mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42178 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1508 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1508 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Devang Patel and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements Loop Index Splitting Pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-index-split"
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumIndexSplit, "Number of loops index split");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass {
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopIndexSplit() : LoopPass((intptr_t)&ID) {}
 | |
| 
 | |
|     // Index split Loop L. Return true if loop is split.
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     class SplitInfo {
 | |
|     public:
 | |
|       SplitInfo() : SplitValue(NULL), SplitCondition(NULL), 
 | |
|                     UseTrueBranchFirst(true), A_ExitValue(NULL), 
 | |
|                     B_StartValue(NULL) {}
 | |
| 
 | |
|       // Induction variable's range is split at this value.
 | |
|       Value *SplitValue;
 | |
|       
 | |
|       // This instruction compares IndVar against SplitValue.
 | |
|       Instruction *SplitCondition;
 | |
| 
 | |
|       // True if after loop index split, first loop will execute split condition's
 | |
|       // true branch.
 | |
|       bool UseTrueBranchFirst;
 | |
| 
 | |
|       // Exit value for first loop after loop split.
 | |
|       Value *A_ExitValue;
 | |
| 
 | |
|       // Start value for second loop after loop split.
 | |
|       Value *B_StartValue;
 | |
| 
 | |
|       // Clear split info.
 | |
|       void clear() {
 | |
|         SplitValue = NULL;
 | |
|         SplitCondition = NULL;
 | |
|         UseTrueBranchFirst = true;
 | |
|         A_ExitValue = NULL;
 | |
|         B_StartValue = NULL;
 | |
|       }
 | |
| 
 | |
|     };
 | |
|     
 | |
|   private:
 | |
| 
 | |
|     // safeIcmpInst - CI is considered safe instruction if one of the operand
 | |
|     // is SCEVAddRecExpr based on induction variable and other operand is
 | |
|     // loop invariant. If CI is safe then populate SplitInfo object SD appropriately
 | |
|     // and return true;
 | |
|     bool safeICmpInst(ICmpInst *CI, SplitInfo &SD);
 | |
| 
 | |
|     /// Find condition inside a loop that is suitable candidate for index split.
 | |
|     void findSplitCondition();
 | |
| 
 | |
|     /// Find loop's exit condition.
 | |
|     void findLoopConditionals();
 | |
| 
 | |
|     /// Return induction variable associated with value V.
 | |
|     void findIndVar(Value *V, Loop *L);
 | |
| 
 | |
|     /// processOneIterationLoop - Current loop L contains compare instruction
 | |
|     /// that compares induction variable, IndVar, agains loop invariant. If
 | |
|     /// entire (i.e. meaningful) loop body is dominated by this compare
 | |
|     /// instruction then loop body is executed only for one iteration. In
 | |
|     /// such case eliminate loop structure surrounding this loop body. For
 | |
|     bool processOneIterationLoop(SplitInfo &SD);
 | |
| 
 | |
|     void updateLoopBounds(ICmpInst *CI);
 | |
|     /// updateLoopIterationSpace - Current loop body is covered by an AND
 | |
|     /// instruction whose operands compares induction variables with loop
 | |
|     /// invariants. If possible, hoist this check outside the loop by
 | |
|     /// updating appropriate start and end values for induction variable.
 | |
|     bool updateLoopIterationSpace(SplitInfo &SD);
 | |
| 
 | |
|     /// If loop header includes loop variant instruction operands then
 | |
|     /// this loop may not be eliminated.
 | |
|     bool safeHeader(SplitInfo &SD,  BasicBlock *BB);
 | |
| 
 | |
|     /// If Exiting block includes loop variant instructions then this
 | |
|     /// loop may not be eliminated.
 | |
|     bool safeExitingBlock(SplitInfo &SD, BasicBlock *BB);
 | |
| 
 | |
|     /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
 | |
|     /// This routine is used to remove split condition's dead branch, dominated by
 | |
|     /// DeadBB. LiveBB dominates split conidition's other branch.
 | |
|     void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB);
 | |
| 
 | |
|     /// safeSplitCondition - Return true if it is possible to
 | |
|     /// split loop using given split condition.
 | |
|     bool safeSplitCondition(SplitInfo &SD);
 | |
| 
 | |
|     /// calculateLoopBounds - ALoop exit value and BLoop start values are calculated
 | |
|     /// based on split value. 
 | |
|     void calculateLoopBounds(SplitInfo &SD);
 | |
| 
 | |
|     /// updatePHINodes - CFG has been changed. 
 | |
|     /// Before 
 | |
|     ///   - ExitBB's single predecessor was Latch
 | |
|     ///   - Latch's second successor was Header
 | |
|     /// Now
 | |
|     ///   - ExitBB's single predecessor was Header
 | |
|     ///   - Latch's one and only successor was Header
 | |
|     ///
 | |
|     /// Update ExitBB PHINodes' to reflect this change.
 | |
|     void updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, 
 | |
|                         BasicBlock *Header,
 | |
|                         PHINode *IV, Instruction *IVIncrement);
 | |
| 
 | |
|     /// moveExitCondition - Move exit condition EC into split condition block CondBB.
 | |
|     void moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB,
 | |
|                            BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC,
 | |
|                            PHINode *IV, Instruction *IVAdd, Loop *LP);
 | |
| 
 | |
|     /// splitLoop - Split current loop L in two loops using split information
 | |
|     /// SD. Update dominator information. Maintain LCSSA form.
 | |
|     bool splitLoop(SplitInfo &SD);
 | |
| 
 | |
|     void initialize() {
 | |
|       IndVar = NULL; 
 | |
|       IndVarIncrement = NULL;
 | |
|       ExitCondition = NULL;
 | |
|       StartValue = NULL;
 | |
|       ExitValueNum = 0;
 | |
|       SplitData.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     // Current Loop.
 | |
|     Loop *L;
 | |
|     LPPassManager *LPM;
 | |
|     LoopInfo *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DominatorTree *DT;
 | |
|     DominanceFrontier *DF;
 | |
|     SmallVector<SplitInfo, 4> SplitData;
 | |
| 
 | |
|     // Induction variable whose range is being split by this transformation.
 | |
|     PHINode *IndVar;
 | |
|     Instruction *IndVarIncrement;
 | |
|       
 | |
|     // Loop exit condition.
 | |
|     ICmpInst *ExitCondition;
 | |
| 
 | |
|     // Induction variable's initial value.
 | |
|     Value *StartValue;
 | |
| 
 | |
|     // Induction variable's final loop exit value operand number in exit condition..
 | |
|     unsigned ExitValueNum;
 | |
|   };
 | |
| 
 | |
|   char LoopIndexSplit::ID = 0;
 | |
|   RegisterPass<LoopIndexSplit> X ("loop-index-split", "Index Split Loops");
 | |
| }
 | |
| 
 | |
| LoopPass *llvm::createLoopIndexSplitPass() {
 | |
|   return new LoopIndexSplit();
 | |
| }
 | |
| 
 | |
| // Index split Loop L. Return true if loop is split.
 | |
| bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) {
 | |
|   bool Changed = false;
 | |
|   L = IncomingLoop;
 | |
|   LPM = &LPM_Ref;
 | |
| 
 | |
|   // FIXME - Nested loops make dominator info updates tricky. 
