mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	into TargetOpcodes.h. #include the new TargetOpcodes.h into MachineInstr. Add new inline accessors (like isPHI()) to MachineInstr, and start using them throughout the codebase. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1208 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1208 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass which converts floating point instructions from
 | |
| // virtual registers into register stack instructions.  This pass uses live
 | |
| // variable information to indicate where the FPn registers are used and their
 | |
| // lifetimes.
 | |
| //
 | |
| // This pass is hampered by the lack of decent CFG manipulation routines for
 | |
| // machine code.  In particular, this wants to be able to split critical edges
 | |
| // as necessary, traverse the machine basic block CFG in depth-first order, and
 | |
| // allow there to be multiple machine basic blocks for each LLVM basicblock
 | |
| // (needed for critical edge splitting).
 | |
| //
 | |
| // In particular, this pass currently barfs on critical edges.  Because of this,
 | |
| // it requires the instruction selector to insert FP_REG_KILL instructions on
 | |
| // the exits of any basic block that has critical edges going from it, or which
 | |
| // branch to a critical basic block.
 | |
| //
 | |
| // FIXME: this is not implemented yet.  The stackifier pass only works on local
 | |
| // basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-codegen"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFXCH, "Number of fxch instructions inserted");
 | |
| STATISTIC(NumFP  , "Number of floating point instructions");
 | |
| 
 | |
| namespace {
 | |
|   struct FPS : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     FPS() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
 | |
| 
 | |
|   private:
 | |
|     const TargetInstrInfo *TII; // Machine instruction info.
 | |
|     MachineBasicBlock *MBB;     // Current basic block
 | |
|     unsigned Stack[8];          // FP<n> Registers in each stack slot...
 | |
|     unsigned RegMap[8];         // Track which stack slot contains each register
 | |
|     unsigned StackTop;          // The current top of the FP stack.
 | |
| 
 | |
|     void dumpStack() const {
 | |
|       dbgs() << "Stack contents:";
 | |
|       for (unsigned i = 0; i != StackTop; ++i) {
 | |
|         dbgs() << " FP" << Stack[i];
 | |
|         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
 | |
|       }
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
|   private:
 | |
|     /// isStackEmpty - Return true if the FP stack is empty.
 | |
|     bool isStackEmpty() const {
 | |
|       return StackTop == 0;
 | |
|     }
 | |
|     
 | |
|     // getSlot - Return the stack slot number a particular register number is
 | |
|     // in.
 | |
|     unsigned getSlot(unsigned RegNo) const {
 | |
|       assert(RegNo < 8 && "Regno out of range!");
 | |
|       return RegMap[RegNo];
 | |
|     }
 | |
| 
 | |
|     // getStackEntry - Return the X86::FP<n> register in register ST(i).
 | |
|     unsigned getStackEntry(unsigned STi) const {
 | |
|       assert(STi < StackTop && "Access past stack top!");
 | |
|       return Stack[StackTop-1-STi];
 | |
|     }
 | |
| 
 | |
|     // getSTReg - Return the X86::ST(i) register which contains the specified
 | |
|     // FP<RegNo> register.
 | |
|     unsigned getSTReg(unsigned RegNo) const {
 | |
|       return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
 | |
|     }
 | |
| 
 | |
|     // pushReg - Push the specified FP<n> register onto the stack.
 | |
|     void pushReg(unsigned Reg) {
 | |
|       assert(Reg < 8 && "Register number out of range!");
 | |
|       assert(StackTop < 8 && "Stack overflow!");
 | |
|       Stack[StackTop] = Reg;
 | |
|       RegMap[Reg] = StackTop++;
 | |
|     }
 | |
| 
 | |
|     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
 | |
|     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
 | |
|       MachineInstr *MI = I;
 | |
|       DebugLoc dl = MI->getDebugLoc();
 | |
|       if (isAtTop(RegNo)) return;
 | |
|       
 | |
|       unsigned STReg = getSTReg(RegNo);
 | |
|       unsigned RegOnTop = getStackEntry(0);
 | |
| 
 | |
|       // Swap the slots the regs are in.
 | |
|       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
 | |
| 
 | |
|       // Swap stack slot contents.
 | |
|       assert(RegMap[RegOnTop] < StackTop);
 | |
|       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
 | |
| 
 | |
|       // Emit an fxch to update the runtime processors version of the state.
 | |
|       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
 | |
|       NumFXCH++;
 | |
|     }
 | |
| 
 | |
|     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
 | |
|       DebugLoc dl = I->getDebugLoc();
 | |
|       unsigned STReg = getSTReg(RegNo);
 | |
|       pushReg(AsReg);   // New register on top of stack
 | |
| 
 | |
|       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
 | |
|     }
 | |
| 
 | |
|     // popStackAfter - Pop the current value off of the top of the FP stack
 | |
|     // after the specified instruction.
 | |
|     void popStackAfter(MachineBasicBlock::iterator &I);
 | |
| 
 | |
|     // freeStackSlotAfter - Free the specified register from the register stack,
 | |
|     // so that it is no longer in a register.  If the register is currently at
 | |
|     // the top of the stack, we just pop the current instruction, otherwise we
 | |
|     // store the current top-of-stack into the specified slot, then pop the top
 | |
|     // of stack.
