mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97740 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1729 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1729 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86-specific support for the FastISel class. Much
 | |
| // of the target-specific code is generated by tablegen in the file
 | |
| // X86GenFastISel.inc, which is #included here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   
 | |
| class X86FastISel : public FastISel {
 | |
|   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const X86Subtarget *Subtarget;
 | |
| 
 | |
|   /// StackPtr - Register used as the stack pointer.
 | |
|   ///
 | |
|   unsigned StackPtr;
 | |
| 
 | |
|   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 
 | |
|   /// floating point ops.
 | |
|   /// When SSE is available, use it for f32 operations.
 | |
|   /// When SSE2 is available, use it for f64 operations.
 | |
|   bool X86ScalarSSEf64;
 | |
|   bool X86ScalarSSEf32;
 | |
| 
 | |
| public:
 | |
|   explicit X86FastISel(MachineFunction &mf,
 | |
|                        MachineModuleInfo *mmi,
 | |
|                        DwarfWriter *dw,
 | |
|                        DenseMap<const Value *, unsigned> &vm,
 | |
|                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | |
|                        DenseMap<const AllocaInst *, int> &am
 | |
| #ifndef NDEBUG
 | |
|                        , SmallSet<Instruction*, 8> &cil
 | |
| #endif
 | |
|                        )
 | |
|     : FastISel(mf, mmi, dw, vm, bm, am
 | |
| #ifndef NDEBUG
 | |
|                , cil
 | |
| #endif
 | |
|                ) {
 | |
|     Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|     StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | |
|     X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
|     X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   }
 | |
| 
 | |
|   virtual bool TargetSelectInstruction(Instruction *I);
 | |
| 
 | |
| #include "X86GenFastISel.inc"
 | |
| 
 | |
| private:
 | |
|   bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
 | |
|   
 | |
|   bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
 | |
| 
 | |
|   bool X86FastEmitStore(EVT VT, Value *Val,
 | |
|                         const X86AddressMode &AM);
 | |
|   bool X86FastEmitStore(EVT VT, unsigned Val,
 | |
|                         const X86AddressMode &AM);
 | |
| 
 | |
|   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
 | |
|                          unsigned &ResultReg);
 | |
|   
 | |
|   bool X86SelectAddress(Value *V, X86AddressMode &AM);
 | |
|   bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
 | |
| 
 | |
|   bool X86SelectLoad(Instruction *I);
 | |
|   
 | |
|   bool X86SelectStore(Instruction *I);
 | |
| 
 | |
|   bool X86SelectCmp(Instruction *I);
 | |
| 
 | |
|   bool X86SelectZExt(Instruction *I);
 | |
| 
 | |
|   bool X86SelectBranch(Instruction *I);
 | |
| 
 | |
|   bool X86SelectShift(Instruction *I);
 | |
| 
 | |
|   bool X86SelectSelect(Instruction *I);
 | |
| 
 | |
|   bool X86SelectTrunc(Instruction *I);
 | |
|  
 | |
|   bool X86SelectFPExt(Instruction *I);
 | |
|   bool X86SelectFPTrunc(Instruction *I);
 | |
| 
 | |
|   bool X86SelectExtractValue(Instruction *I);
 | |
| 
 | |
|   bool X86VisitIntrinsicCall(IntrinsicInst &I);
 | |
|   bool X86SelectCall(Instruction *I);
 | |
| 
 | |
|   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
 | |
| 
 | |
|   const X86InstrInfo *getInstrInfo() const {
 | |
|     return getTargetMachine()->getInstrInfo();
 | |
|   }
 | |
|   const X86TargetMachine *getTargetMachine() const {
 | |
|     return static_cast<const X86TargetMachine *>(&TM);
 | |
|   }
 | |
| 
 | |
|   unsigned TargetMaterializeConstant(Constant *C);
 | |
| 
 | |
|   unsigned TargetMaterializeAlloca(AllocaInst *C);
 | |
| 
 | |
|   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
 | |
|   /// computed in an SSE register, not on the X87 floating point stack.
 | |
|   bool isScalarFPTypeInSSEReg(EVT VT) const {
 | |
|     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
 | |
|       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
 | |
|   }
 | |
| 
 | |
|   bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
 | |
| };
 | |
|   
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
 | |
|   VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !VT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   
 | |
|   // For now, require SSE/SSE2 for performing floating-point operations,
 | |
|   // since x87 requires additional work.
 | |
|   if (VT == MVT::f64 && !X86ScalarSSEf64)
 | |
|      return false;
 | |
|   if (VT == MVT::f32 && !X86ScalarSSEf32)
 | |
|      return false;
 | |
|   // Similarly, no f80 support yet.
 | |
|   if (VT == MVT::f80)
 | |
|     return false;
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
 | |
| }
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
| 
 | |
| /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
 | |
| /// convention.
 | |
| CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
 | |
|                                            bool isTaillCall) {
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     if (Subtarget->isTargetWin64())
 | |
|       return CC_X86_Win64_C;
 | |
|     else
 | |
|       return CC_X86_64_C;
 | |
|   }
 | |
| 
 | |
|   if (CC == CallingConv::X86_FastCall)
 | |
|     return CC_X86_32_FastCall;
 | |
|   else if (CC == CallingConv::Fast)
 | |
|     return CC_X86_32_FastCC;
 | |
|   else
 | |
|     return CC_X86_32_C;
 | |
| }
 | |
| 
 | |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
 | |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
 | |
| /// Return true and the result register by reference if it is possible.
