mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97768 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3629 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3629 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86.h"
 | |
| #include "X86GenInstrInfo.inc"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| 
 | |
| #include <limits>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFusing("disable-spill-fusing",
 | |
|          cl::desc("Disable fusing of spill code into instructions"));
 | |
| static cl::opt<bool>
 | |
| PrintFailedFusing("print-failed-fuse-candidates",
 | |
|                   cl::desc("Print instructions that the allocator wants to"
 | |
|                            " fuse, but the X86 backend currently can't"),
 | |
|                   cl::Hidden);
 | |
| static cl::opt<bool>
 | |
| ReMatPICStubLoad("remat-pic-stub-load",
 | |
|                  cl::desc("Re-materialize load from stub in PIC mode"),
 | |
|                  cl::init(false), cl::Hidden);
 | |
| 
 | |
| X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 | |
|   : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
 | |
|     TM(tm), RI(tm, *this) {
 | |
|   SmallVector<unsigned,16> AmbEntries;
 | |
|   static const unsigned OpTbl2Addr[][2] = {
 | |
|     { X86::ADC32ri,     X86::ADC32mi },
 | |
|     { X86::ADC32ri8,    X86::ADC32mi8 },
 | |
|     { X86::ADC32rr,     X86::ADC32mr },
 | |
|     { X86::ADC64ri32,   X86::ADC64mi32 },
 | |
|     { X86::ADC64ri8,    X86::ADC64mi8 },
 | |
|     { X86::ADC64rr,     X86::ADC64mr },
 | |
|     { X86::ADD16ri,     X86::ADD16mi },
 | |
|     { X86::ADD16ri8,    X86::ADD16mi8 },
 | |
|     { X86::ADD16rr,     X86::ADD16mr },
 | |
|     { X86::ADD32ri,     X86::ADD32mi },
 | |
|     { X86::ADD32ri8,    X86::ADD32mi8 },
 | |
|     { X86::ADD32rr,     X86::ADD32mr },
 | |
|     { X86::ADD64ri32,   X86::ADD64mi32 },
 | |
|     { X86::ADD64ri8,    X86::ADD64mi8 },
 | |
|     { X86::ADD64rr,     X86::ADD64mr },
 | |
|     { X86::ADD8ri,      X86::ADD8mi },
 | |
|     { X86::ADD8rr,      X86::ADD8mr },
 | |
|     { X86::AND16ri,     X86::AND16mi },
 | |
|     { X86::AND16ri8,    X86::AND16mi8 },
 | |
|     { X86::AND16rr,     X86::AND16mr },
 | |
|     { X86::AND32ri,     X86::AND32mi },
 | |
|     { X86::AND32ri8,    X86::AND32mi8 },
 | |
|     { X86::AND32rr,     X86::AND32mr },
 | |
|     { X86::AND64ri32,   X86::AND64mi32 },
 | |
|     { X86::AND64ri8,    X86::AND64mi8 },
 | |
|     { X86::AND64rr,     X86::AND64mr },
 | |
|     { X86::AND8ri,      X86::AND8mi },
 | |
|     { X86::AND8rr,      X86::AND8mr },
 | |
|     { X86::DEC16r,      X86::DEC16m },
 | |
|     { X86::DEC32r,      X86::DEC32m },
 | |
|     { X86::DEC64_16r,   X86::DEC64_16m },
 | |
|     { X86::DEC64_32r,   X86::DEC64_32m },
 | |
|     { X86::DEC64r,      X86::DEC64m },
 | |
|     { X86::DEC8r,       X86::DEC8m },
 | |
|     { X86::INC16r,      X86::INC16m },
 | |
|     { X86::INC32r,      X86::INC32m },
 | |
|     { X86::INC64_16r,   X86::INC64_16m },
 | |
|     { X86::INC64_32r,   X86::INC64_32m },
 | |
|     { X86::INC64r,      X86::INC64m },
 | |
|     { X86::INC8r,       X86::INC8m },
 | |
|     { X86::NEG16r,      X86::NEG16m },
 | |
|     { X86::NEG32r,      X86::NEG32m },
 | |
|     { X86::NEG64r,      X86::NEG64m },
 | |
|     { X86::NEG8r,       X86::NEG8m },
 | |
|     { X86::NOT16r,      X86::NOT16m },
 | |
|     { X86::NOT32r,      X86::NOT32m },
 | |
|     { X86::NOT64r,      X86::NOT64m },
 | |
|     { X86::NOT8r,       X86::NOT8m },
 | |
|     { X86::OR16ri,      X86::OR16mi },
 | |
|     { X86::OR16ri8,     X86::OR16mi8 },
 | |
|     { X86::OR16rr,      X86::OR16mr },
 | |
|     { X86::OR32ri,      X86::OR32mi },
 | |
|     { X86::OR32ri8,     X86::OR32mi8 },
 | |
|     { X86::OR32rr,      X86::OR32mr },
 | |
|     { X86::OR64ri32,    X86::OR64mi32 },
 | |
|     { X86::OR64ri8,     X86::OR64mi8 },
 | |
|     { X86::OR64rr,      X86::OR64mr },
 | |
|     { X86::OR8ri,       X86::OR8mi },
 | |
|     { X86::OR8rr,       X86::OR8mr },
 | |
|     { X86::ROL16r1,     X86::ROL16m1 },
 | |
|     { X86::ROL16rCL,    X86::ROL16mCL },
 | |
|     { X86::ROL16ri,     X86::ROL16mi },
 | |
|     { X86::ROL32r1,     X86::ROL32m1 },
 | |
|     { X86::ROL32rCL,    X86::ROL32mCL },
 | |
|     { X86::ROL32ri,     X86::ROL32mi },
 | |
|     { X86::ROL64r1,     X86::ROL64m1 },
 | |
|     { X86::ROL64rCL,    X86::ROL64mCL },
 | |
|     { X86::ROL64ri,     X86::ROL64mi },
 | |
|     { X86::ROL8r1,      X86::ROL8m1 },
 | |
|     { X86::ROL8rCL,     X86::ROL8mCL },
 | |
|     { X86::ROL8ri,      X86::ROL8mi },
 | |
|     { X86::ROR16r1,     X86::ROR16m1 },
 | |
|     { X86::ROR16rCL,    X86::ROR16mCL },
 | |
|     { X86::ROR16ri,     X86::ROR16mi },
 | |
|     { X86::ROR32r1,     X86::ROR32m1 },
 | |
|     { X86::ROR32rCL,    X86::ROR32mCL },
 | |
|     { X86::ROR32ri,     X86::ROR32mi },
 | |
|     { X86::ROR64r1,     X86::ROR64m1 },
 | |
|     { X86::ROR64rCL,    X86::ROR64mCL },
 | |
|     { X86::ROR64ri,     X86::ROR64mi },
 | |
|     { X86::ROR8r1,      X86::ROR8m1 },
 | |
|     { X86::ROR8rCL,     X86::ROR8mCL },
 | |
|     { X86::ROR8ri,      X86::ROR8mi },
 | |
|     { X86::SAR16r1,     X86::SAR16m1 },
 | |
|     { X86::SAR16rCL,    X86::SAR16mCL },
 | |
|     { X86::SAR16ri,     X86::SAR16mi },
 | |
|     { X86::SAR32r1,     X86::SAR32m1 },
 | |
|     { X86::SAR32rCL,    X86::SAR32mCL },
 | |
|     { X86::SAR32ri,     X86::SAR32mi },
 | |
|     { X86::SAR64r1,     X86::SAR64m1 },
 | |
|     { X86::SAR64rCL,    X86::SAR64mCL },
 | |
|     { X86::SAR64ri,     X86::SAR64mi },
 | |
|     { X86::SAR8r1,      X86::SAR8m1 },
 | |
|     { X86::SAR8rCL,     X86::SAR8mCL },
 | |
|     { X86::SAR8ri,      X86::SAR8mi },
 | |
|     { X86::SBB32ri,     X86::SBB32mi },
 | |
|     { X86::SBB32ri8,    X86::SBB32mi8 },
 | |
|     { X86::SBB32rr,     X86::SBB32mr },
 | |
|     { X86::SBB64ri32,   X86::SBB64mi32 },
 | |
|     { X86::SBB64ri8,    X86::SBB64mi8 },
 | |
|     { X86::SBB64rr,     X86::SBB64mr },
 | |
|     { X86::SHL16rCL,    X86::SHL16mCL },
 | |
|     { X86::SHL16ri,     X86::SHL16mi },
 | |
|     { X86::SHL32rCL,    X86::SHL32mCL },
 | |
|     { X86::SHL32ri,     X86::SHL32mi },
 | |
|     { X86::SHL64rCL,    X86::SHL64mCL },
 | |
|     { X86::SHL64ri,     X86::SHL64mi },
 | |
|     { X86::SHL8rCL,     X86::SHL8mCL },
 | |
|     { X86::SHL8ri,      X86::SHL8mi },
 | |
|     { X86::SHLD16rrCL,  X86::SHLD16mrCL },
 | |
|     { X86::SHLD16rri8,  X86::SHLD16mri8 },
 | |
|     { X86::SHLD32rrCL,  X86::SHLD32mrCL },
 | |
|     { X86::SHLD32rri8,  X86::SHLD32mri8 },
 | |
|     { X86::SHLD64rrCL,  X86::SHLD64mrCL },
 | |
|     { X86::SHLD64rri8,  X86::SHLD64mri8 },
 | |
|     { X86::SHR16r1,     X86::SHR16m1 },
 | |
|     { X86::SHR16rCL,    X86::SHR16mCL },
 | |
|     { X86::SHR16ri,     X86::SHR16mi },
 | |
|     { X86::SHR32r1,     X86::SHR32m1 },
 | |
|     { X86::SHR32rCL,    X86::SHR32mCL },
 | |
|     { X86::SHR32ri,     X86::SHR32mi },
 | |
|     { X86::SHR64r1,     X86::SHR64m1 },
 | |
|     { X86::SHR64rCL,    X86::SHR64mCL },
 | |
|     { X86::SHR64ri,     X86::SHR64mi },
 | |
|     { X86::SHR8r1,      X86::SHR8m1 },
 | |
|     { X86::SHR8rCL,     X86::SHR8mCL },
 | |
|     { X86::SHR8ri,      X86::SHR8mi },
 | |
|     { X86::SHRD16rrCL,  X86::SHRD16mrCL },
 | |
|     { X86::SHRD16rri8,  X86::SHRD16mri8 },
 | |
|     { X86::SHRD32rrCL,  X86::SHRD32mrCL },
 | |
|     { X86::SHRD32rri8,  X86::SHRD32mri8 },
 | |
|     { X86::SHRD64rrCL,  X86::SHRD64mrCL },
 | |
|     { X86::SHRD64rri8,  X86::SHRD64mri8 },
 | |
|     { X86::SUB16ri,     X86::SUB16mi },
 | |
|     { X86::SUB16ri8,    X86::SUB16mi8 },
 | |
|     { X86::SUB16rr,     X86::SUB16mr },
 | |
|     { X86::SUB32ri,     X86::SUB32mi },
 | |
|     { X86::SUB32ri8,    X86::SUB32mi8 },
 | |
|     { X86::SUB32rr,     X86::SUB32mr },
 | |
|     { X86::SUB64ri32,   X86::SUB64mi32 },
 | |
|     { X86::SUB64ri8,    X86::SUB64mi8 },
 | |
|     { X86::SUB64rr,     X86::SUB64mr },
 | |
|     { X86::SUB8ri,      X86::SUB8mi },
 | |
|     { X86::SUB8rr,      X86::SUB8mr },
 | |
|     { X86::XOR16ri,     X86::XOR16mi },
 | |
|     { X86::XOR16ri8,    X86::XOR16mi8 },
 | |
|     { X86::XOR16rr,     X86::XOR16mr },
 | |
|     { X86::XOR32ri,     X86::XOR32mi },
 | |
|     { X86::XOR32ri8,    X86::XOR32mi8 },
 | |
|     { X86::XOR32rr,     X86::XOR32mr },
 | |
|     { X86::XOR64ri32,   X86::XOR64mi32 },
 | |
|     { X86::XOR64ri8,    X86::XOR64mi8 },
 | |
|     { X86::XOR64rr,     X86::XOR64mr },
 | |
|     { X86::XOR8ri,      X86::XOR8mi },
 | |
|     { X86::XOR8rr,      X86::XOR8mr }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2Addr[i][0];
 | |
|     unsigned MemOp = OpTbl2Addr[i][1];
 | |
|     if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
 | |
|                                                std::make_pair(MemOp,0))).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     // Index 0, folded load and store, no alignment requirement.
 | |
|     unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
 | |
|     if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | |
|                                                 std::make_pair(RegOp,
 | |
|                                                               AuxInfo))).second)
 | |
|       AmbEntries.push_back(MemOp);
 | |
|   }
 | |
| 
 | |
|   // If the third value is 1, then it's folding either a load or a store.