 | |
|     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
 | |
| 
 | |
|     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
| 
 | |
|     void handleZeroArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleOneArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
 | |
|     void handleTwoArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleCompareFP(MachineBasicBlock::iterator &I);
 | |
|     void handleCondMovFP(MachineBasicBlock::iterator &I);
 | |
|     void handleSpecialFP(MachineBasicBlock::iterator &I);
 | |
|   };
 | |
|   char FPS::ID = 0;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
 | |
| 
 | |
| /// getFPReg - Return the X86::FPx register number for the specified operand.
 | |
| /// For example, this returns 3 for X86::FP3.
 | |
| static unsigned getFPReg(const MachineOperand &MO) {
 | |
|   assert(MO.isReg() && "Expected an FP register!");
 | |
|   unsigned Reg = MO.getReg();
 | |
|   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
 | |
|   return Reg - X86::FP0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
 | |
| /// register references into FP stack references.
 | |
| ///
 | |
| bool FPS::runOnMachineFunction(MachineFunction &MF) {
 | |
|   // We only need to run this pass if there are any FP registers used in this
 | |
|   // function.  If it is all integer, there is nothing for us to do!
 | |
|   bool FPIsUsed = false;
 | |
| 
 | |
|   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
 | |
|   for (unsigned i = 0; i <= 6; ++i)
 | |
|     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
 | |
|       FPIsUsed = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Early exit.
 | |
|   if (!FPIsUsed) return false;
 | |
| 
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   StackTop = 0;
 | |
| 
 | |
|   // Process the function in depth first order so that we process at least one
 | |
|   // of the predecessors for every reachable block in the function.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> Processed;
 | |
|   MachineBasicBlock *Entry = MF.begin();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
 | |
|          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
 | |
|        I != E; ++I)
 | |
|     Changed |= processBasicBlock(MF, **I);
 | |
| 
 | |
|   // Process any unreachable blocks in arbitrary order now.
 | |
|   if (MF.size() == Processed.size())
 | |
|     return Changed;
 | |
| 
 | |
|   for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
 | |
|     if (Processed.insert(BB))
 | |
|       Changed |= processBasicBlock(MF, *BB);
 | |
|   
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// processBasicBlock - Loop over all of the instructions in the basic block,
 | |
| /// transforming FP instructions into their stack form.
 | |
| ///
 | |
| bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
 | |
|   bool Changed = false;
 | |
|   MBB = &BB;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
 | |
|     MachineInstr *MI = I;
 | |
|     unsigned Flags = MI->getDesc().TSFlags;
 | |
|     
 | |
|     unsigned FPInstClass = Flags & X86II::FPTypeMask;
 | |
|     if (MI->isInlineAsm())
 | |
|       FPInstClass = X86II::SpecialFP;
 | |
|     
 | |
|     if (FPInstClass == X86II::NotFP)
 | |
|       continue;  // Efficiently ignore non-fp insts!
 | |
| 
 | |
|     MachineInstr *PrevMI = 0;
 | |
|     if (I != BB.begin())
 | |
|       PrevMI = prior(I);
 | |
| 
 | |
|     ++NumFP;  // Keep track of # of pseudo instrs
 | |
|     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
 | |
| 
 | |
|     // Get dead variables list now because the MI pointer may be deleted as part
 | |
|     // of processing!
 | |
|     SmallVector<unsigned, 8> DeadRegs;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDead())
 | |
|         DeadRegs.push_back(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     switch (FPInstClass) {
 | |
|     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
 | |
|     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
 | |
|     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
 | |
|     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
 | |
|     case X86II::CompareFP:  handleCompareFP(I); break;
 | |
|     case X86II::CondMovFP:  handleCondMovFP(I); break;
 | |
|     case X86II::SpecialFP:  handleSpecialFP(I); break;
 | |
|     default: llvm_unreachable("Unknown FP Type!");
 | |
|     }
 | |
| 
 | |
|     // Check to see if any of the values defined by this instruction are dead
 | |
|     // after definition.  If so, pop them.
 | |
|     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
 | |
|       unsigned Reg = DeadRegs[i];
 | |
|       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
 | |
|         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
 | |
|         freeStackSlotAfter(I, Reg-X86::FP0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Print out all of the instructions expanded to if -debug
 | |
|     DEBUG(
 | |
|       MachineBasicBlock::iterator PrevI(PrevMI);
 | |
|       if (I == PrevI) {
 | |
|         dbgs() << "Just deleted pseudo instruction\n";
 | |
|       } else {
 | |
|         MachineBasicBlock::iterator Start = I;
 | |
|         // Rewind to first instruction newly inserted.