 | |
| bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
 | |
|                                   unsigned &ResultReg) {
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = NULL;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     Opc = X86::MOV8rm;
 | |
|     RC  = X86::GR8RegisterClass;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16rm;
 | |
|     RC  = X86::GR16RegisterClass;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32rm;
 | |
|     RC  = X86::GR32RegisterClass;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = X86::MOV64rm;
 | |
|     RC  = X86::GR64RegisterClass;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (Subtarget->hasSSE1()) {
 | |
|       Opc = X86::MOVSSrm;
 | |
|       RC  = X86::FR32RegisterClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = X86::RFP32RegisterClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (Subtarget->hasSSE2()) {
 | |
|       Opc = X86::MOVSDrm;
 | |
|       RC  = X86::FR64RegisterClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = X86::RFP64RegisterClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ResultReg = createResultReg(RC);
 | |
|   addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of
 | |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
 | |
| /// and a displacement offset, or a GlobalAddress,
 | |
| /// i.e. V. Return true if it is possible.
 | |
| bool
 | |
| X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
 | |
|                               const X86AddressMode &AM) {
 | |
|   // Get opcode and regclass of the output for the given store instruction.
 | |
|   unsigned Opc = 0;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f80: // No f80 support yet.
 | |
|   default: return false;
 | |
|   case MVT::i1: {
 | |
|     // Mask out all but lowest bit.
 | |
|     unsigned AndResult = createResultReg(X86::GR8RegisterClass);
 | |
|     BuildMI(MBB, DL,
 | |
|             TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
 | |
|     Val = AndResult;
 | |
|   }
 | |
|   // FALLTHROUGH, handling i1 as i8.
 | |
|   case MVT::i8:  Opc = X86::MOV8mr;  break;
 | |
|   case MVT::i16: Opc = X86::MOV16mr; break;
 | |
|   case MVT::i32: Opc = X86::MOV32mr; break;
 | |
|   case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
 | |
|   case MVT::f32:
 | |
|     Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
 | |
|                                    const X86AddressMode &AM) {
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Val))
 | |
|     Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
 | |
|   
 | |
|   // If this is a store of a simple constant, fold the constant into the store.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     unsigned Opc = 0;
 | |
|     bool Signed = true;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: break;
 | |
|     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
 | |
|     case MVT::i8:  Opc = X86::MOV8mi;  break;
 | |
|     case MVT::i16: Opc = X86::MOV16mi; break;
 | |
|     case MVT::i32: Opc = X86::MOV32mi; break;
 | |
|     case MVT::i64:
 | |
|       // Must be a 32-bit sign extended value.
 | |
|       if ((int)CI->getSExtValue() == CI->getSExtValue())
 | |
|         Opc = X86::MOV64mi32;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (Opc) {
 | |
|       addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
 | |
|                              .addImm(Signed ? CI->getSExtValue() :
 | |
|                                               CI->getZExtValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   unsigned ValReg = getRegForValue(Val);
 | |
|   if (ValReg == 0)
 | |
|     return false;    
 | |
|  
 | |
|   return X86FastEmitStore(VT, ValReg, AM);
 | |
| }
 | |
| 
 | |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 | |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 | |
| /// ISD::SIGN_EXTEND).
 | |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
 | |
|                                     unsigned Src, EVT SrcVT,
 | |
|                                     unsigned &ResultReg) {
 | |
|   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
 | |
|   
 | |
|   if (RR != 0) {
 | |
|     ResultReg = RR;
 | |
|     return true;
 | |
|   } else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /// X86SelectAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
 | |
|   User *U = NULL;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Opcode = I->getOpcode();
 | |
|     U = I;
 | |
|   } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts.
 | |
|     return X86SelectAddress(U->getOperand(0), AM);
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs.
 | |
|     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints.
 | |
|     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Alloca: {
 | |
|     // Do static allocas.
 | |
|     const AllocaInst *A = cast<AllocaInst>(V);
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
 | |
|     if (SI != StaticAllocaMap.end()) {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = SI->second;
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Add: {
 | |
|     // Adds of constants are common and easy enough.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
 | |
|       // They have to fit in the 32-bit signed displacement field though.
 | |
|       if (isInt32(Disp)) {
 | |
|         AM.Disp = (uint32_t)Disp;
 | |
|         return X86SelectAddress(U->getOperand(0), AM);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::GetElementPtr: {
 | |
|     X86AddressMode SavedAM = AM;
 | |
| 
 | |
|     // Pattern-match simple GEPs.
 | |
|     uint64_t Disp = (int32_t)AM.Disp;
 | |
|     unsigned IndexReg = AM.IndexReg;
 | |
|     unsigned Scale = AM.Scale;
 | |
|     gep_type_iterator GTI = gep_type_begin(U);
 | |
|     // Iterate through the indices, folding what we can. Constants can be
 | |
|     // folded, and one dynamic index can be handled, if the scale is supported.
 | |
|     for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
 | |
|          i != e; ++i, ++GTI) {
 | |
|       Value *Op = *i;
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         const StructLayout *SL = TD.getStructLayout(STy);
 | |
|         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
 | |
|         Disp += SL->getElementOffset(Idx);
 | |
|       } else {
 | |
|         uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|           // Constant-offset addressing.
 | |
|           Disp += CI->getSExtValue() * S;
 | |
|         } else if (IndexReg == 0 &&
 | |
|                    (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
 | |
|                    (S == 1 || S == 2 || S == 4 || S == 8)) {
 | |
|           // Scaled-index addressing.
 | |
|           Scale = S;
 | |
|           IndexReg = getRegForGEPIndex(Op);
 | |
|           if (IndexReg == 0)
 | |
|             return false;
 | |
|         } else
 | |
|           // Unsupported.
 | |
|           goto unsupported_gep;
 | |
|       }
 | |
|     }
 | |
|     // Check for displacement overflow.
 | |
|     if (!isInt32(Disp))
 | |
|       break;
 | |
|     // Ok, the GEP indices were covered by constant-offset and scaled-index
 | |
|     // addressing. Update the address state and move on to examining the base.
 | |
|     AM.IndexReg = IndexReg;
 | |
|     AM.Scale = Scale;
 | |
|     AM.Disp = (uint32_t)Disp;
 | |
|     if (X86SelectAddress(U->getOperand(0), AM))
 | |
|       return true;
 | |
|     
 | |
|     // If we couldn't merge the sub value into this addr mode, revert back to
 | |
|     // our address and just match the value instead of completely failing.
 | |
|     AM = SavedAM;
 | |
|     break;
 | |
|   unsupported_gep:
 | |
|     // Ok, the GEP indices weren't all covered.
