mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	natural loop canonicalization (which does many cfg xforms) by 4.3x, for example. This also fixes a bug in postdom dfnumber computation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40920 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			262 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the post-dominator construction algorithms.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| char PostDominatorTree::ID = 0;
 | |
| char PostDominanceFrontier::ID = 0;
 | |
| static RegisterPass<PostDominatorTree>
 | |
| F("postdomtree", "Post-Dominator Tree Construction", true);
 | |
| 
 | |
| unsigned PostDominatorTree::DFSPass(BasicBlock *V, unsigned N) {
 | |
|   std::vector<BasicBlock *> workStack;
 | |
|   SmallPtrSet<BasicBlock *, 32> Visited;
 | |
|   workStack.push_back(V);
 | |
| 
 | |
|   do {
 | |
|     BasicBlock *currentBB = workStack.back();
 | |
|     InfoRec &CurVInfo = Info[currentBB];
 | |
| 
 | |
|     // Visit each block only once.
 | |
|     if (Visited.insert(currentBB)) {
 | |
|       CurVInfo.Semi = ++N;
 | |
|       CurVInfo.Label = currentBB;
 | |
|       
 | |
|       Vertex.push_back(currentBB);  // Vertex[n] = current;
 | |
|       // Info[currentBB].Ancestor = 0;     
 | |
|       // Ancestor[n] = 0
 | |
|       // Child[currentBB] = 0;
 | |
|       CurVInfo.Size = 1;       // Size[currentBB] = 1
 | |
|     }
 | |
| 
 | |
|     // Visit children
 | |
|     bool visitChild = false;
 | |
|     for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); 
 | |
|          PI != PE && !visitChild; ++PI) {
 | |
|       InfoRec &SuccVInfo = Info[*PI];
 | |
|       if (SuccVInfo.Semi == 0) {
 | |
|         SuccVInfo.Parent = currentBB;
 | |
|         if (!Visited.count(*PI)) {
 | |
|           workStack.push_back(*PI);   
 | |
|           visitChild = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If all children are visited or if this block has no child then pop this
 | |
|     // block out of workStack.
 | |
|     if (!visitChild)
 | |
|       workStack.pop_back();
 | |
| 
 | |
|   } while (!workStack.empty());
 | |
| 
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
 | |
|   BasicBlock *VAncestor = VInfo.Ancestor;
 | |
|   InfoRec &VAInfo = Info[VAncestor];
 | |
|   if (VAInfo.Ancestor == 0)
 | |
|     return;
 | |
|   
 | |
|   Compress(VAncestor, VAInfo);
 | |
|   
 | |
|   BasicBlock *VAncestorLabel = VAInfo.Label;
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
|   if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | |
|     VInfo.Label = VAncestorLabel;
 | |
|   
 | |
|   VInfo.Ancestor = VAInfo.Ancestor;
 | |
| }
 | |
| 
 | |
| BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
 | |
|   InfoRec &VInfo = Info[V];
 | |
| 
 | |
|   // Higher-complexity but faster implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return V;
 | |
|   Compress(V, VInfo);
 | |
|   return VInfo.Label;
 | |
| }
 | |
| 
 | |
| void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W, 
 | |
|                                    InfoRec &WInfo) {
 | |
|   // Higher-complexity but faster implementation
 | |
|   WInfo.Ancestor = V;
 | |
| }
 | |
| 
 | |
| void PostDominatorTree::calculate(Function &F) {
 | |
|   // Step #0: Scan the function looking for the root nodes of the post-dominance
 | |
|   // relationships.  These blocks, which have no successors, end with return and
 | |
|   // unwind instructions.
