffer;
 | 
						|
static bool InInstruction = false;
 | 
						|
 | 
						|
extern "C" {
 | 
						|
static void SigHandler(int Signal) {
 | 
						|
  if (InInstruction)
 | 
						|
    siglongjmp(SignalRecoverBuffer, Signal);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
static void initializeSignalHandlers() {
 | 
						|
  struct sigaction Action;
 | 
						|
  Action.sa_handler = SigHandler;
 | 
						|
  Action.sa_flags   = SA_SIGINFO;
 | 
						|
  sigemptyset(&Action.sa_mask);
 | 
						|
  sigaction(SIGSEGV, &Action, 0);
 | 
						|
  sigaction(SIGBUS, &Action, 0);
 | 
						|
  sigaction(SIGINT, &Action, 0);
 | 
						|
  sigaction(SIGFPE, &Action, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     Value Manipulation code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static unsigned getOperandSlot(Value *V) {
 | 
						|
  SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
 | 
						|
  assert(SN && "Operand does not have a slot number annotation!");
 | 
						|
  return SN->SlotNum;
 | 
						|
}
 | 
						|
 | 
						|
// Operations used by constant expr implementations...
 | 
						|
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
 | 
						|
                                         ExecutionContext &SF);
 | 
						|
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty);
 | 
						|
 | 
						|
 | 
						|
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::Cast:
 | 
						|
      return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
 | 
						|
					CE->op_end(), SF);
 | 
						|
    case Instruction::Add:
 | 
						|
      return executeAddInst(getOperandValue(CE->getOperand(0), SF),
 | 
						|
                            getOperandValue(CE->getOperand(1), SF),
 | 
						|
                            CE->getType());
 | 
						|
    default:
 | 
						|
      std::cerr << "Unhandled ConstantExpr: " << CE << "\n";
 | 
						|
      abort();
 | 
						|
      return GenericValue();
 | 
						|
    }
 | 
						|
  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
 | 
						|
    return TheEE->getConstantValue(CPV);
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    return PTOGV(TheEE->getPointerToGlobal(GV));
 | 
						|
  } else {
 | 
						|
    unsigned TyP = V->getType()->getUniqueID();   // TypePlane for value
 | 
						|
    unsigned OpSlot = getOperandSlot(V);
 | 
						|
    assert(TyP < SF.Values.size() && 
 | 
						|
           OpSlot < SF.Values[TyP].size() && "Value out of range!");
 | 
						|
    return SF.Values[TyP][getOperandSlot(V)];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void printOperandInfo(Value *V, ExecutionContext &SF) {
 | 
						|
  if (isa<Constant>(V)) {
 | 
						|
    std::cout << "Constant Pool Value\n";
 | 
						|
  } else if (isa<GlobalValue>(V)) {
 | 
						|
    std::cout << "Global Value\n";
 | 
						|
  } else {
 | 
						|
    unsigned TyP  = V->getType()->getUniqueID();   // TypePlane for value
 | 
						|
    unsigned Slot = getOperandSlot(V);
 | 
						|
    std::cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
 | 
						|
              << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF
 | 
						|
              << " Contents=0x";
 | 
						|
 | 
						|
    const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot];
 | 
						|
    for (unsigned i = 0; i < sizeof(GenericValue); ++i) {
 | 
						|
      unsigned char Cur = Buf[i];
 | 
						|
      std::cout << ( Cur     >= 160?char((Cur>>4)+'A'-10):char((Cur>>4) + '0'))
 | 
						|
                << ((Cur&15) >=  10?char((Cur&15)+'A'-10):char((Cur&15) + '0'));
 | 
						|
    }
 | 
						|
    std::cout << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
 | 
						|
  unsigned TyP = V->getType()->getUniqueID();   // TypePlane for value
 | 
						|
 | 
						|
  //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n";
 | 
						|
  SF.Values[TyP][getOperandSlot(V)] = Val;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    Annotation Wrangling code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Interpreter::initializeExecutionEngine() {
 | 
						|
  TheEE = this;
 | 
						|
  AnnotationManager::registerAnnotationFactory(FunctionInfoAID,
 | 
						|
                                               &FunctionInfo::Create);
 | 
						|
  initializeSignalHandlers();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    Binary Instruction Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
 | 
						|
   case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
 | 
						|
 | 
						|
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, Long);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, Float);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(+, Double);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, Long);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, Float);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(-, Double);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, Long);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, Float);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(*, Double);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Mul instruction: " << Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, Long);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, Float);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(/, Double);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(%, Long);
 | 
						|
  case Type::FloatTyID:
 | 
						|
    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, Bool);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(&, Long);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
                                  const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, Bool);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(|, Long);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
                                   const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, Bool);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, UByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, SByte);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, UShort);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, Short);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, UInt);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, Int);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, ULong);
 | 
						|
    IMPLEMENT_BINARY_OPERATOR(^, Long);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define IMPLEMENT_SETCC(OP, TY) \
 | 
						|
   case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
 | 
						|
 | 
						|
// Handle pointers specially because they must be compared with only as much
 | 
						|
// width as the host has.  We _do not_ want to be comparing 64 bit values when
 | 
						|
// running on a 32-bit target, otherwise the upper 32 bits might mess up
 | 
						|
// comparisons if they contain garbage.