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Handle constant address.
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands.
 | |
|     if (Subtarget->isPICStyleRIPRel() &&
 | |
|         (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS yet.
 | |
|     if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | |
|       if (GVar->isThreadLocal())
 | |
|         return false;
 | |
| 
 | |
|     // Okay, we've committed to selecting this global. Set up the basic address.
 | |
|     AM.GV = GV;
 | |
|     
 | |
|     // Allow the subtarget to classify the global.
 | |
|     unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
 | |
| 
 | |
|     // If this reference is relative to the pic base, set it now.
 | |
|     if (isGlobalRelativeToPICBase(GVFlags)) {
 | |
|       // FIXME: How do we know Base.Reg is free??
 | |
|       AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
 | |
|     }
 | |
|     
 | |
|     // Unless the ABI requires an extra load, return a direct reference to
 | |
|     // the global.
 | |
|     if (!isGlobalStubReference(GVFlags)) {
 | |
|       if (Subtarget->isPICStyleRIPRel()) {
 | |
|         // Use rip-relative addressing if we can.  Above we verified that the
 | |
|         // base and index registers are unused.
 | |
|         assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|         AM.Base.Reg = X86::RIP;
 | |
|       }
 | |
|       AM.GVOpFlags = GVFlags;
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     // Ok, we need to do a load from a stub.  If we've already loaded from this
 | |
|     // stub, reuse the loaded pointer, otherwise emit the load now.
 | |
|     DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
 | |
|     unsigned LoadReg;
 | |
|     if (I != LocalValueMap.end() && I->second != 0) {
 | |
|       LoadReg = I->second;
 | |
|     } else {
 | |
|       // Issue load from stub.
 | |
|       unsigned Opc = 0;
 | |
|       const TargetRegisterClass *RC = NULL;
 | |
|       X86AddressMode StubAM;
 | |
|       StubAM.Base.Reg = AM.Base.Reg;
 | |
|       StubAM.GV = GV;
 | |
|       StubAM.GVOpFlags = GVFlags;
 | |
| 
 | |
|       if (TLI.getPointerTy() == MVT::i64) {
 | |
|         Opc = X86::MOV64rm;
 | |
|         RC  = X86::GR64RegisterClass;
 | |
|         
 | |
|         if (Subtarget->isPICStyleRIPRel())
 | |
|           StubAM.Base.Reg = X86::RIP;
 | |
|       } else {
 | |
|         Opc = X86::MOV32rm;
 | |
|         RC  = X86::GR32RegisterClass;
 | |
|       }
 | |
|       
 | |
|       LoadReg = createResultReg(RC);
 | |
|       addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
 | |
|       
 | |
|       // Prevent loading GV stub multiple times in same MBB.
 | |
|       LocalValueMap[V] = LoadReg;
 | |
|     }
 | |
|     
 | |
|     // Now construct the final address. Note that the Disp, Scale,
 | |
|     // and Index values may already be set here.
 | |
|     AM.Base.Reg = LoadReg;
 | |
|     AM.GV = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
 | |
|   User *U = NULL;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Opcode = I->getOpcode();
 | |
|     U = I;
 | |
|   } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts.
 | |
|     return X86SelectCallAddress(U->getOperand(0), AM);
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs.
 | |
|     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints.
 | |
|     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Handle constant address.
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands.
 | |
|     if (Subtarget->isPICStyleRIPRel() &&
 | |
|         (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS or DLLImport.
 | |
|     if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | |
|       if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
 | |
|         return false;
 | |
| 
 | |
|     // Okay, we've committed to selecting this global. Set up the basic address.
 | |
|     AM.GV = GV;
 | |
|     
 | |
|     // No ABI requires an extra load for anything other than DLLImport, which
 | |
|     // we rejected above. Return a direct reference to the global.
 | |
|     if (Subtarget->isPICStyleRIPRel()) {
 | |
|       // Use rip-relative addressing if we can.  Above we verified that the
 | |
|       // base and index registers are unused.
 | |
|       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|       AM.Base.Reg = X86::RIP;
 | |
|     } else if (Subtarget->isPICStyleStubPIC()) {
 | |
|       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
 | |
|     } else if (Subtarget->isPICStyleGOT()) {
 | |
|       AM.GVOpFlags = X86II::MO_GOTOFF;
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// X86SelectStore - Select and emit code to implement store instructions.
 | |
| bool X86FastISel::X86SelectStore(Instruction* I) {
 | |
|   EVT VT;
 | |
|   if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(I->getOperand(1), AM))
 | |
|     return false;
 | |
| 
 | |
|   return X86FastEmitStore(VT, I->getOperand(0), AM);
 | |
| }
 | |
| 
 | |
| /// X86SelectLoad - Select and emit code to implement load instructions.
 | |
| ///
 | |
| bool X86FastISel::X86SelectLoad(Instruction *I)  {
 | |
|   EVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(I->getOperand(0), AM))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (X86FastEmitLoad(VT, AM, ResultReg)) {
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned X86ChooseCmpOpcode(EVT VT) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:       return 0;
 | |
|   case MVT::i8:  return X86::CMP8rr;
 | |
|   case MVT::i16: return X86::CMP16rr;
 | |
|   case MVT::i32: return X86::CMP32rr;
 | |
|   case MVT::i64: return X86::CMP64rr;
 | |
|   case MVT::f32: return X86::UCOMISSrr;
 | |
|   case MVT::f64: return X86::UCOMISDrr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
 | |
| /// of the comparison, return an opcode that works for the compare (e.g.
 | |
| /// CMP32ri) otherwise return 0.
 | |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   // Otherwise, we can't fold the immediate into this comparison.
 | |
|   default: return 0;
 | |
|   case MVT::i8: return X86::CMP8ri;
 | |
|   case MVT::i16: return X86::CMP16ri;
 | |
|   case MVT::i32: return X86::CMP32ri;
 | |
|   case MVT::i64:
 | |
|     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
 | |
|     // field.
 | |
|     if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
 | |
|       return X86::CMP64ri32;
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
 | |
|   unsigned Op0Reg = getRegForValue(Op0);
 | |
|   if (Op0Reg == 0) return false;
 | |
|   
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Op1))
 | |
|     Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
 | |
|   
 | |
|   // We have two options: compare with register or immediate.  If the RHS of
 | |
|   // the compare is an immediate that we can fold into this compare, use
 | |
|   // CMPri, otherwise use CMPrr.