 | |
|   if (!L->getSubLoops().empty())
 | |
|     return false;
 | |
| 
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   DF = &getAnalysis<DominanceFrontier>();
 | |
| 
 | |
|   initialize();
 | |
| 
 | |
|   findLoopConditionals();
 | |
| 
 | |
|   if (!ExitCondition)
 | |
|     return false;
 | |
| 
 | |
|   findSplitCondition();
 | |
| 
 | |
|   if (SplitData.empty())
 | |
|     return false;
 | |
| 
 | |
|   // First see if it is possible to eliminate loop itself or not.
 | |
|   for (SmallVector<SplitInfo, 4>::iterator SI = SplitData.begin(),
 | |
|          E = SplitData.end(); SI != E;) {
 | |
|     SplitInfo &SD = *SI;
 | |
|     ICmpInst *CI = dyn_cast<ICmpInst>(SD.SplitCondition);
 | |
|     if (SD.SplitCondition->getOpcode() == Instruction::And) {
 | |
|       Changed = updateLoopIterationSpace(SD);
 | |
|       if (Changed) {
 | |
|         ++NumIndexSplit;
 | |
|         // If is loop is eliminated then nothing else to do here.
 | |
|         return Changed;
 | |
|       } else {
 | |
|         SmallVector<SplitInfo, 4>::iterator Delete_SI = SI;
 | |
|         ++SI;
 | |
|         SplitData.erase(Delete_SI);
 | |
|       }
 | |
|     }
 | |
|     else if (CI && CI->getPredicate() == ICmpInst::ICMP_EQ) {
 | |
|       Changed = processOneIterationLoop(SD);
 | |
|       if (Changed) {
 | |
|         ++NumIndexSplit;
 | |
|         // If is loop is eliminated then nothing else to do here.
 | |
|         return Changed;
 | |
|       } else {
 | |
|         SmallVector<SplitInfo, 4>::iterator Delete_SI = SI;
 | |
|         ++SI;
 | |
|         SplitData.erase(Delete_SI);
 | |
|       }
 | |
|     } else
 | |
|       ++SI;
 | |
|   }
 | |
| 
 | |
|   if (SplitData.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Split most profitiable condition.
 | |
|   // FIXME : Implement cost analysis.
 | |
|   unsigned MostProfitableSDIndex = 0;
 | |
|   Changed = splitLoop(SplitData[MostProfitableSDIndex]);
 | |
| 
 | |
|   if (Changed)
 | |
|     ++NumIndexSplit;
 | |
|   
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Return true if V is a induction variable or induction variable's
 | |
| /// increment for loop L.
 | |
| void LoopIndexSplit::findIndVar(Value *V, Loop *L) {
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return;
 | |
| 
 | |
|   // Check if I is a phi node from loop header or not.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     if (PN->getParent() == L->getHeader()) {
 | |
|       IndVar = PN;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Check if I is a add instruction whose one operand is
 | |
|   // phi node from loop header and second operand is constant.
 | |
|   if (I->getOpcode() != Instruction::Add)
 | |
|     return;
 | |
|   
 | |
|   Value *Op0 = I->getOperand(0);
 | |
|   Value *Op1 = I->getOperand(1);
 | |
|   
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(Op0)) {
 | |
|     if (PN->getParent() == L->getHeader()
 | |
|         && isa<ConstantInt>(Op1)) {
 | |
|       IndVar = PN;
 | |
|       IndVarIncrement = I;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(Op1)) {
 | |
|     if (PN->getParent() == L->getHeader()
 | |
|         && isa<ConstantInt>(Op0)) {
 | |
|       IndVar = PN;
 | |
|       IndVarIncrement = I;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| // Find loop's exit condition and associated induction variable.
 | |
| void LoopIndexSplit::findLoopConditionals() {
 | |
| 
 | |
|   BasicBlock *ExitingBlock = NULL;
 | |
| 
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     if (!L->isLoopExit(BB))
 | |
|       continue;
 | |
|     if (ExitingBlock)
 | |
|       return;
 | |
|     ExitingBlock = BB;
 | |
|   }
 | |
| 
 | |
|   if (!ExitingBlock)
 | |
|     return;
 | |
| 
 | |
|   // If exiting block is neither loop header nor loop latch then this loop is
 | |
|   // not suitable. 
 | |
|   if (ExitingBlock != L->getHeader() && ExitingBlock != L->getLoopLatch())
 | |
|     return;
 | |
| 
 | |
|   // If exit block's terminator is conditional branch inst then we have found
 | |
|   // exit condition.
 | |
|   BranchInst *BR = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|   if (!BR || BR->isUnconditional())
 | |
|     return;
 | |
|   
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
 | |
|   if (!CI)
 | |
|     return;
 | |
| 
 | |
|   // FIXME 
 | |
|   if (CI->getPredicate() == ICmpInst::ICMP_EQ
 | |
|       || CI->getPredicate() == ICmpInst::ICMP_NE)
 | |
|     return;
 | |
| 
 | |
|   ExitCondition = CI;
 | |
| 
 | |
|   // Exit condition's one operand is loop invariant exit value and second 
 | |
|   // operand is SCEVAddRecExpr based on induction variable.
 | |
|   Value *V0 = CI->getOperand(0);
 | |
|   Value *V1 = CI->getOperand(1);
 | |
|   
 | |
|   SCEVHandle SH0 = SE->getSCEV(V0);
 | |
|   SCEVHandle SH1 = SE->getSCEV(V1);
 | |
|   
 | |
|   if (SH0->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH1)) {
 | |
|     ExitValueNum = 0;
 | |
|     findIndVar(V1, L);
 | |
|   }
 | |
|   else if (SH1->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH0)) {
 | |
|     ExitValueNum =  1;
 | |
|     findIndVar(V0, L);
 | |
|   }
 | |
| 
 | |
|   if (!IndVar) 
 | |
|     ExitCondition = NULL;
 | |
|   else if (IndVar) {
 | |
|     BasicBlock *Preheader = L->getLoopPreheader();
 | |
|     StartValue = IndVar->getIncomingValueForBlock(Preheader);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Find condition inside a loop that is suitable candidate for index split.
 | |
| void LoopIndexSplit::findSplitCondition() {
 | |
| 
 | |
|   SplitInfo SD;
 | |
|   // Check all basic block's terminators.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     SD.clear();
 | |
|     BasicBlock *BB = *I;
 | |
| 
 | |
|     // If this basic block does not terminate in a conditional branch
 | |
|     // then terminator is not a suitable split condition.
 | |
|     BranchInst *BR = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BR)
 | |
|       continue;
 | |
|     
 | |
|     if (BR->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     if (Instruction *AndI = dyn_cast<Instruction>(BR->getCondition())) {
 | |
|       if (AndI->getOpcode() == Instruction::And) {
 | |
|         ICmpInst *Op0 = dyn_cast<ICmpInst>(AndI->getOperand(0));
 | |
|         ICmpInst *Op1 = dyn_cast<ICmpInst>(AndI->getOperand(1));
 | |
| 
 | |
|         if (!Op0 || !Op1)
 | |
|           continue;
 | |
| 
 | |
|         if (!safeICmpInst(Op0, SD))
 | |
|           continue;
 | |
|         SD.clear();
 | |
|         if (!safeICmpInst(Op1, SD))
 | |
|           continue;
 | |
|         SD.clear();
 | |
|         SD.SplitCondition = AndI;
 | |
|         SplitData.push_back(SD);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
 | |
|     if (!CI || CI == ExitCondition)
 | |
|       continue;
 | |
| 
 | |
|     if (CI->getPredicate() == ICmpInst::ICMP_NE)
 | |
|       continue;
 | |
| 
 | |
|     // If split condition predicate is GT or GE then first execute
 | |
|     // false branch of split condition.