 | 
						|
#define IMPLEMENT_POINTERSETCC(OP) \
 | 
						|
   case Type::PointerTyID: \
 | 
						|
        Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
 | 
						|
                       (void*)(intptr_t)Src2.PointerVal; break
 | 
						|
 | 
						|
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(==, UByte);
 | 
						|
    IMPLEMENT_SETCC(==, SByte);
 | 
						|
    IMPLEMENT_SETCC(==, UShort);
 | 
						|
    IMPLEMENT_SETCC(==, Short);
 | 
						|
    IMPLEMENT_SETCC(==, UInt);
 | 
						|
    IMPLEMENT_SETCC(==, Int);
 | 
						|
    IMPLEMENT_SETCC(==, ULong);
 | 
						|
    IMPLEMENT_SETCC(==, Long);
 | 
						|
    IMPLEMENT_SETCC(==, Float);
 | 
						|
    IMPLEMENT_SETCC(==, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(==);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(!=, UByte);
 | 
						|
    IMPLEMENT_SETCC(!=, SByte);
 | 
						|
    IMPLEMENT_SETCC(!=, UShort);
 | 
						|
    IMPLEMENT_SETCC(!=, Short);
 | 
						|
    IMPLEMENT_SETCC(!=, UInt);
 | 
						|
    IMPLEMENT_SETCC(!=, Int);
 | 
						|
    IMPLEMENT_SETCC(!=, ULong);
 | 
						|
    IMPLEMENT_SETCC(!=, Long);
 | 
						|
    IMPLEMENT_SETCC(!=, Float);
 | 
						|
    IMPLEMENT_SETCC(!=, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(!=);
 | 
						|
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(<=, UByte);
 | 
						|
    IMPLEMENT_SETCC(<=, SByte);
 | 
						|
    IMPLEMENT_SETCC(<=, UShort);
 | 
						|
    IMPLEMENT_SETCC(<=, Short);
 | 
						|
    IMPLEMENT_SETCC(<=, UInt);
 | 
						|
    IMPLEMENT_SETCC(<=, Int);
 | 
						|
    IMPLEMENT_SETCC(<=, ULong);
 | 
						|
    IMPLEMENT_SETCC(<=, Long);
 | 
						|
    IMPLEMENT_SETCC(<=, Float);
 | 
						|
    IMPLEMENT_SETCC(<=, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(<=);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(>=, UByte);
 | 
						|
    IMPLEMENT_SETCC(>=, SByte);
 | 
						|
    IMPLEMENT_SETCC(>=, UShort);
 | 
						|
    IMPLEMENT_SETCC(>=, Short);
 | 
						|
    IMPLEMENT_SETCC(>=, UInt);
 | 
						|
    IMPLEMENT_SETCC(>=, Int);
 | 
						|
    IMPLEMENT_SETCC(>=, ULong);
 | 
						|
    IMPLEMENT_SETCC(>=, Long);
 | 
						|
    IMPLEMENT_SETCC(>=, Float);
 | 
						|
    IMPLEMENT_SETCC(>=, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(>=);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(<, UByte);
 | 
						|
    IMPLEMENT_SETCC(<, SByte);
 | 
						|
    IMPLEMENT_SETCC(<, UShort);
 | 
						|
    IMPLEMENT_SETCC(<, Short);
 | 
						|
    IMPLEMENT_SETCC(<, UInt);
 | 
						|
    IMPLEMENT_SETCC(<, Int);
 | 
						|
    IMPLEMENT_SETCC(<, ULong);
 | 
						|
    IMPLEMENT_SETCC(<, Long);
 | 
						|
    IMPLEMENT_SETCC(<, Float);
 | 
						|
    IMPLEMENT_SETCC(<, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(<);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, 
 | 
						|
				     const Type *Ty) {
 | 
						|
  GenericValue Dest;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SETCC(>, UByte);
 | 
						|
    IMPLEMENT_SETCC(>, SByte);
 | 
						|
    IMPLEMENT_SETCC(>, UShort);
 | 
						|
    IMPLEMENT_SETCC(>, Short);
 | 
						|
    IMPLEMENT_SETCC(>, UInt);
 | 
						|
    IMPLEMENT_SETCC(>, Int);
 | 
						|
    IMPLEMENT_SETCC(>, ULong);
 | 
						|
    IMPLEMENT_SETCC(>, Long);
 | 
						|
    IMPLEMENT_SETCC(>, Float);
 | 
						|
    IMPLEMENT_SETCC(>, Double);
 | 
						|
    IMPLEMENT_POINTERSETCC(>);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  const Type *Ty    = I.getOperand(0)->getType();
 | 
						|
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | 
						|
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | 
						|
  GenericValue R;   // Result
 | 
						|
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Add:   R = executeAddInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Sub:   R = executeSubInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Mul:   R = executeMulInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Div:   R = executeDivInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Rem:   R = executeRemInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::And:   R = executeAndInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Or:    R = executeOrInst   (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::Xor:   R = executeXorInst  (Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
 | 
						|
  case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
 | 
						|
  default:
 | 
						|
    std::cout << "Don't know how to handle this binary operator!\n-->" << I;
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  SetValue(&I, R, SF);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     Terminator Instruction Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// PerformExitStuff - Print out counters and profiling information if
 | 
						|
// applicable...
 | 
						|
void Interpreter::PerformExitStuff() {
 | 
						|
#ifdef PROFILE_STRUCTURE_FIELDS
 | 
						|
  // Print out structure field accounting information...