 | |
|   static const unsigned OpTbl0[][4] = {
 | |
|     { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
 | |
|     { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
 | |
|     { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
 | |
|     { X86::CALL32r,     X86::CALL32m, 1, 0 },
 | |
|     { X86::CALL64r,     X86::CALL64m, 1, 0 },
 | |
|     { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
 | |
|     { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
 | |
|     { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
 | |
|     { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
 | |
|     { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
 | |
|     { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
 | |
|     { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
 | |
|     { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
 | |
|     { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
 | |
|     { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
 | |
|     { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
 | |
|     { X86::DIV16r,      X86::DIV16m, 1, 0 },
 | |
|     { X86::DIV32r,      X86::DIV32m, 1, 0 },
 | |
|     { X86::DIV64r,      X86::DIV64m, 1, 0 },
 | |
|     { X86::DIV8r,       X86::DIV8m, 1, 0 },
 | |
|     { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
 | |
|     { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
 | |
|     { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
 | |
|     { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
 | |
|     { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
 | |
|     { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
 | |
|     { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
 | |
|     { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
 | |
|     { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
 | |
|     { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
 | |
|     { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
 | |
|     { X86::JMP32r,      X86::JMP32m, 1, 0 },
 | |
|     { X86::JMP64r,      X86::JMP64m, 1, 0 },
 | |
|     { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
 | |
|     { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
 | |
|     { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
 | |
|     { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
 | |
|     { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
 | |
|     { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
 | |
|     { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
 | |
|     { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
 | |
|     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
 | |
|     { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
 | |
|     { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
 | |
|     { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
 | |
|     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
 | |
|     { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
 | |
|     { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
 | |
|     { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
 | |
|     { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
 | |
|     { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
 | |
|     { X86::MUL16r,      X86::MUL16m, 1, 0 },
 | |
|     { X86::MUL32r,      X86::MUL32m, 1, 0 },
 | |
|     { X86::MUL64r,      X86::MUL64m, 1, 0 },
 | |
|     { X86::MUL8r,       X86::MUL8m, 1, 0 },
 | |
|     { X86::SETAEr,      X86::SETAEm, 0, 0 },
 | |
|     { X86::SETAr,       X86::SETAm, 0, 0 },
 | |
|     { X86::SETBEr,      X86::SETBEm, 0, 0 },
 | |
|     { X86::SETBr,       X86::SETBm, 0, 0 },
 | |
|     { X86::SETEr,       X86::SETEm, 0, 0 },
 | |
|     { X86::SETGEr,      X86::SETGEm, 0, 0 },
 | |
|     { X86::SETGr,       X86::SETGm, 0, 0 },
 | |
|     { X86::SETLEr,      X86::SETLEm, 0, 0 },
 | |
|     { X86::SETLr,       X86::SETLm, 0, 0 },
 | |
|     { X86::SETNEr,      X86::SETNEm, 0, 0 },
 | |
|     { X86::SETNOr,      X86::SETNOm, 0, 0 },
 | |
|     { X86::SETNPr,      X86::SETNPm, 0, 0 },
 | |
|     { X86::SETNSr,      X86::SETNSm, 0, 0 },
 | |
|     { X86::SETOr,       X86::SETOm, 0, 0 },
 | |
|     { X86::SETPr,       X86::SETPm, 0, 0 },
 | |
|     { X86::SETSr,       X86::SETSm, 0, 0 },
 | |
|     { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
 | |
|     { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
 | |
|     { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
 | |
|     { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
 | |
|     { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl0[i][0];
 | |
|     unsigned MemOp = OpTbl0[i][1];
 | |
|     unsigned Align = OpTbl0[i][3];
 | |
|     if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
 | |
|                                            std::make_pair(MemOp,Align))).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     unsigned FoldedLoad = OpTbl0[i][2];
 | |
|     // Index 0, folded load or store.
 | |
|     unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
 | |
|     if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
 | |
|       if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | |
|                                      std::make_pair(RegOp, AuxInfo))).second)
 | |
|         AmbEntries.push_back(MemOp);
 | |
|   }
 | |
| 
 | |
|   static const unsigned OpTbl1[][3] = {
 | |
|     { X86::CMP16rr,         X86::CMP16rm, 0 },
 | |
|     { X86::CMP32rr,         X86::CMP32rm, 0 },
 | |
|     { X86::CMP64rr,         X86::CMP64rm, 0 },
 | |
|     { X86::CMP8rr,          X86::CMP8rm, 0 },
 | |
|     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
 | |
|     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
 | |
|     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
 | |
|     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
 | |
|     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
 | |
|     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
 | |
|     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
 | |
|     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
 | |
|     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
 | |
|     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
 | |
|     { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
 | |
|     { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
 | |
|     { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
 | |
|     { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
 | |
|     { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
 | |
|     { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
 | |
|     { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
 | |
|     { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
 | |
|     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
 | |
|     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
 | |
|     { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
 | |
|     { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
 | |
|     { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
 | |
|     { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
 | |
|     { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
 | |
|     { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
 | |
|     { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
 | |
|     { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
 | |
|     { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
 | |
|     { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
 | |
|     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
 | |
|     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
 | |
|     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
 | |
|     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
 | |
|     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
 | |
|     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
 | |
|     { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
 | |
|     { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
 | |
|     { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
 | |
|     { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
 | |
|     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
 | |
|     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
 | |
|     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
 | |
|     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
 | |
|     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
 | |
|     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
 | |
|     { X86::MOV16rr,         X86::MOV16rm, 0 },
 | |
|     { X86::MOV32rr,         X86::MOV32rm, 0 },
 | |
|     { X86::MOV64rr,         X86::MOV64rm, 0 },
 | |
|     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
 | |
|     { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
 | |
|     { X86::MOV8rr,          X86::MOV8rm, 0 },
 | |
|     { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
 | |
|     { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
 | |
|     { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
 | |
|     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
 | |
|     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
 | |
|     { X86::MOVDQArr,        X86::MOVDQArm, 16 },
 | |
|     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
 | |
|     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
 | |
|     { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
 | |
|     { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
 | |
|     { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
 | |
|     { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
 | |
|     { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
 | |
|     { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
 | |
|     { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
 | |
|     { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
 | |
|     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
 | |
|     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
 | |
|     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
 | |
|     { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
 | |
|     { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
 | |
|     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
 | |
|     { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
 | |
|     { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
 | |
|     { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
 | |
|     { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
 | |
|     { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
 | |
|     { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
 | |
|     { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
 | |
|     { X86::RCPPSr,          X86::RCPPSm, 16 },
 | |
|     { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
 | |
|     { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
 | |
|     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
 | |
|     { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
 | |
|     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
 | |
|     { X86::SQRTPDr,         X86::SQRTPDm, 16 },
 | |
|     { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
 | |
|     { X86::SQRTPSr,         X86::SQRTPSm, 16 },
 | |
|     { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
 | |
|     { X86::SQRTSDr,         X86::SQRTSDm, 0 },
 | |
|     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
 | |
|     { X86::SQRTSSr,         X86::SQRTSSm, 0 },
 | |
|     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
 | |
|     { X86::TEST16rr,        X86::TEST16rm, 0 },
 | |
|     { X86::TEST32rr,        X86::TEST32rm, 0 },
 | |
|     { X86::TEST64rr,        X86::TEST64rm, 0 },
 | |
|     { X86::TEST8rr,         X86::TEST8rm, 0 },
 | |
|     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
 | |
|     { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
 | |
|     { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl1[i][0];
 | |
|     unsigned MemOp = OpTbl1[i][1];
 | |
|     unsigned Align = OpTbl1[i][2];
 | |
|     if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
 | |
|                                            std::make_pair(MemOp,Align))).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     // Index 1, folded load
 | |
|     unsigned AuxInfo = 1 | (1 << 4);
 | |
|     if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
 | |
|       if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | |
|                                      std::make_pair(RegOp, AuxInfo))).second)
 | |
|         AmbEntries.push_back(MemOp);
 | |
|   }
 | |
| 
 | |
|   static const unsigned OpTbl2[][3] = {
 | |
|     { X86::ADC32rr,         X86::ADC32rm, 0 },
 | |
|     { X86::ADC64rr,         X86::ADC64rm, 0 },
 | |
|     { X86::ADD16rr,         X86::ADD16rm, 0 },
 | |
|     { X86::ADD32rr,         X86::ADD32rm, 0 },
 | |
|     { X86::ADD64rr,         X86::ADD64rm, 0 },
 | |
|     { X86::ADD8rr,          X86::ADD8rm, 0 },
 | |
|     { X86::ADDPDrr,         X86::ADDPDrm, 16 },
 | |
|     { X86::ADDPSrr,         X86::ADDPSrm, 16 },
 | |
|     { X86::ADDSDrr,         X86::ADDSDrm, 0 },
 | |
|     { X86::ADDSSrr,         X86::ADDSSrm, 0 },
 | |
|     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
 | |
|     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
 | |
|     { X86::AND16rr,         X86::AND16rm, 0 },
 | |
|     { X86::AND32rr,         X86::AND32rm, 0 },
 | |
|     { X86::AND64rr,         X86::AND64rm, 0 },
 | |
|     { X86::AND8rr,          X86::AND8rm, 0 },
 | |
|     { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
 | |
|     { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
 | |
|     { X86::ANDPDrr,         X86::ANDPDrm, 16 },
 | |
|     { X86::ANDPSrr,         X86::ANDPSrm, 16 },
 | |
|     { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
 | |
|     { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
 | |
|     { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
 | |
|     { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
 | |
|     { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
 | |
|     { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
 | |
|     { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
 | |
|     { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
 | |
|     { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
 | |
|     { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
 | |
|     { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
 | |
|     { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
 | |
|     { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
 | |
|     { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
 | |
|     { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
 | |
|     { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
 | |
|     { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
 | |
|     { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
 | |
|     { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
 | |
|     { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
 | |
|     { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
 | |
|     { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
 | |
|     { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
 | |
|     { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
 | |
|     { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
 | |
|     { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
 | |
|     { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
 | |
|     { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
 | |
|     { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
 | |
|     { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
 | |
|     { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
 | |
|     { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
 | |
|     { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
 | |
|     { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
 | |
|     { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
 | |
|     { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
 | |
|     { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
 | |
|     { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
 | |
|     { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
 | |
|     { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
 | |
|     { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
 | |
|     { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
 | |
|     { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
 | |
|     { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
 | |
|     { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
 | |
|     { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
 | |
|     { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
 | |
|     { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
 | |
|     { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
 | |
|     { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
 | |
|     { X86::CMPSDrr,         X86::CMPSDrm, 0 },
 | |
|     { X86::CMPSSrr,         X86::CMPSSrm, 0 },
 | |
|     { X86::DIVPDrr,         X86::DIVPDrm, 16 },
 | |
|     { X86::DIVPSrr,         X86::DIVPSrm, 16 },
 | |
|     { X86::DIVSDrr,         X86::DIVSDrm, 0 },
 | |
|     { X86::DIVSSrr,         X86::DIVSSrm, 0 },
 | |
|     { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
 | |
|     { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
 | |
|     { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
 | |
|     { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
 | |
|     { X86::FsORPDrr,        X86::FsORPDrm, 16 },
 | |
|     { X86::FsORPSrr,        X86::FsORPSrm, 16 },
 | |
|     { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
 | |
|     { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
 | |
|     { X86::HADDPDrr,        X86::HADDPDrm, 16 },
 | |
|     { X86::HADDPSrr,        X86::HADDPSrm, 16 },
 | |
|     { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
 | |
|     { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
 | |
|     { X86::IMUL16rr,        X86::IMUL16rm, 0 },
 | |
|     { X86::IMUL32rr,        X86::IMUL32rm, 0 },
 | |
|     { X86::IMUL64rr,        X86::IMUL64rm, 0 },
 | |
|     { X86::MAXPDrr,         X86::MAXPDrm, 16 },
 | |
|     { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
 | |
|     { X86::MAXPSrr,         X86::MAXPSrm, 16 },
 | |
|     { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
 | |
|     { X86::MAXSDrr,         X86::MAXSDrm, 0 },
 | |
|     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
 | |
|     { X86::MAXSSrr,         X86::MAXSSrm, 0 },
 | |
|     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
 | |
|     { X86::MINPDrr,         X86::MINPDrm, 16 },
 | |
|     { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
 | |
|     { X86::MINPSrr,         X86::MINPSrm, 16 },
 | |
|     { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
 | |
|     { X86::MINSDrr,         X86::MINSDrm, 0 },
 | |
|     { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
 | |
|     { X86::MINSSrr,         X86::MINSSrm, 0 },
 | |
|     { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
 | |
|     { X86::MULPDrr,         X86::MULPDrm, 16 },
 | |
|     { X86::MULPSrr,         X86::MULPSrm, 16 },
 | |
|     { X86::MULSDrr,         X86::MULSDrm, 0 },
 | |
|     { X86::MULSSrr,         X86::MULSSrm, 0 },
 | |
|     { X86::OR16rr,          X86::OR16rm, 0 },
 | |
|     { X86::OR32rr,          X86::OR32rm, 0 },
 | |
|     { X86::OR64rr,          X86::OR64rm, 0 },
 | |
|     { X86::OR8rr,           X86::OR8rm, 0 },
 | |
|     { X86::ORPDrr,          X86::ORPDrm, 16 },
 | |
|     { X86::ORPSrr,          X86::ORPSrm, 16 },
 | |
|     { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
 | |
|     { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
 | |
|     { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
 | |
|     { X86::PADDBrr,         X86::PADDBrm, 16 },
 | |
|     { X86::PADDDrr,         X86::PADDDrm, 16 },
 | |
|     { X86::PADDQrr,         X86::PADDQrm, 16 },
 | |
|     { X86::PADDSBrr,        X86::PADDSBrm, 16 },
 | |
|     { X86::PADDSWrr,        X86::PADDSWrm, 16 },
 | |
|     { X86::PADDWrr,         X86::PADDWrm, 16 },
 | |
|     { X86::PANDNrr,         X86::PANDNrm, 16 },
 | |
|     { X86::PANDrr,          X86::PANDrm, 16 },
 | |
|     { X86::PAVGBrr,         X86::PAVGBrm, 16 },
 | |
|     { X86::PAVGWrr,         X86::PAVGWrm, 16 },
 | |
|     { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
 | |
|     { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
 | |
|     { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
 | |
|     { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
 | |
|     { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
 | |
|     { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
 | |
|     { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
 | |
|     { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
 | |
|     { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
 | |
|     { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
 | |
|     { X86::PMINSWrr,        X86::PMINSWrm, 16 },
 | |
|     { X86::PMINUBrr,        X86::PMINUBrm, 16 },
 | |
|     { X86::PMULDQrr,        X86::PMULDQrm, 16 },
 | |
|     { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
 | |
|     { X86::PMULHWrr,        X86::PMULHWrm, 16 },
 | |
|     { X86::PMULLDrr,        X86::PMULLDrm, 16 },
 | |
|     { X86::PMULLDrr_int,    X86::PMULLDrm_int, 16 },
 | |
|     { X86::PMULLWrr,        X86::PMULLWrm, 16 },
 | |
|     { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
 | |
|     { X86::PORrr,           X86::PORrm, 16 },
 | |
|     { X86::PSADBWrr,        X86::PSADBWrm, 16 },
 | |
|     { X86::PSLLDrr,         X86::PSLLDrm, 16 },
 | |
|     { X86::PSLLQrr,         X86::PSLLQrm, 16 },
 | |
|     { X86::PSLLWrr,         X86::PSLLWrm, 16 },
 | |
|     { X86::PSRADrr,         X86::PSRADrm, 16 },
 | |
|     { X86::PSRAWrr,         X86::PSRAWrm, 16 },
 | |
|     { X86::PSRLDrr,         X86::PSRLDrm, 16 },
 | |
|     { X86::PSRLQrr,         X86::PSRLQrm, 16 },
 | |
|     { X86::PSRLWrr,         X86::PSRLWrm, 16 },
 | |
|     { X86::PSUBBrr,         X86::PSUBBrm, 16 },
 | |
|     { X86::PSUBDrr,         X86::PSUBDrm, 16 },
 | |
|     { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
 | |
|     { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
 | |
|     { X86::PSUBWrr,         X86::PSUBWrm, 16 },
 | |
|     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
 | |
|     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
 | |
|     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
 | |
|     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
 | |
|     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
 | |
|     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
 | |
|     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
 | |
|     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
 | |
|     { X86::PXORrr,          X86::PXORrm, 16 },
 | |
|     { X86::SBB32rr,         X86::SBB32rm, 0 },
 | |
|     { X86::SBB64rr,         X86::SBB64rm, 0 },
 | |
|     { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
 | |
|     { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
 | |
|     { X86::SUB16rr,         X86::SUB16rm, 0 },
 | |
|     { X86::SUB32rr,         X86::SUB32rm, 0 },
 | |
|     { X86::SUB64rr,         X86::SUB64rm, 0 },
 | |
|     { X86::SUB8rr,          X86::SUB8rm, 0 },
 | |
|     { X86::SUBPDrr,         X86::SUBPDrm, 16 },
 | |
|     { X86::SUBPSrr,         X86::SUBPSrm, 16 },
 | |
|     { X86::SUBSDrr,         X86::SUBSDrm, 0 },
 | |
|     { X86::SUBSSrr,         X86::SUBSSrm, 0 },
 | |
|     // FIXME: TEST*rr -> swapped operand of TEST*mr.
