mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	obviously is coupled to the IR. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202818 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1212 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1212 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides a simple and efficient mechanism for performing general
 | |
| // tree-based pattern matches on the LLVM IR.  The power of these routines is
 | |
| // that it allows you to write concise patterns that are expressive and easy to
 | |
| // understand.  The other major advantage of this is that it allows you to
 | |
| // trivially capture/bind elements in the pattern to variables.  For example,
 | |
| // you can do something like this:
 | |
| //
 | |
| //  Value *Exp = ...
 | |
| //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
 | |
| //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
 | |
| //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
 | |
| //    ... Pattern is matched and variables are bound ...
 | |
| //  }
 | |
| //
 | |
| // This is primarily useful to things like the instruction combiner, but can
 | |
| // also be useful for static analysis tools or code generators.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_IR_PATTERNMATCH_H
 | |
| #define LLVM_IR_PATTERNMATCH_H
 | |
| 
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| 
 | |
| namespace llvm {
 | |
| namespace PatternMatch {
 | |
| 
 | |
| template<typename Val, typename Pattern>
 | |
| bool match(Val *V, const Pattern &P) {
 | |
|   return const_cast<Pattern&>(P).match(V);
 | |
| }
 | |
| 
 | |
| 
 | |
| template<typename SubPattern_t>
 | |
| struct OneUse_match {
 | |
|   SubPattern_t SubPattern;
 | |
| 
 | |
|   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     return V->hasOneUse() && SubPattern.match(V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
 | |
| 
 | |
| 
 | |
| template<typename Class>
 | |
| struct class_match {
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) { return isa<Class>(V); }
 | |
| };
 | |
| 
 | |
| /// m_Value() - Match an arbitrary value and ignore it.
 | |
| inline class_match<Value> m_Value() { return class_match<Value>(); }
 | |
| /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
 | |
| inline class_match<ConstantInt> m_ConstantInt() {
 | |
|   return class_match<ConstantInt>();
 | |
| }
 | |
| /// m_Undef() - Match an arbitrary undef constant.
 | |
| inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
 | |
| 
 | |
| inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
 | |
| 
 | |
| /// Matching combinators
 | |
| template<typename LTy, typename RTy>
 | |
| struct match_combine_or {
 | |
|   LTy L;
 | |
|   RTy R;
 | |
| 
 | |
|   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (L.match(V))
 | |
|       return true;
 | |
|     if (R.match(V))
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename LTy, typename RTy>
 | |
| struct match_combine_and {
 | |
|   LTy L;
 | |
|   RTy R;
 | |
| 
 | |
|   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (L.match(V))
 | |
|       if (R.match(V))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Combine two pattern matchers matching L || R
 | |
| template<typename LTy, typename RTy>
 | |
| inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
 | |
|   return match_combine_or<LTy, RTy>(L, R);
 | |
| }
 | |
| 
 | |
| /// Combine two pattern matchers matching L && R
 | |
| template<typename LTy, typename RTy>
 | |
| inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
 | |
|   return match_combine_and<LTy, RTy>(L, R);
 | |
| }
 | |
| 
 | |
| struct match_zero {
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const Constant *C = dyn_cast<Constant>(V))
 | |
|       return C->isNullValue();
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_Zero() - Match an arbitrary zero/null constant.  This includes
 | |
| /// zero_initializer for vectors and ConstantPointerNull for pointers.
 | |
| inline match_zero m_Zero() { return match_zero(); }
 | |
| 
 | |
| struct match_neg_zero {
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const Constant *C = dyn_cast<Constant>(V))
 | |
|       return C->isNegativeZeroValue();
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_NegZero() - Match an arbitrary zero/null constant.  This includes
 | |
| /// zero_initializer for vectors and ConstantPointerNull for pointers. For
 | |
| /// floating point constants, this will match negative zero but not positive
 | |
| /// zero
 | |
| inline match_neg_zero m_NegZero() { return match_neg_zero(); }
 | |
| 
 | |
| /// m_AnyZero() - Match an arbitrary zero/null constant.  This includes
 | |
| /// zero_initializer for vectors and ConstantPointerNull for pointers. For
 | |
| /// floating point constants, this will match negative zero and positive zero
 | |
| inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
 | |
|   return m_CombineOr(m_Zero(), m_NegZero());
 | |
| }
 | |
| 
 | |
| struct apint_match {
 | |
|   const APInt *&Res;
 | |
|   apint_match(const APInt *&R) : Res(R) {}
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       Res = &CI->getValue();
 | |
|       return true;
 | |
|     }
 | |
|     if (V->getType()->isVectorTy())
 | |
|       if (const Constant *C = dyn_cast<Constant>(V))
 | |
|         if (ConstantInt *CI =
 | |
|             dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
 | |
|           Res = &CI->getValue();
 | |
|           return true;
 | |
|         }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
 | |
| /// specified pointer to the contained APInt.