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
 | |
|       BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
 | |
|                                           .addImm(Op1C->getSExtValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   unsigned CompareOpc = X86ChooseCmpOpcode(VT);
 | |
|   if (CompareOpc == 0) return false;
 | |
|     
 | |
|   unsigned Op1Reg = getRegForValue(Op1);
 | |
|   if (Op1Reg == 0) return false;
 | |
|   BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectCmp(Instruction *I) {
 | |
|   CmpInst *CI = cast<CmpInst>(I);
 | |
| 
 | |
|   EVT VT;
 | |
|   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(&X86::GR8RegClass);
 | |
|   unsigned SetCCOpc;
 | |
|   bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | |
|   switch (CI->getPredicate()) {
 | |
|   case CmpInst::FCMP_OEQ: {
 | |
|     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | |
|       return false;
 | |
|     
 | |
|     unsigned EReg = createResultReg(&X86::GR8RegClass);
 | |
|     unsigned NPReg = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
 | |
|     BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
 | |
|     BuildMI(MBB, DL, 
 | |
|             TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case CmpInst::FCMP_UNE: {
 | |
|     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | |
|       return false;
 | |
| 
 | |
|     unsigned NEReg = createResultReg(&X86::GR8RegClass);
 | |
|     unsigned PReg = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
 | |
|     BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
 | |
|     BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | |
|   case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
 | |
|   case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
 | |
|   case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | |
|   case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
 | |
|   case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | |
|   
 | |
|   case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | |
|   case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | |
|   case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | |
|   case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
 | |
|   case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
 | |
|   case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
 | |
|   case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | |
|   if (SwapArgs)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Emit a compare of Op0/Op1.
 | |
|   if (!X86FastEmitCompare(Op0, Op1, VT))
 | |
|     return false;
 | |
|   
 | |
|   BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectZExt(Instruction *I) {
 | |
|   // Handle zero-extension from i1 to i8, which is common.
 | |
|   if (I->getType()->isIntegerTy(8) &&
 | |
|       I->getOperand(0)->getType()->isIntegerTy(1)) {
 | |
|     unsigned ResultReg = getRegForValue(I->getOperand(0));
 | |
|     if (ResultReg == 0) return false;
 | |
|     // Set the high bits to zero.
 | |
|     ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
 | |
|     if (ResultReg == 0) return false;
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86FastISel::X86SelectBranch(Instruction *I) {
 | |
|   // Unconditional branches are selected by tablegen-generated code.
 | |
|   // Handle a conditional branch.
 | |
|   BranchInst *BI = cast<BranchInst>(I);
 | |
|   MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
 | |
|   MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
 | |
| 
 | |
|   // Fold the common case of a conditional branch with a comparison.
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | |
|     if (CI->hasOneUse()) {
 | |
|       EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
| 
 | |
|       // Try to take advantage of fallthrough opportunities.
 | |
|       CmpInst::Predicate Predicate = CI->getPredicate();
 | |
|       if (MBB->isLayoutSuccessor(TrueMBB)) {
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         Predicate = CmpInst::getInversePredicate(Predicate);
 | |
|       }
 | |
| 
 | |
|       bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | |
|       unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
 | |
| 
 | |
|       switch (Predicate) {
 | |
|       case CmpInst::FCMP_OEQ:
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         Predicate = CmpInst::FCMP_UNE;
 | |
|         // FALL THROUGH
 | |
|       case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
 | |
|       case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
 | |
|       case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | |
|       case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
 | |
|       case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | |
|           
 | |
|       case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | |
|       case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | |
|       case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
 | |
|       case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
 | |
|       case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
 | |
|       case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
 | |
|       default:
 | |
|         return false;
 | |
|       }
 | |
|       
 | |
|       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | |
|       if (SwapArgs)
 | |
|         std::swap(Op0, Op1);
 | |
| 
 | |
|       // Emit a compare of the LHS and RHS, setting the flags.
 | |
|       if (!X86FastEmitCompare(Op0, Op1, VT))
 | |
|         return false;
 | |
|       
 | |
|       BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
 | |
| 
 | |
|       if (Predicate == CmpInst::FCMP_UNE) {
 | |
|         // X86 requires a second branch to handle UNE (and OEQ,
 | |
|         // which is mapped to UNE above).
 | |
|         BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB);
 | |
|       }
 | |
| 
 | |
|       FastEmitBranch(FalseMBB);
 | |
|       MBB->addSuccessor(TrueMBB);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (ExtractValueInst *EI =
 | |
|              dyn_cast<ExtractValueInst>(BI->getCondition())) {
 | |
|     // Check to see if the branch instruction is from an "arithmetic with
 | |
|     // overflow" intrinsic. The main way these intrinsics are used is:
 | |
|     //
 | |
|     //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
 | |
|     //   %sum = extractvalue { i32, i1 } %t, 0
 | |
|     //   %obit = extractvalue { i32, i1 } %t, 1
 | |
|     //   br i1 %obit, label %overflow, label %normal
 | |
|     //
 | |
|     // The %sum and %obit are converted in an ADD and a SETO/SETB before
 | |
|     // reaching the branch. Therefore, we search backwards through the MBB
 | |
|     // looking for the SETO/SETB instruction. If an instruction modifies the
 | |
|     // EFLAGS register before we reach the SETO/SETB instruction, then we can't
 | |
|     // convert the branch into a JO/JB instruction.