 | |
|         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
 | |
|         dbgs() << "Inserted instructions:\n\t";
 | |
|         Start->print(dbgs(), &MF.getTarget());
 | |
|         while (++Start != llvm::next(I)) {}
 | |
|       }
 | |
|       dumpStack();
 | |
|     );
 | |
| 
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   assert(isStackEmpty() && "Stack not empty at end of basic block?");
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Efficient Lookup Table Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   struct TableEntry {
 | |
|     unsigned from;
 | |
|     unsigned to;
 | |
|     bool operator<(const TableEntry &TE) const { return from < TE.from; }
 | |
|     friend bool operator<(const TableEntry &TE, unsigned V) {
 | |
|       return TE.from < V;
 | |
|     }
 | |
|     friend bool operator<(unsigned V, const TableEntry &TE) {
 | |
|       return V < TE.from;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
 | |
|   for (unsigned i = 0; i != NumEntries-1; ++i)
 | |
|     if (!(Table[i] < Table[i+1])) return false;
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
 | |
|   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
 | |
|   if (I != Table+N && I->from == Opcode)
 | |
|     return I->to;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| #ifdef NDEBUG
 | |
| #define ASSERT_SORTED(TABLE)
 | |
| #else
 | |
| #define ASSERT_SORTED(TABLE)                                              \
 | |
|   { static bool TABLE##Checked = false;                                   \
 | |
|     if (!TABLE##Checked) {                                                \
 | |
|        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
 | |
|               "All lookup tables must be sorted for efficient access!");  \
 | |
|        TABLE##Checked = true;                                             \
 | |
|     }                                                                     \
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register File -> Register Stack Mapping Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // OpcodeTable - Sorted map of register instructions to their stack version.
 | |
| // The first element is an register file pseudo instruction, the second is the
 | |
| // concrete X86 instruction which uses the register stack.
 | |
| //
 | |
| static const TableEntry OpcodeTable[] = {
 | |
|   { X86::ABS_Fp32     , X86::ABS_F     },
 | |
|   { X86::ABS_Fp64     , X86::ABS_F     },
 | |
|   { X86::ABS_Fp80     , X86::ABS_F     },
 | |
|   { X86::ADD_Fp32m    , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp64m    , X86::ADD_F64m  },
 | |
|   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
 | |
|   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
 | |
|   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
 | |
|   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
 | |
|   { X86::CHS_Fp32     , X86::CHS_F     },
 | |
|   { X86::CHS_Fp64     , X86::CHS_F     },
 | |
|   { X86::CHS_Fp80     , X86::CHS_F     },
 | |
|   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
 | |
|   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
 | |
|   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
 | |
|   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
 | |
|   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
 | |
|   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
 | |
|   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
 | |
|   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
 | |
|   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
 | |
|   { X86::COS_Fp32     , X86::COS_F     },
 | |
|   { X86::COS_Fp64     , X86::COS_F     },
 | |
|   { X86::COS_Fp80     , X86::COS_F     },
 | |
|   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
 | |
|   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
 | |
|   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
 | |
|   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
 | |
|   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
 | |
|   { X86::DIV_Fp32m    , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp64m    , X86::DIV_F64m  },
 | |
|   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
 | |
|   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
 | |
|   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
 | |
|   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
 | |
|   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
 | |
|   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
 | |
|   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
 | |
|   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
 | |
|   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
 | |
|   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
 | |
|   { X86::IST_Fp16m32  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp16m64  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp16m80  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp32m32  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp32m64  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp32m80  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp64m32  , X86::IST_FP64m },
 | |
|   { X86::IST_Fp64m64  , X86::IST_FP64m },
 | |
|   { X86::IST_Fp64m80  , X86::IST_FP64m },
 | |
|   { X86::LD_Fp032     , X86::LD_F0     },
 | |
|   { X86::LD_Fp064     , X86::LD_F0     },
 | |
|   { X86::LD_Fp080     , X86::LD_F0     },
 | |
|   { X86::LD_Fp132     , X86::LD_F1     },
 | |
|   { X86::LD_Fp164     , X86::LD_F1     },
 | |
|   { X86::LD_Fp180     , X86::LD_F1     },
 | |
|   { X86::LD_Fp32m     , X86::LD_F32m   },
 | |
|   { X86::LD_Fp32m64   , X86::LD_F32m   },
 | |
|   { X86::LD_Fp32m80   , X86::LD_F32m   },
 | |
|   { X86::LD_Fp64m     , X86::LD_F64m   },
 | |
|   { X86::LD_Fp64m80   , X86::LD_F64m   },
 | |
|   { X86::LD_Fp80m     , X86::LD_F80m   },
 | |
|   { X86::MUL_Fp32m    , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp64m    , X86::MUL_F64m  },
 | |
|   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
 | |
|   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
 | |
|   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
 | |
|   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
 | |
|   { X86::SIN_Fp32     , X86::SIN_F     },
 | |
|   { X86::SIN_Fp64     , X86::SIN_F     },
 | |
|   { X86::SIN_Fp80     , X86::SIN_F     },
 | |
|   { X86::SQRT_Fp32    , X86::SQRT_F    },
 | |
|   { X86::SQRT_Fp64    , X86::SQRT_F    },
 | |
|   { X86::SQRT_Fp80    , X86::SQRT_F    },
 | |
|   { X86::ST_Fp32m     , X86::ST_F32m   },
 | |
|   { X86::ST_Fp64m     , X86::ST_F64m   },
 | |
|   { X86::ST_Fp64m32   , X86::ST_F32m   },
 | |
|   { X86::ST_Fp80m32   , X86::ST_F32m   },
 | |
|   { X86::ST_Fp80m64   , X86::ST_F64m   },
 | |
|   { X86::ST_FpP80m    , X86::ST_FP80m  },
 | |
|   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
 | |
|   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
 | |
|   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
 | |
|   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
 | |
|   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
 | |
|   { X86::SUB_Fp32m    , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp64m    , X86::SUB_F64m  },
 | |
|   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
 | |
|   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
 | |
|   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
 | |
|   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
 | |
|   { X86::TST_Fp32     , X86::TST_F     },
 | |
|   { X86::TST_Fp64     , X86::TST_F     },
 | |
|   { X86::TST_Fp80     , X86::TST_F     },
 | |
|   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
 | |
|   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
 | |
|   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
 | |
| };
 | |
| 
 | |
| static unsigned getConcreteOpcode(unsigned Opcode) {
 | |
|   ASSERT_SORTED(OpcodeTable);
 | |
|   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
 | |
|   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // PopTable - Sorted map of instructions to their popping version.  The first
 | |
| // element is an instruction, the second is the version which pops.
