mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-09 10:31:14 +00:00
e9c50732f7
The main register class may have been inflated by live range splitting, so that register class is not necessarily valid for the snippet instructions. Use the original register class for the stack slot interval. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128351 91177308-0d34-0410-b5e6-96231b3b80d8
917 lines
32 KiB
C++
917 lines
32 KiB
C++
//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The inline spiller modifies the machine function directly instead of
|
|
// inserting spills and restores in VirtRegMap.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "Spiller.h"
|
|
#include "LiveRangeEdit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class InlineSpiller : public Spiller {
|
|
MachineFunctionPass &Pass;
|
|
MachineFunction &MF;
|
|
LiveIntervals &LIS;
|
|
LiveStacks &LSS;
|
|
AliasAnalysis *AA;
|
|
MachineDominatorTree &MDT;
|
|
MachineLoopInfo &Loops;
|
|
VirtRegMap &VRM;
|
|
MachineFrameInfo &MFI;
|
|
MachineRegisterInfo &MRI;
|
|
const TargetInstrInfo &TII;
|
|
const TargetRegisterInfo &TRI;
|
|
|
|
// Variables that are valid during spill(), but used by multiple methods.
|
|
LiveRangeEdit *Edit;
|
|
LiveInterval *StackInt;
|
|
int StackSlot;
|
|
unsigned Original;
|
|
|
|
// All registers to spill to StackSlot, including the main register.
|
|
SmallVector<unsigned, 8> RegsToSpill;
|
|
|
|
// All COPY instructions to/from snippets.
|
|
// They are ignored since both operands refer to the same stack slot.
|
|
SmallPtrSet<MachineInstr*, 8> SnippetCopies;
|
|
|
|
// Values that failed to remat at some point.
|
|
SmallPtrSet<VNInfo*, 8> UsedValues;
|
|
|
|
// Information about a value that was defined by a copy from a sibling
|
|
// register.
|
|
struct SibValueInfo {
|
|
// True when all reaching defs were reloads: No spill is necessary.
|
|
bool AllDefsAreReloads;
|
|
|
|
// The preferred register to spill.
|
|
unsigned SpillReg;
|
|
|
|
// The value of SpillReg that should be spilled.
|
|
VNInfo *SpillVNI;
|
|
|
|
// A defining instruction that is not a sibling copy or a reload, or NULL.
|
|
// This can be used as a template for rematerialization.
|
|
MachineInstr *DefMI;
|
|
|
|
SibValueInfo(unsigned Reg, VNInfo *VNI)
|
|
: AllDefsAreReloads(false), SpillReg(Reg), SpillVNI(VNI), DefMI(0) {}
|
|
};
|
|
|
|
// Values in RegsToSpill defined by sibling copies.
|
|
typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
|
|
SibValueMap SibValues;
|
|
|
|
// Dead defs generated during spilling.