 | |
|     if (CI->getPredicate() == ICmpInst::ICMP_UGT
 | |
|         || CI->getPredicate() == ICmpInst::ICMP_SGT
 | |
|         || CI->getPredicate() == ICmpInst::ICMP_UGE
 | |
|         || CI->getPredicate() == ICmpInst::ICMP_SGE)
 | |
|       SD.UseTrueBranchFirst = false;
 | |
| 
 | |
|     // If one operand is loop invariant and second operand is SCEVAddRecExpr
 | |
|     // based on induction variable then CI is a candidate split condition.
 | |
|     if (safeICmpInst(CI, SD))
 | |
|       SplitData.push_back(SD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // safeIcmpInst - CI is considered safe instruction if one of the operand
 | |
| // is SCEVAddRecExpr based on induction variable and other operand is
 | |
| // loop invariant. If CI is safe then populate SplitInfo object SD appropriately
 | |
| // and return true;
 | |
| bool LoopIndexSplit::safeICmpInst(ICmpInst *CI, SplitInfo &SD) {
 | |
| 
 | |
|   Value *V0 = CI->getOperand(0);
 | |
|   Value *V1 = CI->getOperand(1);
 | |
|   
 | |
|   SCEVHandle SH0 = SE->getSCEV(V0);
 | |
|   SCEVHandle SH1 = SE->getSCEV(V1);
 | |
|   
 | |
|   if (SH0->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH1)) {
 | |
|     SD.SplitValue = V0;
 | |
|     SD.SplitCondition = CI;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(V1)) {
 | |
|       if (PN == IndVar)
 | |
|         return true;
 | |
|     }
 | |
|     else  if (Instruction *Insn = dyn_cast<Instruction>(V1)) {
 | |
|       if (IndVarIncrement && IndVarIncrement == Insn)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   else if (SH1->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH0)) {
 | |
|     SD.SplitValue =  V1;
 | |
|     SD.SplitCondition = CI;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(V0)) {
 | |
|       if (PN == IndVar)
 | |
|         return true;
 | |
|     }
 | |
|     else  if (Instruction *Insn = dyn_cast<Instruction>(V0)) {
 | |
|       if (IndVarIncrement && IndVarIncrement == Insn)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processOneIterationLoop - Current loop L contains compare instruction
 | |
| /// that compares induction variable, IndVar, against loop invariant. If
 | |
| /// entire (i.e. meaningful) loop body is dominated by this compare
 | |
| /// instruction then loop body is executed only once. In such case eliminate 
 | |
| /// loop structure surrounding this loop body. For example,
 | |
| ///     for (int i = start; i < end; ++i) {
 | |
| ///         if ( i == somevalue) {
 | |
| ///           loop_body
 | |
| ///         }
 | |
| ///     }
 | |
| /// can be transformed into
 | |
| ///     if (somevalue >= start && somevalue < end) {
 | |
| ///        i = somevalue;
 | |
| ///        loop_body
 | |
| ///     }
 | |
| bool LoopIndexSplit::processOneIterationLoop(SplitInfo &SD) {
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // First of all, check if SplitCondition dominates entire loop body
 | |
|   // or not.
 | |
|   
 | |
|   // If SplitCondition is not in loop header then this loop is not suitable
 | |
|   // for this transformation.
 | |
|   if (SD.SplitCondition->getParent() != Header)
 | |
|     return false;
 | |
|   
 | |
|   // If loop header includes loop variant instruction operands then
 | |
|   // this loop may not be eliminated.
 | |
|   if (!safeHeader(SD, Header)) 
 | |
|     return false;
 | |
| 
 | |
|   // If Exiting block includes loop variant instructions then this
 | |
|   // loop may not be eliminated.
 | |
|   if (!safeExitingBlock(SD, ExitCondition->getParent())) 
 | |
|     return false;
 | |
| 
 | |
|   // Filter loops where split condition's false branch is not empty.
 | |
|   if (ExitCondition->getParent() != Header->getTerminator()->getSuccessor(1))
 | |
|     return false;
 | |
| 
 | |
|   // If split condition is not safe then do not process this loop.
 | |
|   // For example,
 | |
|   // for(int i = 0; i < N; i++) {
 | |
|   //    if ( i == XYZ) {
 | |
|   //      A;
 | |
|   //    else
 | |
|   //      B;
 | |
|   //    }
 | |
|   //   C;
 | |
|   //   D;
 | |
|   // }
 | |
|   if (!safeSplitCondition(SD))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BranchInst *BR = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (!BR)
 | |
|     return false;
 | |
| 
 | |
|   // Update CFG.
 | |
| 
 | |
|   // Replace index variable with split value in loop body. Loop body is executed
 | |
|   // only when index variable is equal to split value.
 | |
|   IndVar->replaceAllUsesWith(SD.SplitValue);
 | |
| 
 | |
|   // Remove Latch to Header edge.
 | |
|   BasicBlock *LatchSucc = NULL;
 | |
|   Header->removePredecessor(Latch);
 | |
|   for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch);
 | |
|        SI != E; ++SI) {
 | |
|     if (Header != *SI)
 | |
|       LatchSucc = *SI;
 | |
|   }
 | |
|   BR->setUnconditionalDest(LatchSucc);
 | |
| 
 | |
|   Instruction *Terminator = Header->getTerminator();
 | |
|   Value *ExitValue = ExitCondition->getOperand(ExitValueNum);
 | |
| 
 | |
|   // Replace split condition in header.
 | |
|   // Transform 
 | |
|   //      SplitCondition : icmp eq i32 IndVar, SplitValue
 | |
|   // into
 | |
|   //      c1 = icmp uge i32 SplitValue, StartValue
 | |
|   //      c2 = icmp ult i32 SplitValue, ExitValue
 | |
|   //      and i32 c1, c2 
 | |
|   bool SignedPredicate = ExitCondition->isSignedPredicate();
 | |
|   Instruction *C1 = new ICmpInst(SignedPredicate ? 
 | |
|                                  ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
 | |
|                                  SD.SplitValue, StartValue, "lisplit", 
 | |
|                                  Terminator);
 | |
|   Instruction *C2 = new ICmpInst(SignedPredicate ? 
 | |
|                                  ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                                  SD.SplitValue, ExitValue, "lisplit", 
 | |
|                                  Terminator);
 | |
|   Instruction *NSplitCond = BinaryOperator::createAnd(C1, C2, "lisplit", 
 | |
|                                                       Terminator);
 | |
|   SD.SplitCondition->replaceAllUsesWith(NSplitCond);
 | |
|   SD.SplitCondition->eraseFromParent();
 | |
| 
 | |
|   // Now, clear latch block. Remove instructions that are responsible
 | |
|   // to increment induction variable. 
 | |
|   Instruction *LTerminator = Latch->getTerminator();
 | |
|   for (BasicBlock::iterator LB = Latch->begin(), LE = Latch->end();
 | |
|        LB != LE; ) {
 | |
|     Instruction *I = LB;
 | |
|     ++LB;
 | |
|     if (isa<PHINode>(I) || I == LTerminator)
 | |
|       continue;
 | |
| 
 | |
|     if (I == IndVarIncrement) 
 | |
|       I->replaceAllUsesWith(ExitValue);
 | |
|     else
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   LPM->deleteLoopFromQueue(L);
 | |
| 
 | |
|   // Update Dominator Info.