 | |
| //
 | |
| static const TableEntry PopTable[] = {
 | |
|   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
 | |
| 
 | |
|   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
 | |
|   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
 | |
| 
 | |
|   { X86::IST_F16m  , X86::IST_FP16m   },
 | |
|   { X86::IST_F32m  , X86::IST_FP32m   },
 | |
| 
 | |
|   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
 | |
| 
 | |
|   { X86::ST_F32m   , X86::ST_FP32m    },
 | |
|   { X86::ST_F64m   , X86::ST_FP64m    },
 | |
|   { X86::ST_Frr    , X86::ST_FPrr     },
 | |
| 
 | |
|   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
 | |
|   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
 | |
| 
 | |
|   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
 | |
| 
 | |
|   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
 | |
|   { X86::UCOM_Fr   , X86::UCOM_FPr    },
 | |
| };
 | |
| 
 | |
| /// popStackAfter - Pop the current value off of the top of the FP stack after
 | |
| /// the specified instruction.  This attempts to be sneaky and combine the pop
 | |
| /// into the instruction itself if possible.  The iterator is left pointing to
 | |
| /// the last instruction, be it a new pop instruction inserted, or the old
 | |
| /// instruction if it was modified in place.
 | |
| ///
 | |
| void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr* MI = I;
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   ASSERT_SORTED(PopTable);
 | |
|   assert(StackTop > 0 && "Cannot pop empty stack!");
 | |
|   RegMap[Stack[--StackTop]] = ~0;     // Update state
 | |
| 
 | |
|   // Check to see if there is a popping version of this instruction...
 | |
|   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
 | |
|   if (Opcode != -1) {
 | |
|     I->setDesc(TII->get(Opcode));
 | |
|     if (Opcode == X86::UCOM_FPPr)
 | |
|       I->RemoveOperand(0);
 | |
|   } else {    // Insert an explicit pop
 | |
|     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// freeStackSlotAfter - Free the specified register from the register stack, so
 | |
| /// that it is no longer in a register.  If the register is currently at the top
 | |
| /// of the stack, we just pop the current instruction, otherwise we store the
 | |
| /// current top-of-stack into the specified slot, then pop the top of stack.
 | |
| void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
 | |
|   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
 | |
|     popStackAfter(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, store the top of stack into the dead slot, killing the operand
 | |
|   // without having to add in an explicit xchg then pop.
 | |
|   //
 | |
|   unsigned STReg    = getSTReg(FPRegNo);
 | |
|   unsigned OldSlot  = getSlot(FPRegNo);
 | |
|   unsigned TopReg   = Stack[StackTop-1];
 | |
|   Stack[OldSlot]    = TopReg;
 | |
|   RegMap[TopReg]    = OldSlot;
 | |
|   RegMap[FPRegNo]   = ~0;
 | |
|   Stack[--StackTop] = ~0;
 | |
|   MachineInstr *MI  = I;
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction transformation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
 | |
| ///
 | |
| void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   unsigned DestReg = getFPReg(MI->getOperand(0));
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
|   
 | |
|   // Result gets pushed on the stack.
 | |
|   pushReg(DestReg);
 | |
| }
 | |
| 
 | |
| /// handleOneArgFP - fst <mem>, ST(0)
 | |
| ///
 | |
| void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
 | |
|          "Can only handle fst* & ftst instructions!");
 | |
| 
 | |
|   // Is this the last use of the source register?
 | |
|   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
 | |
|   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | |
| 
 | |
|   // FISTP64m is strange because there isn't a non-popping versions.
 | |
|   // If we have one _and_ we don't want to pop the operand, duplicate the value
 | |
|   // on the stack instead of moving it.  This ensure that popping the value is
 | |
|   // always ok.
 | |
|   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
 | |
|   //
 | |
|   if (!KillsSrc &&
 | |
|       (MI->getOpcode() == X86::IST_Fp64m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m32 ||
 | |
|        MI->getOpcode() == X86::IST_Fp64m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m64 ||
 | |
|        MI->getOpcode() == X86::IST_Fp64m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m80 ||
 | |
|        MI->getOpcode() == X86::ST_FpP80m)) {
 | |
|     duplicateToTop(Reg, 7 /*temp register*/, I);
 | |
|   } else {
 | |
|     moveToTop(Reg, I);            // Move to the top of the stack...