 | 
						|
  if (!FieldAccessCounts.empty()) {
 | 
						|
    CW << "Profile Field Access Counts:\n";
 | 
						|
    std::map<const StructType *, std::vector<unsigned> >::iterator 
 | 
						|
      I = FieldAccessCounts.begin(), E = FieldAccessCounts.end();
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      std::vector<unsigned> &OfC = I->second;
 | 
						|
      CW << "  '" << (Value*)I->first << "'\t- Sum=";
 | 
						|
      
 | 
						|
      unsigned Sum = 0;
 | 
						|
      for (unsigned i = 0; i < OfC.size(); ++i)
 | 
						|
        Sum += OfC[i];
 | 
						|
      CW << Sum << " - ";
 | 
						|
      
 | 
						|
      for (unsigned i = 0; i < OfC.size(); ++i) {
 | 
						|
        if (i) CW << ", ";
 | 
						|
        CW << OfC[i];
 | 
						|
      }
 | 
						|
      CW << "\n";
 | 
						|
    }
 | 
						|
    CW << "\n";
 | 
						|
 | 
						|
    CW << "Profile Field Access Percentages:\n";
 | 
						|
    std::cout.precision(3);
 | 
						|
    for (I = FieldAccessCounts.begin(); I != E; ++I) {
 | 
						|
      std::vector<unsigned> &OfC = I->second;
 | 
						|
      unsigned Sum = 0;
 | 
						|
      for (unsigned i = 0; i < OfC.size(); ++i)
 | 
						|
        Sum += OfC[i];
 | 
						|
      
 | 
						|
      CW << "  '" << (Value*)I->first << "'\t- ";
 | 
						|
      for (unsigned i = 0; i < OfC.size(); ++i) {
 | 
						|
        if (i) CW << ", ";
 | 
						|
        CW << double(OfC[i])/Sum;
 | 
						|
      }
 | 
						|
      CW << "\n";
 | 
						|
    }
 | 
						|
    CW << "\n";
 | 
						|
 | 
						|
    FieldAccessCounts.clear();
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::exitCalled(GenericValue GV) {
 | 
						|
  if (!QuietMode) {
 | 
						|
    std::cout << "Program returned ";
 | 
						|
    print(Type::IntTy, GV);
 | 
						|
    std::cout << " via 'void exit(int)'\n";
 | 
						|
  }
 | 
						|
 | 
						|
  ExitCode = GV.SByteVal;
 | 
						|
  ECStack.clear();
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitReturnInst(ReturnInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  const Type *RetTy = 0;
 | 
						|
  GenericValue Result;
 | 
						|
 | 
						|
  // Save away the return value... (if we are not 'ret void')
 | 
						|
  if (I.getNumOperands()) {
 | 
						|
    RetTy  = I.getReturnValue()->getType();
 | 
						|
    Result = getOperandValue(I.getReturnValue(), SF);
 | 
						|
  }
 | 
						|
 | 
						|
  // Save previously executing meth
 | 
						|
  const Function *M = ECStack.back().CurFunction;
 | 
						|
 | 
						|
  // Pop the current stack frame... this invalidates SF
 | 
						|
  ECStack.pop_back();
 | 
						|
 | 
						|
  if (ECStack.empty()) {  // Finished main.  Put result into exit code...
 | 
						|
    if (RetTy) {          // Nonvoid return type?
 | 
						|
      if (!QuietMode) {
 | 
						|
        CW << "Function " << M->getType() << " \"" << M->getName()
 | 
						|
           << "\" returned ";
 | 
						|
        print(RetTy, Result);
 | 
						|
        std::cout << "\n";
 | 
						|
      }
 | 
						|
 | 
						|
      if (RetTy->isIntegral())
 | 
						|
	ExitCode = Result.IntVal;   // Capture the exit code of the program
 | 
						|
    } else {
 | 
						|
      ExitCode = 0;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a previous stack frame, and we have a previous call, fill in
 | 
						|
  // the return value...
 | 
						|
  //
 | 
						|
  ExecutionContext &NewSF = ECStack.back();
 | 
						|
  if (NewSF.Caller) {
 | 
						|
    if (NewSF.Caller->getType() != Type::VoidTy)             // Save result...
 | 
						|
      SetValue(NewSF.Caller, Result, NewSF);
 | 
						|
 | 
						|
    NewSF.Caller = 0;          // We returned from the call...
 | 
						|
  } else if (!QuietMode) {
 | 
						|
    // This must be a function that is executing because of a user 'call'
 | 
						|
    // instruction.
 | 
						|
    CW << "Function " << M->getType() << " \"" << M->getName()
 | 
						|
       << "\" returned ";
 | 
						|
    print(RetTy, Result);
 | 
						|
    std::cout << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitBranchInst(BranchInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  BasicBlock *Dest;
 | 
						|
 | 
						|
  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
 | 
						|
  if (!I.isUnconditional()) {
 | 
						|
    Value *Cond = I.getCondition();
 | 
						|
    if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
 | 
						|
      Dest = I.getSuccessor(1);    
 | 
						|
  }
 | 
						|
  SwitchToNewBasicBlock(Dest, SF);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitSwitchInst(SwitchInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
 | 
						|
  const Type *ElTy = I.getOperand(0)->getType();
 | 
						|
 | 
						|
  // Check to see if any of the cases match...