 | |
|   // Only CFG change done is to remove Latch to Header edge. This
 | |
|   // does not change dominator tree because Latch did not dominate
 | |
|   // Header.
 | |
|   if (DF) {
 | |
|     DominanceFrontier::iterator HeaderDF = DF->find(Header);
 | |
|     if (HeaderDF != DF->end()) 
 | |
|       DF->removeFromFrontier(HeaderDF, Header);
 | |
| 
 | |
|     DominanceFrontier::iterator LatchDF = DF->find(Latch);
 | |
|     if (LatchDF != DF->end()) 
 | |
|       DF->removeFromFrontier(LatchDF, Header);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If loop header includes loop variant instruction operands then
 | |
| // this loop can not be eliminated. This is used by processOneIterationLoop().
 | |
| bool LoopIndexSplit::safeHeader(SplitInfo &SD, BasicBlock *Header) {
 | |
| 
 | |
|   Instruction *Terminator = Header->getTerminator();
 | |
|   for(BasicBlock::iterator BI = Header->begin(), BE = Header->end(); 
 | |
|       BI != BE; ++BI) {
 | |
|     Instruction *I = BI;
 | |
| 
 | |
|     // PHI Nodes are OK.
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // SplitCondition itself is OK.
 | |
|     if (I == SD.SplitCondition)
 | |
|       continue;
 | |
| 
 | |
|     // Induction variable is OK.
 | |
|     if (I == IndVar)
 | |
|       continue;
 | |
| 
 | |
|     // Induction variable increment is OK.
 | |
|     if (I == IndVarIncrement)
 | |
|       continue;
 | |
| 
 | |
|     // Terminator is also harmless.
 | |
|     if (I == Terminator)
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise we have a instruction that may not be safe.
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If Exiting block includes loop variant instructions then this
 | |
| // loop may not be eliminated. This is used by processOneIterationLoop().
 | |
| bool LoopIndexSplit::safeExitingBlock(SplitInfo &SD, 
 | |
|                                        BasicBlock *ExitingBlock) {
 | |
| 
 | |
|   for (BasicBlock::iterator BI = ExitingBlock->begin(), 
 | |
|          BE = ExitingBlock->end(); BI != BE; ++BI) {
 | |
|     Instruction *I = BI;
 | |
| 
 | |
|     // PHI Nodes are OK.
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Induction variable increment is OK.
 | |
|     if (IndVarIncrement && IndVarIncrement == I)
 | |
|       continue;
 | |
| 
 | |
|     // Check if I is induction variable increment instruction.
 | |
|     if (!IndVarIncrement && I->getOpcode() == Instruction::Add) {
 | |
| 
 | |
|       Value *Op0 = I->getOperand(0);
 | |
|       Value *Op1 = I->getOperand(1);
 | |
|       PHINode *PN = NULL;
 | |
|       ConstantInt *CI = NULL;
 | |
| 
 | |
|       if ((PN = dyn_cast<PHINode>(Op0))) {
 | |
|         if ((CI = dyn_cast<ConstantInt>(Op1)))
 | |
|           IndVarIncrement = I;
 | |
|       } else 
 | |
|         if ((PN = dyn_cast<PHINode>(Op1))) {
 | |
|           if ((CI = dyn_cast<ConstantInt>(Op0)))
 | |
|             IndVarIncrement = I;
 | |
|       }
 | |
|           
 | |
|       if (IndVarIncrement && PN == IndVar && CI->isOne())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // I is an Exit condition if next instruction is block terminator.
 | |
|     // Exit condition is OK if it compares loop invariant exit value,
 | |
|     // which is checked below.
 | |
|     else if (ICmpInst *EC = dyn_cast<ICmpInst>(I)) {
 | |
|       if (EC == ExitCondition)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (I == ExitingBlock->getTerminator())
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise we have instruction that may not be safe.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We could not find any reason to consider ExitingBlock unsafe.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopIndexSplit::updateLoopBounds(ICmpInst *CI) {
 | |
| 
 | |
|   Value *V0 = CI->getOperand(0);
 | |
|   Value *V1 = CI->getOperand(1);
 | |
|   Value *NV = NULL;
 | |
| 
 | |
|   SCEVHandle SH0 = SE->getSCEV(V0);
 | |
|   
 | |
|   if (SH0->isLoopInvariant(L))
 | |
|     NV = V0;
 | |
|   else
 | |
|     NV = V1;
 | |
| 
 | |
|   switch (CI->getPredicate()) {
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     // for (i = LB; i < UB; ++i)
 | |
|     //   if (i <= NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NUB = min (NV+1, UB)
 | |
|     // for (i = LB; i < NUB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
| 
 | |
| 
 | |
| 
 | |
|     // for (i = LB; i <= UB; ++i)
 | |
|     //   if (i <= NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NUB = min (NV, UB)
 | |
|     // for (i = LB; i <= NUB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     // for (i = LB; i < UB; ++i)
 | |
|     //   if (i < NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NUB = min (NV, UB)
 | |
|     // for (i = LB; i < NUB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
| 
 | |
| 
 | |
| 
 | |
|     // for (i = LB; i <= UB; ++i)
 | |
|     //   if (i < NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NUB = min (NV -1 , UB)
 | |
|     // for (i = LB; i <= NUB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     // for (i = LB; i (< or <=) UB; ++i)
 | |
|     //   if (i >= NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NLB = max (NV, LB)
 | |
|     // for (i = NLB; i (< or <=) UB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     // for (i = LB; i (< or <=) UB; ++i)
 | |
|     //   if (i > NV && ...)
 | |
|     //      LOOP_BODY
 | |
|     // 
 | |
|     // is transformed into
 | |
|     // NLB = max (NV+1, LB)
 | |
|     // for (i = NLB; i (< or <=) UB ; ++i)
 | |
|     //   LOOP_BODY
 | |
|     //
 | |
|     break;
 | |
|   default:
 | |
|     assert ( 0 && "Unexpected split condition predicate");
 | |
|   }
 | |
| }
 | |
| /// updateLoopIterationSpace - Current loop body is covered by an AND
 | |
| /// instruction whose operands compares induction variables with loop
 | |
| /// invariants. If possible, hoist this check outside the loop by
 | |
| /// updating appropriate start and end values for induction variable.
 | |
| bool LoopIndexSplit::updateLoopIterationSpace(SplitInfo &SD) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   ICmpInst *Op0 = cast<ICmpInst>(SD.SplitCondition->getOperand(0));
 | |
|   ICmpInst *Op1 = cast<ICmpInst>(SD.SplitCondition->getOperand(1));
 | |
| 
 | |
|   if (Op0->getPredicate() == ICmpInst::ICMP_EQ 
 | |
|       || Op0->getPredicate() == ICmpInst::ICMP_NE
 | |
|       || Op0->getPredicate() == ICmpInst::ICMP_EQ 
 | |
|       || Op0->getPredicate() == ICmpInst::ICMP_NE)
 | |
|     return false;
 | |
| 
 | |
|   // Check if SplitCondition dominates entire loop body
 | |
|   // or not.
 | |
|   
 | |
|   // If SplitCondition is not in loop header then this loop is not suitable
 | |
|   // for this transformation.
 | |
|   if (SD.SplitCondition->getParent() != Header)
 | |
|     return false;
 | |
|   
 | |
|   // If loop header includes loop variant instruction operands then
 | |
|   // this loop may not be eliminated.
 | |
|   Instruction *Terminator = Header->getTerminator();
 | |
|   for(BasicBlock::iterator BI = Header->begin(), BE = Header->end(); 
 | |
|       BI != BE; ++BI) {
 | |
|     Instruction *I = BI;
 | |
| 
 | |
|     // PHI Nodes are OK.