 | |
|   }
 | |
|   
 | |
|   // Convert from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| 
 | |
|   if (MI->getOpcode() == X86::IST_FP64m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP16m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP32m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP64m ||
 | |
|       MI->getOpcode() == X86::ST_FP80m) {
 | |
|     assert(StackTop > 0 && "Stack empty??");
 | |
|     --StackTop;
 | |
|   } else if (KillsSrc) { // Last use of operand?
 | |
|     popStackAfter(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// handleOneArgFPRW: Handle instructions that read from the top of stack and
 | |
| /// replace the value with a newly computed value.  These instructions may have
 | |
| /// non-fp operands after their FP operands.
 | |
| ///
 | |
| ///  Examples:
 | |
| ///     R1 = fchs R2
 | |
| ///     R1 = fadd R2, [mem]
 | |
| ///
 | |
| void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
| #ifndef NDEBUG
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
 | |
| #endif
 | |
| 
 | |
|   // Is this the last use of the source register?
 | |
|   unsigned Reg = getFPReg(MI->getOperand(1));
 | |
|   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | |
| 
 | |
|   if (KillsSrc) {
 | |
|     // If this is the last use of the source register, just make sure it's on
 | |
|     // the top of the stack.
 | |
|     moveToTop(Reg, I);
 | |
|     assert(StackTop > 0 && "Stack cannot be empty!");
 | |
|     --StackTop;
 | |
|     pushReg(getFPReg(MI->getOperand(0)));
 | |
|   } else {
 | |
|     // If this is not the last use of the source register, _copy_ it to the top
 | |
|     // of the stack.
 | |
|     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
 | |
|   }
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(1);   // Drop the source operand.
 | |
|   MI->RemoveOperand(0);   // Drop the destination operand.
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Define tables of various ways to map pseudo instructions
 | |
| //
 | |
| 
 | |
| // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
 | |
| static const TableEntry ForwardST0Table[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FST0r },
 | |
|   { X86::ADD_Fp64  , X86::ADD_FST0r },
 | |
|   { X86::ADD_Fp80  , X86::ADD_FST0r },
 | |
|   { X86::DIV_Fp32  , X86::DIV_FST0r },
 | |
|   { X86::DIV_Fp64  , X86::DIV_FST0r },
 | |
|   { X86::DIV_Fp80  , X86::DIV_FST0r },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FST0r },
 | |
|   { X86::MUL_Fp64  , X86::MUL_FST0r },
 | |
|   { X86::MUL_Fp80  , X86::MUL_FST0r },
 | |
|   { X86::SUB_Fp32  , X86::SUB_FST0r },
 | |
|   { X86::SUB_Fp64  , X86::SUB_FST0r },
 | |
|   { X86::SUB_Fp80  , X86::SUB_FST0r },
 | |
| };
 | |
| 
 | |
| // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
 | |
| static const TableEntry ReverseST0Table[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::DIV_Fp32  , X86::DIVR_FST0r },
 | |
|   { X86::DIV_Fp64  , X86::DIVR_FST0r },
 | |
|   { X86::DIV_Fp80  , X86::DIVR_FST0r },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::SUB_Fp32  , X86::SUBR_FST0r },
 | |
|   { X86::SUB_Fp64  , X86::SUBR_FST0r },
 | |
|   { X86::SUB_Fp80  , X86::SUBR_FST0r },
 | |
| };
 | |
| 
 | |
| // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
 | |
| static const TableEntry ForwardSTiTable[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
 | |
|   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
 | |
|   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
 | |
|   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
 | |
|   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
 | |
| };
 | |
| 
 | |
| // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
 | |
| static const TableEntry ReverseSTiTable[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FrST0 },
 | |
|   { X86::ADD_Fp64  , X86::ADD_FrST0 },
 | |
|   { X86::ADD_Fp80  , X86::ADD_FrST0 },
 | |
|   { X86::DIV_Fp32  , X86::DIV_FrST0 },
 | |
|   { X86::DIV_Fp64  , X86::DIV_FrST0 },
 | |
|   { X86::DIV_Fp80  , X86::DIV_FrST0 },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FrST0 },
 | |
|   { X86::MUL_Fp64  , X86::MUL_FrST0 },
 | |
|   { X86::MUL_Fp80  , X86::MUL_FrST0 },
 | |
|   { X86::SUB_Fp32  , X86::SUB_FrST0 },
 | |
|   { X86::SUB_Fp64  , X86::SUB_FrST0 },
 | |
|   { X86::SUB_Fp80  , X86::SUB_FrST0 },
 | |
| };
 | |
| 
 | |
| 
 | |
| /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
 | |
| /// instructions which need to be simplified and possibly transformed.
 | |
| ///
 | |
| /// Result: ST(0) = fsub  ST(0), ST(i)
 | |
| ///         ST(i) = fsub  ST(0), ST(i)
 | |
| ///         ST(0) = fsubr ST(0), ST(i)
 | |
| ///         ST(i) = fsubr ST(0), ST(i)
 | |
| ///
 | |
| void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
 | |
|   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | |
|   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned NumOperands = MI->getDesc().getNumOperands();
 | |
|   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
 | |
|   unsigned Dest = getFPReg(MI->getOperand(0));
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | |
|   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   unsigned TOS = getStackEntry(0);
 | |
| 
 | |
|   // One of our operands must be on the top of the stack.  If neither is yet, we
 | |
|   // need to move one.