|
|
SmallVector<MachineInstr*, 8> DeadDefs;
|
|
|
|
~InlineSpiller() {}
|
|
|
|
public:
|
|
InlineSpiller(MachineFunctionPass &pass,
|
|
MachineFunction &mf,
|
|
VirtRegMap &vrm)
|
|
: Pass(pass),
|
|
MF(mf),
|
|
LIS(pass.getAnalysis<LiveIntervals>()),
|
|
LSS(pass.getAnalysis<LiveStacks>()),
|
|
AA(&pass.getAnalysis<AliasAnalysis>()),
|
|
MDT(pass.getAnalysis<MachineDominatorTree>()),
|
|
Loops(pass.getAnalysis<MachineLoopInfo>()),
|
|
VRM(vrm),
|
|
MFI(*mf.getFrameInfo()),
|
|
MRI(mf.getRegInfo()),
|
|
TII(*mf.getTarget().getInstrInfo()),
|
|
TRI(*mf.getTarget().getRegisterInfo()) {}
|
|
|
|
void spill(LiveRangeEdit &);
|
|
|
|
private:
|
|
bool isSnippet(const LiveInterval &SnipLI);
|
|
void collectRegsToSpill();
|
|
|
|
bool isRegToSpill(unsigned Reg) {
|
|
return std::find(RegsToSpill.begin(),
|
|
RegsToSpill.end(), Reg) != RegsToSpill.end();
|
|
}
|
|
|
|
bool isSibling(unsigned Reg);
|
|
void traceSiblingValue(unsigned, VNInfo*, VNInfo*);
|
|
void analyzeSiblingValues();
|
|
|
|
bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
|
|
void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
|
|
|
|
bool reMaterializeFor(MachineBasicBlock::iterator MI);
|
|
void reMaterializeAll();
|
|
|
|
bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
|
|
bool foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr *LoadMI = 0);
|
|
void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
|
|
void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
|
|
MachineBasicBlock::iterator MI);
|
|
|
|
void spillAroundUses(unsigned Reg);
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
Spiller *createInlineSpiller(MachineFunctionPass &pass,
|
|
MachineFunction &mf,
|
|
VirtRegMap &vrm) {
|
|
return new InlineSpiller(pass, mf, vrm);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Snippets
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// When spilling a virtual register, we also spill any snippets it is connected
|
|
// to. The snippets are small live ranges that only have a single real use,
|
|
// leftovers from live range splitting. Spilling them enables memory operand
|
|
// folding or tightens the live range around the single use.
|
|
//
|
|
// This minimizes register pressure and maximizes the store-to-load distance for
|
|
// spill slots which can be important in tight loops.
|
|
|
|
/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
|
|
/// otherwise return 0.
|
|
static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
|
|
if (!MI->isCopy())
|
|
return 0;
|
|
if (MI->getOperand(0).getSubReg() != 0)
|
|
return 0;
|
|
if (MI->getOperand(1).getSubReg() != 0)
|
|
return 0;
|
|
if (MI->getOperand(0).getReg() == Reg)
|
|
return MI->getOperand(1).getReg();
|
|
if (MI->getOperand(1).getReg() == Reg)
|
|
return MI->getOperand(0).getReg();
|
|
return 0;
|
|
}
|
|
|
|
/// isSnippet - Identify if a live interval is a snippet that should be spilled.
|
|
/// It is assumed that SnipLI is a virtual register with the same original as
|
|
/// Edit->getReg().
|
|
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
|
|
unsigned Reg = Edit->getReg();
|
|
|
|
// A snippet is a tiny live range with only a single instruction using it
|
|
// besides copies to/from Reg or spills/fills. We accept:
|
|
//
|
|
// %snip = COPY %Reg / FILL fi#
|
|
// %snip = USE %snip
|
|
// %Reg = COPY %snip / SPILL %snip, fi#
|
|
//
|
|
if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
|
|
return false;
|
|
|
|
MachineInstr *UseMI = 0;
|
|
|
|
// Check that all uses satisfy our criteria.
|
|
for (MachineRegisterInfo::reg_nodbg_iterator
|
|
RI = MRI.reg_nodbg_begin(SnipLI.reg);
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
|
|
// Allow copies to/from Reg.
|
|
if (isFullCopyOf(MI, Reg))
|
|
continue;
|
|
|
|
// Allow stack slot loads.
|
|
int FI;
|
|
if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
|
|
continue;
|
|
|
|
// Allow stack slot stores.
|
|
if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
|
|
continue;
|
|
|
|
// Allow a single additional instruction.
|
|
if (UseMI && MI != UseMI)
|
|
return false;
|
|
UseMI = MI;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// collectRegsToSpill - Collect live range snippets that only have a single
|
|
/// real use.
|
|
void InlineSpiller::collectRegsToSpill() {
|
|
unsigned Reg = Edit->getReg();
|
|
|
|
// Main register always spills.
|
|
RegsToSpill.assign(1, Reg);
|
|
SnippetCopies.clear();
|
|
|
|
// Snippets all have the same original, so there can't be any for an original
|
|
// register.