 | |
|     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
 | |
|     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
 | |
|     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
 | |
|     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
 | |
|     { X86::XOR16rr,         X86::XOR16rm, 0 },
 | |
|     { X86::XOR32rr,         X86::XOR32rm, 0 },
 | |
|     { X86::XOR64rr,         X86::XOR64rm, 0 },
 | |
|     { X86::XOR8rr,          X86::XOR8rm, 0 },
 | |
|     { X86::XORPDrr,         X86::XORPDrm, 16 },
 | |
|     { X86::XORPSrr,         X86::XORPSrm, 16 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2[i][0];
 | |
|     unsigned MemOp = OpTbl2[i][1];
 | |
|     unsigned Align = OpTbl2[i][2];
 | |
|     if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
 | |
|                                            std::make_pair(MemOp,Align))).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     // Index 2, folded load
 | |
|     unsigned AuxInfo = 2 | (1 << 4);
 | |
|     if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | |
|                                    std::make_pair(RegOp, AuxInfo))).second)
 | |
|       AmbEntries.push_back(MemOp);
 | |
|   }
 | |
| 
 | |
|   // Remove ambiguous entries.
 | |
|   assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
 | |
|                                unsigned &SrcReg, unsigned &DstReg,
 | |
|                                unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::MOV8rr:
 | |
|   case X86::MOV8rr_NOREX:
 | |
|   case X86::MOV16rr:
 | |
|   case X86::MOV32rr: 
 | |
|   case X86::MOV64rr:
 | |
| 
 | |
|   // FP Stack register class copies
 | |
|   case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
 | |
|   case X86::MOV_Fp3264: case X86::MOV_Fp3280:
 | |
|   case X86::MOV_Fp6432: case X86::MOV_Fp8032:
 | |
| 
 | |
|   // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64
 | |
|   // copies are done with FsMOVAPSrr and FsMOVAPDrr.
 | |
| 
 | |
|   case X86::FsMOVAPSrr:
 | |
|   case X86::FsMOVAPDrr:
 | |
|   case X86::MOVAPSrr:
 | |
|   case X86::MOVAPDrr:
 | |
|   case X86::MOVDQArr:
 | |
|   case X86::MMX_MOVQ64rr:
 | |
|     assert(MI.getNumOperands() >= 2 &&
 | |
|            MI.getOperand(0).isReg() &&
 | |
|            MI.getOperand(1).isReg() &&
 | |
|            "invalid register-register move instruction");
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SrcSubIdx = MI.getOperand(1).getSubReg();
 | |
|     DstSubIdx = MI.getOperand(0).getSubReg();
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                     unsigned &SrcReg, unsigned &DstReg,
 | |
|                                     unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::MOVSX16rr8:
 | |
|   case X86::MOVZX16rr8:
 | |
|   case X86::MOVSX32rr8:
 | |
|   case X86::MOVZX32rr8:
 | |
|   case X86::MOVSX64rr8:
 | |
|   case X86::MOVZX64rr8:
 | |
|     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       // It's not always legal to reference the low 8-bit of the larger
 | |
|       // register in 32-bit mode.
 | |
|       return false;
 | |
|   case X86::MOVSX32rr16:
 | |
|   case X86::MOVZX32rr16:
 | |
|   case X86::MOVSX64rr16:
 | |
|   case X86::MOVZX64rr16:
 | |
|   case X86::MOVSX64rr32:
 | |
|   case X86::MOVZX64rr32: {
 | |
|     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
 | |
|       // Be conservative.
 | |
|       return false;
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     switch (MI.getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable(0);
 | |
|       break;
 | |
|     case X86::MOVSX16rr8:
 | |
|     case X86::MOVZX16rr8:
 | |
|     case X86::MOVSX32rr8:
 | |
|     case X86::MOVZX32rr8:
 | |
|     case X86::MOVSX64rr8:
 | |
|     case X86::MOVZX64rr8:
 | |
|       SubIdx = 1;
 | |
|       break;
 | |
|     case X86::MOVSX32rr16:
 | |
|     case X86::MOVZX32rr16:
 | |
|     case X86::MOVSX64rr16:
 | |
|     case X86::MOVZX64rr16:
 | |
|       SubIdx = 3;
 | |
|       break;
 | |
|     case X86::MOVSX64rr32:
 | |
|     case X86::MOVZX64rr32:
 | |
|       SubIdx = 4;
 | |
|       break;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isFrameOperand - Return true and the FrameIndex if the specified
 | |
| /// operand and follow operands form a reference to the stack frame.
 | |
| bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
 | |
|                                   int &FrameIndex) const {
 | |
|   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
 | |
|       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
 | |
|       MI->getOperand(Op+1).getImm() == 1 &&
 | |
|       MI->getOperand(Op+2).getReg() == 0 &&
 | |
|       MI->getOperand(Op+3).getImm() == 0) {
 | |
|     FrameIndex = MI->getOperand(Op).getIndex();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFrameLoadOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return true;
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFrameStoreOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86::MOV8mr:
 | |
|   case X86::MOV16mr:
 | |
|   case X86::MOV32mr:
 | |
|   case X86::MOV64mr:
 | |
|   case X86::ST_FpP64m:
 | |
|   case X86::MOVSSmr:
 | |
|   case X86::MOVSDmr:
 | |
|   case X86::MOVAPSmr:
 | |
|   case X86::MOVAPDmr:
 | |
|   case X86::MOVDQAmr:
 | |
|   case X86::MMX_MOVD64mr:
 | |
|   case X86::MMX_MOVQ64mr:
 | |
|   case X86::MMX_MOVNTQmr:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 
 | |
|                                            int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode()))
 | |
|     if (isFrameOperand(MI, 1, FrameIndex))
 | |
|       return MI->getOperand(0).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 
 | |
|                                                  int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                         const MachineMemOperand *&MMO,
 | |
|                                         int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end();
 | |
|        o != oe;
 | |
|        ++o) {
 | |
|     if ((*o)->isLoad() && (*o)->getValue())
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode()))
 | |
|     if (isFrameOperand(MI, 0, FrameIndex))
 | |
|       return MI->getOperand(X86AddrNumOperands).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                 int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
 | |
|                                        const MachineMemOperand *&MMO,
 | |
|                                        int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end();
 | |
|        o != oe;
 | |
|        ++o) {
 | |
|     if ((*o)->isStore() && (*o)->getValue())
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
 | |
| /// X86::MOVPC32r.
 | |
| static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
 | |
|   bool isPICBase = false;
 | |
|   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|          E = MRI.def_end(); I != E; ++I) {
 | |
|     MachineInstr *DefMI = I.getOperand().getParent();
 | |
|     if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|       return false;
 | |
|     assert(!isPICBase && "More than one PIC base?");
 | |
|     isPICBase = true;
 | |
|   }
 | |
|   return isPICBase;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
 | |
|                                                 AliasAnalysis *AA) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|     case X86::MOV8rm:
 | |
|     case X86::MOV16rm:
 | |
|     case X86::MOV32rm:
 | |
|     case X86::MOV64rm:
 | |
|     case X86::LD_Fp64m:
 | |
|     case X86::MOVSSrm:
 | |
|     case X86::MOVSDrm:
 | |
|     case X86::MOVAPSrm:
 | |
|     case X86::MOVUPSrm:
 | |
|     case X86::MOVUPSrm_Int:
 | |
|     case X86::MOVAPDrm:
 | |
|     case X86::MOVDQArm:
 | |
|     case X86::MMX_MOVD64rm:
 | |
|     case X86::MMX_MOVQ64rm:
 | |
|     case X86::FsMOVAPSrm:
 | |
|     case X86::FsMOVAPDrm: {
 | |
|       // Loads from constant pools are trivially rematerializable.
 | |
|       if (MI->getOperand(1).isReg() &&
 | |
|           MI->getOperand(2).isImm() &&
 | |
|           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|           MI->isInvariantLoad(AA)) {
 | |
|         unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|         if (BaseReg == 0 || BaseReg == X86::RIP)
 | |
|           return true;
 | |
|         // Allow re-materialization of PIC load.
 | |
|         if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
 | |
|           return false;
 | |
|         const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|         const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|         bool isPICBase = false;
 | |
|         for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|                E = MRI.def_end(); I != E; ++I) {
 | |
|           MachineInstr *DefMI = I.getOperand().getParent();
 | |
|           if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|             return false;
 | |
|           assert(!isPICBase && "More than one PIC base?");
 | |
|           isPICBase = true;
 | |
|         }
 | |
|         return isPICBase;
 | |
|       } 
 | |
|       return false;
 | |
|     }
 | |
|  
 | |
|      case X86::LEA32r:
 | |
|      case X86::LEA64r: {
 | |
|        if (MI->getOperand(2).isImm() &&
 | |
|            MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|            !MI->getOperand(4).isReg()) {
 | |
|          // lea fi#, lea GV, etc. are all rematerializable.
 | |
|          if (!MI->getOperand(1).isReg())
 | |
|            return true;
 | |
|          unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|          if (BaseReg == 0)
 | |
|            return true;
 | |
|          // Allow re-materialization of lea PICBase + x.
 | |
|          const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|          const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|          return regIsPICBase(BaseReg, MRI);
 | |
|        }
 | |
|        return false;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   // All other instructions marked M_REMATERIALIZABLE are always trivially
 | |
|   // rematerializable.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
 | |
| /// would clobber the EFLAGS condition register. Note the result may be
 | |
| /// conservative. If it cannot definitely determine the safety after visiting
 | |
| /// a few instructions in each direction it assumes it's not safe.
 | |
| static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator I) {
 | |
|   // It's always safe to clobber EFLAGS at the end of a block.
 | |
|   if (I == MBB.end())
 | |
|     return true;
 | |
| 
 | |
|   // For compile time consideration, if we are not able to determine the
 | |
|   // safety after visiting 4 instructions in each direction, we will assume
 | |
|   // it's not safe.
 | |
|   MachineBasicBlock::iterator Iter = I;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       if (MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isUse())
 | |
|           return false;
 | |
|         SeenDef = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SeenDef)
 | |
|       // This instruction defines EFLAGS, no need to look any further.
 | |
|       return true;
 | |
|     ++Iter;
 | |
| 
 | |
|     // If we make it to the end of the block, it's safe to clobber EFLAGS.
 | |
|     if (Iter == MBB.end())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   Iter = I;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     // If we make it to the beginning of the block, it's safe to clobber
 | |
|     // EFLAGS iff EFLAGS is not live-in.
 | |
|     if (Iter == MBB.begin())
 | |
|       return !MBB.isLiveIn(X86::EFLAGS);
 | |
| 
 | |
|     --Iter;
 | |
|     bool SawKill = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isDef()) return MO.isDead();
 | |
|         if (MO.isKill()) SawKill = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SawKill)
 | |
|       // This instruction kills EFLAGS and doesn't redefine it, so
 | |
|       // there's no need to look further.
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Conservative answer.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator I,
 | |
|                                  unsigned DestReg, unsigned SubIdx,
 | |
|                                  const MachineInstr *Orig,
 | |
|                                  const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL = MBB.findDebugLoc(I);
 | |
| 
 | |
|   if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
 | |
|     DestReg = TRI->getSubReg(DestReg, SubIdx);
 | |
|     SubIdx = 0;
 | |
|   }
 | |
| 
 | |
|   // MOV32r0 etc. are implemented with xor which clobbers condition code.
 | |
|   // Re-materialize them as movri instructions to avoid side effects.
 | |
|   bool Clone = true;
 | |
|   unsigned Opc = Orig->getOpcode();
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86::MOV8r0:
 | |
|   case X86::MOV16r0:
 | |
|   case X86::MOV32r0:
 | |
|   case X86::MOV64r0: {
 | |
|     if (!isSafeToClobberEFLAGS(MBB, I)) {
 | |
|       switch (Opc) {
 | |
|       default: break;
 | |
|       case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
 | |
|       case X86::MOV16r0: Opc = X86::MOV16ri; break;
 | |
|       case X86::MOV32r0: Opc = X86::MOV32ri; break;
 | |
|       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
 | |
|       }
 | |
|       Clone = false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Clone) {
 | |
|     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | |
|     MI->getOperand(0).setReg(DestReg);
 | |
|     MBB.insert(I, MI);
 | |
|   } else {
 | |
|     BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = prior(I);
 | |
|   NewMI->getOperand(0).setSubReg(SubIdx);
 | |
| }
 | |
| 
 | |
| /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
 | |
| /// is not marked dead.
 | |
| static bool hasLiveCondCodeDef(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() &&
 | |
|         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
 | |
| /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
 | |
| /// to a 32-bit superregister and then truncating back down to a 16-bit
 | |
| /// subregister.