 | |
| inline apint_match m_APInt(const APInt *&Res) { return Res; }
 | |
| 
 | |
| 
 | |
| template<int64_t Val>
 | |
| struct constantint_match {
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       const APInt &CIV = CI->getValue();
 | |
|       if (Val >= 0)
 | |
|         return CIV == static_cast<uint64_t>(Val);
 | |
|       // If Val is negative, and CI is shorter than it, truncate to the right
 | |
|       // number of bits.  If it is larger, then we have to sign extend.  Just
 | |
|       // compare their negated values.
 | |
|       return -CIV == -Val;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
 | |
| template<int64_t Val>
 | |
| inline constantint_match<Val> m_ConstantInt() {
 | |
|   return constantint_match<Val>();
 | |
| }
 | |
| 
 | |
| /// cst_pred_ty - This helper class is used to match scalar and vector constants
 | |
| /// that satisfy a specified predicate.
 | |
| template<typename Predicate>
 | |
| struct cst_pred_ty : public Predicate {
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|       return this->isValue(CI->getValue());
 | |
|     if (V->getType()->isVectorTy())
 | |
|       if (const Constant *C = dyn_cast<Constant>(V))
 | |
|         if (const ConstantInt *CI =
 | |
|             dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
 | |
|           return this->isValue(CI->getValue());
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// api_pred_ty - This helper class is used to match scalar and vector constants
 | |
| /// that satisfy a specified predicate, and bind them to an APInt.
 | |
| template<typename Predicate>
 | |
| struct api_pred_ty : public Predicate {
 | |
|   const APInt *&Res;
 | |
|   api_pred_ty(const APInt *&R) : Res(R) {}
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|       if (this->isValue(CI->getValue())) {
 | |
|         Res = &CI->getValue();
 | |
|         return true;
 | |
|       }
 | |
|     if (V->getType()->isVectorTy())
 | |
|       if (const Constant *C = dyn_cast<Constant>(V))
 | |
|         if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
 | |
|           if (this->isValue(CI->getValue())) {
 | |
|             Res = &CI->getValue();
 | |
|             return true;
 | |
|           }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| struct is_one {
 | |
|   bool isValue(const APInt &C) { return C == 1; }
 | |
| };
 | |
| 
 | |
| /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
 | |
| inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
 | |
| inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
 | |
| 
 | |
| struct is_all_ones {
 | |
|   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
 | |
| };
 | |
| 
 | |
| /// m_AllOnes() - Match an integer or vector with all bits set to true.
 | |
| inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
 | |
| inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
 | |
| 
 | |
| struct is_sign_bit {
 | |
|   bool isValue(const APInt &C) { return C.isSignBit(); }
 | |
| };
 | |
| 
 | |
| /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
 | |
| inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
 | |
| inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
 | |
| 
 | |
| struct is_power2 {
 | |
|   bool isValue(const APInt &C) { return C.isPowerOf2(); }
 | |
| };
 | |
| 
 | |
| /// m_Power2() - Match an integer or vector power of 2.
 | |
| inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
 | |
| inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
 | |
| 
 | |
| template<typename Class>
 | |
| struct bind_ty {
 | |
|   Class *&VR;
 | |
|   bind_ty(Class *&V) : VR(V) {}
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (Class *CV = dyn_cast<Class>(V)) {
 | |
|       VR = CV;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_Value - Match a value, capturing it if we match.
 | |
| inline bind_ty<Value> m_Value(Value *&V) { return V; }
 | |
| 
 | |
| /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
 | |
| inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
 | |
| 
 | |
| /// m_Constant - Match a Constant, capturing the value if we match.