|
|
if (Original == Reg)
|
|
return;
|
|
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
unsigned SnipReg = isFullCopyOf(MI, Reg);
|
|
if (!isSibling(SnipReg))
|
|
continue;
|
|
LiveInterval &SnipLI = LIS.getInterval(SnipReg);
|
|
if (!isSnippet(SnipLI))
|
|
continue;
|
|
SnippetCopies.insert(MI);
|
|
if (!isRegToSpill(SnipReg))
|
|
RegsToSpill.push_back(SnipReg);
|
|
|
|
DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sibling Values
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// After live range splitting, some values to be spilled may be defined by
|
|
// copies from sibling registers. We trace the sibling copies back to the
|
|
// original value if it still exists. We need it for rematerialization.
|
|
//
|
|
// Even when the value can't be rematerialized, we still want to determine if
|
|
// the value has already been spilled, or we may want to hoist the spill from a
|
|
// loop.
|
|
|
|
bool InlineSpiller::isSibling(unsigned Reg) {
|
|
return TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
VRM.getOriginal(Reg) == Original;
|
|
}
|
|
|
|
/// traceSiblingValue - Trace a value that is about to be spilled back to the
|
|
/// real defining instructions by looking through sibling copies. Always stay
|
|
/// within the range of OrigVNI so the registers are known to carry the same
|
|
/// value.
|
|
///
|
|
/// Determine if the value is defined by all reloads, so spilling isn't
|
|
/// necessary - the value is already in the stack slot.
|
|
///
|
|
/// Find a defining instruction that may be a candidate for rematerialization.
|
|
///
|
|
void InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
|
|
VNInfo *OrigVNI) {
|
|
DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
|
|
<< UseVNI->id << '@' << UseVNI->def << '\n');
|
|
SmallPtrSet<VNInfo*, 8> Visited;
|
|
SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
|
|
WorkList.push_back(std::make_pair(UseReg, UseVNI));
|
|
|
|
// Best spill candidate seen so far. This must dominate UseVNI.
|
|
SibValueInfo SVI(UseReg, UseVNI);
|
|
MachineBasicBlock *UseMBB = LIS.getMBBFromIndex(UseVNI->def);
|
|
unsigned SpillDepth = Loops.getLoopDepth(UseMBB);
|
|
bool SeenOrigPHI = false; // Original PHI met.
|
|
|
|
do {
|
|
unsigned Reg;
|
|
VNInfo *VNI;
|
|
tie(Reg, VNI) = WorkList.pop_back_val();
|
|
if (!Visited.insert(VNI))
|
|
continue;
|
|
|
|
// Is this value a better spill candidate?
|
|
if (!isRegToSpill(Reg)) {
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
|
|
if (MBB != UseMBB && MDT.dominates(MBB, UseMBB)) {
|
|
// This is a valid spill location dominating UseVNI.
|
|
// Prefer to spill at a smaller loop depth.
|
|
unsigned Depth = Loops.getLoopDepth(MBB);
|
|
if (Depth < SpillDepth) {
|
|
DEBUG(dbgs() << " spill depth " << Depth << ": " << PrintReg(Reg)
|
|
<< ':' << VNI->id << '@' << VNI->def << '\n');
|
|
SVI.SpillReg = Reg;
|
|
SVI.SpillVNI = VNI;
|
|
SpillDepth = Depth;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Trace through PHI-defs created by live range splitting.
|
|
if (VNI->isPHIDef()) {
|
|
if (VNI->def == OrigVNI->def) {
|
|
DEBUG(dbgs() << " orig phi value " << PrintReg(Reg) << ':'
|
|
<< VNI->id << '@' << VNI->def << '\n');
|
|
SeenOrigPHI = true;
|
|
continue;
|
|
}
|
|
// Get values live-out of predecessors.
|
|
LiveInterval &LI = LIS.getInterval(Reg);
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
VNInfo *PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
|
|
if (PVNI)
|
|
WorkList.push_back(std::make_pair(Reg, PVNI));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
|
|
assert(MI && "Missing def");
|
|
|
|
// Trace through sibling copies.