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
 | |
|                                            MachineFunction::iterator &MFI,
 | |
|                                            MachineBasicBlock::iterator &MBBI,
 | |
|                                            LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
 | |
|     ? X86::LEA64_32r : X86::LEA32r;
 | |
|   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
 | |
|   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
|   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
|             
 | |
|   // Build and insert into an implicit UNDEF value. This is OK because
 | |
|   // well be shifting and then extracting the lower 16-bits. 
 | |
|   // This has the potential to cause partial register stall. e.g.
 | |
|   //   movw    (%rbp,%rcx,2), %dx
 | |
|   //   leal    -65(%rdx), %esi
 | |
|   // But testing has shown this *does* help performance in 64-bit mode (at
 | |
|   // least on modern x86 machines).
 | |
|   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
 | |
|   MachineInstr *InsMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
 | |
|     .addReg(leaInReg)
 | |
|     .addReg(Src, getKillRegState(isKill))
 | |
|     .addImm(X86::SUBREG_16BIT);
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
 | |
|                                     get(Opc), leaOutReg);
 | |
|   switch (MIOpc) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
|     break;
 | |
|   case X86::SHL16ri: {
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     MIB.addReg(0).addImm(1 << ShAmt)
 | |
|        .addReg(leaInReg, RegState::Kill).addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::INC16r:
 | |
|   case X86::INC64_16r:
 | |
|     addLeaRegOffset(MIB, leaInReg, true, 1);
 | |
|     break;
 | |
|   case X86::DEC16r:
 | |
|   case X86::DEC64_16r:
 | |
|     addLeaRegOffset(MIB, leaInReg, true, -1);
 | |
|     break;
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|     addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());    
 | |
|     break;
 | |
|   case X86::ADD16rr: {
 | |
|     unsigned Src2 = MI->getOperand(2).getReg();
 | |
|     bool isKill2 = MI->getOperand(2).isKill();
 | |
|     unsigned leaInReg2 = 0;
 | |
|     MachineInstr *InsMI2 = 0;
 | |
|     if (Src == Src2) {
 | |
|       // ADD16rr %reg1028<kill>, %reg1028
 | |
|       // just a single insert_subreg.
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg, false);
 | |
|     } else {
 | |
|       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
|       // Build and insert into an implicit UNDEF value. This is OK because
 | |
|       // well be shifting and then extracting the lower 16-bits. 
 | |
|       BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
 | |
|       InsMI2 =
 | |
|         BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
 | |
|         .addReg(leaInReg2)
 | |
|         .addReg(Src2, getKillRegState(isKill2))
 | |
|         .addImm(X86::SUBREG_16BIT);
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg2, true);
 | |
|     }
 | |
|     if (LV && isKill2 && InsMI2)
 | |
|       LV->replaceKillInstruction(Src2, MI, InsMI2);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = MIB;
 | |
|   MachineInstr *ExtMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
 | |
|     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|     .addReg(leaOutReg, RegState::Kill)
 | |
|     .addImm(X86::SUBREG_16BIT);
 | |
| 
 | |
|   if (LV) {
 | |
|     // Update live variables
 | |
|     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
 | |
|     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, InsMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, ExtMI);
 | |
|   }
 | |
| 
 | |
|   return ExtMI;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddress - This method must be implemented by targets that
 | |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | |
| /// may be able to convert a two-address instruction into a true
 | |
| /// three-address instruction on demand.  This allows the X86 target (for
 | |
| /// example) to convert ADD and SHL instructions into LEA instructions if they
 | |
| /// would require register copies due to two-addressness.
 | |
| ///
 | |
| /// This method returns a null pointer if the transformation cannot be
 | |
| /// performed, otherwise it returns the new instruction.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                     MachineBasicBlock::iterator &MBBI,
 | |
|                                     LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   // All instructions input are two-addr instructions.  Get the known operands.
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
 | |
|   // we have better subtarget support, enable the 16-bit LEA generation here.
 | |
|   // 16-bit LEA is also slow on Core2.
 | |
|   bool DisableLEA16 = true;
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
| 
 | |
|   unsigned MIOpc = MI->getOpcode();
 | |
|   switch (MIOpc) {
 | |
|   case X86::SHUFPSrri: {
 | |
|     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
 | |
|     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | |
|     
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     if (B != C) return 0;
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned M = MI->getOperand(3).getImm();
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
 | |
|       .addReg(A, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(B, getKillRegState(isKill)).addImm(M);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL64ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL32ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill)).addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL16ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     if (DisableLEA16)
 | |
|       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // The following opcodes also sets the condition code register(s). Only
 | |
|     // convert them to equivalent lea if the condition code register def's
 | |
|     // are dead!
 | |
|     if (hasLiveCondCodeDef(MI))
 | |
|       return 0;
 | |
| 
 | |
|     switch (MIOpc) {
 | |
|     default: return 0;
 | |
|     case X86::INC64r:
 | |
|     case X86::INC32r:
 | |
|     case X86::INC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, 1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::INC16r:
 | |
|     case X86::INC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, 1);
 | |
|       break;
 | |
|     case X86::DEC64r:
 | |
|     case X86::DEC32r:
 | |
|     case X86::DEC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, -1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::DEC16r:
 | |
|     case X86::DEC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, -1);
 | |
|       break;
 | |
|     case X86::ADD64rr:
 | |
|     case X86::ADD32rr: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16rr: {
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD64ri32:
 | |
|     case X86::ADD64ri8:
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     case X86::ADD32ri:
 | |
|     case X86::ADD32ri8: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|       NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                                 Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16ri:
 | |
|     case X86::ADD16ri8:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (!NewMI) return 0;
 | |
| 
 | |
|   if (LV) {  // Update live variables
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, NewMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, NewMI);
 | |
|   }
 | |
| 
 | |
|   MFI->insert(MBBI, NewMI);          // Insert the new inst    
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// commuteInstruction - We have a few instructions that must be hacked on to
 | |
| /// commute them.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
 | |
|   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
 | |
|   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
 | |
|   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
 | |
|   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
 | |
|   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
 | |
|     unsigned Opc;
 | |
|     unsigned Size;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("Unreachable!");
 | |
|     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
 | |
|     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
 | |
|     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
 | |
|     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
 | |
|     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
 | |
|     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
 | |
|     }
 | |
|     unsigned Amt = MI->getOperand(3).getImm();
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     MI->getOperand(3).setImm(Size-Amt);
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
|   case X86::CMOVB16rr:
 | |
|   case X86::CMOVB32rr:
 | |
|   case X86::CMOVB64rr:
 | |
|   case X86::CMOVAE16rr:
 | |
|   case X86::CMOVAE32rr:
 | |
|   case X86::CMOVAE64rr:
 | |
|   case X86::CMOVE16rr:
 | |
|   case X86::CMOVE32rr:
 | |
|   case X86::CMOVE64rr:
 | |
|   case X86::CMOVNE16rr:
 | |
|   case X86::CMOVNE32rr:
 | |
|   case X86::CMOVNE64rr:
 | |
|   case X86::CMOVBE16rr:
 | |
|   case X86::CMOVBE32rr:
 | |
|   case X86::CMOVBE64rr:
 | |
|   case X86::CMOVA16rr:
 | |
|   case X86::CMOVA32rr:
 | |
|   case X86::CMOVA64rr:
 | |
|   case X86::CMOVL16rr:
 | |
|   case X86::CMOVL32rr:
 | |
|   case X86::CMOVL64rr:
 | |
|   case X86::CMOVGE16rr:
 | |
|   case X86::CMOVGE32rr:
 | |
|   case X86::CMOVGE64rr:
 | |
|   case X86::CMOVLE16rr:
 | |
|   case X86::CMOVLE32rr:
 | |
|   case X86::CMOVLE64rr:
 | |
|   case X86::CMOVG16rr:
 | |
|   case X86::CMOVG32rr:
 | |
|   case X86::CMOVG64rr:
 | |
|   case X86::CMOVS16rr:
 | |
|   case X86::CMOVS32rr:
 | |
|   case X86::CMOVS64rr:
 | |
|   case X86::CMOVNS16rr:
 | |
|   case X86::CMOVNS32rr:
 | |
|   case X86::CMOVNS64rr:
 | |
|   case X86::CMOVP16rr:
 | |
|   case X86::CMOVP32rr:
 | |
|   case X86::CMOVP64rr:
 | |
|   case X86::CMOVNP16rr:
 | |
|   case X86::CMOVNP32rr:
 | |
|   case X86::CMOVNP64rr:
 | |
|   case X86::CMOVO16rr:
 | |
|   case X86::CMOVO32rr:
 | |
|   case X86::CMOVO64rr:
 | |
|   case X86::CMOVNO16rr:
 | |
|   case X86::CMOVNO32rr:
 | |
|   case X86::CMOVNO64rr: {
 | |
|     unsigned Opc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: break;
 | |
|     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
 | |
|     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
 | |
|     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
 | |
|     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
 | |
|     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
 | |
|     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
 | |
|     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
 | |
|     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
 | |
|     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
 | |
|     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
 | |
|     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
 | |
|     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
 | |
|     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
 | |
|     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
 | |
|     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
 | |
|     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
 | |
|     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
 | |
|     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
 | |
|     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
 | |
|     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
 | |
|     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
 | |
|     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
 | |
|     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
 | |
|     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
 | |
|     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
 | |
|     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
 | |
|     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
 | |
|     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
 | |
|     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
 | |
|     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
 | |
|     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
 | |
|     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
 | |
|     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
 | |
|     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
 | |
|     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
 | |
|     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
 | |
|     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
 | |
|     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
 | |
|     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
 | |
|     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
 | |
|     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
 | |
|     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
 | |
|     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
 | |
|     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
 | |
|     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
 | |
|     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
 | |
|     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
 | |
|     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
 | |
|     }
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     // Fallthrough intended.
 | |
|   }
 | |
|   default:
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
 | |
|   switch (BrOpc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::JE_4:  return X86::COND_E;
 | |
|   case X86::JNE_4: return X86::COND_NE;
 | |
|   case X86::JL_4:  return X86::COND_L;
 | |
|   case X86::JLE_4: return X86::COND_LE;
 | |
|   case X86::JG_4:  return X86::COND_G;
 | |
|   case X86::JGE_4: return X86::COND_GE;
 | |
|   case X86::JB_4:  return X86::COND_B;
 | |
|   case X86::JBE_4: return X86::COND_BE;
 | |
|   case X86::JA_4:  return X86::COND_A;
 | |
|   case X86::JAE_4: return X86::COND_AE;
 | |
|   case X86::JS_4:  return X86::COND_S;
 | |
|   case X86::JNS_4: return X86::COND_NS;
 | |
|   case X86::JP_4:  return X86::COND_P;
 | |
|   case X86::JNP_4: return X86::COND_NP;
 | |
|   case X86::JO_4:  return X86::COND_O;
 | |
|   case X86::JNO_4: return X86::COND_NO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::JE_4;
 | |
|   case X86::COND_NE: return X86::JNE_4;
 | |
|   case X86::COND_L:  return X86::JL_4;
 | |
|   case X86::COND_LE: return X86::JLE_4;
 | |
|   case X86::COND_G:  return X86::JG_4;
 | |
|   case X86::COND_GE: return X86::JGE_4;
 | |
|   case X86::COND_B:  return X86::JB_4;
 | |
|   case X86::COND_BE: return X86::JBE_4;
 | |
|   case X86::COND_A:  return X86::JA_4;
 | |
|   case X86::COND_AE: return X86::JAE_4;
 | |
|   case X86::COND_S:  return X86::JS_4;
 | |
|   case X86::COND_NS: return X86::JNS_4;
 | |
|   case X86::COND_P:  return X86::JP_4;
 | |
|   case X86::COND_NP: return X86::JNP_4;
 | |
|   case X86::COND_O:  return X86::JO_4;
 | |
|   case X86::COND_NO: return X86::JNO_4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetOppositeBranchCondition - Return the inverse of the specified condition,
 | |
| /// e.g. turning COND_E to COND_NE.
 | |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::COND_NE;
 | |
|   case X86::COND_NE: return X86::COND_E;
 | |
|   case X86::COND_L:  return X86::COND_GE;
 | |
|   case X86::COND_LE: return X86::COND_G;
 | |
|   case X86::COND_G:  return X86::COND_LE;
 | |
|   case X86::COND_GE: return X86::COND_L;
 | |
|   case X86::COND_B:  return X86::COND_AE;
 | |
|   case X86::COND_BE: return X86::COND_A;
 | |
|   case X86::COND_A:  return X86::COND_BE;
 | |
|   case X86::COND_AE: return X86::COND_B;
 | |
|   case X86::COND_S:  return X86::COND_NS;
 | |
|   case X86::COND_NS: return X86::COND_S;
 | |
|   case X86::COND_P:  return X86::COND_NP;
 | |
|   case X86::COND_NP: return X86::COND_P;
 | |
|   case X86::COND_O:  return X86::COND_NO;
 | |
|   case X86::COND_NO: return X86::COND_O;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   if (!TID.isTerminator()) return false;
 | |
|   
 | |
|   // Conditional branch is a special case.
 | |
|   if (TID.isBranch() && !TID.isBarrier())
 | |
|     return true;
 | |
|   if (!TID.isPredicable())
 | |
|     return true;
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
 | |
| static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
 | |
|                                                const X86InstrInfo &TII) {
 | |
|   if (MI->getOpcode() == X86::FP_REG_KILL)
 | |
|     return false;
 | |
|   return TII.isUnpredicatedTerminator(MI);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   // Start from the bottom of the block and work up, examining the
 | |
|   // terminator instructions.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
| 
 | |
|     // Working from the bottom, when we see a non-terminator instruction, we're
 | |
|     // done.
 | |
|     if (!isBrAnalysisUnpredicatedTerminator(I, *this))
 | |
|       break;
 | |
| 
 | |
|     // A terminator that isn't a branch can't easily be handled by this
 | |
|     // analysis.
 | |
|     if (!I->getDesc().isBranch())
 | |
|       return true;
 | |
| 
 | |
|     // Handle unconditional branches.
 | |
|     if (I->getOpcode() == X86::JMP_4) {
 | |
|       if (!AllowModify) {
 | |
|         TBB = I->getOperand(0).getMBB();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the block has any instructions after a JMP, delete them.
 | |
|       while (llvm::next(I) != MBB.end())
 | |
|         llvm::next(I)->eraseFromParent();
 | |
| 
 | |
|       Cond.clear();
 | |
|       FBB = 0;
 | |
| 
 | |
|       // Delete the JMP if it's equivalent to a fall-through.
 | |
|       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | |
|         TBB = 0;
 | |
|         I->eraseFromParent();
 | |
|         I = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // TBB is used to indicate the unconditinal destination.