 | 
						|
  BasicBlock *Dest = 0;
 | 
						|
  for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
 | 
						|
    if (executeSetEQInst(CondVal,
 | 
						|
                         getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
 | 
						|
      Dest = cast<BasicBlock>(I.getOperand(i+1));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
 | 
						|
  SwitchToNewBasicBlock(Dest, SF);
 | 
						|
}
 | 
						|
 | 
						|
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
 | 
						|
// This function handles the actual updating of block and instruction iterators
 | 
						|
// as well as execution of all of the PHI nodes in the destination block.
 | 
						|
//
 | 
						|
// This method does this because all of the PHI nodes must be executed
 | 
						|
// atomically, reading their inputs before any of the results are updated.  Not
 | 
						|
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
 | 
						|
// their inputs.  If the input PHI node is updated before it is read, incorrect
 | 
						|
// results can happen.  Thus we use a two phase approach.
 | 
						|
//
 | 
						|
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
 | 
						|
  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
 | 
						|
  SF.CurBB   = Dest;                  // Update CurBB to branch destination
 | 
						|
  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
 | 
						|
 | 
						|
  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes in the current block, reading their inputs.
 | 
						|
  std::vector<GenericValue> ResultValues;
 | 
						|
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
 | 
						|
    if (Trace) CW << "Run:" << PN;
 | 
						|
 | 
						|
    // Search for the value corresponding to this previous bb...
 | 
						|
    int i = PN->getBasicBlockIndex(PrevBB);
 | 
						|
    assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
 | 
						|
    Value *IncomingValue = PN->getIncomingValue(i);
 | 
						|
    
 | 
						|
    // Save the incoming value for this PHI node...
 | 
						|
    ResultValues.push_back(getOperandValue(IncomingValue, SF));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now loop over all of the PHI nodes setting their values...
 | 
						|
  SF.CurInst = SF.CurBB->begin();
 | 
						|
  for (unsigned i = 0; PHINode *PN = dyn_cast<PHINode>(SF.CurInst);
 | 
						|
       ++SF.CurInst, ++i)
 | 
						|
    SetValue(PN, ResultValues[i], SF);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     Memory Instruction Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Interpreter::visitAllocationInst(AllocationInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
 | 
						|
  const Type *Ty = I.getType()->getElementType();  // Type to be allocated
 | 
						|
 | 
						|
  // Get the number of elements being allocated by the array...
 | 
						|
  unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
 | 
						|
 | 
						|
  // Allocate enough memory to hold the type...
 | 
						|
  // FIXME: Don't use CALLOC, use a tainted malloc.
 | 
						|
  void *Memory = calloc(NumElements, TD.getTypeSize(Ty));
 | 
						|
 | 
						|
  GenericValue Result = PTOGV(Memory);
 | 
						|
  assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
 | 
						|
  SetValue(&I, Result, SF);
 | 
						|
 | 
						|
  if (I.getOpcode() == Instruction::Alloca)
 | 
						|
    ECStack.back().Allocas.add(Memory);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitFreeInst(FreeInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
 | 
						|
  GenericValue Value = getOperandValue(I.getOperand(0), SF);
 | 
						|
  // TODO: Check to make sure memory is allocated
 | 
						|
  free(GVTOP(Value));   // Free memory
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getElementOffset - The workhorse for getelementptr.
 | 
						|
//
 | 
						|
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
 | 
						|
					      User::op_iterator E,
 | 
						|
					      ExecutionContext &SF) {
 | 
						|
  assert(isa<PointerType>(Ptr->getType()) &&
 | 
						|
         "Cannot getElementOffset of a nonpointer type!");
 | 
						|
 | 
						|
  PointerTy Total = 0;
 | 
						|
  const Type *Ty = Ptr->getType();
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      const StructLayout *SLO = TD.getStructLayout(STy);
 | 
						|
      
 | 
						|
      // Indicies must be ubyte constants...
 | 
						|
      const ConstantUInt *CPU = cast<ConstantUInt>(*I);
 | 
						|
      assert(CPU->getType() == Type::UByteTy);
 | 
						|
      unsigned Index = CPU->getValue();
 | 
						|
      
 | 
						|
#ifdef PROFILE_STRUCTURE_FIELDS
 | 
						|
      if (ProfileStructureFields) {
 | 
						|
        // Do accounting for this field...
 | 
						|
        std::vector<unsigned> &OfC = FieldAccessCounts[STy];
 | 
						|
        if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size());
 | 
						|
        OfC[Index]++;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      
 | 
						|
      Total += SLO->MemberOffsets[Index];
 | 
						|
      Ty = STy->getElementTypes()[Index];
 | 
						|
    } else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
 | 
						|
 | 
						|
      // Get the index number for the array... which must be long type...
 | 
						|
      assert((*I)->getType() == Type::LongTy);
 | 
						|
      unsigned Idx = getOperandValue(*I, SF).LongVal;
 | 
						|
      if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
 | 
						|
        if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
 | 
						|
          std::cerr << "Out of range memory access to element #" << Idx
 | 
						|
                    << " of a " << AT->getNumElements() << " element array."
 | 
						|
                    << " Subscript #" << *I << "\n";
 | 
						|
          // Get outta here!!!