|
|
if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
|
|
if (isSibling(SrcReg)) {
|
|
LiveInterval &SrcLI = LIS.getInterval(SrcReg);
|
|
VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex());
|
|
assert(SrcVNI && "Copy from non-existing value");
|
|
DEBUG(dbgs() << " copy of " << PrintReg(SrcReg) << ':'
|
|
<< SrcVNI->id << '@' << SrcVNI->def << '\n');
|
|
WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Track reachable reloads.
|
|
int FI;
|
|
if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
|
|
DEBUG(dbgs() << " reload " << PrintReg(Reg) << ':'
|
|
<< VNI->id << "@" << VNI->def << '\n');
|
|
SVI.AllDefsAreReloads = true;
|
|
continue;
|
|
}
|
|
|
|
// We have an 'original' def. Don't record trivial cases.
|
|
if (VNI == UseVNI) {
|
|
DEBUG(dbgs() << "Not a sibling copy.\n");
|
|
return;
|
|
}
|
|
|
|
// Potential remat candidate.
|
|
DEBUG(dbgs() << " def " << PrintReg(Reg) << ':'
|
|
<< VNI->id << '@' << VNI->def << '\t' << *MI);
|
|
SVI.DefMI = MI;
|
|
} while (!WorkList.empty());
|
|
|
|
if (SeenOrigPHI || SVI.DefMI)
|
|
SVI.AllDefsAreReloads = false;
|
|
|
|
DEBUG({
|
|
if (SVI.AllDefsAreReloads)
|
|
dbgs() << "All defs are reloads.\n";
|
|
else
|
|
dbgs() << "Prefer to spill " << PrintReg(SVI.SpillReg) << ':'
|
|
<< SVI.SpillVNI->id << '@' << SVI.SpillVNI->def << '\n';
|
|
});
|
|
SibValues.insert(std::make_pair(UseVNI, SVI));
|
|
}
|
|
|
|
/// analyzeSiblingValues - Trace values defined by sibling copies back to
|
|
/// something that isn't a sibling copy.
|
|
void InlineSpiller::analyzeSiblingValues() {
|
|
SibValues.clear();
|
|
|
|
// No siblings at all?
|
|
if (Edit->getReg() == Original)
|
|
return;
|
|
|
|
LiveInterval &OrigLI = LIS.getInterval(Original);
|
|
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
|
|
unsigned Reg = RegsToSpill[i];
|
|
LiveInterval &LI = LIS.getInterval(Reg);
|
|
for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
|
|
VE = LI.vni_end(); VI != VE; ++VI) {
|
|
VNInfo *VNI = *VI;
|
|
if (VNI->isUnused() || !(VNI->isPHIDef() || VNI->getCopy()))
|
|
continue;
|
|
VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
|
|
if (OrigVNI->def != VNI->def)
|
|
traceSiblingValue(Reg, VNI, OrigVNI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
|
|
/// a spill at a better location.
|
|
bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
|
|
SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
|
|
VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex());
|
|
assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy");
|
|
SibValueMap::const_iterator I = SibValues.find(VNI);
|
|
if (I == SibValues.end())
|
|
return false;
|
|
|
|
const SibValueInfo &SVI = I->second;
|
|
|
|
// Let the normal folding code deal with the boring case.
|
|
if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
|
|
return false;
|
|
|
|
// Conservatively extend the stack slot range to the range of the original
|
|
// value. We may be able to do better with stack slot coloring by being more
|
|
// careful here.
|
|
assert(StackInt && "No stack slot assigned yet.");
|
|
LiveInterval &OrigLI = LIS.getInterval(Original);
|
|
VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
|
|
StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
|
|
DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
|
|
<< *StackInt << '\n');
|
|
|
|
// Already spilled everywhere.
|
|
if (SVI.AllDefsAreReloads)
|
|
return true;
|
|
|
|
// We are going to spill SVI.SpillVNI immediately after its def, so clear out
|
|
// any later spills of the same value.