 | |
|     if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
 | |
|       if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
 | |
|           CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
 | |
|         const MachineInstr *SetMI = 0;
 | |
|         unsigned Reg = lookUpRegForValue(EI);
 | |
| 
 | |
|         for (MachineBasicBlock::const_reverse_iterator
 | |
|                RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
 | |
|           const MachineInstr &MI = *RI;
 | |
| 
 | |
|           if (MI.modifiesRegister(Reg)) {
 | |
|             unsigned Src, Dst, SrcSR, DstSR;
 | |
| 
 | |
|             if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
 | |
|               Reg = Src;
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             SetMI = &MI;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           const TargetInstrDesc &TID = MI.getDesc();
 | |
|           if (TID.hasUnmodeledSideEffects() ||
 | |
|               TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (SetMI) {
 | |
|           unsigned OpCode = SetMI->getOpcode();
 | |
| 
 | |
|           if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
 | |
|             BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ?
 | |
|                                         X86::JO_4 : X86::JB_4))
 | |
|               .addMBB(TrueMBB);
 | |
|             FastEmitBranch(FalseMBB);
 | |
|             MBB->addSuccessor(TrueMBB);
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise do a clumsy setcc and re-test it.
 | |
|   unsigned OpReg = getRegForValue(BI->getCondition());
 | |
|   if (OpReg == 0) return false;
 | |
| 
 | |
|   BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
 | |
|   BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB);
 | |
|   FastEmitBranch(FalseMBB);
 | |
|   MBB->addSuccessor(TrueMBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectShift(Instruction *I) {
 | |
|   unsigned CReg = 0, OpReg = 0, OpImm = 0;
 | |
|   const TargetRegisterClass *RC = NULL;
 | |
|   if (I->getType()->isIntegerTy(8)) {
 | |
|     CReg = X86::CL;
 | |
|     RC = &X86::GR8RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(16)) {
 | |
|     CReg = X86::CX;
 | |
|     RC = &X86::GR16RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(32)) {
 | |
|     CReg = X86::ECX;
 | |
|     RC = &X86::GR32RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(64)) {
 | |
|     CReg = X86::RCX;
 | |
|     RC = &X86::GR64RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0) return false;
 | |
|   
 | |
|   // Fold immediate in shl(x,3).
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     BuildMI(MBB, DL, TII.get(OpImm), 
 | |
|             ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
|   TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
 | |
| 
 | |
|   // The shift instruction uses X86::CL. If we defined a super-register
 | |
|   // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
 | |
|   // we're doing here.
 | |
|   if (CReg != X86::CL)
 | |
|     BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL)
 | |
|       .addReg(CReg).addImm(X86::SUBREG_8BIT);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectSelect(Instruction *I) {
 | |
|   EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
|   
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = NULL;
 | |
|   if (VT.getSimpleVT() == MVT::i16) {
 | |
|     Opc = X86::CMOVE16rr;
 | |
|     RC = &X86::GR16RegClass;
 | |
|   } else if (VT.getSimpleVT() == MVT::i32) {
 | |
|     Opc = X86::CMOVE32rr;
 | |
|     RC = &X86::GR32RegClass;
 | |
|   } else if (VT.getSimpleVT() == MVT::i64) {
 | |
|     Opc = X86::CMOVE64rr;
 | |
|     RC = &X86::GR64RegClass;
 | |
|   } else {
 | |
|     return false; 
 | |
|   }
 | |
| 
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0) return false;
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
|   unsigned Op2Reg = getRegForValue(I->getOperand(2));
 | |
|   if (Op2Reg == 0) return false;
 | |
| 
 | |
|   BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPExt(Instruction *I) {
 | |
|   // fpext from float to double.
 | |
|   if (Subtarget->hasSSE2() &&
 | |
|       I->getType()->isDoubleTy()) {
 | |
|     Value *V = I->getOperand(0);
 | |
|     if (V->getType()->isFloatTy()) {
 | |
|       unsigned OpReg = getRegForValue(V);
 | |
|       if (OpReg == 0) return false;
 | |
|       unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
 | |
|       BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
 | |
|   if (Subtarget->hasSSE2()) {
 | |
|     if (I->getType()->isFloatTy()) {
 | |
|       Value *V = I->getOperand(0);
 | |
|       if (V->getType()->isDoubleTy()) {
 | |
|         unsigned OpReg = getRegForValue(V);
 | |
|         if (OpReg == 0) return false;
 | |
|         unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
 | |
|         BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
 | |
|         UpdateValueMap(I, ResultReg);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectTrunc(Instruction *I) {
 | |
|   if (Subtarget->is64Bit())
 | |
|     // All other cases should be handled by the tblgen generated code.
 | |
|     return false;
 | |
|   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
|   
 | |
|   // This code only handles truncation to byte right now.
 | |
|   if (DstVT != MVT::i8 && DstVT != MVT::i1)
 | |
|     // All other cases should be handled by the tblgen generated code.
 | |
|     return false;
 | |
|   if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
 | |
|     // All other cases should be handled by the tblgen generated code.
 | |
|     return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // First issue a copy to GR16_ABCD or GR32_ABCD.
 | |
|   unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
 | |
|   const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
 | |
|     ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
 | |
|   unsigned CopyReg = createResultReg(CopyRC);
 | |
|   BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
 | |
| 
 | |
|   // Then issue an extract_subreg.
 | |
|   unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
 | |
|                                                   CopyReg, X86::SUBREG_8BIT);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectExtractValue(Instruction *I) {
 | |
|   ExtractValueInst *EI = cast<ExtractValueInst>(I);
 | |
|   Value *Agg = EI->getAggregateOperand();
 | |
| 
 | |
|   if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
 | |
|     switch (CI->getIntrinsicID()) {
 | |
|     default: break;
 | |
|     case Intrinsic::sadd_with_overflow:
 | |
|     case Intrinsic::uadd_with_overflow:
 | |
|       // Cheat a little. We know that the registers for "add" and "seto" are
 | |
|       // allocated sequentially. However, we only keep track of the register
 | |
|       // for "add" in the value map. Use extractvalue's index to get the
 | |
|       // correct register for "seto".