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle conditional branches.
 | |
|     X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
 | |
|     if (BranchCode == X86::COND_INVALID)
 | |
|       return true;  // Can't handle indirect branch.
 | |
| 
 | |
|     // Working from the bottom, handle the first conditional branch.
 | |
|     if (Cond.empty()) {
 | |
|       FBB = TBB;
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle subsequent conditional branches. Only handle the case where all
 | |
|     // conditional branches branch to the same destination and their condition
 | |
|     // opcodes fit one of the special multi-branch idioms.
 | |
|     assert(Cond.size() == 1);
 | |
|     assert(TBB);
 | |
| 
 | |
|     // Only handle the case where all conditional branches branch to the same
 | |
|     // destination.
 | |
|     if (TBB != I->getOperand(0).getMBB())
 | |
|       return true;
 | |
| 
 | |
|     // If the conditions are the same, we can leave them alone.
 | |
|     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
 | |
|     if (OldBranchCode == BranchCode)
 | |
|       continue;
 | |
| 
 | |
|     // If they differ, see if they fit one of the known patterns. Theoretically,
 | |
|     // we could handle more patterns here, but we shouldn't expect to see them
 | |
|     // if instruction selection has done a reasonable job.
 | |
|     if ((OldBranchCode == X86::COND_NP &&
 | |
|          BranchCode == X86::COND_E) ||
 | |
|         (OldBranchCode == X86::COND_E &&
 | |
|          BranchCode == X86::COND_NP))
 | |
|       BranchCode = X86::COND_NP_OR_E;
 | |
|     else if ((OldBranchCode == X86::COND_P &&
 | |
|               BranchCode == X86::COND_NE) ||
 | |
|              (OldBranchCode == X86::COND_NE &&
 | |
|               BranchCode == X86::COND_P))
 | |
|       BranchCode = X86::COND_NE_OR_P;
 | |
|     else
 | |
|       return true;
 | |
| 
 | |
|     // Update the MachineOperand.
 | |
|     Cond[0].setImm(BranchCode);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->getOpcode() != X86::JMP_4 &&
 | |
|         GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | |
|       break;
 | |
|     // Remove the branch.
 | |
|     I->eraseFromParent();
 | |
|     I = MBB.end();
 | |
|     ++Count;
 | |
|   }
 | |
|   
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                            MachineBasicBlock *FBB,
 | |
|                            const SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   // FIXME this should probably have a DebugLoc operand
 | |
|   DebugLoc dl = DebugLoc::getUnknownLoc();
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 1 || Cond.size() == 0) &&
 | |
|          "X86 branch conditions have one component!");
 | |
| 
 | |
|   if (Cond.empty()) {
 | |
|     // Unconditional branch?
 | |
|     assert(!FBB && "Unconditional branch with multiple successors!");
 | |
|     BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Conditional branch.
 | |
|   unsigned Count = 0;
 | |
|   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
 | |
|   switch (CC) {
 | |
|   case X86::COND_NP_OR_E:
 | |
|     // Synthesize NP_OR_E with two branches.
 | |
|     BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   case X86::COND_NE_OR_P:
 | |
|     // Synthesize NE_OR_P with two branches.
 | |
|     BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   default: {
 | |
|     unsigned Opc = GetCondBranchFromCond(CC);
 | |
|     BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   }
 | |
|   if (FBB) {
 | |
|     // Two-way Conditional branch. Insert the second branch.
 | |
|     BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// isHReg - Test if the given register is a physical h register.
 | |
| static bool isHReg(unsigned Reg) {
 | |
|   return X86::GR8_ABCD_HRegClass.contains(Reg);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator MI,
 | |
|                                 unsigned DestReg, unsigned SrcReg,
 | |
|                                 const TargetRegisterClass *DestRC,
 | |
|                                 const TargetRegisterClass *SrcRC) const {
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
| 
 | |
|   // Determine if DstRC and SrcRC have a common superclass in common.
 | |
|   const TargetRegisterClass *CommonRC = DestRC;
 | |
|   if (DestRC == SrcRC)
 | |
|     /* Source and destination have the same register class. */;
 | |
|   else if (CommonRC->hasSuperClass(SrcRC))
 | |
|     CommonRC = SrcRC;
 | |
|   else if (!DestRC->hasSubClass(SrcRC)) {
 | |
|     // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
 | |
|     // but we want to copy them as GR64. Similarly, for GR32_NOREX and
 | |
|     // GR32_NOSP, copy as GR32.
 | |
|     if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
 | |
|         DestRC->hasSuperClass(&X86::GR64RegClass))
 | |
|       CommonRC = &X86::GR64RegClass;
 | |
|     else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
 | |
|              DestRC->hasSuperClass(&X86::GR32RegClass))
 | |
|       CommonRC = &X86::GR32RegClass;
 | |
|     else
 | |
|       CommonRC = 0;
 | |
|   }
 | |
| 
 | |
|   if (CommonRC) {
 | |
|     unsigned Opc;
 | |
|     if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
 | |
|       Opc = X86::MOV64rr;
 | |
|     } else if (CommonRC == &X86::GR32RegClass ||
 | |
|                CommonRC == &X86::GR32_NOSPRegClass) {
 | |
|       Opc = X86::MOV32rr;
 | |
|     } else if (CommonRC == &X86::GR16RegClass) {
 | |
|       Opc = X86::MOV16rr;
 | |
|     } else if (CommonRC == &X86::GR8RegClass) {
 | |
|       // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|       // move.  Otherwise use a normal move.
 | |
|       if ((isHReg(DestReg) || isHReg(SrcReg)) &&
 | |
|           TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|         Opc = X86::MOV8rr_NOREX;
 | |
|       else
 | |
|         Opc = X86::MOV8rr;
 | |
|     } else if (CommonRC == &X86::GR64_ABCDRegClass) {
 | |
|       Opc = X86::MOV64rr;
 | |
|     } else if (CommonRC == &X86::GR32_ABCDRegClass) {
 | |
|       Opc = X86::MOV32rr;
 | |
|     } else if (CommonRC == &X86::GR16_ABCDRegClass) {
 | |
|       Opc = X86::MOV16rr;
 | |
|     } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
 | |
|       Opc = X86::MOV8rr;
 | |
|     } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
 | |
|       if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|         Opc = X86::MOV8rr_NOREX;
 | |
|       else
 | |
|         Opc = X86::MOV8rr;
 | |
|     } else if (CommonRC == &X86::GR64_NOREXRegClass ||
 | |
|                CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
 | |
|       Opc = X86::MOV64rr;
 | |
|     } else if (CommonRC == &X86::GR32_NOREXRegClass) {
 | |
|       Opc = X86::MOV32rr;
 | |
|     } else if (CommonRC == &X86::GR16_NOREXRegClass) {
 | |
|       Opc = X86::MOV16rr;
 | |
|     } else if (CommonRC == &X86::GR8_NOREXRegClass) {
 | |
|       Opc = X86::MOV8rr;
 | |
|     } else if (CommonRC == &X86::RFP32RegClass) {
 | |
|       Opc = X86::MOV_Fp3232;
 | |
|     } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
 | |
|       Opc = X86::MOV_Fp6464;
 | |
|     } else if (CommonRC == &X86::RFP80RegClass) {
 | |
|       Opc = X86::MOV_Fp8080;
 | |
|     } else if (CommonRC == &X86::FR32RegClass) {
 | |
|       Opc = X86::FsMOVAPSrr;
 | |
|     } else if (CommonRC == &X86::FR64RegClass) {
 | |
|       Opc = X86::FsMOVAPDrr;
 | |
|     } else if (CommonRC == &X86::VR128RegClass) {
 | |
|       Opc = X86::MOVAPSrr;
 | |
|     } else if (CommonRC == &X86::VR64RegClass) {
 | |
|       Opc = X86::MMX_MOVQ64rr;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|     BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Moving EFLAGS to / from another register requires a push and a pop.
 | |
|   if (SrcRC == &X86::CCRRegClass) {
 | |
|     if (SrcReg != X86::EFLAGS)
 | |
|       return false;
 | |
|     if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHFQ64));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
 | |
|       return true;
 | |
|     } else if (DestRC == &X86::GR32RegClass ||
 | |
|                DestRC == &X86::GR32_NOSPRegClass) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHFD));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (DestRC == &X86::CCRRegClass) {
 | |
|     if (DestReg != X86::EFLAGS)
 | |
|       return false;
 | |
|     if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPFQ));
 | |
|       return true;
 | |
|     } else if (SrcRC == &X86::GR32RegClass ||
 | |
|                DestRC == &X86::GR32_NOSPRegClass) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPFD));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Moving from ST(0) turns into FpGET_ST0_32 etc.
 | |
|   if (SrcRC == &X86::RSTRegClass) {
 | |
|     // Copying from ST(0)/ST(1).
 | |
|     if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
 | |
|       // Can only copy from ST(0)/ST(1) right now
 | |
|       return false;
 | |
|     bool isST0 = SrcReg == X86::ST0;
 | |
|     unsigned Opc;
 | |
|     if (DestRC == &X86::RFP32RegClass)
 | |
|       Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
 | |
|     else if (DestRC == &X86::RFP64RegClass)
 | |
|       Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
 | |
|     else {
 | |
|       if (DestRC != &X86::RFP80RegClass)
 | |
|         return false;
 | |
|       Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
 | |
|     }
 | |
|     BuildMI(MBB, MI, DL, get(Opc), DestReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Moving to ST(0) turns into FpSET_ST0_32 etc.
 | |
|   if (DestRC == &X86::RSTRegClass) {
 | |
|     // Copying to ST(0) / ST(1).
 | |
|     if (DestReg != X86::ST0 && DestReg != X86::ST1)
 | |
|       // Can only copy to TOS right now
 | |
|       return false;
 | |
|     bool isST0 = DestReg == X86::ST0;
 | |
|     unsigned Opc;
 | |
|     if (SrcRC == &X86::RFP32RegClass)
 | |
|       Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
 | |
|     else if (SrcRC == &X86::RFP64RegClass)
 | |
|       Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
 | |
|     else {
 | |
|       if (SrcRC != &X86::RFP80RegClass)
 | |
|         return false;
 | |
|       Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
 | |
|     }
 | |
|     BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Not yet supported!
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned getStoreRegOpcode(unsigned SrcReg,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   bool isStackAligned,
 | |
|                                   TargetMachine &TM) {
 | |
|   unsigned Opc = 0;
 | |
|   if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
 | |
|     Opc = X86::MOV64mr;
 | |
|   } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
 | |
|     Opc = X86::MOV32mr;
 | |
|   } else if (RC == &X86::GR16RegClass) {
 | |
|     Opc = X86::MOV16mr;
 | |
|   } else if (RC == &X86::GR8RegClass) {
 | |
|     // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|     // move.  Otherwise use a normal move.
 | |
|     if (isHReg(SrcReg) &&
 | |
|         TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       Opc = X86::MOV8mr_NOREX;
 | |
|     else
 | |
|       Opc = X86::MOV8mr;
 | |
|   } else if (RC == &X86::GR64_ABCDRegClass) {
 | |
|     Opc = X86::MOV64mr;
 | |
|   } else if (RC == &X86::GR32_ABCDRegClass) {
 | |
|     Opc = X86::MOV32mr;
 | |
|   } else if (RC == &X86::GR16_ABCDRegClass) {
 | |
|     Opc = X86::MOV16mr;
 | |
|   } else if (RC == &X86::GR8_ABCD_LRegClass) {
 | |
|     Opc = X86::MOV8mr;
 | |
|   } else if (RC == &X86::GR8_ABCD_HRegClass) {
 | |
|     if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       Opc = X86::MOV8mr_NOREX;
 | |
|     else
 | |
|       Opc = X86::MOV8mr;
 | |
|   } else if (RC == &X86::GR64_NOREXRegClass ||
 | |
|              RC == &X86::GR64_NOREX_NOSPRegClass) {
 | |
|     Opc = X86::MOV64mr;
 | |
|   } else if (RC == &X86::GR32_NOREXRegClass) {
 | |
|     Opc = X86::MOV32mr;
 | |
|   } else if (RC == &X86::GR16_NOREXRegClass) {
 | |
|     Opc = X86::MOV16mr;
 | |
|   } else if (RC == &X86::GR8_NOREXRegClass) {
 | |
|     Opc = X86::MOV8mr;
 | |
|   } else if (RC == &X86::RFP80RegClass) {
 | |
|     Opc = X86::ST_FpP80m;   // pops
 | |
|   } else if (RC == &X86::RFP64RegClass) {
 | |
|     Opc = X86::ST_Fp64m;
 | |
|   } else if (RC == &X86::RFP32RegClass) {
 | |
|     Opc = X86::ST_Fp32m;
 | |
|   } else if (RC == &X86::FR32RegClass) {
 | |
|     Opc = X86::MOVSSmr;
 | |
|   } else if (RC == &X86::FR64RegClass) {
 | |
|     Opc = X86::MOVSDmr;
 | |
|   } else if (RC == &X86::VR128RegClass) {
 | |
|     // If stack is realigned we can use aligned stores.