|
|
eliminateRedundantSpills(LIS.getInterval(SVI.SpillReg), SVI.SpillVNI);
|
|
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
|
|
MachineBasicBlock::iterator MII;
|
|
if (SVI.SpillVNI->isPHIDef())
|
|
MII = MBB->SkipPHIsAndLabels(MBB->begin());
|
|
else {
|
|
MII = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
|
|
++MII;
|
|
}
|
|
// Insert spill without kill flag immediately after def.
|
|
TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
|
|
MRI.getRegClass(SVI.SpillReg), &TRI);
|
|
--MII; // Point to store instruction.
|
|
LIS.InsertMachineInstrInMaps(MII);
|
|
VRM.addSpillSlotUse(StackSlot, MII);
|
|
DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
|
|
return true;
|
|
}
|
|
|
|
/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
|
|
/// redundant spills of this value in SLI.reg and sibling copies.
|
|
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
|
|
assert(VNI && "Missing value");
|
|
SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
|
|
WorkList.push_back(std::make_pair(&SLI, VNI));
|
|
assert(StackInt && "No stack slot assigned yet.");
|
|
|
|
do {
|
|
LiveInterval *LI;
|
|
tie(LI, VNI) = WorkList.pop_back_val();
|
|
unsigned Reg = LI->reg;
|
|
DEBUG(dbgs() << "Checking redundant spills for " << PrintReg(Reg) << ':'
|
|
<< VNI->id << '@' << VNI->def << '\n');
|
|
|
|
// Regs to spill are taken care of.
|
|
if (isRegToSpill(Reg))
|
|
continue;
|
|
|
|
// Add all of VNI's live range to StackInt.
|
|
StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
|
|
DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
|
|
|
|
// Find all spills and copies of VNI.
|
|
for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
|
|
MachineInstr *MI = UI.skipInstruction();) {
|
|
if (!MI->isCopy() && !MI->getDesc().mayStore())
|
|
continue;
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
if (LI->getVNInfoAt(Idx) != VNI)
|
|
continue;
|
|
|
|
// Follow sibling copies down the dominator tree.
|
|
if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
|
|
if (isSibling(DstReg)) {
|
|
LiveInterval &DstLI = LIS.getInterval(DstReg);
|
|
VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex());
|
|
assert(DstVNI && "Missing defined value");
|
|
assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot");
|
|
WorkList.push_back(std::make_pair(&DstLI, DstVNI));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Erase spills.
|
|
int FI;
|
|
if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
|
|
DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
|
|
// eliminateDeadDefs won't normally remove stores, so switch opcode.
|
|
MI->setDesc(TII.get(TargetOpcode::KILL));
|
|
DeadDefs.push_back(MI);
|
|
}
|
|
}
|
|
} while (!WorkList.empty());
|
|
}
|
|
|
|
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
|
|
bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
|
|
SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex();
|
|
VNInfo *OrigVNI = Edit->getParent().getVNInfoAt(UseIdx);
|
|
|
|
if (!OrigVNI) {
|
|
DEBUG(dbgs() << "\tadding <undef> flags: ");
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg())
|
|
MO.setIsUndef();
|
|
}
|
|
DEBUG(dbgs() << UseIdx << '\t' << *MI);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Properly remat for snippets as well.
|
|
if (SnippetCopies.count(MI)) {
|
|
UsedValues.insert(OrigVNI);
|
|
return false;
|
|
}
|
|
|
|
LiveRangeEdit::Remat RM(OrigVNI);
|
|
if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
|
|
UsedValues.insert(OrigVNI);
|
|
DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
|
|
return false;
|
|
}
|
|
|
|
// If the instruction also writes Edit->getReg(), it had better not require
|
|
// the same register for uses and defs.
|
|
bool Reads, Writes;
|
|
SmallVector<unsigned, 8> Ops;
|
|
tie(Reads, Writes) = MI->readsWritesVirtualRegister(Edit->getReg(), &Ops);
|
|
if (Writes) {
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
|
|
UsedValues.insert(OrigVNI);
|
|
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Before rematerializing into a register for a single instruction, try to
|
|
// fold a load into the instruction. That avoids allocating a new register.