 | |
|       UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
 | |
|   // FIXME: Handle more intrinsics.
 | |
|   switch (I.getIntrinsicID()) {
 | |
|   default: return false;
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
 | |
|     X86AddressMode AM;
 | |
|     assert(DI->getAddress() && "Null address should be checked earlier!");
 | |
|     if (!X86SelectAddress(DI->getAddress(), AM))
 | |
|       return false;
 | |
|     const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | |
|     // FIXME may need to add RegState::Debug to any registers produced,
 | |
|     // although ESP/EBP should be the only ones at the moment.
 | |
|     addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0).
 | |
|                                         addMetadata(DI->getVariable());
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::trap: {
 | |
|     BuildMI(MBB, DL, TII.get(X86::TRAP));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow: {
 | |
|     // Replace "add with overflow" intrinsics with an "add" instruction followed
 | |
|     // by a seto/setc instruction. Later on, when the "extractvalue"
 | |
|     // instructions are encountered, we use the fact that two registers were
 | |
|     // created sequentially to get the correct registers for the "sum" and the
 | |
|     // "overflow bit".
 | |
|     const Function *Callee = I.getCalledFunction();
 | |
|     const Type *RetTy =
 | |
|       cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
 | |
| 
 | |
|     EVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     Value *Op1 = I.getOperand(1);
 | |
|     Value *Op2 = I.getOperand(2);
 | |
|     unsigned Reg1 = getRegForValue(Op1);
 | |
|     unsigned Reg2 = getRegForValue(Op2);
 | |
| 
 | |
|     if (Reg1 == 0 || Reg2 == 0)
 | |
|       // FIXME: Handle values *not* in registers.
 | |
|       return false;
 | |
| 
 | |
|     unsigned OpC = 0;
 | |
|     if (VT == MVT::i32)
 | |
|       OpC = X86::ADD32rr;
 | |
|     else if (VT == MVT::i64)
 | |
|       OpC = X86::ADD64rr;
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
 | |
|     unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
 | |
| 
 | |
|     // If the add with overflow is an intra-block value then we just want to
 | |
|     // create temporaries for it like normal.  If it is a cross-block value then
 | |
|     // UpdateValueMap will return the cross-block register used.  Since we
 | |
|     // *really* want the value to be live in the register pair known by
 | |
|     // UpdateValueMap, we have to use DestReg1+1 as the destination register in
 | |
|     // the cross block case.  In the non-cross-block case, we should just make
 | |
|     // another register for the value.
 | |
|     if (DestReg1 != ResultReg)
 | |
|       ResultReg = DestReg1+1;
 | |
|     else
 | |
|       ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
 | |
|     
 | |
|     unsigned Opc = X86::SETBr;
 | |
|     if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
 | |
|       Opc = X86::SETOr;
 | |
|     BuildMI(MBB, DL, TII.get(Opc), ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectCall(Instruction *I) {
 | |
|   CallInst *CI = cast<CallInst>(I);
 | |
|   Value *Callee = I->getOperand(0);
 | |
| 
 | |
|   // Can't handle inline asm yet.
 | |
|   if (isa<InlineAsm>(Callee))
 | |
|     return false;
 | |
| 
 | |
|   // Handle intrinsic calls.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
 | |
|     return X86VisitIntrinsicCall(*II);
 | |
| 
 | |
|   // Handle only C and fastcc calling conventions for now.
 | |
|   CallSite CS(CI);
 | |
|   CallingConv::ID CC = CS.getCallingConv();
 | |
|   if (CC != CallingConv::C &&
 | |
|       CC != CallingConv::Fast &&
 | |
|       CC != CallingConv::X86_FastCall)
 | |
|     return false;
 | |
| 
 | |
|   // fastcc with -tailcallopt is intended to provide a guaranteed
 | |
|   // tail call optimization. Fastisel doesn't know how to do that.
 | |
|   if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Let SDISel handle vararg functions.
 | |
|   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
|   if (FTy->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // Handle *simple* calls for now.
 | |
|   const Type *RetTy = CS.getType();
 | |
|   EVT RetVT;
 | |
|   if (RetTy->isVoidTy())
 | |
|     RetVT = MVT::isVoid;
 | |
|   else if (!isTypeLegal(RetTy, RetVT, true))
 | |
|     return false;
 | |
| 
 | |
|   // Materialize callee address in a register. FIXME: GV address can be
 | |
|   // handled with a CALLpcrel32 instead.
 | |
|   X86AddressMode CalleeAM;
 | |
|   if (!X86SelectCallAddress(Callee, CalleeAM))
 | |
|     return false;
 | |
|   unsigned CalleeOp = 0;
 | |
|   GlobalValue *GV = 0;
 | |
|   if (CalleeAM.GV != 0) {
 | |
|     GV = CalleeAM.GV;
 | |
|   } else if (CalleeAM.Base.Reg != 0) {
 | |
|     CalleeOp = CalleeAM.Base.Reg;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Allow calls which produce i1 results.
 | |
|   bool AndToI1 = false;
 | |
|   if (RetVT == MVT::i1) {
 | |
|     RetVT = MVT::i8;
 | |
|     AndToI1 = true;
 | |
|   }
 | |
| 
 | |
|   // Deal with call operands first.
 | |
|   SmallVector<Value*, 8> ArgVals;
 | |
|   SmallVector<unsigned, 8> Args;
 | |
|   SmallVector<EVT, 8> ArgVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | |
|   Args.reserve(CS.arg_size());
 | |
|   ArgVals.reserve(CS.arg_size());
 | |
|   ArgVTs.reserve(CS.arg_size());
 | |
|   ArgFlags.reserve(CS.arg_size());
 | |
|   for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|        i != e; ++i) {
 | |
|     unsigned Arg = getRegForValue(*i);
 | |
|     if (Arg == 0)
 | |
|       return false;
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     unsigned AttrInd = i - CS.arg_begin() + 1;
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
 | |
|       Flags.setSExt();
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     // FIXME: Only handle *easy* calls for now.