 | |
|     Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
 | |
|   } else if (RC == &X86::VR64RegClass) {
 | |
|     Opc = X86::MMX_MOVQ64mr;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass");
 | |
|   }
 | |
| 
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                        MachineBasicBlock::iterator MI,
 | |
|                                        unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|                                        const TargetRegisterClass *RC) const {
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
 | |
|     .addReg(SrcReg, getKillRegState(isKill));
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
 | |
|                                   bool isKill,
 | |
|                                   SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   MachineInstr::mmo_iterator MMOBegin,
 | |
|                                   MachineInstr::mmo_iterator MMOEnd,
 | |
|                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   bool isAligned = (*MMOBegin)->getAlignment() >= 16;
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = DebugLoc::getUnknownLoc();
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   MIB.addReg(SrcReg, getKillRegState(isKill));
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| static unsigned getLoadRegOpcode(unsigned DestReg,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  bool isStackAligned,
 | |
|                                  const TargetMachine &TM) {
 | |
|   unsigned Opc = 0;
 | |
|   if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
 | |
|     Opc = X86::MOV64rm;
 | |
|   } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
 | |
|     Opc = X86::MOV32rm;
 | |
|   } else if (RC == &X86::GR16RegClass) {
 | |
|     Opc = X86::MOV16rm;
 | |
|   } else if (RC == &X86::GR8RegClass) {
 | |
|     // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|     // move.  Otherwise use a normal move.
 | |
|     if (isHReg(DestReg) &&
 | |
|         TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       Opc = X86::MOV8rm_NOREX;
 | |
|     else
 | |
|       Opc = X86::MOV8rm;
 | |
|   } else if (RC == &X86::GR64_ABCDRegClass) {
 | |
|     Opc = X86::MOV64rm;
 | |
|   } else if (RC == &X86::GR32_ABCDRegClass) {
 | |
|     Opc = X86::MOV32rm;
 | |
|   } else if (RC == &X86::GR16_ABCDRegClass) {
 | |
|     Opc = X86::MOV16rm;
 | |
|   } else if (RC == &X86::GR8_ABCD_LRegClass) {
 | |
|     Opc = X86::MOV8rm;
 | |
|   } else if (RC == &X86::GR8_ABCD_HRegClass) {
 | |
|     if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       Opc = X86::MOV8rm_NOREX;
 | |
|     else
 | |
|       Opc = X86::MOV8rm;
 | |
|   } else if (RC == &X86::GR64_NOREXRegClass ||
 | |
|              RC == &X86::GR64_NOREX_NOSPRegClass) {
 | |
|     Opc = X86::MOV64rm;
 | |
|   } else if (RC == &X86::GR32_NOREXRegClass) {
 | |
|     Opc = X86::MOV32rm;
 | |
|   } else if (RC == &X86::GR16_NOREXRegClass) {
 | |
|     Opc = X86::MOV16rm;
 | |
|   } else if (RC == &X86::GR8_NOREXRegClass) {
 | |
|     Opc = X86::MOV8rm;
 | |
|   } else if (RC == &X86::RFP80RegClass) {
 | |
|     Opc = X86::LD_Fp80m;
 | |
|   } else if (RC == &X86::RFP64RegClass) {
 | |
|     Opc = X86::LD_Fp64m;
 | |
|   } else if (RC == &X86::RFP32RegClass) {
 | |
|     Opc = X86::LD_Fp32m;
 | |
|   } else if (RC == &X86::FR32RegClass) {
 | |
|     Opc = X86::MOVSSrm;
 | |
|   } else if (RC == &X86::FR64RegClass) {
 | |
|     Opc = X86::MOVSDrm;
 | |
|   } else if (RC == &X86::VR128RegClass) {
 | |
|     // If stack is realigned we can use aligned loads.
 | |
|     Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
 | |
|   } else if (RC == &X86::VR64RegClass) {
 | |
|     Opc = X86::MMX_MOVQ64rm;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass");
 | |
|   }
 | |
| 
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                         MachineBasicBlock::iterator MI,
 | |
|                                         unsigned DestReg, int FrameIdx,
 | |
|                                         const TargetRegisterClass *RC) const{
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | |
|                                  SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  MachineInstr::mmo_iterator MMOBegin,
 | |
|                                  MachineInstr::mmo_iterator MMOEnd,
 | |
|                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   bool isAligned = (*MMOBegin)->getAlignment() >= 16;
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = DebugLoc::getUnknownLoc();
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
 | |
|                                              MachineBasicBlock::iterator MI,
 | |
|                                 const std::vector<CalleeSavedInfo> &CSI) const {
 | |
|   if (CSI.empty())
 | |
|     return false;
 | |
| 
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
| 
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
|   bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
 | |
|   unsigned SlotSize = is64Bit ? 8 : 4;
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned FPReg = RI.getFrameRegister(MF);
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   unsigned CalleeFrameSize = 0;
 | |
|   
 | |
|   unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
 | |
|   for (unsigned i = CSI.size(); i != 0; --i) {
 | |
|     unsigned Reg = CSI[i-1].getReg();
 | |
|     const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
 | |
|     // Add the callee-saved register as live-in. It's killed at the spill.
 | |
|     MBB.addLiveIn(Reg);
 | |
|     if (Reg == FPReg)
 | |
|       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
 | |
|       continue;
 | |
|     if (RegClass != &X86::VR128RegClass && !isWin64) {
 | |
|       CalleeFrameSize += SlotSize;
 | |
|       BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
 | |
|     } else {
 | |
|       storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
 | |
|                                                MachineBasicBlock::iterator MI,
 | |
|                                 const std::vector<CalleeSavedInfo> &CSI) const {
 | |
|   if (CSI.empty())
 | |
|     return false;
 | |
| 
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned FPReg = RI.getFrameRegister(MF);
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
|   bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
 | |
|   unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
 | |
|   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | |
|     unsigned Reg = CSI[i].getReg();
 | |
|     if (Reg == FPReg)
 | |
|       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
 | |
|       continue;
 | |
|     const TargetRegisterClass *RegClass = CSI[i].getRegClass();
 | |
|     if (RegClass != &X86::VR128RegClass && !isWin64) {
 | |
|       BuildMI(MBB, MI, DL, get(Opc), Reg);
 | |
|     } else {
 | |
|       loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
 | |
|                                      const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                      MachineInstr *MI,
 | |
|                                      const TargetInstrInfo &TII) {
 | |
|   // Create the base instruction with the memory operand as the first part.
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
|   
 | |
|   // Loop over the rest of the ri operands, converting them over.
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands()-2;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i+2);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseInst(MachineFunction &MF,
 | |
|                               unsigned Opcode, unsigned OpNo,
 | |
|                               const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                               MachineInstr *MI, const TargetInstrInfo &TII) {
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
|   
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (i == OpNo) {
 | |
|       assert(MO.isReg() && "Expected to fold into reg operand!");
 | |
|       unsigned NumAddrOps = MOs.size();
 | |
|       for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|         MIB.addOperand(MOs[i]);
 | |
|       if (NumAddrOps < 4)  // FrameIndex only
 | |
|         addOffset(MIB, 0);
 | |
|     } else {
 | |
|       MIB.addOperand(MO);
 | |
|     }
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
 | |
|                                 const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                 MachineInstr *MI) {
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
 | |
| 
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
|   return MIB.addImm(0);
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                     MachineInstr *MI, unsigned i,
 | |
|                                     const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                     unsigned Size, unsigned Align) const {
 | |
|   const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
 | |
|   bool isTwoAddrFold = false;
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   if (isTwoAddr && NumOps >= 2 && i < 2 &&
 | |
|       MI->getOperand(0).isReg() &&
 | |
|       MI->getOperand(1).isReg() &&
 | |
|       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|     isTwoAddrFold = true;
 | |
|   } else if (i == 0) { // If operand 0
 | |
|     if (MI->getOpcode() == X86::MOV64r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV32r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV16r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV8r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
 | |
|     if (NewMI)
 | |
|       return NewMI;
 | |
|     
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (i == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (i == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
|   
 | |
|   // If table selected...
 | |
|   if (OpcodeTablePtr) {
 | |
|     // Find the Opcode to fuse
 | |
|     DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|       OpcodeTablePtr->find((unsigned*)MI->getOpcode());
 | |
|     if (I != OpcodeTablePtr->end()) {
 | |
|       unsigned Opcode = I->second.first;
 | |
|       unsigned MinAlign = I->second.second;
 | |
|       if (Align < MinAlign)
 | |
|         return NULL;
 | |
|       bool NarrowToMOV32rm = false;
 | |
|       if (Size) {
 | |
|         unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
 | |
|         if (Size < RCSize) {
 | |
|           // Check if it's safe to fold the load. If the size of the object is
 | |
|           // narrower than the load width, then it's not.
 | |
|           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
 | |
|             return NULL;
 | |
|           // If this is a 64-bit load, but the spill slot is 32, then we can do
 | |
|           // a 32-bit load which is implicitly zero-extended. This likely is due
 | |
|           // to liveintervalanalysis remat'ing a load from stack slot.
 | |
|           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
 | |
|             return NULL;
 | |
|           Opcode = X86::MOV32rm;
 | |
|           NarrowToMOV32rm = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (isTwoAddrFold)
 | |
|         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
 | |
|       else
 | |
|         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
 | |
| 
 | |
|       if (NarrowToMOV32rm) {
 | |
|         // If this is the special case where we use a MOV32rm to load a 32-bit
 | |
|         // value and zero-extend the top bits. Change the destination register
 | |
|         // to a 32-bit one.
 | |
|         unsigned DstReg = NewMI->getOperand(0).getReg();
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
 | |
|           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
 | |
|                                                    4/*x86_subreg_32bit*/));
 | |
|         else
 | |
|           NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
 | |
|       }
 | |
|       return NewMI;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // No fusion 
 | |
|   if (PrintFailedFusing)
 | |
|     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   int FrameIndex) const {
 | |
|   // Check switch flag 
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     switch (MI->getOpcode()) {
 | |
|     case X86::CVTSD2SSrr:
 | |
|     case X86::Int_CVTSD2SSrr:
 | |
|     case X86::CVTSS2SDrr:
 | |
|     case X86::Int_CVTSS2SDrr:
 | |
|     case X86::RCPSSr:
 | |
|     case X86::RCPSSr_Int:
 | |
|     case X86::ROUNDSDr_Int:
 | |
|     case X86::ROUNDSSr_Int:
 | |
|     case X86::RSQRTSSr:
 | |
|     case X86::RSQRTSSr_Int:
 | |
|     case X86::SQRTSSr:
 | |
|     case X86::SQRTSSr_Int:
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   const MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   unsigned Size = MFI->getObjectSize(FrameIndex);
 | |
|   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned RCSize = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
 | |
|     }
 | |
|     // Check if it's safe to fold the load. If the size of the object is
 | |
|     // narrower than the load width, then it's not.
 | |
|     if (Size < RCSize)
 | |
|       return NULL;
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,4> MOs;
 | |
|   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
 | |
| }
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   MachineInstr *LoadMI) const {
 | |
|   // Check switch flag 
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     switch (MI->getOpcode()) {
 | |
|     case X86::CVTSD2SSrr:
 | |
|     case X86::Int_CVTSD2SSrr:
 | |
|     case X86::CVTSS2SDrr:
 | |
|     case X86::Int_CVTSS2SDrr:
 | |
|     case X86::RCPSSr:
 | |
|     case X86::RCPSSr_Int:
 | |
|     case X86::ROUNDSDr_Int:
 | |
|     case X86::ROUNDSSr_Int:
 | |
|     case X86::RSQRTSSr:
 | |
|     case X86::RSQRTSSr_Int:
 | |
|     case X86::SQRTSSr:
 | |
|     case X86::SQRTSSr_Int:
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   // Determine the alignment of the load.
 | |
|   unsigned Alignment = 0;
 | |
|   if (LoadMI->hasOneMemOperand())
 | |
|     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
 | |
|   else
 | |
|     switch (LoadMI->getOpcode()) {
 | |
|     case X86::V_SET0:
 | |
|     case X86::V_SETALLONES:
 | |
|       Alignment = 16;
 | |
|       break;
 | |
|     case X86::FsFLD0SD:
 | |
|       Alignment = 8;
 | |
|       break;
 | |
|     case X86::FsFLD0SS:
 | |
|       Alignment = 4;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Don't know how to fold this instruction!");
 | |
|     }
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
 | |
|     }
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,X86AddrNumOperands> MOs;
 | |
|   switch (LoadMI->getOpcode()) {
 | |
|   case X86::V_SET0:
 | |
|   case X86::V_SETALLONES:
 | |
|   case X86::FsFLD0SD:
 | |
|   case X86::FsFLD0SS: {
 | |
|     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
 | |
|     // Create a constant-pool entry and operands to load from it.
 | |
| 
 | |
|     // x86-32 PIC requires a PIC base register for constant pools.
 | |
|     unsigned PICBase = 0;
 | |
|     if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|       if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|         PICBase = X86::RIP;
 | |
|       else
 | |
|         // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
 | |
|         // This doesn't work for several reasons.
 | |
|         // 1. GlobalBaseReg may have been spilled.
 | |
|         // 2. It may not be live at MI.