 | 
						|
          siglongjmp(SignalRecoverBuffer, SIGTRAP);
 | 
						|
        }
 | 
						|
 | 
						|
      Ty = ST->getElementType();
 | 
						|
      unsigned Size = TD.getTypeSize(Ty);
 | 
						|
      Total += Size*Idx;
 | 
						|
    }  
 | 
						|
  }
 | 
						|
 | 
						|
  GenericValue Result;
 | 
						|
  Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
 | 
						|
                                   I.idx_begin(), I.idx_end(), SF), SF);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitLoadInst(LoadInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
 | 
						|
  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
 | 
						|
  GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
 | 
						|
  SetValue(&I, Result, SF);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitStoreInst(StoreInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  GenericValue Val = getOperandValue(I.getOperand(0), SF);
 | 
						|
  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
 | 
						|
  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
 | 
						|
                     I.getOperand(0)->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                 Miscellaneous Instruction Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Interpreter::visitCallInst(CallInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  SF.Caller = &I;
 | 
						|
  std::vector<GenericValue> ArgVals;
 | 
						|
  ArgVals.reserve(I.getNumOperands()-1);
 | 
						|
  for (unsigned i = 1; i < I.getNumOperands(); ++i) {
 | 
						|
    ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
 | 
						|
    // Promote all integral types whose size is < sizeof(int) into ints.  We do
 | 
						|
    // this by zero or sign extending the value as appropriate according to the
 | 
						|
    // source type.
 | 
						|
    if (I.getOperand(i)->getType()->isIntegral() &&
 | 
						|
	I.getOperand(i)->getType()->getPrimitiveSize() < 4) {
 | 
						|
      const Type *Ty = I.getOperand(i)->getType();
 | 
						|
      if (Ty == Type::ShortTy)
 | 
						|
	ArgVals.back().IntVal = ArgVals.back().ShortVal;
 | 
						|
      else if (Ty == Type::UShortTy)
 | 
						|
	ArgVals.back().UIntVal = ArgVals.back().UShortVal;
 | 
						|
      else if (Ty == Type::SByteTy)
 | 
						|
	ArgVals.back().IntVal = ArgVals.back().SByteVal;
 | 
						|
      else if (Ty == Type::UByteTy)
 | 
						|
	ArgVals.back().UIntVal = ArgVals.back().UByteVal;
 | 
						|
      else if (Ty == Type::BoolTy)
 | 
						|
	ArgVals.back().UIntVal = ArgVals.back().BoolVal;
 | 
						|
      else
 | 
						|
	assert(0 && "Unknown type!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // To handle indirect calls, we must get the pointer value from the argument 
 | 
						|
  // and treat it as a function pointer.
 | 
						|
  GenericValue SRC = getOperandValue(I.getCalledValue(), SF);  
 | 
						|
  callFunction((Function*)GVTOP(SRC), ArgVals);
 | 
						|
}
 | 
						|
 | 
						|
#define IMPLEMENT_SHIFT(OP, TY) \
 | 
						|
   case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
 | 
						|
 | 
						|
void Interpreter::visitShl(ShiftInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  const Type *Ty    = I.getOperand(0)->getType();
 | 
						|
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | 
						|
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | 
						|
  GenericValue Dest;
 | 
						|
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SHIFT(<<, UByte);
 | 
						|
    IMPLEMENT_SHIFT(<<, SByte);
 | 
						|
    IMPLEMENT_SHIFT(<<, UShort);
 | 
						|
    IMPLEMENT_SHIFT(<<, Short);
 | 
						|
    IMPLEMENT_SHIFT(<<, UInt);
 | 
						|
    IMPLEMENT_SHIFT(<<, Int);
 | 
						|
    IMPLEMENT_SHIFT(<<, ULong);
 | 
						|
    IMPLEMENT_SHIFT(<<, Long);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
 | 
						|
  }
 | 
						|
  SetValue(&I, Dest, SF);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitShr(ShiftInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  const Type *Ty    = I.getOperand(0)->getType();
 | 
						|
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | 
						|
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | 
						|
  GenericValue Dest;
 | 
						|
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_SHIFT(>>, UByte);
 | 
						|
    IMPLEMENT_SHIFT(>>, SByte);
 | 
						|
    IMPLEMENT_SHIFT(>>, UShort);
 | 
						|
    IMPLEMENT_SHIFT(>>, Short);
 | 
						|
    IMPLEMENT_SHIFT(>>, UInt);
 | 
						|
    IMPLEMENT_SHIFT(>>, Int);
 | 
						|
    IMPLEMENT_SHIFT(>>, ULong);
 | 
						|
    IMPLEMENT_SHIFT(>>, Long);
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  SetValue(&I, Dest, SF);
 | 
						|
}
 | 
						|
 | 
						|
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
 | 
						|
   case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
 | 
						|
 | 
						|
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY)    \
 | 
						|
  case Type::DESTTY##TyID:                      \
 | 
						|
    switch (SrcTy->getPrimitiveID()) {          \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Bool);    \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, UByte);   \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, SByte);   \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, UShort);  \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Short);   \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, UInt);    \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Int);     \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, ULong);   \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Long);    \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
 | 
						|
 | 
						|
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Float);   \
 | 
						|
      IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