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // SplitCondition itself is OK.
 | |
|     if (I == SD.SplitCondition)
 | |
|       continue;
 | |
|     if (I == Op0 || I == Op1)
 | |
|       continue;
 | |
| 
 | |
|     // Induction variable is OK.
 | |
|     if (I == IndVar)
 | |
|       continue;
 | |
| 
 | |
|     // Induction variable increment is OK.
 | |
|     if (I == IndVarIncrement)
 | |
|       continue;
 | |
| 
 | |
|     // Terminator is also harmless.
 | |
|     if (I == Terminator)
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise we have a instruction that may not be safe.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If Exiting block includes loop variant instructions then this
 | |
|   // loop may not be eliminated.
 | |
|   if (!safeExitingBlock(SD, ExitCondition->getParent())) 
 | |
|     return false;
 | |
| 
 | |
|   updateLoopBounds(Op0);
 | |
|   updateLoopBounds(Op1);
 | |
|   // Update CFG
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
 | |
| /// This routine is used to remove split condition's dead branch, dominated by
 | |
| /// DeadBB. LiveBB dominates split conidition's other branch.
 | |
| void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP, 
 | |
|                                   BasicBlock *LiveBB) {
 | |
| 
 | |
|   // First update DeadBB's dominance frontier. 
 | |
|   SmallVector<BasicBlock *, 8> FrontierBBs;
 | |
|   DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB);
 | |
|   if (DeadBBDF != DF->end()) {
 | |
|     SmallVector<BasicBlock *, 8> PredBlocks;
 | |
|     
 | |
|     DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second;
 | |
|     for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(),
 | |
|            DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI) {
 | |
|       BasicBlock *FrontierBB = *DeadBBSetI;
 | |
|       FrontierBBs.push_back(FrontierBB);
 | |
| 
 | |
|       // Rremove any PHI incoming edge from blocks dominated by DeadBB.
 | |
|       PredBlocks.clear();
 | |
|       for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB);
 | |
|           PI != PE; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if (P == DeadBB || DT->dominates(DeadBB, P))
 | |
|           PredBlocks.push_back(P);
 | |
|       }
 | |
| 
 | |
|       for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end();
 | |
|           FBI != FBE; ++FBI) {
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(FBI)) {
 | |
|           for(SmallVector<BasicBlock *, 8>::iterator PI = PredBlocks.begin(),
 | |
|                 PE = PredBlocks.end(); PI != PE; ++PI) {
 | |
|             BasicBlock *P = *PI;
 | |
|             PN->removeIncomingValue(P);
 | |
|           }
 | |
|         }
 | |
|         else
 | |
|           break;
 | |
|       }      
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Now remove DeadBB and all nodes dominated by DeadBB in df order.
 | |
|   SmallVector<BasicBlock *, 32> WorkList;
 | |
|   DomTreeNode *DN = DT->getNode(DeadBB);
 | |
|   for (df_iterator<DomTreeNode*> DI = df_begin(DN),
 | |
|          E = df_end(DN); DI != E; ++DI) {
 | |
|     BasicBlock *BB = DI->getBlock();
 | |
|     WorkList.push_back(BB);
 | |
|     BB->replaceAllUsesWith(UndefValue::get(Type::LabelTy));
 | |
|   }
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
 | |
|     for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); 
 | |
|         BBI != BBE; ) {
 | |
|       Instruction *I = BBI;
 | |
|       ++BBI;
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|       I->eraseFromParent();
 | |
|     }
 | |
|     LPM->deleteSimpleAnalysisValue(BB, LP);
 | |
|     DT->eraseNode(BB);
 | |
|     DF->removeBlock(BB);
 | |
|     LI->removeBlock(BB);
 | |
|     BB->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Update Frontier BBs' dominator info.
 | |
|   while (!FrontierBBs.empty()) {
 | |
|     BasicBlock *FBB = FrontierBBs.back(); FrontierBBs.pop_back();
 | |
|     BasicBlock *NewDominator = FBB->getSinglePredecessor();
 | |
|     if (!NewDominator) {
 | |
|       pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB);
 | |
|       NewDominator = *PI;
 | |
|       ++PI;
 | |
|       if (NewDominator != LiveBB) {
 | |
|         for(; PI != PE; ++PI) {
 | |
|           BasicBlock *P = *PI;
 | |
|           if (P == LiveBB) {
 | |
|             NewDominator = LiveBB;
 | |
|             break;
 | |
|           }
 | |
|           NewDominator = DT->findNearestCommonDominator(NewDominator, P);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert (NewDominator && "Unable to fix dominator info.");
 | |
|     DT->changeImmediateDominator(FBB, NewDominator);
 | |
|     DF->changeImmediateDominator(FBB, NewDominator, DT);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// safeSplitCondition - Return true if it is possible to
 | |
| /// split loop using given split condition.
 | |
| bool LoopIndexSplit::safeSplitCondition(SplitInfo &SD) {
 | |
| 
 | |
|   BasicBlock *SplitCondBlock = SD.SplitCondition->getParent();
 | |
|   BasicBlock *Latch = L->getLoopLatch();  
 | |
|   BranchInst *SplitTerminator = 
 | |
|     cast<BranchInst>(SplitCondBlock->getTerminator());
 | |
|   BasicBlock *Succ0 = SplitTerminator->getSuccessor(0);
 | |
|   BasicBlock *Succ1 = SplitTerminator->getSuccessor(1);
 | |
| 
 | |
|   // Finally this split condition is safe only if merge point for
 | |
|   // split condition branch is loop latch. This check along with previous
 | |
|   // check, to ensure that exit condition is in either loop latch or header,
 | |
|   // filters all loops with non-empty loop body between merge point
 | |
|   // and exit condition.
 | |
|   DominanceFrontier::iterator Succ0DF = DF->find(Succ0);
 | |
|   assert (Succ0DF != DF->end() && "Unable to find Succ0 dominance frontier");
 | |
|   if (Succ0DF->second.count(Latch))
 | |
|     return true;
 | |
| 
 | |
|   DominanceFrontier::iterator Succ1DF = DF->find(Succ1);
 | |
|   assert (Succ1DF != DF->end() && "Unable to find Succ1 dominance frontier");
 | |
|   if (Succ1DF->second.count(Latch))
 | |
|     return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// calculateLoopBounds - ALoop exit value and BLoop start values are calculated
 | |
| /// based on split value. 
 | |
| void LoopIndexSplit::calculateLoopBounds(SplitInfo &SD) {
 | |
| 
 | |
|   ICmpInst *SC = cast<ICmpInst>(SD.SplitCondition);
 | |
|   ICmpInst::Predicate SP = SC->getPredicate();
 | |
|   const Type *Ty = SD.SplitValue->getType();
 | |
|   bool Sign = ExitCondition->isSignedPredicate();
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   Instruction *PHTerminator = Preheader->getTerminator();
 | |
| 
 | |
|   // Initially use split value as upper loop bound for first loop and lower loop
 | |
|   // bound for second loop.