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // Create a constant-pool entry.
 | |
|     MachineConstantPool &MCP = *MF.getConstantPool();
 | |
|     const Type *Ty;
 | |
|     if (LoadMI->getOpcode() == X86::FsFLD0SS)
 | |
|       Ty = Type::getFloatTy(MF.getFunction()->getContext());
 | |
|     else if (LoadMI->getOpcode() == X86::FsFLD0SD)
 | |
|       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
 | |
|     else
 | |
|       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
 | |
|     Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
 | |
|                     Constant::getAllOnesValue(Ty) :
 | |
|                     Constant::getNullValue(Ty);
 | |
|     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
 | |
| 
 | |
|     // Create operands to load from the constant pool entry.
 | |
|     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
 | |
|     MOs.push_back(MachineOperand::CreateImm(1));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // Folding a normal load. Just copy the load's address operands.
 | |
|     unsigned NumOps = LoadMI->getDesc().getNumOperands();
 | |
|     for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
 | |
|       MOs.push_back(LoadMI->getOperand(i));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
 | |
|                                   const SmallVectorImpl<unsigned> &Ops) const {
 | |
|   // Check switch flag 
 | |
|   if (NoFusing) return 0;
 | |
| 
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case X86::TEST8rr: 
 | |
|     case X86::TEST16rr:
 | |
|     case X86::TEST32rr:
 | |
|     case X86::TEST64rr:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned OpNum = Ops[0];
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
| 
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
 | |
|   if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|   } else if (OpNum == 0) { // If operand 0
 | |
|     switch (Opc) {
 | |
|     case X86::MOV8r0:
 | |
|     case X86::MOV16r0:
 | |
|     case X86::MOV32r0:
 | |
|     case X86::MOV64r0:
 | |
|       return true;
 | |
|     default: break;
 | |
|     }
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (OpNum == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (OpNum == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
|   
 | |
|   if (OpcodeTablePtr) {
 | |
|     // Find the Opcode to fuse
 | |
|     DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|       OpcodeTablePtr->find((unsigned*)Opc);
 | |
|     if (I != OpcodeTablePtr->end())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
 | |
|                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
 | |
|                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & 0xf;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return false;
 | |
|   UnfoldLoad &= FoldedLoad;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return false;
 | |
|   UnfoldStore &= FoldedStore;
 | |
| 
 | |
|   const TargetInstrDesc &TID = get(Opc);
 | |
|   const TargetOperandInfo &TOI = TID.OpInfo[Index];
 | |
|   const TargetRegisterClass *RC = TOI.getRegClass(&RI);
 | |
|   SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
 | |
|   SmallVector<MachineOperand,2> BeforeOps;
 | |
|   SmallVector<MachineOperand,2> AfterOps;
 | |
|   SmallVector<MachineOperand,4> ImpOps;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &Op = MI->getOperand(i);
 | |
|     if (i >= Index && i < Index + X86AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (Op.isReg() && Op.isImplicit())
 | |
|       ImpOps.push_back(Op);
 | |
|     else if (i < Index)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   if (UnfoldLoad) {
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(MI->memoperands_begin(),
 | |
|                             MI->memoperands_end());
 | |
|     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
 | |
|     if (UnfoldStore) {
 | |
|       // Address operands cannot be marked isKill.
 | |
|       for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
 | |
|         MachineOperand &MO = NewMIs[0]->getOperand(i);
 | |
|         if (MO.isReg())
 | |
|           MO.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(DataMI);
 | |
|   
 | |
|   if (FoldedStore)
 | |
|     MIB.addReg(Reg, RegState::Define);
 | |
|   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(BeforeOps[i]);
 | |
|   if (FoldedLoad)
 | |
|     MIB.addReg(Reg);
 | |
|   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(AfterOps[i]);
 | |
|   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
 | |
|     MachineOperand &MO = ImpOps[i];
 | |
|     MIB.addReg(MO.getReg(),
 | |
|                getDefRegState(MO.isDef()) |
 | |
|                RegState::Implicit |
 | |
|                getKillRegState(MO.isKill()) |
 | |
|                getDeadRegState(MO.isDead()) |
 | |
|                getUndefRegState(MO.isUndef()));
 | |
|   }
 | |
|   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
 | |
|   unsigned NewOpc = 0;
 | |
|   switch (DataMI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::CMP64ri32:
 | |
|   case X86::CMP32ri:
 | |
|   case X86::CMP16ri:
 | |
|   case X86::CMP8ri: {
 | |
|     MachineOperand &MO0 = DataMI->getOperand(0);
 | |
|     MachineOperand &MO1 = DataMI->getOperand(1);
 | |
|     if (MO1.getImm() == 0) {
 | |
|       switch (DataMI->getOpcode()) {
 | |
|       default: break;
 | |
|       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
 | |
|       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
 | |
|       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
 | |
|       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
 | |
|       }
 | |
|       DataMI->setDesc(get(NewOpc));
 | |
|       MO1.ChangeToRegister(MO0.getReg(), false);
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   NewMIs.push_back(DataMI);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (UnfoldStore) {
 | |
|     const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(MI->memoperands_begin(),
 | |
|                              MI->memoperands_end());
 | |
|     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 | |
|                                   SmallVectorImpl<SDNode*> &NewNodes) const {
 | |
|   if (!N->isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & 0xf;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   const TargetInstrDesc &TID = get(Opc);
 | |
|   const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
 | |
|   unsigned NumDefs = TID.NumDefs;
 | |
|   std::vector<SDValue> AddrOps;
 | |
|   std::vector<SDValue> BeforeOps;
 | |
|   std::vector<SDValue> AfterOps;
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   unsigned NumOps = N->getNumOperands();
 | |
|   for (unsigned i = 0; i != NumOps-1; ++i) {
 | |
|     SDValue Op = N->getOperand(i);
 | |
|     if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (i < Index-NumDefs)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index-NumDefs)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
|   SDValue Chain = N->getOperand(NumOps-1);
 | |
|   AddrOps.push_back(Chain);
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   SDNode *Load = 0;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   if (FoldedLoad) {
 | |
|     EVT VT = *RC->vt_begin();
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                             cast<MachineSDNode>(N)->memoperands_end());
 | |
|     bool isAligned = (*MMOs.first)->getAlignment() >= 16;
 | |
|     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
 | |
|                               VT, MVT::Other, &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Load);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   std::vector<EVT> VTs;
 | |
|   const TargetRegisterClass *DstRC = 0;
 | |
|   if (TID.getNumDefs() > 0) {
 | |
|     DstRC = TID.OpInfo[0].getRegClass(&RI);
 | |
|     VTs.push_back(*DstRC->vt_begin());
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
 | |
|       VTs.push_back(VT);
 | |
|   }
 | |
|   if (Load)
 | |
|     BeforeOps.push_back(SDValue(Load, 0));
 | |
|   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
 | |
|   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
 | |
|                                       BeforeOps.size());
 | |
|   NewNodes.push_back(NewNode);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (FoldedStore) {
 | |
|     AddrOps.pop_back();
 | |
|     AddrOps.push_back(SDValue(NewNode, 0));
 | |
|     AddrOps.push_back(Chain);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                              cast<MachineSDNode>(N)->memoperands_end());
 | |
|     bool isAligned = (*MMOs.first)->getAlignment() >= 16;
 | |
|     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
 | |
|                                                          isAligned, TM),
 | |
|                                        dl, MVT::Other,
 | |
|                                        &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Store);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
 | |
|                                       bool UnfoldLoad, bool UnfoldStore,
 | |
|                                       unsigned *LoadRegIndex) const {
 | |
|   DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find((unsigned*)Opc);
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return 0;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return 0;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return 0;
 | |
|   if (LoadRegIndex)
 | |
|     *LoadRegIndex = I->second.second & 0xf;
 | |
|   return I->second.first;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
 | |
|                                      int64_t &Offset1, int64_t &Offset2) const {
 | |
|   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
 | |
|     return false;
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   switch (Opc1) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVUPSrm_Int:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   case X86::MOVDQUrm_Int:
 | |
|     break;
 | |
|   }
 | |
|   switch (Opc2) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVUPSrm_Int:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   case X86::MOVDQUrm_Int:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check if chain operands and base addresses match.
 | |
|   if (Load1->getOperand(0) != Load2->getOperand(0) ||
 | |
|       Load1->getOperand(5) != Load2->getOperand(5))
 | |
|     return false;
 | |
|   // Segment operands should match as well.
 | |
|   if (Load1->getOperand(4) != Load2->getOperand(4))
 | |
|     return false;
 | |
|   // Scale should be 1, Index should be Reg0.
 | |
|   if (Load1->getOperand(1) == Load2->getOperand(1) &&
 | |
|       Load1->getOperand(2) == Load2->getOperand(2)) {
 | |
|     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
 | |
|       return false;
 | |
|     SDValue Op2 = Load1->getOperand(2);
 | |
|     if (!isa<RegisterSDNode>(Op2) ||
 | |
|         cast<RegisterSDNode>(Op2)->getReg() != 0)
 | |
|       return 0;
 | |
| 
 | |
|     // Now let's examine the displacements.
 | |
|     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
 | |
|         isa<ConstantSDNode>(Load2->getOperand(3))) {
 | |
|       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
 | |
|       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
 | |
|                                            int64_t Offset1, int64_t Offset2,
 | |
|                                            unsigned NumLoads) const {
 | |
|   assert(Offset2 > Offset1);
 | |
|   if ((Offset2 - Offset1) / 8 > 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   if (Opc1 != Opc2)
 | |
|     return false;  // FIXME: overly conservative?
 | |
| 
 | |
|   switch (Opc1) {
 | |
|   default: break;
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EVT VT = Load1->getValueType(0);
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: {
 | |
|     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
 | |
|     // have 16 of them to play with.
 | |
|     if (TM.getSubtargetImpl()->is64Bit()) {
 | |
|       if (NumLoads >= 3)
 | |
|         return false;
 | |
|     } else if (NumLoads)
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|   case MVT::i64:
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (NumLoads)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
 | |
|   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
 | |
|   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
 | |
|     return true;
 | |
|   Cond[0].setImm(GetOppositeBranchCondition(CC));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
 | |
|   // FIXME: Return false for x87 stack register classes for now. We can't
 | |
|   // allow any loads of these registers before FpGet_ST0_80.
 | |
|   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
 | |
|            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
 | |
| /// register?  e.g. r8, xmm8, xmm13, etc.
 | |
| bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
 | |
|   switch (RegNo) {
 | |
|   default: break;
 | |
|   case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
 | |
|   case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
 | |
|   case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
 | |
|   case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
 | |
|   case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
 | |
|   case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
 | |
|   case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
 | |
|   case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
 | |
|   case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
 | |
|   case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
 | |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | |
| /// size, and 3) use of X86-64 extended registers.
 | |
| unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
 | |
|   unsigned REX = 0;
 | |
|   const TargetInstrDesc &Desc = MI.getDesc();
 | |
| 
 | |
|   // Pseudo instructions do not need REX prefix byte.
 | |
|   if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
 | |
|     return 0;
 | |
|   if (Desc.TSFlags & X86II::REX_W)
 | |
|     REX |= 1 << 3;
 | |
| 
 | |
|   unsigned NumOps = Desc.getNumOperands();
 | |
|   if (NumOps) {
 | |
|     bool isTwoAddr = NumOps > 1 &&
 | |
|       Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
| 
 | |
|     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | |
|     unsigned i = isTwoAddr ? 1 : 0;
 | |
|     for (unsigned e = NumOps; i != e; ++i) {
 | |
|       const MachineOperand& MO = MI.getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (isX86_64NonExtLowByteReg(Reg))
 | |
|           REX |= 0x40;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (Desc.TSFlags & X86II::FormMask) {
 | |
|     case X86II::MRMInitReg:
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= (1 << 0) | (1 << 2);
 | |
|       break;
 | |
|     case X86II::MRMSrcReg: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 2;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (unsigned e = NumOps; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (isX86_64ExtendedReg(MO))
 | |
|           REX |= 1 << 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case X86II::MRMSrcMem: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 2;
 | |
|       unsigned Bit = 0;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (; i != NumOps; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (MO.isReg()) {
 | |
|           if (isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << Bit;
 | |
|           Bit++;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case X86II::MRM0m: case X86II::MRM1m:
 | |
|     case X86II::MRM2m: case X86II::MRM3m:
 | |
|     case X86II::MRM4m: case X86II::MRM5m:
 | |
|     case X86II::MRM6m: case X86II::MRM7m:
 | |
|     case X86II::MRMDestMem: {
 | |
|       unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
 | |
|       i = isTwoAddr ? 1 : 0;
 | |
|       if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
 | |
|         REX |= 1 << 2;
 | |
|       unsigned Bit = 0;
 | |
|       for (; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (MO.isReg()) {
 | |
|           if (isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << Bit;
 | |
|           Bit++;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 0;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (unsigned e = NumOps; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (isX86_64ExtendedReg(MO))
 | |
|           REX |= 1 << 2;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return REX;
 | |
| }
 | |
| 
 | |
| /// sizePCRelativeBlockAddress - This method returns the size of a PC
 | |
| /// relative block address instruction
 | |
| ///
 | |
| static unsigned sizePCRelativeBlockAddress() {
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| /// sizeGlobalAddress - Give the size of the emission of this global address
 | |
| ///
 | |
| static unsigned sizeGlobalAddress(bool dword) {
 | |
|   return dword ? 8 : 4;
 | |
| }
 | |
| 
 | |
| /// sizeConstPoolAddress - Give the size of the emission of this constant
 | |
| /// pool address
 | |
| ///
 | |
| static unsigned sizeConstPoolAddress(bool dword) {
 | |
|   return dword ? 8 : 4;
 | |
| }
 | |
| 
 | |
| /// sizeExternalSymbolAddress - Give the size of the emission of this external
 | |
| /// symbol
 | |
| ///
 | |
| static unsigned sizeExternalSymbolAddress(bool dword) {
 | |
|   return dword ? 8 : 4;
 | |
| }
 | |
| 
 | |
| /// sizeJumpTableAddress - Give the size of the emission of this jump
 | |
| /// table address
 | |
| ///
 | |
| static unsigned sizeJumpTableAddress(bool dword) {
 | |
|   return dword ? 8 : 4;
 | |
| }
 | |
| 
 | |
| static unsigned sizeConstant(unsigned Size) {
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| static unsigned sizeRegModRMByte(){
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static unsigned sizeSIBByte(){
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
 | |
|   unsigned FinalSize = 0;
 | |
|   // If this is a simple integer displacement that doesn't require a relocation.
 | |
|   if (!RelocOp) {
 | |
|     FinalSize += sizeConstant(4);
 | |
|     return FinalSize;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, this is something that requires a relocation.