 | 
						|
 | 
						|
#define IMPLEMENT_CAST_CASE_END()    \
 | 
						|
    default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
 | 
						|
      abort();                                  \
 | 
						|
    }                                           \
 | 
						|
    break
 | 
						|
 | 
						|
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
 | 
						|
   IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY);   \
 | 
						|
   IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
 | 
						|
   IMPLEMENT_CAST_CASE_END()
 | 
						|
 | 
						|
static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty,
 | 
						|
                                         ExecutionContext &SF) {
 | 
						|
  const Type *SrcTy = SrcVal->getType();
 | 
						|
  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | 
						|
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
    IMPLEMENT_CAST_CASE(UByte  , (unsigned char));
 | 
						|
    IMPLEMENT_CAST_CASE(SByte  , (  signed char));
 | 
						|
    IMPLEMENT_CAST_CASE(UShort , (unsigned short));
 | 
						|
    IMPLEMENT_CAST_CASE(Short  , (  signed short));
 | 
						|
    IMPLEMENT_CAST_CASE(UInt   , (unsigned int ));
 | 
						|
    IMPLEMENT_CAST_CASE(Int    , (  signed int ));
 | 
						|
    IMPLEMENT_CAST_CASE(ULong  , (uint64_t));
 | 
						|
    IMPLEMENT_CAST_CASE(Long   , ( int64_t));
 | 
						|
    IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
 | 
						|
    IMPLEMENT_CAST_CASE(Float  , (float));
 | 
						|
    IMPLEMENT_CAST_CASE(Double , (double));
 | 
						|
    IMPLEMENT_CAST_CASE(Bool   , (bool));
 | 
						|
  default:
 | 
						|
    std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  return Dest;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Interpreter::visitCastInst(CastInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
  SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::visitVarArgInst(VarArgInst &I) {
 | 
						|
  ExecutionContext &SF = ECStack.back();
 | 
						|
 | 
						|
  // Get the pointer to the valist element.  LLI treats the valist in memory as
 | 
						|
  // an integer.
 | 
						|
  GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF);
 | 
						|
 | 
						|
  // Load the pointer
 | 
						|
  GenericValue VAList = 
 | 
						|
    TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy);
 | 
						|
 | 
						|
  unsigned Argument = VAList.IntVal++;
 | 
						|
 | 
						|
  // Update the valist to point to the next argument...
 | 
						|
  TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr),
 | 
						|
                            Type::UIntTy);
 | 
						|
 | 
						|
  // Set the value...
 | 
						|
  assert(Argument < SF.VarArgs.size() &&
 | 
						|
         "Accessing past the last vararg argument!");
 | 
						|
  SetValue(&I, SF.VarArgs[Argument], SF);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Dispatch and Execution Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
FunctionInfo::FunctionInfo(Function *F) : Annotation(FunctionInfoAID) {
 | 
						|
  // Assign slot numbers to the function arguments...
 | 
						|
  for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
 | 
						|
    AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
 | 
						|
 | 
						|
  // Iterate over all of the instructions...
 | 
						|
  unsigned InstNum = 0;
 | 
						|
  for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
 | 
						|
      // For each instruction... Add Annote
 | 
						|
      II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
 | 
						|
}
 | 
						|
 | 
						|
unsigned FunctionInfo::getValueSlot(const Value *V) {
 | 
						|
  unsigned Plane = V->getType()->getUniqueID();
 | 
						|
  if (Plane >= NumPlaneElements.size())
 | 
						|
    NumPlaneElements.resize(Plane+1, 0);
 | 
						|
  return NumPlaneElements[Plane]++;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// callFunction - Execute the specified function...
 | 
						|
//
 | 
						|
void Interpreter::callFunction(Function *F,
 | 
						|
                               const std::vector<GenericValue> &ArgVals) {
 | 
						|
  assert((ECStack.empty() || ECStack.back().Caller == 0 || 
 | 
						|
	  ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
 | 
						|
	 "Incorrect number of arguments passed into function call!");
 | 
						|
  if (F->isExternal()) {
 | 
						|
    GenericValue Result = callExternalFunction(F, ArgVals);
 | 
						|
    const Type *RetTy = F->getReturnType();
 | 
						|
 | 
						|
    // Copy the result back into the result variable if we are not returning
 | 
						|
    // void.
 | 
						|
    if (RetTy != Type::VoidTy) {
 | 
						|
      if (!ECStack.empty() && ECStack.back().Caller) {
 | 
						|
        ExecutionContext &SF = ECStack.back();
 | 
						|
        SetValue(SF.Caller, Result, SF);
 | 
						|
      
 | 
						|
        SF.Caller = 0;          // We returned from the call...
 | 
						|
      } else if (!QuietMode) {
 | 
						|
        // print it.
 | 
						|
        CW << "Function " << F->getType() << " \"" << F->getName()
 | 
						|
           << "\" returned ";
 | 
						|
        print(RetTy, Result); 
 | 
						|
        std::cout << "\n";
 | 
						|
        
 | 
						|
        if (RetTy->isIntegral())
 | 
						|
          ExitCode = Result.IntVal;   // Capture the exit code of the program
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Process the function, assigning instruction numbers to the instructions in
 | 
						|
  // the function.  Also calculate the number of values for each type slot
 | 
						|
  // active.
 | 
						|
  //
 | 
						|
  FunctionInfo *FuncInfo =
 | 
						|
    (FunctionInfo*)F->getOrCreateAnnotation(FunctionInfoAID);
 | 
						|
  ECStack.push_back(ExecutionContext());         // Make a new stack frame...