|
|
if (RM.OrigMI->getDesc().canFoldAsLoad() &&
|
|
foldMemoryOperand(MI, Ops, RM.OrigMI)) {
|
|
Edit->markRematerialized(RM.ParentVNI);
|
|
return true;
|
|
}
|
|
|
|
// Alocate a new register for the remat.
|
|
LiveInterval &NewLI = Edit->create(LIS, VRM);
|
|
NewLI.markNotSpillable();
|
|
|
|
// Rematting for a copy: Set allocation hint to be the destination register.
|
|
if (MI->isCopy())
|
|
MRI.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg());
|
|
|
|
// Finally we can rematerialize OrigMI before MI.
|
|
SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
|
|
LIS, TII, TRI);
|
|
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
|
|
<< *LIS.getInstructionFromIndex(DefIdx));
|
|
|
|
// Replace operands
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg()) {
|
|
MO.setReg(NewLI.reg);
|
|
MO.setIsKill();
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
|
|
|
|
VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
|
|
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
|
|
return true;
|
|
}
|
|
|
|
/// reMaterializeAll - Try to rematerialize as many uses as possible,
|
|
/// and trim the live ranges after.
|
|
void InlineSpiller::reMaterializeAll() {
|
|
// Do a quick scan of the interval values to find if any are remattable.
|
|
if (!Edit->anyRematerializable(LIS, TII, AA))
|
|
return;
|
|
|
|
UsedValues.clear();
|
|
|
|
// Try to remat before all uses of Edit->getReg().
|
|
bool anyRemat = false;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
RI = MRI.use_nodbg_begin(Edit->getReg());
|
|
MachineInstr *MI = RI.skipInstruction();)
|
|
anyRemat |= reMaterializeFor(MI);
|
|
|
|
if (!anyRemat)
|
|
return;
|
|
|
|
// Remove any values that were completely rematted.
|
|
bool anyRemoved = false;
|
|
for (LiveInterval::vni_iterator I = Edit->getParent().vni_begin(),
|
|
E = Edit->getParent().vni_end(); I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->hasPHIKill() || !Edit->didRematerialize(VNI) ||
|
|
UsedValues.count(VNI))
|
|
continue;
|
|
MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
|
|
DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
|
|
LIS.RemoveMachineInstrFromMaps(DefMI);
|
|
VRM.RemoveMachineInstrFromMaps(DefMI);
|
|
DefMI->eraseFromParent();
|
|
VNI->def = SlotIndex();
|
|
anyRemoved = true;
|
|
}
|
|
|
|
if (!anyRemoved)
|
|
return;
|
|
|
|
// Removing values may cause debug uses where parent is not live.
|
|
for (MachineRegisterInfo::use_iterator RI = MRI.use_begin(Edit->getReg());
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
if (!MI->isDebugValue())
|
|
continue;
|
|
// Try to preserve the debug value if parent is live immediately after it.
|
|
MachineBasicBlock::iterator NextMI = MI;
|
|
++NextMI;
|
|
if (NextMI != MI->getParent()->end() && !LIS.isNotInMIMap(NextMI)) {
|
|
SlotIndex Idx = LIS.getInstructionIndex(NextMI);
|
|
VNInfo *VNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (VNI && (VNI->hasPHIKill() || UsedValues.count(VNI)))
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// If MI is a load or store of StackSlot, it can be removed.
|
|
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
|
|
int FI = 0;
|
|
unsigned InstrReg;
|
|
if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) &&
|
|
!(InstrReg = TII.isStoreToStackSlot(MI, FI)))
|
|
return false;
|
|
|
|
// We have a stack access. Is it the right register and slot?
|
|
if (InstrReg != Reg || FI != StackSlot)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Coalescing stack access: " << *MI);
|
|
LIS.RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
|
|
/// @param MI Instruction using or defining the current register.