 | |
|   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
 | |
|     // We can choose to move either operand to the top of the stack.  If one of
 | |
|     // the operands is killed by this instruction, we want that one so that we
 | |
|     // can update right on top of the old version.
 | |
|     if (KillsOp0) {
 | |
|       moveToTop(Op0, I);         // Move dead operand to TOS.
 | |
|       TOS = Op0;
 | |
|     } else if (KillsOp1) {
 | |
|       moveToTop(Op1, I);
 | |
|       TOS = Op1;
 | |
|     } else {
 | |
|       // All of the operands are live after this instruction executes, so we
 | |
|       // cannot update on top of any operand.  Because of this, we must
 | |
|       // duplicate one of the stack elements to the top.  It doesn't matter
 | |
|       // which one we pick.
 | |
|       //
 | |
|       duplicateToTop(Op0, Dest, I);
 | |
|       Op0 = TOS = Dest;
 | |
|       KillsOp0 = true;
 | |
|     }
 | |
|   } else if (!KillsOp0 && !KillsOp1) {
 | |
|     // If we DO have one of our operands at the top of the stack, but we don't
 | |
|     // have a dead operand, we must duplicate one of the operands to a new slot
 | |
|     // on the stack.
 | |
|     duplicateToTop(Op0, Dest, I);
 | |
|     Op0 = TOS = Dest;
 | |
|     KillsOp0 = true;
 | |
|   }
 | |
| 
 | |
|   // Now we know that one of our operands is on the top of the stack, and at
 | |
|   // least one of our operands is killed by this instruction.
 | |
|   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
 | |
|          "Stack conditions not set up right!");
 | |
| 
 | |
|   // We decide which form to use based on what is on the top of the stack, and
 | |
|   // which operand is killed by this instruction.
 | |
|   const TableEntry *InstTable;
 | |
|   bool isForward = TOS == Op0;
 | |
|   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
 | |
|   if (updateST0) {
 | |
|     if (isForward)
 | |
|       InstTable = ForwardST0Table;
 | |
|     else
 | |
|       InstTable = ReverseST0Table;
 | |
|   } else {
 | |
|     if (isForward)
 | |
|       InstTable = ForwardSTiTable;
 | |
|     else
 | |
|       InstTable = ReverseSTiTable;
 | |
|   }
 | |
| 
 | |
|   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
 | |
|                       MI->getOpcode());
 | |
|   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
 | |
| 
 | |
|   // NotTOS - The register which is not on the top of stack...
 | |
|   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
 | |
| 
 | |
|   // Replace the old instruction with a new instruction
 | |
|   MBB->remove(I++);
 | |
|   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
 | |
| 
 | |
|   // If both operands are killed, pop one off of the stack in addition to
 | |
|   // overwriting the other one.
 | |
|   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
 | |
|     assert(!updateST0 && "Should have updated other operand!");
 | |
|     popStackAfter(I);   // Pop the top of stack
 | |
|   }
 | |
| 
 | |
|   // Update stack information so that we know the destination register is now on
 | |
|   // the stack.
 | |
|   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
 | |
|   assert(UpdatedSlot < StackTop && Dest < 7);
 | |
|   Stack[UpdatedSlot]   = Dest;
 | |
|   RegMap[Dest]         = UpdatedSlot;
 | |
|   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
 | |
| }
 | |
| 
 | |
| /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
 | |
| /// register arguments and no explicit destinations.
 | |
| ///
 | |
| void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
 | |
|   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | |
|   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned NumOperands = MI->getDesc().getNumOperands();
 | |
|   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | |
|   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
| 
 | |
|   // Make sure the first operand is on the top of stack, the other one can be
 | |
|   // anywhere.
 | |
|   moveToTop(Op0, I);
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->getOperand(0).setReg(getSTReg(Op1));
 | |
|   MI->RemoveOperand(1);
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| 
 | |
|   // If any of the operands are killed by this instruction, free them.
 | |
|   if (KillsOp0) freeStackSlotAfter(I, Op0);
 | |
|   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
 | |
| }
 | |
| 
 | |
| /// handleCondMovFP - Handle two address conditional move instructions.  These
 | |
| /// instructions move a st(i) register to st(0) iff a condition is true.  These
 | |
| /// instructions require that the first operand is at the top of the stack, but
 | |
| /// otherwise don't modify the stack at all.
 | |
| void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(0));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(2));
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
| 
 | |
|   // The first operand *must* be on the top of the stack.
 | |
|   moveToTop(Op0, I);
 | |
| 
 | |
|   // Change the second operand to the stack register that the operand is in.