 | 
						|
 | 
						|
  ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
 | 
						|
  StackFrame.CurFunction = F;
 | 
						|
  StackFrame.CurBB     = F->begin();
 | 
						|
  StackFrame.CurInst   = StackFrame.CurBB->begin();
 | 
						|
  StackFrame.FuncInfo  = FuncInfo;
 | 
						|
 | 
						|
  // Initialize the values to nothing...
 | 
						|
  StackFrame.Values.resize(FuncInfo->NumPlaneElements.size());
 | 
						|
  for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) {
 | 
						|
    StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]);
 | 
						|
 | 
						|
    // Taint the initial values of stuff
 | 
						|
    memset(&StackFrame.Values[i][0], 42,
 | 
						|
           FuncInfo->NumPlaneElements[i]*sizeof(GenericValue));
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Run through the function arguments and initialize their values...
 | 
						|
  assert((ArgVals.size() == F->asize() ||
 | 
						|
         (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) &&
 | 
						|
         "Invalid number of values passed to function invocation!");
 | 
						|
 | 
						|
  // Handle non-varargs arguments...
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i)
 | 
						|
    SetValue(AI, ArgVals[i], StackFrame);
 | 
						|
 | 
						|
  // Handle varargs arguments...
 | 
						|
  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
 | 
						|
}
 | 
						|
 | 
						|
// executeInstruction - Interpret a single instruction, increment the "PC", and
 | 
						|
// return true if the next instruction is a breakpoint...
 | 
						|
//
 | 
						|
bool Interpreter::executeInstruction() {
 | 
						|
  assert(!ECStack.empty() && "No program running, cannot execute inst!");
 | 
						|
 | 
						|
  ExecutionContext &SF = ECStack.back();  // Current stack frame
 | 
						|
  Instruction &I = *SF.CurInst++;         // Increment before execute
 | 
						|
 | 
						|
  if (Trace) CW << "Run:" << I;
 | 
						|
 | 
						|
  // Track the number of dynamic instructions executed.
 | 
						|
  ++NumDynamicInsts;
 | 
						|
 | 
						|
  // Set a sigsetjmp buffer so that we can recover if an error happens during
 | 
						|
  // instruction execution...
 | 
						|
  //
 | 
						|
  if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) {
 | 
						|
    --SF.CurInst;   // Back up to erroring instruction
 | 
						|
    if (SigNo != SIGINT) {
 | 
						|
      std::cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n";
 | 
						|
      printStackTrace();
 | 
						|
      // If -abort-on-exception was specified, terminate LLI instead of trying
 | 
						|
      // to debug it.
 | 
						|
      //
 | 
						|
      if (AbortOnExceptions) exit(1);
 | 
						|
    } else if (SigNo == SIGINT) {
 | 
						|
      std::cout << "CTRL-C Detected, execution halted.\n";
 | 
						|
    }
 | 
						|
    InInstruction = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  InInstruction = true;
 | 
						|
  visit(I);   // Dispatch to one of the visit* methods...
 | 
						|
  InInstruction = false;
 | 
						|
  
 | 
						|
  // Reset the current frame location to the top of stack
 | 
						|
  CurFrame = ECStack.size()-1;
 | 
						|
 | 
						|
  if (CurFrame == -1) return false;  // No breakpoint if no code
 | 
						|
 | 
						|
  // Return true if there is a breakpoint annotation on the instruction...
 | 
						|
  return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::stepInstruction() {  // Do the 'step' command
 | 
						|
  if (ECStack.empty()) {
 | 
						|
    std::cout << "Error: no program running, cannot step!\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Run an instruction...
 | 
						|
  executeInstruction();
 | 
						|
 | 
						|
  // Print the next instruction to execute...
 | 
						|
  printCurrentInstruction();
 | 
						|
}
 | 
						|
 | 
						|
// --- UI Stuff...
 | 
						|
void Interpreter::nextInstruction() {  // Do the 'next' command
 | 
						|
  if (ECStack.empty()) {
 | 
						|
    std::cout << "Error: no program running, cannot 'next'!\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a call instruction, step over the call instruction...
 | 
						|
  // TODO: ICALL, CALL WITH, ...
 | 
						|
  if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
 | 
						|
    unsigned StackSize = ECStack.size();
 | 
						|
    // Step into the function...
 | 
						|
    if (executeInstruction()) {
 | 
						|
      // Hit a breakpoint, print current instruction, then return to user...
 | 
						|
      std::cout << "Breakpoint hit!\n";
 | 
						|
      printCurrentInstruction();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we we able to step into the function, finish it now.  We might not be
 | 
						|
    // able the step into a function, if it's external for example.
 | 
						|
    if (ECStack.size() != StackSize)
 | 
						|
      finish(); // Finish executing the function...
 | 
						|
    else
 | 
						|
      printCurrentInstruction();
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Normal instruction, just step...
 | 
						|
    stepInstruction();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::run() {
 | 
						|
  if (ECStack.empty()) {
 | 
						|
    std::cout << "Error: no program running, cannot run!\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool HitBreakpoint = false;
 | 
						|
  while (!ECStack.empty() && !HitBreakpoint) {
 | 
						|
    // Run an instruction...
 | 
						|
    HitBreakpoint = executeInstruction();
 | 
						|
  }
 | 
						|
 | 
						|
  if (HitBreakpoint)
 | 
						|
    std::cout << "Breakpoint hit!\n";
 | 
						|
 | 
						|
  // Print the next instruction to execute...