|
|
/// @param Ops Operand indices from readsWritesVirtualRegister().
|
|
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
|
|
/// @return True on success, and MI will be erased.
|
|
bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr *LoadMI) {
|
|
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
|
|
// operands.
|
|
SmallVector<unsigned, 8> FoldOps;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
unsigned Idx = Ops[i];
|
|
MachineOperand &MO = MI->getOperand(Idx);
|
|
if (MO.isImplicit())
|
|
continue;
|
|
// FIXME: Teach targets to deal with subregs.
|
|
if (MO.getSubReg())
|
|
return false;
|
|
// We cannot fold a load instruction into a def.
|
|
if (LoadMI && MO.isDef())
|
|
return false;
|
|
// Tied use operands should not be passed to foldMemoryOperand.
|
|
if (!MI->isRegTiedToDefOperand(Idx))
|
|
FoldOps.push_back(Idx);
|
|
}
|
|
|
|
MachineInstr *FoldMI =
|
|
LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
|
|
: TII.foldMemoryOperand(MI, FoldOps, StackSlot);
|
|
if (!FoldMI)
|
|
return false;
|
|
LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
|
|
if (!LoadMI)
|
|
VRM.addSpillSlotUse(StackSlot, FoldMI);
|
|
MI->eraseFromParent();
|
|
DEBUG(dbgs() << "\tfolded: " << *FoldMI);
|
|
return true;
|
|
}
|
|
|
|
/// insertReload - Insert a reload of NewLI.reg before MI.
|
|
void InlineSpiller::insertReload(LiveInterval &NewLI,
|
|
MachineBasicBlock::iterator MI) {
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
|
|
TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
|
|
MRI.getRegClass(NewLI.reg), &TRI);
|
|
--MI; // Point to load instruction.
|
|
SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
VRM.addSpillSlotUse(StackSlot, MI);
|
|
DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
|
|
VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
|
|
LIS.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
|
|
}
|
|
|
|
/// insertSpill - Insert a spill of NewLI.reg after MI.
|
|
void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
|
|
MachineBasicBlock::iterator MI) {
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
|
|
// Get the defined value. It could be an early clobber so keep the def index.
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
|
|
VNInfo *VNI = OldLI.getVNInfoAt(Idx);
|
|
assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo");
|
|
Idx = VNI->def;
|
|
|
|
TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
|
|
MRI.getRegClass(NewLI.reg), &TRI);
|
|
--MI; // Point to store instruction.
|
|
SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
VRM.addSpillSlotUse(StackSlot, MI);
|
|
DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
|
|
VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
|
|
}
|
|
|
|
/// spillAroundUses - insert spill code around each use of Reg.
|
|
void InlineSpiller::spillAroundUses(unsigned Reg) {
|
|
LiveInterval &OldLI = LIS.getInterval(Reg);
|
|
|
|
// Iterate over instructions using Reg.
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
|
|
// Debug values are not allowed to affect codegen.
|
|
if (MI->isDebugValue()) {
|
|
// Modify DBG_VALUE now that the value is in a spill slot.
|
|
uint64_t Offset = MI->getOperand(1).getImm();
|
|
const MDNode *MDPtr = MI->getOperand(2).getMetadata();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
|
|
Offset, MDPtr, DL)) {
|
|
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MBB->insert(MBB->erase(MI), NewDV);
|
|
} else {
|
|
DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Ignore copies to/from snippets. We'll delete them.
|
|
if (SnippetCopies.count(MI))
|
|
continue;
|
|
|
|
// Stack slot accesses may coalesce away.
|
|
if (coalesceStackAccess(MI, Reg))
|
|
continue;
|
|
|
|
// Analyze instruction.
|
|
bool Reads, Writes;
|
|
SmallVector<unsigned, 8> Ops;
|
|
tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
|
|
|
|
// Check for a sibling copy.
|
|
unsigned SibReg = isFullCopyOf(MI, Reg);
|
|
if (SibReg && isSibling(SibReg)) {
|
|
if (Writes) {
|
|
// Hoist the spill of a sib-reg copy.
|
|
if (hoistSpill(OldLI, MI)) {
|
|
// This COPY is now dead, the value is already in the stack slot.
|
|
MI->getOperand(0).setIsDead();
|
|
DeadDefs.push_back(MI);
|
|
continue;
|
|
}
|
|
} else {
|
|
// This is a reload for a sib-reg copy. Drop spills downstream.