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     TerminatorInst *Insn = I->getTerminator();
 | |
|     if (Insn->getNumSuccessors() == 0) {
 | |
|       // Unreachable block is not a root node.
 | |
|       if (!isa<UnreachableInst>(Insn))
 | |
|         Roots.push_back(I);
 | |
|     }
 | |
|     
 | |
|     // Prepopulate maps so that we don't get iterator invalidation issues later.
 | |
|     IDoms[I] = 0;
 | |
|     DomTreeNodes[I] = 0;
 | |
|   }
 | |
|   
 | |
|   Vertex.push_back(0);
 | |
|   
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   unsigned N = 0;
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     N = DFSPass(Roots[i], N);
 | |
|   
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     InfoRec &WInfo = Info[W];
 | |
|     
 | |
|     // Step #2: Calculate the semidominators of all vertices
 | |
|     for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
 | |
|       if (Info.count(*SI)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = Info[Eval(*SI)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
|         
 | |
|     Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | |
|     
 | |
|     BasicBlock *WParent = WInfo.Parent;
 | |
|     Link(WParent, W, WInfo);
 | |
|     
 | |
|     // Step #3: Implicitly define the immediate dominator of vertices
 | |
|     std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | |
|     while (!WParentBucket.empty()) {
 | |
|       BasicBlock *V = WParentBucket.back();
 | |
|       WParentBucket.pop_back();
 | |
|       BasicBlock *U = Eval(V);
 | |
|       IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     BasicBlock *&WIDom = IDoms[W];
 | |
|     if (WIDom != Vertex[Info[W].Semi])
 | |
|       WIDom = IDoms[WIDom];
 | |
|   }
 | |
|   
 | |
|   if (Roots.empty()) return;
 | |
| 
 | |
|   // Add a node for the root.  This node might be the actual root, if there is
 | |
|   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | |
|   // which postdominates all real exits if there are multiple exit blocks.
 | |
|   BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
 | |
|   DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
 | |
|   
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (BasicBlock *ImmPostDom = getIDom(I)) {  // Reachable block.
 | |
|       DomTreeNode *&BBNode = DomTreeNodes[I];
 | |
|       if (!BBNode) {  // Haven't calculated this node yet?
 | |
|                       // Get or calculate the node for the immediate dominator
 | |
|         DomTreeNode *IPDomNode = getNodeForBlock(ImmPostDom);
 | |
|         
 | |
|         // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|         // IDomNode
 | |
|         DomTreeNode *C = new DomTreeNode(I, IPDomNode);
 | |
|         DomTreeNodes[I] = C;
 | |
|         BBNode = IPDomNode->addChild(C);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Free temporary memory used to construct idom's
 | |
|   IDoms.clear();
 | |
|   Info.clear();
 | |
|   std::vector<BasicBlock*>().swap(Vertex);
 | |
| 
 | |
|   // Start out with the DFS numbers being invalid.  Let them be computed if
 | |
|   // demanded.
 | |
|   DFSInfoValid = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| DomTreeNode *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
 | |
|   DomTreeNode *&BBNode = DomTreeNodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
|   
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate postdominator.
 | |
|   BasicBlock *IPDom = getIDom(BB);
 | |
|   DomTreeNode *IPDomNode = getNodeForBlock(IPDom);
 | |
|   
 | |
|   // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|   // IDomNode
 | |
|   DomTreeNode *C = new DomTreeNode(BB, IPDomNode);
 | |
|   return DomTreeNodes[BB] = IPDomNode->addChild(C);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterPass<PostDominanceFrontier>
 | |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT,
 | |
|                                  const DomTreeNode *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
|   if (getRoots().empty()) return S;
 | |
| 
 | |
|   if (BB)
 | |
|     for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
 | |
|          SI != SE; ++SI) {
 | |
|       // Does Node immediately dominate this predecessor?
 | |
|       DomTreeNode *SINode = DT[*SI];
 | |
|       if (SINode && SINode->getIDom() != Node)
 | |
|         S.insert(*SI);
 | |
|     }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DomTreeNode::const_iterator
 | |
|          NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
 | |
|     DomTreeNode *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!DT.properlyDominates(Node, DT[*CDFI]))
 | |
|         S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // Ensure that this .cpp file gets linked when PostDominators.h is used.
 | |
| DEFINING_FILE_FOR(PostDominanceFrontier)
 |