 | 
						|
  printCurrentInstruction();
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::finish() {
 | 
						|
  if (ECStack.empty()) {
 | 
						|
    std::cout << "Error: no program running, cannot run!\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned StackSize = ECStack.size();
 | 
						|
  bool HitBreakpoint = false;
 | 
						|
  while (ECStack.size() >= StackSize && !HitBreakpoint) {
 | 
						|
    // Run an instruction...
 | 
						|
    HitBreakpoint = executeInstruction();
 | 
						|
  }
 | 
						|
 | 
						|
  if (HitBreakpoint)
 | 
						|
    std::cout << "Breakpoint hit!\n";
 | 
						|
 | 
						|
  // Print the next instruction to execute...
 | 
						|
  printCurrentInstruction();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// printCurrentInstruction - Print out the instruction that the virtual PC is
 | 
						|
// at, or fail silently if no program is running.
 | 
						|
//
 | 
						|
void Interpreter::printCurrentInstruction() {
 | 
						|
  if (!ECStack.empty()) {
 | 
						|
    if (ECStack.back().CurBB->begin() == ECStack.back().CurInst)  // print label
 | 
						|
      WriteAsOperand(std::cout, ECStack.back().CurBB) << ":\n";
 | 
						|
 | 
						|
    Instruction &I = *ECStack.back().CurInst;
 | 
						|
    InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
 | 
						|
    assert(IN && "Instruction has no numbering annotation!");
 | 
						|
    std::cout << "#" << IN->InstNum << I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::printValue(const Type *Ty, GenericValue V) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID:   std::cout << (V.BoolVal?"true":"false"); break;
 | 
						|
  case Type::SByteTyID:
 | 
						|
    std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'";  break;
 | 
						|
  case Type::UByteTyID:
 | 
						|
    std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'";  break;
 | 
						|
  case Type::ShortTyID:  std::cout << V.ShortVal;  break;
 | 
						|
  case Type::UShortTyID: std::cout << V.UShortVal; break;
 | 
						|
  case Type::IntTyID:    std::cout << V.IntVal;    break;
 | 
						|
  case Type::UIntTyID:   std::cout << V.UIntVal;   break;
 | 
						|
  case Type::LongTyID:   std::cout << (long)V.LongVal;   break;
 | 
						|
  case Type::ULongTyID:  std::cout << (unsigned long)V.ULongVal;  break;
 | 
						|
  case Type::FloatTyID:  std::cout << V.FloatVal;  break;
 | 
						|
  case Type::DoubleTyID: std::cout << V.DoubleVal; break;
 | 
						|
  case Type::PointerTyID:std::cout << (void*)GVTOP(V); break;
 | 
						|
  default:
 | 
						|
    std::cout << "- Don't know how to print value of this type!";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::print(const Type *Ty, GenericValue V) {
 | 
						|
  CW << Ty << " ";
 | 
						|
  printValue(Ty, V);
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::print(const std::string &Name) {
 | 
						|
  Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
 | 
						|
  if (!PickedVal) return;
 | 
						|
 | 
						|
  if (const Function *F = dyn_cast<const Function>(PickedVal)) {
 | 
						|
    CW << F;  // Print the function
 | 
						|
  } else if (const Type *Ty = dyn_cast<const Type>(PickedVal)) {
 | 
						|
    CW << "type %" << Name << " = " << Ty->getDescription() << "\n";
 | 
						|
  } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(PickedVal)) {
 | 
						|
    CW << BB;   // Print the basic block
 | 
						|
  } else {      // Otherwise there should be an annotation for the slot#
 | 
						|
    print(PickedVal->getType(), 
 | 
						|
          getOperandValue(PickedVal, ECStack[CurFrame]));
 | 
						|
    std::cout << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Interpreter::infoValue(const std::string &Name) {
 | 
						|
  Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
 | 
						|
  if (!PickedVal) return;
 | 
						|
 | 
						|
  std::cout << "Value: ";
 | 
						|
  print(PickedVal->getType(), 
 | 
						|
        getOperandValue(PickedVal, ECStack[CurFrame]));
 | 
						|
  std::cout << "\n";
 | 
						|
  printOperandInfo(PickedVal, ECStack[CurFrame]);
 | 
						|
}
 | 
						|
 | 
						|
// printStackFrame - Print information about the specified stack frame, or -1
 | 
						|
// for the default one.
 | 
						|
//
 | 
						|
void Interpreter::printStackFrame(int FrameNo) {
 | 
						|
  if (FrameNo == -1) FrameNo = CurFrame;
 | 
						|
  Function *F = ECStack[FrameNo].CurFunction;
 | 
						|
  const Type *RetTy = F->getReturnType();
 | 
						|
 | 
						|
  CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
 | 
						|
     << (Value*)RetTy << " \"" << F->getName() << "\"(";
 | 
						|
  
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
 | 
						|
    if (i != 0) std::cout << ", ";
 | 
						|
    CW << *I << "=";
 | 
						|
    
 | 
						|
    printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
 | 
						|
  }
 | 
						|
 | 
						|
  std::cout << ")\n";
 | 
						|
 | 
						|
  if (FrameNo != int(ECStack.size()-1)) {
 | 
						|
    BasicBlock::iterator I = ECStack[FrameNo].CurInst;
 | 
						|
    CW << --I;
 | 
						|
  } else {
 | 
						|
    CW << *ECStack[FrameNo].CurInst;
 | 
						|
  }
 | 
						|
}
 | 
						|
 |