 | |
| inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
 | |
| 
 | |
| /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
 | |
| inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
 | |
| 
 | |
| /// specificval_ty - Match a specified Value*.
 | |
| struct specificval_ty {
 | |
|   const Value *Val;
 | |
|   specificval_ty(const Value *V) : Val(V) {}
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     return V == Val;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_Specific - Match if we have a specific specified value.
 | |
| inline specificval_ty m_Specific(const Value *V) { return V; }
 | |
| 
 | |
| /// Match a specified floating point value or vector of all elements of that
 | |
| /// value.
 | |
| struct specific_fpval {
 | |
|   double Val;
 | |
|   specific_fpval(double V) : Val(V) {}
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
 | |
|       return CFP->isExactlyValue(Val);
 | |
|     if (V->getType()->isVectorTy())
 | |
|       if (const Constant *C = dyn_cast<Constant>(V))
 | |
|         if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
 | |
|           return CFP->isExactlyValue(Val);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Match a specific floating point value or vector with all elements equal to
 | |
| /// the value.
 | |
| inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
 | |
| 
 | |
| /// Match a float 1.0 or vector with all elements equal to 1.0.
 | |
| inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
 | |
| 
 | |
| struct bind_const_intval_ty {
 | |
|   uint64_t &VR;
 | |
|   bind_const_intval_ty(uint64_t &V) : VR(V) {}
 | |
| 
 | |
|   template<typename ITy>
 | |
|   bool match(ITy *V) {
 | |
|     if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
 | |
|       if (CV->getBitWidth() <= 64) {
 | |
|         VR = CV->getZExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
 | |
| /// match ConstantInts wider than 64-bits.
 | |
| inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for specific binary operators.
 | |
| //
 | |
| 
 | |
| template<typename LHS_t, typename RHS_t, unsigned Opcode>
 | |
| struct BinaryOp_match {
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (V->getValueID() == Value::InstructionVal + Opcode) {
 | |
|       BinaryOperator *I = cast<BinaryOperator>(V);
 | |
|       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
 | |
|     }
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
 | |
|              R.match(CE->getOperand(1));
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Add>
 | |
| m_Add(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
 | |
| m_FAdd(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Sub>
 | |
| m_Sub(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::FSub>
 | |
| m_FSub(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Mul>
 | |
| m_Mul(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::FMul>
 | |
| m_FMul(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
 | |
| m_UDiv(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
 | |
| m_SDiv(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
 | |
| m_FDiv(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::URem>
 | |
| m_URem(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::SRem>
 | |
| m_SRem(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::FRem>
 | |
| m_FRem(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::And>
 | |
| m_And(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Or>
 | |
| m_Or(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Xor>
 | |
| m_Xor(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::Shl>
 | |
| m_Shl(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::LShr>
 | |
| m_LShr(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinaryOp_match<LHS, RHS, Instruction::AShr>
 | |
| m_AShr(const LHS &L, const RHS &R) {
 | |
|   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0>
 | |
| struct OverflowingBinaryOp_match {
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
 | |
|       if (Op->getOpcode() != Opcode)
 | |
|         return false;
 | |
|       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
 | |
|           !Op->hasNoUnsignedWrap())
 | |
|         return false;
 | |
|       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
 | |
|           !Op->hasNoSignedWrap())
 | |
|         return false;
 | |
|       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
 | |
|                                  OverflowingBinaryOperator::NoSignedWrap>
 | |
| m_NSWAdd(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
 | |
|                                    OverflowingBinaryOperator::NoSignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
 | |
|                                  OverflowingBinaryOperator::NoSignedWrap>
 | |
| m_NSWSub(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
 | |
|                                    OverflowingBinaryOperator::NoSignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
 | |
|                                  OverflowingBinaryOperator::NoSignedWrap>
 | |
| m_NSWMul(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
 | |
|                                    OverflowingBinaryOperator::NoSignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
 | |
|                                  OverflowingBinaryOperator::NoSignedWrap>
 | |
| m_NSWShl(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
 | |
|                                    OverflowingBinaryOperator::NoSignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| 
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
 | |
|                                  OverflowingBinaryOperator::NoUnsignedWrap>
 | |
| m_NUWAdd(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
 | |
|                                    OverflowingBinaryOperator::NoUnsignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
 | |
|                                  OverflowingBinaryOperator::NoUnsignedWrap>
 | |
| m_NUWSub(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
 | |
|                                    OverflowingBinaryOperator::NoUnsignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
 | |
|                                  OverflowingBinaryOperator::NoUnsignedWrap>
 | |
| m_NUWMul(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
 | |
|                                    OverflowingBinaryOperator::NoUnsignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| template <typename LHS, typename RHS>
 | |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
 | |
|                                  OverflowingBinaryOperator::NoUnsignedWrap>
 | |
| m_NUWShl(const LHS &L, const RHS &R) {
 | |
|   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
 | |
|                                    OverflowingBinaryOperator::NoUnsignedWrap>(
 | |
|       L, R);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Class that matches two different binary ops.