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(0);
 | |
|   MI->RemoveOperand(1);
 | |
|   MI->getOperand(0).setReg(getSTReg(Op1));
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
|   
 | |
|   // If we kill the second operand, make sure to pop it from the stack.
 | |
|   if (Op0 != Op1 && KillsOp1) {
 | |
|     // Get this value off of the register stack.
 | |
|     freeStackSlotAfter(I, Op1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// handleSpecialFP - Handle special instructions which behave unlike other
 | |
| /// floating point instructions.  This is primarily intended for use by pseudo
 | |
| /// instructions.
 | |
| ///
 | |
| void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown SpecialFP instruction!");
 | |
|   case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
 | |
|   case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
 | |
|   case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
 | |
|     assert(StackTop == 0 && "Stack should be empty after a call!");
 | |
|     pushReg(getFPReg(MI->getOperand(0)));
 | |
|     break;
 | |
|   case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
 | |
|   case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
 | |
|   case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
 | |
|     // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
 | |
|     // The pattern we expect is:
 | |
|     //  CALL
 | |
|     //  FP1 = FpGET_ST0
 | |
|     //  FP4 = FpGET_ST1
 | |
|     //
 | |
|     // At this point, we've pushed FP1 on the top of stack, so it should be
 | |
|     // present if it isn't dead.  If it was dead, we already emitted a pop to
 | |
|     // remove it from the stack and StackTop = 0.
 | |
|     
 | |
|     // Push FP4 as top of stack next.
 | |
|     pushReg(getFPReg(MI->getOperand(0)));
 | |
| 
 | |
|     // If StackTop was 0 before we pushed our operand, then ST(0) must have been
 | |
|     // dead.  In this case, the ST(1) value is the only thing that is live, so
 | |
|     // it should be on the TOS (after the pop that was emitted) and is.  Just
 | |
|     // continue in this case.
 | |
|     if (StackTop == 1)
 | |
|       break;
 | |
|     
 | |
|     // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
 | |
|     // elements so that our accounting is correct.
 | |
|     unsigned RegOnTop = getStackEntry(0);
 | |
|     unsigned RegNo = getStackEntry(1);
 | |
|     
 | |
|     // Swap the slots the regs are in.
 | |
|     std::swap(RegMap[RegNo], RegMap[RegOnTop]);
 | |
|     
 | |
|     // Swap stack slot contents.
 | |
|     assert(RegMap[RegOnTop] < StackTop);
 | |
|     std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
 | |
|     break;
 | |
|   }
 | |
|   case X86::FpSET_ST0_32:
 | |
|   case X86::FpSET_ST0_64:
 | |
|   case X86::FpSET_ST0_80: {
 | |
|     unsigned Op0 = getFPReg(MI->getOperand(0));
 | |
| 
 | |
|     // FpSET_ST0_80 is generated by copyRegToReg for both function return
 | |
|     // and inline assembly with the "st" constrain. In the latter case,
 | |
|     // it is possible for ST(0) to be alive after this instruction.
 | |
|     if (!MI->killsRegister(X86::FP0 + Op0)) {
 | |
|       // Duplicate Op0
 | |
|       duplicateToTop(0, 7 /*temp register*/, I);
 | |
|     } else {
 | |
|       moveToTop(Op0, I);
 | |
|     }
 | |
|     --StackTop;   // "Forget" we have something on the top of stack!
 | |
|     break;
 | |
|   }
 | |
|   case X86::FpSET_ST1_32:
 | |
|   case X86::FpSET_ST1_64:
 | |
|   case X86::FpSET_ST1_80:
 | |
|     // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
 | |
|     if (StackTop == 1) {
 | |
|       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
 | |
|       NumFXCH++;
 | |
|       StackTop = 0;
 | |
|       break;
 | |
|     }
 | |
|     assert(StackTop == 2 && "Stack should have two element on it to return!");
 | |
|     --StackTop;   // "Forget" we have something on the top of stack!
 | |
|     break;
 | |
|   case X86::MOV_Fp3232:
 | |
|   case X86::MOV_Fp3264:
 | |
|   case X86::MOV_Fp6432:
 | |
|   case X86::MOV_Fp6464: 
 | |
|   case X86::MOV_Fp3280:
 | |
|   case X86::MOV_Fp6480:
 | |
|   case X86::MOV_Fp8032:
 | |
|   case X86::MOV_Fp8064: 
 | |
|   case X86::MOV_Fp8080: {
 | |
|     const MachineOperand &MO1 = MI->getOperand(1);
 | |
|     unsigned SrcReg = getFPReg(MO1);
 | |
| 
 | |
|     const MachineOperand &MO0 = MI->getOperand(0);
 | |
|     // These can be created due to inline asm. Two address pass can introduce
 | |
|     // copies from RFP registers to virtual registers.
 | |
|     if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
 | |
|       assert(MO1.isKill());
 | |
|       // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
 | |
|       // like  FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
 | |
|       assert((StackTop == 1 || StackTop == 2)
 | |
|              && "Stack should have one or two element on it to return!");
 | |
|       --StackTop;   // "Forget" we have something on the top of stack!
 | |
|       break;
 | |
|     } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
 | |
|       assert(MO1.isKill());
 | |
|       // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
 | |
|       // like  FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
 | |
|       // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
 | |
|       if (StackTop == 1) {
 | |
|         BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
 | |
|         NumFXCH++;
 | |
|         StackTop = 0;
 | |
|         break;
 | |
|       }
 | |
|       assert(StackTop == 2 && "Stack should have two element on it to return!");
 | |
|       --StackTop;   // "Forget" we have something on the top of stack!