 | |
|   if (RelocOp->isGlobal()) {
 | |
|     FinalSize += sizeGlobalAddress(false);
 | |
|   } else if (RelocOp->isCPI()) {
 | |
|     FinalSize += sizeConstPoolAddress(false);
 | |
|   } else if (RelocOp->isJTI()) {
 | |
|     FinalSize += sizeJumpTableAddress(false);
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown value to relocate!");
 | |
|   }
 | |
|   return FinalSize;
 | |
| }
 | |
| 
 | |
| static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
 | |
|                                     bool IsPIC, bool Is64BitMode) {
 | |
|   const MachineOperand &Op3 = MI.getOperand(Op+3);
 | |
|   int DispVal = 0;
 | |
|   const MachineOperand *DispForReloc = 0;
 | |
|   unsigned FinalSize = 0;
 | |
|   
 | |
|   // Figure out what sort of displacement we have to handle here.
 | |
|   if (Op3.isGlobal()) {
 | |
|     DispForReloc = &Op3;
 | |
|   } else if (Op3.isCPI()) {
 | |
|     if (Is64BitMode || IsPIC) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal = 1;
 | |
|     }
 | |
|   } else if (Op3.isJTI()) {
 | |
|     if (Is64BitMode || IsPIC) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal = 1; 
 | |
|     }
 | |
|   } else {
 | |
|     DispVal = 1;
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &Base     = MI.getOperand(Op);
 | |
|   const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | |
| 
 | |
|   unsigned BaseReg = Base.getReg();
 | |
| 
 | |
|   // Is a SIB byte needed?
 | |
|   if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
 | |
|       IndexReg.getReg() == 0 &&
 | |
|       (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {      
 | |
|     if (BaseReg == 0) {  // Just a displacement?
 | |
|       // Emit special case [disp32] encoding
 | |
|       ++FinalSize; 
 | |
|       FinalSize += getDisplacementFieldSize(DispForReloc);
 | |
|     } else {
 | |
|       unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
 | |
|       if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | |
|         // Emit simple indirect register encoding... [EAX] f.e.
 | |
|         ++FinalSize;
 | |
|       // Be pessimistic and assume it's a disp32, not a disp8
 | |
|       } else {
 | |
|         // Emit the most general non-SIB encoding: [REG+disp32]
 | |
|         ++FinalSize;
 | |
|         FinalSize += getDisplacementFieldSize(DispForReloc);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | |
|     assert(IndexReg.getReg() != X86::ESP &&
 | |
|            IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | |
| 
 | |
|     bool ForceDisp32 = false;
 | |
|     if (BaseReg == 0 || DispForReloc) {
 | |
|       // Emit the normal disp32 encoding.
 | |
|       ++FinalSize;
 | |
|       ForceDisp32 = true;
 | |
|     } else {
 | |
|       ++FinalSize;
 | |
|     }
 | |
| 
 | |
|     FinalSize += sizeSIBByte();
 | |
| 
 | |
|     // Do we need to output a displacement?
 | |
|     if (DispVal != 0 || ForceDisp32) {
 | |
|       FinalSize += getDisplacementFieldSize(DispForReloc);
 | |
|     }
 | |
|   }
 | |
|   return FinalSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
 | |
|                                     const TargetInstrDesc *Desc,
 | |
|                                     bool IsPIC, bool Is64BitMode) {
 | |
|   
 | |
|   unsigned Opcode = Desc->Opcode;
 | |
|   unsigned FinalSize = 0;
 | |
| 
 | |
|   // Emit the lock opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
 | |
| 
 | |
|   // Emit segment override opcode prefix as needed.
 | |
|   switch (Desc->TSFlags & X86II::SegOvrMask) {
 | |
|   case X86II::FS:
 | |
|   case X86II::GS:
 | |
|    ++FinalSize;
 | |
|    break;
 | |
|   default: llvm_unreachable("Invalid segment!");
 | |
|   case 0: break;  // No segment override!
 | |
|   }
 | |
| 
 | |
|   // Emit the repeat opcode prefix as needed.
 | |
|   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
 | |
| 
 | |
|   // Emit the operand size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
 | |
| 
 | |
|   // Emit the address size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
 | |
| 
 | |
|   bool Need0FPrefix = false;
 | |
|   switch (Desc->TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TB:  // Two-byte opcode prefix
 | |
|   case X86II::T8:  // 0F 38
 | |
|   case X86II::TA:  // 0F 3A
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::TF: // F2 0F 38
 | |
|     ++FinalSize;
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::REP: break; // already handled.
 | |
|   case X86II::XS:   // F3 0F
 | |
|     ++FinalSize;
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::XD:   // F2 0F
 | |
|     ++FinalSize;
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | |
|   case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | |
|     ++FinalSize;
 | |
|     break; // Two-byte opcode prefix
 | |
|   default: llvm_unreachable("Invalid prefix!");
 | |
|   case 0: break;  // No prefix!
 | |
|   }
 | |
| 
 | |
|   if (Is64BitMode) {
 | |
|     // REX prefix
 | |
|     unsigned REX = X86InstrInfo::determineREX(MI);
 | |
|     if (REX)
 | |
|       ++FinalSize;
 | |
|   }
 | |
| 
 | |
|   // 0x0F escape code must be emitted just before the opcode.
 | |
|   if (Need0FPrefix)
 | |
|     ++FinalSize;
 | |
| 
 | |
|   switch (Desc->TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::T8:  // 0F 38
 | |
|     ++FinalSize;
 | |
|     break;
 | |
|   case X86II::TA:  // 0F 3A
 | |
|     ++FinalSize;
 | |
|     break;
 | |
|   case X86II::TF: // F2 0F 38
 | |
|     ++FinalSize;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If this is a two-address instruction, skip one of the register operands.
 | |
|   unsigned NumOps = Desc->getNumOperands();
 | |
|   unsigned CurOp = 0;
 | |
|   if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | |
|     CurOp++;
 | |
|   else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | |
|     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | |
|     --NumOps;
 | |
| 
 | |
|   switch (Desc->TSFlags & X86II::FormMask) {
 | |
|   default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
 | |
|   case X86II::Pseudo:
 | |
|     // Remember the current PC offset, this is the PIC relocation
 | |
|     // base address.
 | |
|     switch (Opcode) {
 | |
|     default: 
 | |
|       break;
 | |
|     case TargetOpcode::INLINEASM: {
 | |
|       const MachineFunction *MF = MI.getParent()->getParent();
 | |
|       const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
 | |
|       FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
 | |
|                                           *MF->getTarget().getMCAsmInfo());
 | |
|       break;
 | |
|     }
 | |
|     case TargetOpcode::DBG_LABEL:
 | |
|     case TargetOpcode::EH_LABEL:
 | |
|       break;
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|     case TargetOpcode::KILL:
 | |
|     case X86::FP_REG_KILL:
 | |
|       break;
 | |
|     case X86::MOVPC32r: {
 | |
|       // This emits the "call" portion of this pseudo instruction.
 | |
|       ++FinalSize;
 | |
|       FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     CurOp = NumOps;
 | |
|     break;
 | |
|   case X86II::RawFrm:
 | |
|     ++FinalSize;
 | |
| 
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
|       if (MO.isMBB()) {
 | |
|         FinalSize += sizePCRelativeBlockAddress();
 | |
|       } else if (MO.isGlobal()) {
 | |
|         FinalSize += sizeGlobalAddress(false);
 | |
|       } else if (MO.isSymbol()) {
 | |
|         FinalSize += sizeExternalSymbolAddress(false);
 | |
|       } else if (MO.isImm()) {
 | |
|         FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|       } else {
 | |
|         llvm_unreachable("Unknown RawFrm operand!");
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::AddRegFrm:
 | |
|     ++FinalSize;
 | |
|     ++CurOp;
 | |
|     
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|       unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|       if (MO1.isImm())
 | |
|         FinalSize += sizeConstant(Size);
 | |
|       else {
 | |
|         bool dword = false;
 | |
|         if (Opcode == X86::MOV64ri)
 | |
|           dword = true; 
 | |
|         if (MO1.isGlobal()) {
 | |
|           FinalSize += sizeGlobalAddress(dword);
 | |
|         } else if (MO1.isSymbol())
 | |
|           FinalSize += sizeExternalSymbolAddress(dword);
 | |
|         else if (MO1.isCPI())
 | |
|           FinalSize += sizeConstPoolAddress(dword);
 | |
|         else if (MO1.isJTI())
 | |
|           FinalSize += sizeJumpTableAddress(dword);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMDestReg: {
 | |
|     ++FinalSize; 
 | |
|     FinalSize += sizeRegModRMByte();
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps) {
 | |
|       ++CurOp;
 | |
|       FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case X86II::MRMDestMem: {
 | |
|     ++FinalSize;
 | |
|     FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
 | |
|     CurOp +=  X86AddrNumOperands + 1;
 | |
|     if (CurOp != NumOps) {
 | |
|       ++CurOp;
 | |
|       FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMSrcReg:
 | |
|     ++FinalSize;
 | |
|     FinalSize += sizeRegModRMByte();
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps) {
 | |
|       ++CurOp;
 | |
|       FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcMem: {
 | |
|     int AddrOperands;
 | |
|     if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
 | |
|         Opcode == X86::LEA16r || Opcode == X86::LEA32r)
 | |
|       AddrOperands = X86AddrNumOperands - 1; // No segment register
 | |
|     else
 | |
|       AddrOperands = X86AddrNumOperands;
 | |
| 
 | |
|     ++FinalSize;
 | |
|     FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
 | |
|     CurOp += AddrOperands + 1;
 | |
|     if (CurOp != NumOps) {
 | |
|       ++CurOp;
 | |
|       FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRM0r: case X86II::MRM1r:
 | |
|   case X86II::MRM2r: case X86II::MRM3r:
 | |
|   case X86II::MRM4r: case X86II::MRM5r:
 | |
|   case X86II::MRM6r: case X86II::MRM7r:
 | |
|     ++FinalSize;
 | |
|     if (Desc->getOpcode() == X86::LFENCE ||
 | |
|         Desc->getOpcode() == X86::MFENCE) {
 | |
|       // Special handling of lfence and mfence;
 | |
|       FinalSize += sizeRegModRMByte();
 | |
|     } else if (Desc->getOpcode() == X86::MONITOR ||
 | |
|                Desc->getOpcode() == X86::MWAIT) {
 | |
|       // Special handling of monitor and mwait.
 | |
|       FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
 | |
|     } else {
 | |
|       ++CurOp;
 | |
|       FinalSize += sizeRegModRMByte();
 | |
|     }
 | |
| 
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|       unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|       if (MO1.isImm())
 | |
|         FinalSize += sizeConstant(Size);
 | |
|       else {
 | |
|         bool dword = false;
 | |
|         if (Opcode == X86::MOV64ri32)
 | |
|           dword = true;
 | |
|         if (MO1.isGlobal()) {
 | |
|           FinalSize += sizeGlobalAddress(dword);
 | |
|         } else if (MO1.isSymbol())
 | |
|           FinalSize += sizeExternalSymbolAddress(dword);
 | |
|         else if (MO1.isCPI())
 | |
|           FinalSize += sizeConstPoolAddress(dword);
 | |
|         else if (MO1.isJTI())
 | |
|           FinalSize += sizeJumpTableAddress(dword);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m: {
 | |
|     
 | |
|     ++FinalSize;
 | |
|     FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
 | |
|     CurOp += X86AddrNumOperands;
 | |
| 
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
|       unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|       if (MO.isImm())
 | |
|         FinalSize += sizeConstant(Size);
 | |
|       else {
 | |
|         bool dword = false;
 | |
|         if (Opcode == X86::MOV64mi32)
 | |
|           dword = true;
 | |
|         if (MO.isGlobal()) {
 | |
|           FinalSize += sizeGlobalAddress(dword);
 | |
|         } else if (MO.isSymbol())
 | |
|           FinalSize += sizeExternalSymbolAddress(dword);
 | |
|         else if (MO.isCPI())
 | |
|           FinalSize += sizeConstPoolAddress(dword);
 | |
|         else if (MO.isJTI())
 | |
|           FinalSize += sizeJumpTableAddress(dword);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|     
 | |
|   case X86II::MRM_C1:
 | |
|   case X86II::MRM_C8:
 | |
|   case X86II::MRM_C9:
 | |
|   case X86II::MRM_E8:
 | |
|   case X86II::MRM_F0:
 | |
|     FinalSize += 2;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMInitReg:
 | |
|     ++FinalSize;
 | |
|     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | |
|     FinalSize += sizeRegModRMByte();
 | |
|     ++CurOp;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Desc->isVariadic() && CurOp != NumOps) {
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "Cannot determine size: " << MI;
 | |
|     llvm_report_error(Msg.str());
 | |
|   }
 | |
|   
 | |
| 
 | |
|   return FinalSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
 | |
|   const TargetInstrDesc &Desc = MI->getDesc();
 | |
|   bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
 | |
|   bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
 | |
|   unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
 | |
|   if (Desc.getOpcode() == X86::MOVPC32r)
 | |
|     Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Return a virtual register initialized with the
 | |
| /// the global base register value. Output instructions required to
 | |
| /// initialize the register in the function entry block, if necessary.
 | |
| ///
 | |
| unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
 | |
|   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
 | |
|          "X86-64 PIC uses RIP relative addressing");
 | |
| 
 | |
|   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
 | |
|   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | |
|   if (GlobalBaseReg != 0)
 | |
|     return GlobalBaseReg;
 | |
| 
 | |
|   // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|   MachineBasicBlock &FirstMBB = MF->front();
 | |
|   MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|   DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
 | |
|   MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|   unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | |
|   
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   // Operand of MovePCtoStack is completely ignored by asm printer. It's
 | |
|   // only used in JIT code emission as displacement to pc.
 | |
|   BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
 | |
|   
 | |
|   // If we're using vanilla 'GOT' PIC style, we should use relative addressing
 | |
|   // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
 | |
|   if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
 | |
|     GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | |
|     // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
 | |
|     BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
 | |
|       .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
 | |
|                                     X86II::MO_GOT_ABSOLUTE_ADDRESS);
 | |
|   } else {
 | |
|     GlobalBaseReg = PC;
 | |
|   }
 | |
| 
 | |
|   X86FI->setGlobalBaseReg(GlobalBaseReg);
 | |
|   return GlobalBaseReg;
 | |
| }
 |