 | |
| //
 | |
| template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
 | |
| struct BinOp2_match {
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (V->getValueID() == Value::InstructionVal + Opc1 ||
 | |
|         V->getValueID() == Value::InstructionVal + Opc2) {
 | |
|       BinaryOperator *I = cast<BinaryOperator>(V);
 | |
|       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
 | |
|     }
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
 | |
|              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_Shr - Matches LShr or AShr.
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
 | |
| m_Shr(const LHS &L, const RHS &R) {
 | |
|   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
 | |
| }
 | |
| 
 | |
| /// m_LogicalShift - Matches LShr or Shl.
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
 | |
| m_LogicalShift(const LHS &L, const RHS &R) {
 | |
|   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
 | |
| }
 | |
| 
 | |
| /// m_IDiv - Matches UDiv and SDiv.
 | |
| template<typename LHS, typename RHS>
 | |
| inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
 | |
| m_IDiv(const LHS &L, const RHS &R) {
 | |
|   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Class that matches exact binary ops.
 | |
| //
 | |
| template<typename SubPattern_t>
 | |
| struct Exact_match {
 | |
|   SubPattern_t SubPattern;
 | |
| 
 | |
|   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
 | |
|       return PEO->isExact() && SubPattern.match(V);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for CmpInst classes
 | |
| //
 | |
| 
 | |
| template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
 | |
| struct CmpClass_match {
 | |
|   PredicateTy &Predicate;
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
 | |
|     : Predicate(Pred), L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (Class *I = dyn_cast<Class>(V))
 | |
|       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
 | |
|         Predicate = I->getPredicate();
 | |
|         return true;
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
 | |
| m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
 | |
|   return CmpClass_match<LHS, RHS,
 | |
|                         ICmpInst, ICmpInst::Predicate>(Pred, L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
 | |
| m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
 | |
|   return CmpClass_match<LHS, RHS,
 | |
|                         FCmpInst, FCmpInst::Predicate>(Pred, L, R);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for SelectInst classes
 | |
| //
 | |
| 
 | |
| template<typename Cond_t, typename LHS_t, typename RHS_t>
 | |
| struct SelectClass_match {
 | |
|   Cond_t C;
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
 | |
|                     const RHS_t &RHS)
 | |
|     : C(Cond), L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (SelectInst *I = dyn_cast<SelectInst>(V))
 | |
|       return C.match(I->getOperand(0)) &&
 | |
|              L.match(I->getOperand(1)) &&
 | |
|              R.match(I->getOperand(2));
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename Cond, typename LHS, typename RHS>
 | |
| inline SelectClass_match<Cond, LHS, RHS>
 | |
| m_Select(const Cond &C, const LHS &L, const RHS &R) {
 | |
|   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
 | |
| }
 | |
| 
 | |
| /// m_SelectCst - This matches a select of two constants, e.g.:
 | |
| ///    m_SelectCst<-1, 0>(m_Value(V))
 | |
| template<int64_t L, int64_t R, typename Cond>
 | |
| inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
 | |
| m_SelectCst(const Cond &C) {
 | |
|   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for CastInst classes
 | |
| //
 | |
| 
 | |
| template<typename Op_t, unsigned Opcode>
 | |
| struct CastClass_match {
 | |
|   Op_t Op;
 | |
| 
 | |