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::ByVal))
 | |
|       return false;
 | |
| 
 | |
|     const Type *ArgTy = (*i)->getType();
 | |
|     EVT ArgVT;
 | |
|     if (!isTypeLegal(ArgTy, ArgVT))
 | |
|       return false;
 | |
|     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
 | |
|     Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|     Args.push_back(Arg);
 | |
|     ArgVals.push_back(*i);
 | |
|     ArgVTs.push_back(ArgVT);
 | |
|     ArgFlags.push_back(Flags);
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
 | |
|   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Issue CALLSEQ_START
 | |
|   unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
 | |
|   BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
 | |
| 
 | |
|   // Process argument: walk the register/memloc assignments, inserting
 | |
|   // copies / loads.
 | |
|   SmallVector<unsigned, 4> RegArgs;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     unsigned Arg = Args[VA.getValNo()];
 | |
|     EVT ArgVT = ArgVTs[VA.getValNo()];
 | |
|   
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt: {
 | |
|       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
 | |
|       Emitted = true;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::ZExt: {
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
 | |
|       Emitted = true;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::AExt: {
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | |
|                                     Arg, ArgVT, Arg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | |
|                                     Arg, ArgVT, Arg);
 | |
|       
 | |
|       assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::BCvt: {
 | |
|       unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
 | |
|                                ISD::BIT_CONVERT, Arg);
 | |
|       assert(BC != 0 && "Failed to emit a bitcast!");
 | |
|       Arg = BC;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
 | |
|       bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
 | |
|                                       Arg, RC, RC);
 | |
|       assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
 | |
|       Emitted = true;
 | |
|       RegArgs.push_back(VA.getLocReg());
 | |
|     } else {
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       X86AddressMode AM;
 | |
|       AM.Base.Reg = StackPtr;
 | |
|       AM.Disp = LocMemOffset;
 | |
|       Value *ArgVal = ArgVals[VA.getValNo()];
 | |
|       
 | |
|       // If this is a really simple value, emit this with the Value* version of
 | |
|       // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
 | |
|       // can cause us to reevaluate the argument.
 | |
|       if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
 | |
|         X86FastEmitStore(ArgVT, ArgVal, AM);
 | |
|       else
 | |
|         X86FastEmitStore(ArgVT, Arg, AM);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|   // GOT pointer.  
 | |
|   if (Subtarget->isPICStyleGOT()) {
 | |
|     TargetRegisterClass *RC = X86::GR32RegisterClass;
 | |
|     unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
 | |
|     bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
 | |
|     assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
 | |
|     Emitted = true;
 | |
|   }
 | |
|   
 | |
|   // Issue the call.
 | |
|   MachineInstrBuilder MIB;
 | |
|   if (CalleeOp) {
 | |
|     // Register-indirect call.
 | |
|     unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
 | |
|     MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
 | |
|     
 | |
|   } else {
 | |
|     // Direct call.
 | |
|     assert(GV && "Not a direct call");
 | |
|     unsigned CallOpc =
 | |
|       Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
 | |
|     
 | |
|     // See if we need any target-specific flags on the GV operand.
 | |
|     unsigned char OpFlags = 0;
 | |
|     
 | |
|     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
 | |
|     // external symbols most go through the PLT in PIC mode.  If the symbol
 | |
|     // has hidden or protected visibility, or if it is static or local, then
 | |
|     // we don't need to use the PLT - we can directly call it.
 | |
|     if (Subtarget->isTargetELF() &&
 | |
|         TM.getRelocationModel() == Reloc::PIC_ &&
 | |
|         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
 | |
|       OpFlags = X86II::MO_PLT;
 | |
|     } else if (Subtarget->isPICStyleStubAny() &&
 | |
|                (GV->isDeclaration() || GV->isWeakForLinker()) &&
 | |
|                Subtarget->getDarwinVers() < 9) {
 | |
|       // PC-relative references to external symbols should go through $stub,
 | |
|       // unless we're building with the leopard linker or later, which
 | |
|       // automatically synthesizes these stubs.
 | |
|       OpFlags = X86II::MO_DARWIN_STUB;
 | |
|     }
 | |
|     
 | |
|     
 | |
|     MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
 | |
|   }
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (Subtarget->isPICStyleGOT())
 | |
|     MIB.addReg(X86::EBX);
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | |
|     MIB.addReg(RegArgs[i]);
 | |
| 
 | |
|   // Issue CALLSEQ_END
 | |
|   unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
 | |
|   BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
 | |
| 
 | |
|   // Now handle call return value (if any).
 | |
|   if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
 | |
|     CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
 | |
| 
 | |
|     // Copy all of the result registers out of their specified physreg.
 | |
|     assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
 | |
|     EVT CopyVT = RVLocs[0].getValVT();
 | |
|     TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
 | |
|     TargetRegisterClass *SrcRC = DstRC;
 | |
|     
 | |
|     // If this is a call to a function that returns an fp value on the x87 fp
 | |
|     // stack, but where we prefer to use the value in xmm registers, copy it
 | |
|     // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
 | |
|     if ((RVLocs[0].getLocReg() == X86::ST0 ||
 | |
|          RVLocs[0].getLocReg() == X86::ST1) &&
 | |
|         isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
 | |
|       CopyVT = MVT::f80;
 | |
|       SrcRC = X86::RSTRegisterClass;
 | |
|       DstRC = X86::RFP80RegisterClass;
 | |
|     }
 | |
| 
 | |
|     unsigned ResultReg = createResultReg(DstRC);
 | |
|     bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                     RVLocs[0].getLocReg(), DstRC, SrcRC);
 | |
|     assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
 | |
|     Emitted = true;
 | |
|     if (CopyVT != RVLocs[0].getValVT()) {
 | |
|       // Round the F80 the right size, which also moves to the appropriate xmm
 | |
|       // register. This is accomplished by storing the F80 value in memory and
 | |
|       // then loading it back. Ewww...