 | |
|   Value *AEV = SD.SplitValue;
 | |
|   Value *BSV = SD.SplitValue;
 | |
| 
 | |
|   if (ExitCondition->getPredicate() == ICmpInst::ICMP_SGT
 | |
|       || ExitCondition->getPredicate() == ICmpInst::ICMP_UGT
 | |
|       || ExitCondition->getPredicate() == ICmpInst::ICMP_SGE
 | |
|       || ExitCondition->getPredicate() == ICmpInst::ICMP_UGE)
 | |
|     ExitCondition->swapOperands();
 | |
| 
 | |
|   switch (ExitCondition->getPredicate()) {
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|   default:
 | |
|     assert (0 && "Unexpected exit condition predicate");
 | |
| 
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     {
 | |
|       switch (SP) {
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|         //
 | |
|         // for (i = LB; i < UB; ++i) { if (i < SV) A; else B; }
 | |
|         //
 | |
|         // is transformed into
 | |
|         // AEV = BSV = SV
 | |
|         // for (i = LB; i < min(UB, AEV); ++i)
 | |
|         //    A;
 | |
|         // for (i = max(LB, BSV); i < UB; ++i);
 | |
|         //    B;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         {
 | |
|           //
 | |
|           // for (i = LB; i < UB; ++i) { if (i <= SV) A; else B; }
 | |
|           //
 | |
|           // is transformed into
 | |
|           //
 | |
|           // AEV = SV + 1
 | |
|           // BSV = SV + 1
 | |
|           // for (i = LB; i < min(UB, AEV); ++i) 
 | |
|           //       A;
 | |
|           // for (i = max(LB, BSV); i < UB; ++i) 
 | |
|           //       B;
 | |
|           BSV = BinaryOperator::createAdd(SD.SplitValue,
 | |
|                                           ConstantInt::get(Ty, 1, Sign),
 | |
|                                           "lsplit.add", PHTerminator);
 | |
|           AEV = BSV;
 | |
|         }
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|       case ICmpInst::ICMP_UGE: 
 | |
|         //
 | |
|         // for (i = LB; i < UB; ++i) { if (i >= SV) A; else B; }
 | |
|         // 
 | |
|         // is transformed into
 | |
|         // AEV = BSV = SV
 | |
|         // for (i = LB; i < min(UB, AEV); ++i)
 | |
|         //    B;
 | |
|         // for (i = max(BSV, LB); i < UB; ++i)
 | |
|         //    A;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|       case ICmpInst::ICMP_UGT: 
 | |
|         {
 | |
|           //
 | |
|           // for (i = LB; i < UB; ++i) { if (i > SV) A; else B; }
 | |
|           //
 | |
|           // is transformed into
 | |
|           //
 | |
|           // BSV = AEV = SV + 1
 | |
|           // for (i = LB; i < min(UB, AEV); ++i) 
 | |
|           //       B;
 | |
|           // for (i = max(LB, BSV); i < UB; ++i) 
 | |
|           //       A;
 | |
|           BSV = BinaryOperator::createAdd(SD.SplitValue,
 | |
|                                           ConstantInt::get(Ty, 1, Sign),
 | |
|                                           "lsplit.add", PHTerminator);
 | |
|           AEV = BSV;
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         assert (0 && "Unexpected split condition predicate");
 | |
|         break;
 | |
|       } // end switch (SP)
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     {
 | |
|       switch (SP) {
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|         //
 | |
|         // for (i = LB; i <= UB; ++i) { if (i < SV) A; else B; }
 | |
|         //
 | |
|         // is transformed into
 | |
|         // AEV = SV - 1;
 | |
|         // BSV = SV;
 | |
|         // for (i = LB; i <= min(UB, AEV); ++i) 
 | |
|         //       A;
 | |
|         // for (i = max(LB, BSV); i <= UB; ++i) 
 | |
|         //       B;
 | |
|         AEV = BinaryOperator::createSub(SD.SplitValue,
 | |
|                                         ConstantInt::get(Ty, 1, Sign),
 | |
|                                         "lsplit.sub", PHTerminator);
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         //
 | |
|         // for (i = LB; i <= UB; ++i) { if (i <= SV) A; else B; }
 | |
|         //
 | |
|         // is transformed into
 | |
|         // AEV = SV;
 | |
|         // BSV = SV + 1;
 | |
|         // for (i = LB; i <= min(UB, AEV); ++i) 
 | |
|         //       A;
 | |
|         // for (i = max(LB, BSV); i <= UB; ++i) 
 | |
|         //       B;
 | |
|         BSV = BinaryOperator::createAdd(SD.SplitValue,
 | |
|                                         ConstantInt::get(Ty, 1, Sign),
 | |
|                                         "lsplit.add", PHTerminator);
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|       case ICmpInst::ICMP_UGT: 
 | |
|         //
 | |
|         // for (i = LB; i <= UB; ++i) { if (i > SV) A; else B; }
 | |
|         //
 | |
|         // is transformed into
 | |
|         // AEV = SV;
 | |
|         // BSV = SV + 1;
 | |
|         // for (i = LB; i <= min(AEV, UB); ++i)
 | |
|         //      B;
 | |
|         // for (i = max(LB, BSV); i <= UB; ++i)
 | |
|         //      A;
 | |
|         BSV = BinaryOperator::createAdd(SD.SplitValue,
 | |
|                                         ConstantInt::get(Ty, 1, Sign),
 | |
|                                         "lsplit.add", PHTerminator);
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|       case ICmpInst::ICMP_UGE: 
 | |
|         // ** TODO **
 | |
|         //
 | |
|         // for (i = LB; i <= UB; ++i) { if (i >= SV) A; else B; }
 | |
|         //
 | |
|         // is transformed into
 | |
|         // AEV = SV - 1;
 | |
|         // BSV = SV;
 | |
|         // for (i = LB; i <= min(AEV, UB); ++i)
 | |
|         //      B;
 | |
|         // for (i = max(LB, BSV); i <= UB; ++i)
 | |
|         //      A;
 | |
|         AEV = BinaryOperator::createSub(SD.SplitValue,
 | |
|                                         ConstantInt::get(Ty, 1, Sign),
 | |
|                                         "lsplit.sub", PHTerminator);
 | |
|         break;
 | |
|       default:
 | |
|         assert (0 && "Unexpected split condition predicate");
 | |
|         break;
 | |
|       } // end switch (SP)
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Calculate ALoop induction variable's new exiting value and
 | |
|   // BLoop induction variable's new starting value. Calculuate these
 | |
|   // values in original loop's preheader.
 | |
|   //      A_ExitValue = min(SplitValue, OrignalLoopExitValue)
 | |
|   //      B_StartValue = max(SplitValue, OriginalLoopStartValue)
 | |
|   Value *C1 = new ICmpInst(Sign ?
 | |
|                            ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                            AEV,
 | |
|                            ExitCondition->getOperand(ExitValueNum), 
 | |
|                            "lsplit.ev", PHTerminator);
 | |
|   SD.A_ExitValue = new SelectInst(C1, AEV,
 | |
|                                   ExitCondition->getOperand(ExitValueNum), 
 | |
|                                   "lsplit.ev", PHTerminator);
 | |
|   
 | |
|   Value *C2 = new ICmpInst(Sign ?
 | |
|                            ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                            BSV, StartValue, "lsplit.sv",
 | |
|                            PHTerminator);
 | |
|   SD.B_StartValue = new SelectInst(C2, StartValue, BSV,
 | |
|                                    "lsplit.sv", PHTerminator);
 | |
| }
 | |
| 
 | |
| /// splitLoop - Split current loop L in two loops using split information
 | |
| /// SD. Update dominator information. Maintain LCSSA form.
 | |
| bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
 | |
| 
 | |
|   if (!safeSplitCondition(SD))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *SplitCondBlock = SD.SplitCondition->getParent();
 | |
|   
 | |
|   // Unable to handle triange loops at the moment.
 | |
|   // In triangle loop, split condition is in header and one of the
 | |
|   // the split destination is loop latch. If split condition is EQ
 | |
|   // then such loops are already handle in processOneIterationLoop().