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     unsigned DestReg = getFPReg(MO0);
 | |
|     if (MI->killsRegister(X86::FP0+SrcReg)) {
 | |
|       // If the input operand is killed, we can just change the owner of the
 | |
|       // incoming stack slot into the result.
 | |
|       unsigned Slot = getSlot(SrcReg);
 | |
|       assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
 | |
|       Stack[Slot] = DestReg;
 | |
|       RegMap[DestReg] = Slot;
 | |
| 
 | |
|     } else {
 | |
|       // For FMOV we just duplicate the specified value to a new stack slot.
 | |
|       // This could be made better, but would require substantial changes.
 | |
|       duplicateToTop(SrcReg, DestReg, I);
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   case TargetOpcode::INLINEASM: {
 | |
|     // The inline asm MachineInstr currently only *uses* FP registers for the
 | |
|     // 'f' constraint.  These should be turned into the current ST(x) register
 | |
|     // in the machine instr.  Also, any kills should be explicitly popped after
 | |
|     // the inline asm.
 | |
|     unsigned Kills[7];
 | |
|     unsigned NumKills = 0;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | |
|         continue;
 | |
|       assert(Op.isUse() && "Only handle inline asm uses right now");
 | |
|       
 | |
|       unsigned FPReg = getFPReg(Op);
 | |
|       Op.setReg(getSTReg(FPReg));
 | |
|       
 | |
|       // If we kill this operand, make sure to pop it from the stack after the
 | |
|       // asm.  We just remember it for now, and pop them all off at the end in
 | |
|       // a batch.
 | |
|       if (Op.isKill())
 | |
|         Kills[NumKills++] = FPReg;
 | |
|     }
 | |
| 
 | |
|     // If this asm kills any FP registers (is the last use of them) we must
 | |
|     // explicitly emit pop instructions for them.  Do this now after the asm has
 | |
|     // executed so that the ST(x) numbers are not off (which would happen if we
 | |
|     // did this inline with operand rewriting).
 | |
|     //
 | |
|     // Note: this might be a non-optimal pop sequence.  We might be able to do
 | |
|     // better by trying to pop in stack order or something.
 | |
|     MachineBasicBlock::iterator InsertPt = MI;
 | |
|     while (NumKills)
 | |
|       freeStackSlotAfter(InsertPt, Kills[--NumKills]);
 | |
| 
 | |
|     // Don't delete the inline asm!
 | |
|     return;
 | |
|   }
 | |
|       
 | |
|   case X86::RET:
 | |
|   case X86::RETI:
 | |
|     // If RET has an FP register use operand, pass the first one in ST(0) and
 | |
|     // the second one in ST(1).
 | |
|     if (isStackEmpty()) return;  // Quick check to see if any are possible.
 | |
|     
 | |
|     // Find the register operands.
 | |
|     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
 | |
|     
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | |
|         continue;
 | |
|       // FP Register uses must be kills unless there are two uses of the same
 | |
|       // register, in which case only one will be a kill.
 | |
|       assert(Op.isUse() &&
 | |
|              (Op.isKill() ||                        // Marked kill.
 | |
|               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
 | |
|               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
 | |
|              "Ret only defs operands, and values aren't live beyond it");
 | |
| 
 | |
|       if (FirstFPRegOp == ~0U)
 | |
|         FirstFPRegOp = getFPReg(Op);
 | |
|       else {
 | |
|         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
 | |
|         SecondFPRegOp = getFPReg(Op);
 | |
|       }
 | |
| 
 | |
|       // Remove the operand so that later passes don't see it.
 | |
|       MI->RemoveOperand(i);
 | |
|       --i, --e;
 | |
|     }
 | |
|     
 | |
|     // There are only four possibilities here:
 | |
|     // 1) we are returning a single FP value.  In this case, it has to be in
 | |
|     //    ST(0) already, so just declare success by removing the value from the
 | |
|     //    FP Stack.
 | |
|     if (SecondFPRegOp == ~0U) {
 | |
|       // Assert that the top of stack contains the right FP register.
 | |
|       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
 | |
|              "Top of stack not the right register for RET!");
 | |
|       
 | |
|       // Ok, everything is good, mark the value as not being on the stack
 | |
|       // anymore so that our assertion about the stack being empty at end of
 | |
|       // block doesn't fire.
 | |
|       StackTop = 0;
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we are returning two values:
 | |
|     // 2) If returning the same value for both, we only have one thing in the FP
 | |
|     //    stack.  Consider:  RET FP1, FP1
 | |
|     if (StackTop == 1) {
 | |
|       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
 | |
|              "Stack misconfiguration for RET!");
 | |
|       
 | |
|       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
 | |
|       // register to hold it.
 | |
|       unsigned NewReg = (FirstFPRegOp+1)%7;
 | |
|       duplicateToTop(FirstFPRegOp, NewReg, MI);
 | |
|       FirstFPRegOp = NewReg;
 | |
|     }
 | |
|     
 | |
|     /// Okay we know we have two different FPx operands now:
 | |
|     assert(StackTop == 2 && "Must have two values live!");
 | |
|     
 | |
|     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
 | |
|     ///    in ST(1).  In this case, emit an fxch.
 | |
|     if (getStackEntry(0) == SecondFPRegOp) {
 | |
|       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
 | |
|       moveToTop(FirstFPRegOp, MI);
 | |
|     }
 | |
|     
 | |
|     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
 | |
|     /// ST(1).  Just remove both from our understanding of the stack and return.
 | |
|     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
 | |
|     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
 | |
|     StackTop = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   I = MBB->erase(I);  // Remove the pseudo instruction
 | |
|   --I;
 | |
| }
 |