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
|
|
LiveInterval &SibLI = LIS.getInterval(SibReg);
|
|
eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
|
|
// The COPY will fold to a reload below.
|
|
}
|
|
}
|
|
|
|
// Attempt to fold memory ops.
|
|
if (foldMemoryOperand(MI, Ops))
|
|
continue;
|
|
|
|
// Allocate interval around instruction.
|
|
// FIXME: Infer regclass from instruction alone.
|
|
LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM);
|
|
NewLI.markNotSpillable();
|
|
|
|
if (Reads)
|
|
insertReload(NewLI, MI);
|
|
|
|
// Rewrite instruction operands.
|
|
bool hasLiveDef = false;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
MO.setReg(NewLI.reg);
|
|
if (MO.isUse()) {
|
|
if (!MI->isRegTiedToDefOperand(Ops[i]))
|
|
MO.setIsKill();
|
|
} else {
|
|
if (!MO.isDead())
|
|
hasLiveDef = true;
|
|
}
|
|
}
|
|
|
|
// FIXME: Use a second vreg if instruction has no tied ops.
|
|
if (Writes && hasLiveDef)
|
|
insertSpill(NewLI, OldLI, MI);
|
|
|
|
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
|
|
}
|
|
}
|
|
|
|
void InlineSpiller::spill(LiveRangeEdit &edit) {
|
|
Edit = &edit;
|
|
assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
|
|
&& "Trying to spill a stack slot.");
|
|
// Share a stack slot among all descendants of Original.
|
|
Original = VRM.getOriginal(edit.getReg());
|
|
StackSlot = VRM.getStackSlot(Original);
|
|
StackInt = 0;
|
|
|
|
DEBUG(dbgs() << "Inline spilling "
|
|
<< MRI.getRegClass(edit.getReg())->getName()
|
|
<< ':' << edit.getParent() << "\nFrom original "
|
|
<< LIS.getInterval(Original) << '\n');
|
|
assert(edit.getParent().isSpillable() &&
|
|
"Attempting to spill already spilled value.");
|
|
assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
|
|
|
|
collectRegsToSpill();
|
|
analyzeSiblingValues();
|
|
reMaterializeAll();
|
|
|
|
// Remat may handle everything.
|
|
if (Edit->getParent().empty())
|
|
return;
|
|
|
|
// Update LiveStacks now that we are committed to spilling.
|
|
if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
|
|
StackSlot = VRM.assignVirt2StackSlot(Original);
|
|
StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
|
|
StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator());
|
|
} else
|
|
StackInt = &LSS.getInterval(StackSlot);
|
|
|
|
if (Original != edit.getReg())
|
|
VRM.assignVirt2StackSlot(edit.getReg(), StackSlot);
|
|
|
|
assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
|
|
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
|
|
StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
|
|
StackInt->getValNumInfo(0));
|
|
DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
|
|
|
|
// Spill around uses of all RegsToSpill.
|
|
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
|
|
spillAroundUses(RegsToSpill[i]);
|
|
|
|
// Hoisted spills may cause dead code.
|
|
if (!DeadDefs.empty()) {
|
|
DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
|
|
Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
|
|
}
|
|
|
|
// Finally delete the SnippetCopies.
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(edit.getReg());
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
|
|
// FIXME: Do this with a LiveRangeEdit callback.
|
|
VRM.RemoveMachineInstrFromMaps(MI);
|
|
LIS.RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
|
|
edit.eraseVirtReg(RegsToSpill[i], LIS);
|
|
}
|