|   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (Operator *O = dyn_cast<Operator>(V))
 | |
|       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_BitCast
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::BitCast>
 | |
| m_BitCast(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::BitCast>(Op);
 | |
| }
 | |
| 
 | |
| /// m_PtrToInt
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::PtrToInt>
 | |
| m_PtrToInt(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
 | |
| }
 | |
| 
 | |
| /// m_Trunc
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::Trunc>
 | |
| m_Trunc(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::Trunc>(Op);
 | |
| }
 | |
| 
 | |
| /// m_SExt
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::SExt>
 | |
| m_SExt(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::SExt>(Op);
 | |
| }
 | |
| 
 | |
| /// m_ZExt
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::ZExt>
 | |
| m_ZExt(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::ZExt>(Op);
 | |
| }
 | |
| 
 | |
| /// m_UIToFP
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::UIToFP>
 | |
| m_UIToFP(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
 | |
| }
 | |
| 
 | |
| /// m_SIToFP
 | |
| template<typename OpTy>
 | |
| inline CastClass_match<OpTy, Instruction::SIToFP>
 | |
| m_SIToFP(const OpTy &Op) {
 | |
|   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for unary operators
 | |
| //
 | |
| 
 | |
| template<typename LHS_t>
 | |
| struct not_match {
 | |
|   LHS_t L;
 | |
| 
 | |
|   not_match(const LHS_t &LHS) : L(LHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (Operator *O = dyn_cast<Operator>(V))
 | |
|       if (O->getOpcode() == Instruction::Xor)
 | |
|         return matchIfNot(O->getOperand(0), O->getOperand(1));
 | |
|     return false;
 | |
|   }
 | |
| private:
 | |
|   bool matchIfNot(Value *LHS, Value *RHS) {
 | |
|     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
 | |
|             // FIXME: Remove CV.
 | |
|             isa<ConstantVector>(RHS)) &&
 | |
|            cast<Constant>(RHS)->isAllOnesValue() &&
 | |
|            L.match(LHS);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename LHS>
 | |
| inline not_match<LHS> m_Not(const LHS &L) { return L; }
 | |
| 
 | |
| 
 | |
| template<typename LHS_t>
 | |
| struct neg_match {
 | |
|   LHS_t L;
 | |
| 
 | |
|   neg_match(const LHS_t &LHS) : L(LHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (Operator *O = dyn_cast<Operator>(V))
 | |
|       if (O->getOpcode() == Instruction::Sub)
 | |
|         return matchIfNeg(O->getOperand(0), O->getOperand(1));
 | |
|     return false;
 | |
|   }
 | |
| private:
 | |
|   bool matchIfNeg(Value *LHS, Value *RHS) {
 | |
|     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
 | |
|             isa<ConstantAggregateZero>(LHS)) &&
 | |
|            L.match(RHS);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_Neg - Match an integer negate.
 | |
| template<typename LHS>
 | |
| inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
 | |
| 
 | |
| 
 | |
| template<typename LHS_t>
 | |
| struct fneg_match {
 | |
|   LHS_t L;
 | |
| 
 | |
|   fneg_match(const LHS_t &LHS) : L(LHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (Operator *O = dyn_cast<Operator>(V))
 | |
|       if (O->getOpcode() == Instruction::FSub)
 | |
|         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
 | |
|     return false;
 | |
|   }
 | |
| private:
 | |
|   bool matchIfFNeg(Value *LHS, Value *RHS) {
 | |
|     if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
 | |
|       return C->isNegativeZeroValue() && L.match(RHS);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// m_FNeg - Match a floating point negate.
 | |
| template<typename LHS>
 | |
| inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for control flow.