 | |
|       EVT ResVT = RVLocs[0].getValVT();
 | |
|       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
 | |
|       unsigned MemSize = ResVT.getSizeInBits()/8;
 | |
|       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
 | |
|       addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
 | |
|       DstRC = ResVT == MVT::f32
 | |
|         ? X86::FR32RegisterClass : X86::FR64RegisterClass;
 | |
|       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
 | |
|       ResultReg = createResultReg(DstRC);
 | |
|       addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
 | |
|     }
 | |
| 
 | |
|     if (AndToI1) {
 | |
|       // Mask out all but lowest bit for some call which produces an i1.
 | |
|       unsigned AndResult = createResultReg(X86::GR8RegisterClass);
 | |
|       BuildMI(MBB, DL, 
 | |
|               TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
 | |
|       ResultReg = AndResult;
 | |
|     }
 | |
| 
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| X86FastISel::TargetSelectInstruction(Instruction *I)  {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::Load:
 | |
|     return X86SelectLoad(I);
 | |
|   case Instruction::Store:
 | |
|     return X86SelectStore(I);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return X86SelectCmp(I);
 | |
|   case Instruction::ZExt:
 | |
|     return X86SelectZExt(I);
 | |
|   case Instruction::Br:
 | |
|     return X86SelectBranch(I);
 | |
|   case Instruction::Call:
 | |
|     return X86SelectCall(I);
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::Shl:
 | |
|     return X86SelectShift(I);
 | |
|   case Instruction::Select:
 | |
|     return X86SelectSelect(I);
 | |
|   case Instruction::Trunc:
 | |
|     return X86SelectTrunc(I);
 | |
|   case Instruction::FPExt:
 | |
|     return X86SelectFPExt(I);
 | |
|   case Instruction::FPTrunc:
 | |
|     return X86SelectFPTrunc(I);
 | |
|   case Instruction::ExtractValue:
 | |
|     return X86SelectExtractValue(I);
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return X86SelectZExt(I);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return X86SelectTrunc(I);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
 | |
|   EVT VT;
 | |
|   if (!isTypeLegal(C->getType(), VT))
 | |
|     return false;
 | |
|   
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = NULL;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i8:
 | |
|     Opc = X86::MOV8rm;
 | |
|     RC  = X86::GR8RegisterClass;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16rm;
 | |
|     RC  = X86::GR16RegisterClass;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32rm;
 | |
|     RC  = X86::GR32RegisterClass;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = X86::MOV64rm;
 | |
|     RC  = X86::GR64RegisterClass;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (Subtarget->hasSSE1()) {
 | |
|       Opc = X86::MOVSSrm;
 | |
|       RC  = X86::FR32RegisterClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = X86::RFP32RegisterClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (Subtarget->hasSSE2()) {
 | |
|       Opc = X86::MOVSDrm;
 | |
|       RC  = X86::FR64RegisterClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = X86::RFP64RegisterClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Materialize addresses with LEA instructions.
 | |
|   if (isa<GlobalValue>(C)) {
 | |
|     X86AddressMode AM;
 | |
|     if (X86SelectAddress(C, AM)) {
 | |
|       if (TLI.getPointerTy() == MVT::i32)
 | |
|         Opc = X86::LEA32r;
 | |
|       else
 | |
|         Opc = X86::LEA64r;
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
 | |
|       return ResultReg;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // MachineConstantPool wants an explicit alignment.
 | |
|   unsigned Align = TD.getPrefTypeAlignment(C->getType());
 | |
|   if (Align == 0) {
 | |
|     // Alignment of vector types.  FIXME!
 | |
|     Align = TD.getTypeAllocSize(C->getType());
 | |
|   }
 | |
|   
 | |
|   // x86-32 PIC requires a PIC base register for constant pools.
 | |
|   unsigned PICBase = 0;
 | |
|   unsigned char OpFlag = 0;
 | |
|   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
 | |
|   } else if (Subtarget->isPICStyleGOT()) {
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
 | |
|   } else if (Subtarget->isPICStyleRIPRel() &&
 | |
|              TM.getCodeModel() == CodeModel::Small) {
 | |
|     PICBase = X86::RIP;
 | |
|   }
 | |
| 
 | |
|   // Create the load from the constant pool.
 | |
|   unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
 | |
|                            MCPOffset, PICBase, OpFlag);
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
 | |
|   // Fail on dynamic allocas. At this point, getRegForValue has already
 | |
|   // checked its CSE maps, so if we're here trying to handle a dynamic
 | |
|   // alloca, we're not going to succeed. X86SelectAddress has a
 | |
|   // check for dynamic allocas, because it's called directly from
 | |
|   // various places, but TargetMaterializeAlloca also needs a check
 | |
|   // in order to avoid recursion between getRegForValue,
 | |
|   // X86SelectAddrss, and TargetMaterializeAlloca.
 | |
|   if (!StaticAllocaMap.count(C))
 | |
|     return 0;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(C, AM))
 | |
|     return 0;
 | |
|   unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
 | |
|   TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   llvm::FastISel *X86::createFastISel(MachineFunction &mf,
 | |
|                         MachineModuleInfo *mmi,
 | |
|                         DwarfWriter *dw,
 | |
|                         DenseMap<const Value *, unsigned> &vm,
 | |
|                         DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | |
|                         DenseMap<const AllocaInst *, int> &am
 | |
| #ifndef NDEBUG
 | |
|                         , SmallSet<Instruction*, 8> &cil
 | |
| #endif
 | |
|                         ) {
 | |
|     return new X86FastISel(mf, mmi, dw, vm, bm, am
 | |
| #ifndef NDEBUG
 | |
|                            , cil
 | |
| #endif
 | |
|                            );
 | |
|   }
 | |
| }
 |