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BranchInst *SplitTerminator = 
 | |
|     cast<BranchInst>(SplitCondBlock->getTerminator());
 | |
|   BasicBlock *Succ0 = SplitTerminator->getSuccessor(0);
 | |
|   BasicBlock *Succ1 = SplitTerminator->getSuccessor(1);
 | |
|   if (L->getHeader() == SplitCondBlock 
 | |
|       && (Latch == Succ0 || Latch == Succ1))
 | |
|     return false;
 | |
| 
 | |
|   // If split condition branches heads do not have single predecessor, 
 | |
|   // SplitCondBlock, then is not possible to remove inactive branch.
 | |
|   if (!Succ0->getSinglePredecessor() || !Succ1->getSinglePredecessor())
 | |
|     return false;
 | |
| 
 | |
|   // After loop is cloned there are two loops.
 | |
|   //
 | |
|   // First loop, referred as ALoop, executes first part of loop's iteration
 | |
|   // space split.  Second loop, referred as BLoop, executes remaining
 | |
|   // part of loop's iteration space. 
 | |
|   //
 | |
|   // ALoop's exit edge enters BLoop's header through a forwarding block which 
 | |
|   // acts as a BLoop's preheader.
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Calculate ALoop induction variable's new exiting value and
 | |
|   // BLoop induction variable's new starting value.
 | |
|   calculateLoopBounds(SD);
 | |
| 
 | |
|   //[*] Clone loop.
 | |
|   DenseMap<const Value *, Value *> ValueMap;
 | |
|   Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this);
 | |
|   Loop *ALoop = L;
 | |
|   BasicBlock *B_Header = BLoop->getHeader();
 | |
| 
 | |
|   //[*] ALoop's exiting edge BLoop's header.
 | |
|   //    ALoop's original exit block becomes BLoop's exit block.
 | |
|   PHINode *B_IndVar = cast<PHINode>(ValueMap[IndVar]);
 | |
|   BasicBlock *A_ExitingBlock = ExitCondition->getParent();
 | |
|   BranchInst *A_ExitInsn =
 | |
|     dyn_cast<BranchInst>(A_ExitingBlock->getTerminator());
 | |
|   assert (A_ExitInsn && "Unable to find suitable loop exit branch");
 | |
|   BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1);
 | |
|   if (L->contains(B_ExitBlock)) {
 | |
|     B_ExitBlock = A_ExitInsn->getSuccessor(0);
 | |
|     A_ExitInsn->setSuccessor(0, B_Header);
 | |
|   } else
 | |
|     A_ExitInsn->setSuccessor(1, B_Header);
 | |
| 
 | |
|   //[*] Update ALoop's exit value using new exit value.
 | |
|   ExitCondition->setOperand(ExitValueNum, SD.A_ExitValue);
 | |
|   
 | |
|   // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
 | |
|   //     original loop's preheader. Add incoming PHINode values from
 | |
|   //     ALoop's exiting block. Update BLoop header's domiantor info.
 | |
| 
 | |
|   // Collect inverse map of Header PHINodes.
 | |
|   DenseMap<Value *, Value *> InverseMap;
 | |
|   for (BasicBlock::iterator BI = L->getHeader()->begin(), 
 | |
|          BE = L->getHeader()->end(); BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       PHINode *PNClone = cast<PHINode>(ValueMap[PN]);
 | |
|       InverseMap[PNClone] = PN;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
 | |
|        BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       // Remove incoming value from original preheader.
 | |
|       PN->removeIncomingValue(Preheader);
 | |
| 
 | |
|       // Add incoming value from A_ExitingBlock.
 | |
|       if (PN == B_IndVar)
 | |
|         PN->addIncoming(SD.B_StartValue, A_ExitingBlock);
 | |
|       else { 
 | |
|         PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
 | |
|         Value *V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock);
 | |
|         PN->addIncoming(V2, A_ExitingBlock);
 | |
|       }
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
|   DT->changeImmediateDominator(B_Header, A_ExitingBlock);
 | |
|   DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT);
 | |
|   
 | |
|   // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit
 | |
|   //     block. Remove incoming PHINode values from ALoop's exiting block.
 | |
|   //     Add new incoming values from BLoop's incoming exiting value.
 | |
|   //     Update BLoop exit block's dominator info..
 | |
|   BasicBlock *B_ExitingBlock = cast<BasicBlock>(ValueMap[A_ExitingBlock]);
 | |
|   for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end();
 | |
|        BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)], 
 | |
|                                                             B_ExitingBlock);
 | |
|       PN->removeIncomingValue(A_ExitingBlock);
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock);
 | |
|   DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT);
 | |
| 
 | |
|   //[*] Split ALoop's exit edge. This creates a new block which
 | |
|   //    serves two purposes. First one is to hold PHINode defnitions
 | |
|   //    to ensure that ALoop's LCSSA form. Second use it to act
 | |
|   //    as a preheader for BLoop.
 | |
|   BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this);
 | |
| 
 | |
|   //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes
 | |
|   //    in A_ExitBlock to redefine outgoing PHI definitions from ALoop.
 | |
|   for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
 | |
|       BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock);
 | |
|       PHINode *newPHI = new PHINode(PN->getType(), PN->getName());
 | |
|       newPHI->addIncoming(V1, A_ExitingBlock);
 | |
|       A_ExitBlock->getInstList().push_front(newPHI);
 | |
|       PN->removeIncomingValue(A_ExitBlock);
 | |
|       PN->addIncoming(newPHI, A_ExitBlock);
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   //[*] Eliminate split condition's inactive branch from ALoop.
 | |
|   BasicBlock *A_SplitCondBlock = SD.SplitCondition->getParent();
 | |
|   BranchInst *A_BR = cast<BranchInst>(A_SplitCondBlock->getTerminator());
 | |
|   BasicBlock *A_InactiveBranch = NULL;
 | |
|   BasicBlock *A_ActiveBranch = NULL;
 | |
|   if (SD.UseTrueBranchFirst) {
 | |
|     A_ActiveBranch = A_BR->getSuccessor(0);
 | |
|     A_InactiveBranch = A_BR->getSuccessor(1);
 | |
|   } else {
 | |
|     A_ActiveBranch = A_BR->getSuccessor(1);
 | |
|     A_InactiveBranch = A_BR->getSuccessor(0);
 | |
|   }
 | |
|   A_BR->setUnconditionalDest(A_ActiveBranch);
 | |
|   removeBlocks(A_InactiveBranch, L, A_ActiveBranch);
 | |
| 
 | |
|   //[*] Eliminate split condition's inactive branch in from BLoop.
