mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-10 20:33:15 +00:00
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80431 91177308-0d34-0410-b5e6-96231b3b80d8
122 lines
4.5 KiB
C++
122 lines
4.5 KiB
C++
//===- MaximumSpanningTree.cpp - LLVM Pass to estimate profile info -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This module privides means for calculating a maximum spanning tree for the
|
|
// CFG of a function according to a given profile. The tree does not contain
|
|
// leaf edges, since they are needed for optimal edge profiling.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#define DEBUG_TYPE "maximum-spanning-tree"
|
|
#include "MaximumSpanningTree.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// compare two weighted edges
|
|
struct VISIBILITY_HIDDEN EdgeWeightCompare {
|
|
bool operator()(const ProfileInfo::EdgeWeight X,
|
|
const ProfileInfo::EdgeWeight Y) const {
|
|
if (X.second > Y.second) return true;
|
|
if (X.second < Y.second) return false;
|
|
#ifndef NDEBUG
|
|
if (X.first.first != 0 && Y.first.first == 0) return true;
|
|
if (X.first.first == 0 && Y.first.first != 0) return false;
|
|
if (X.first.first == 0 && Y.first.first == 0) return false;
|
|
|
|
if (X.first.first->size() > Y.first.first->size()) return true;
|
|
if (X.first.first->size() < Y.first.first->size()) return false;
|
|
|
|
if (X.first.second != 0 && Y.first.second == 0) return true;
|
|
if (X.first.second == 0 && Y.first.second != 0) return false;
|
|
if (X.first.second == 0 && Y.first.second == 0) return false;
|
|
|
|
if (X.first.second->size() > Y.first.second->size()) return true;
|
|
if (X.first.second->size() < Y.first.second->size()) return false;
|
|
#endif
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void inline printMSTEdge(ProfileInfo::EdgeWeight E,
|
|
const char *M) {
|
|
DEBUG(errs() << "--Edge " << E.first
|
|
<<" (Weight "<< format("%g",E.second) << ") "
|
|
<< (M) << "\n");
|
|
}
|
|
|
|
// MaximumSpanningTree() - Takes a function and returns a spanning tree
|
|
// according to the currently active profiling information, the leaf edges are
|
|
// NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal.
|
|
MaximumSpanningTree::MaximumSpanningTree(Function *F, ProfileInfo *PI,
|
|
bool inverted = false) {
|
|
|
|
// Copy edges to vector, sort them biggest first.
|
|
ProfileInfo::EdgeWeights ECs = PI->getEdgeWeights(F);
|
|
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
|
|
std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
|
|
|
|
// Create spanning tree, Forest contains a special data structure
|
|
// that makes checking if two nodes are already in a common (sub-)tree
|
|
// fast and cheap.
|
|
EquivalenceClasses<const BasicBlock*> Forest;
|
|
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
|
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
|
Forest.insert(bbi->first.first);
|
|
Forest.insert(bbi->first.second);
|
|
}
|
|
Forest.insert(0);
|
|
|
|
// Iterate over the sorted edges, biggest first.
|
|
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
|
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
|
ProfileInfo::Edge e = (*bbi).first;
|
|
|
|
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
|
|
Forest.unionSets(e.first, e.second);
|
|
// So we know now that the edge is not already in a subtree (and not
|
|
// (0,entry)), so we push the edge to the MST if it has some successors.
|
|
if (!inverted) { MST.push_back(e); }
|
|
printMSTEdge(*bbi,"in MST");
|
|
} else {
|
|
// This edge is either (0,entry) or (BB,0) or would create a circle in a
|
|
// subtree.
|
|
if (inverted) { MST.push_back(e); }
|
|
printMSTEdge(*bbi,"*not* in MST");
|
|
}
|
|
}
|
|
|
|
// Sort the MST edges.
|
|
std::stable_sort(MST.begin(),MST.end());
|
|
}
|
|
|
|
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::begin() {
|
|
return MST.begin();
|
|
}
|
|
|
|
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::end() {
|
|
return MST.end();
|
|
}
|
|
|
|
void MaximumSpanningTree::dump() {
|
|
errs()<<"{";
|
|
for ( MaxSpanTree::iterator ei = MST.begin(), ee = MST.end();
|
|
ei!=ee; ++ei ) {
|
|
errs()<<"("<<((*ei).first?(*ei).first->getNameStr():"0")<<",";
|
|
errs()<<(*ei).second->getNameStr()<<")";
|
|
}
|
|
errs()<<"}\n";
|
|
}
|