 | |
|   BasicBlock *B_SplitCondBlock = cast<BasicBlock>(ValueMap[A_SplitCondBlock]);
 | |
|   BranchInst *B_BR = cast<BranchInst>(B_SplitCondBlock->getTerminator());
 | |
|   BasicBlock *B_InactiveBranch = NULL;
 | |
|   BasicBlock *B_ActiveBranch = NULL;
 | |
|   if (SD.UseTrueBranchFirst) {
 | |
|     B_ActiveBranch = B_BR->getSuccessor(1);
 | |
|     B_InactiveBranch = B_BR->getSuccessor(0);
 | |
|   } else {
 | |
|     B_ActiveBranch = B_BR->getSuccessor(0);
 | |
|     B_InactiveBranch = B_BR->getSuccessor(1);
 | |
|   }
 | |
|   B_BR->setUnconditionalDest(B_ActiveBranch);
 | |
|   removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch);
 | |
| 
 | |
|   BasicBlock *A_Header = L->getHeader();
 | |
|   if (A_ExitingBlock == A_Header)
 | |
|     return true;
 | |
| 
 | |
|   //[*] Move exit condition into split condition block to avoid
 | |
|   //    executing dead loop iteration.
 | |
|   ICmpInst *B_ExitCondition = cast<ICmpInst>(ValueMap[ExitCondition]);
 | |
|   Instruction *B_IndVarIncrement = cast<Instruction>(ValueMap[IndVarIncrement]);
 | |
|   ICmpInst *B_SplitCondition = cast<ICmpInst>(ValueMap[SD.SplitCondition]);
 | |
| 
 | |
|   moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition,
 | |
|                     cast<ICmpInst>(SD.SplitCondition), IndVar, IndVarIncrement, 
 | |
|                     ALoop);
 | |
| 
 | |
|   moveExitCondition(B_SplitCondBlock, B_ActiveBranch, B_ExitBlock, B_ExitCondition,
 | |
|                     B_SplitCondition, B_IndVar, B_IndVarIncrement, BLoop);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // moveExitCondition - Move exit condition EC into split condition block CondBB.
 | |
| void LoopIndexSplit::moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB,
 | |
|                                        BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC,
 | |
|                                        PHINode *IV, Instruction *IVAdd, Loop *LP) {
 | |
| 
 | |
|   BasicBlock *ExitingBB = EC->getParent();
 | |
|   Instruction *CurrentBR = CondBB->getTerminator();
 | |
| 
 | |
|   // Move exit condition into split condition block.
 | |
|   EC->moveBefore(CurrentBR);
 | |
|   EC->setOperand(ExitValueNum == 0 ? 1 : 0, IV);
 | |
| 
 | |
|   // Move exiting block's branch into split condition block. Update its branch
 | |
|   // destination.
 | |
|   BranchInst *ExitingBR = cast<BranchInst>(ExitingBB->getTerminator());
 | |
|   ExitingBR->moveBefore(CurrentBR);
 | |
|   if (ExitingBR->getSuccessor(0) == ExitBB)
 | |
|     ExitingBR->setSuccessor(1, ActiveBB);
 | |
|   else
 | |
|     ExitingBR->setSuccessor(0, ActiveBB);
 | |
|     
 | |
|   // Remove split condition and current split condition branch.
 | |
|   SC->eraseFromParent();
 | |
|   CurrentBR->eraseFromParent();
 | |
| 
 | |
|   // Connect exiting block to split condition block.
 | |
|   new BranchInst(CondBB, ExitingBB);
 | |
| 
 | |
|   // Update PHINodes
 | |
|   updatePHINodes(ExitBB, ExitingBB, CondBB, IV, IVAdd);
 | |
| 
 | |
|   // Fix dominator info.
 | |
|   // ExitBB is now dominated by CondBB
 | |
|   DT->changeImmediateDominator(ExitBB, CondBB);
 | |
|   DF->changeImmediateDominator(ExitBB, CondBB, DT);
 | |
|   
 | |
|   // Basicblocks dominated by ActiveBB may have ExitingBB or
 | |
|   // a basic block outside the loop in their DF list. If so,
 | |
|   // replace it with CondBB.
 | |
|   DomTreeNode *Node = DT->getNode(ActiveBB);
 | |
|   for (df_iterator<DomTreeNode *> DI = df_begin(Node), DE = df_end(Node);
 | |
|        DI != DE; ++DI) {
 | |
|     BasicBlock *BB = DI->getBlock();
 | |
|     DominanceFrontier::iterator BBDF = DF->find(BB);
 | |
|     DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin();
 | |
|     DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end();
 | |
|     while (DomSetI != DomSetE) {
 | |
|       DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI;
 | |
|       ++DomSetI;
 | |
|       BasicBlock *DFBB = *CurrentItr;
 | |
|       if (DFBB == ExitingBB || !L->contains(DFBB)) {
 | |
|         BBDF->second.erase(DFBB);
 | |
|         BBDF->second.insert(CondBB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// updatePHINodes - CFG has been changed. 
 | |
| /// Before 
 | |
| ///   - ExitBB's single predecessor was Latch
 | |
| ///   - Latch's second successor was Header
 | |
| /// Now
 | |
| ///   - ExitBB's single predecessor was Header
 | |
| ///   - Latch's one and only successor was Header
 | |
| ///
 | |
| /// Update ExitBB PHINodes' to reflect this change.
 | |
| void LoopIndexSplit::updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, 
 | |
|                                     BasicBlock *Header,
 | |
|                                     PHINode *IV, Instruction *IVIncrement) {
 | |
| 
 | |
|   for (BasicBlock::iterator BI = ExitBB->begin(), BE = ExitBB->end(); 
 | |
|        BI != BE; ++BI) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(BI);
 | |
|     if (!PN)
 | |
|       break;
 | |
| 
 | |
|     Value *V = PN->getIncomingValueForBlock(Latch);
 | |
|     if (PHINode *PHV = dyn_cast<PHINode>(V)) {
 | |
|       // PHV is in Latch. PHV has two uses, one use is in ExitBB PHINode 
 | |
|       // (i.e. PN :)). 
 | |
|       // The second use is in Header and it is new incoming value for PN.
 | |
|       PHINode *U1 = NULL;
 | |
|       PHINode *U2 = NULL;
 | |
|       Value *NewV = NULL;
 | |
|       for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end(); 
 | |
|            UI != E; ++UI) {
 | |
|         if (!U1)
 | |
|           U1 = cast<PHINode>(*UI);
 | |
|         else if (!U2)
 | |
|           U2 = cast<PHINode>(*UI);
 | |
|         else
 | |
|           assert ( 0 && "Unexpected third use of this PHINode");
 | |
|       }
 | |
|       assert (U1 && U2 && "Unable to find two uses");
 | |
|       
 | |
|       if (U1->getParent() == Header) 
 | |
|         NewV = U1;
 | |
|       else
 | |
|         NewV = U2;
 | |
|       PN->addIncoming(NewV, Header);
 | |
| 
 | |
|     } else if (Instruction *PHI = dyn_cast<Instruction>(V)) {
 | |
|       // If this instruction is IVIncrement then IV is new incoming value 
 | |
|       // from header otherwise this instruction must be incoming value from 
 | |
|       // header because loop is in LCSSA form.
 | |
|       if (PHI == IVIncrement)
 | |
|         PN->addIncoming(IV, Header);
 | |
|       else
 | |
|         PN->addIncoming(V, Header);
 | |
|     } else
 | |
|       // Otherwise this is an incoming value from header because loop is in 
 | |
|       // LCSSA form.
 | |
|       PN->addIncoming(V, Header);
 | |
|     
 | |
|     // Remove incoming value from Latch.
 | |
|     PN->removeIncomingValue(Latch);
 | |
|   }
 | |
| }
 |