 | |
| //
 | |
| 
 | |
| struct br_match {
 | |
|   BasicBlock *&Succ;
 | |
|   br_match(BasicBlock *&Succ)
 | |
|     : Succ(Succ) {
 | |
|   }
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(V))
 | |
|       if (BI->isUnconditional()) {
 | |
|         Succ = BI->getSuccessor(0);
 | |
|         return true;
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
 | |
| 
 | |
| template<typename Cond_t>
 | |
| struct brc_match {
 | |
|   Cond_t Cond;
 | |
|   BasicBlock *&T, *&F;
 | |
|   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
 | |
|     : Cond(C), T(t), F(f) {
 | |
|   }
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(V))
 | |
|       if (BI->isConditional() && Cond.match(BI->getCondition())) {
 | |
|         T = BI->getSuccessor(0);
 | |
|         F = BI->getSuccessor(1);
 | |
|         return true;
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename Cond_t>
 | |
| inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
 | |
|   return brc_match<Cond_t>(C, T, F);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
 | |
| //
 | |
| 
 | |
| template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
 | |
| struct MaxMin_match {
 | |
|   LHS_t L;
 | |
|   RHS_t R;
 | |
| 
 | |
|   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
 | |
|     : L(LHS), R(RHS) {}
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
 | |
|     SelectInst *SI = dyn_cast<SelectInst>(V);
 | |
|     if (!SI)
 | |
|       return false;
 | |
|     CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
 | |
|     if (!Cmp)
 | |
|       return false;
 | |
|     // At this point we have a select conditioned on a comparison.  Check that
 | |
|     // it is the values returned by the select that are being compared.
 | |
|     Value *TrueVal = SI->getTrueValue();
 | |
|     Value *FalseVal = SI->getFalseValue();
 | |
|     Value *LHS = Cmp->getOperand(0);
 | |
|     Value *RHS = Cmp->getOperand(1);
 | |
|     if ((TrueVal != LHS || FalseVal != RHS) &&
 | |
|         (TrueVal != RHS || FalseVal != LHS))
 | |
|       return false;
 | |
|     typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
 | |
|       Cmp->getPredicate() : Cmp->getSwappedPredicate();
 | |
|     // Does "(x pred y) ? x : y" represent the desired max/min operation?
 | |
|     if (!Pred_t::match(Pred))
 | |
|       return false;
 | |
|     // It does!  Bind the operands.
 | |
|     return L.match(LHS) && R.match(RHS);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// smax_pred_ty - Helper class for identifying signed max predicates.
 | |
| struct smax_pred_ty {
 | |
|   static bool match(ICmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// smin_pred_ty - Helper class for identifying signed min predicates.
 | |
| struct smin_pred_ty {
 | |
|   static bool match(ICmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// umax_pred_ty - Helper class for identifying unsigned max predicates.
 | |
| struct umax_pred_ty {
 | |
|   static bool match(ICmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// umin_pred_ty - Helper class for identifying unsigned min predicates.
 | |
| struct umin_pred_ty {
 | |
|   static bool match(ICmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ofmax_pred_ty - Helper class for identifying ordered max predicates.
 | |
| struct ofmax_pred_ty {
 | |
|   static bool match(FCmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ofmin_pred_ty - Helper class for identifying ordered min predicates.
 | |
| struct ofmin_pred_ty {
 | |
|   static bool match(FCmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ufmax_pred_ty - Helper class for identifying unordered max predicates.
 | |
| struct ufmax_pred_ty {
 | |
|   static bool match(FCmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ufmin_pred_ty - Helper class for identifying unordered min predicates.
 | |
| struct ufmin_pred_ty {
 | |
|   static bool match(FCmpInst::Predicate Pred) {
 | |
|     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
 | |
| m_SMax(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
 | |
| m_SMin(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
 | |
| m_UMax(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
 | |
| m_UMin(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| /// \brief Match an 'ordered' floating point maximum function.
 | |
| /// Floating point has one special value 'NaN'. Therefore, there is no total
 | |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a
 | |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
 | |
| /// semantics. In the presence of 'NaN' we have to preserve the original
 | |
| /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
 | |
| ///
 | |
| ///                         max(L, R)  iff L and R are not NaN
 | |
| ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
 | |
| m_OrdFMax(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| /// \brief Match an 'ordered' floating point minimum function.
 | |
| /// Floating point has one special value 'NaN'. Therefore, there is no total
 | |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a
 | |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
 | |
| /// semantics. In the presence of 'NaN' we have to preserve the original
 | |
| /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
 | |
| ///
 | |
| ///                         max(L, R)  iff L and R are not NaN
 | |
| ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
 | |
| m_OrdFMin(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| /// \brief Match an 'unordered' floating point maximum function.
 | |
| /// Floating point has one special value 'NaN'. Therefore, there is no total
 | |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a
 | |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
 | |
| /// semantics. In the presence of 'NaN' we have to preserve the original
 | |
| /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
 | |
| ///
 | |
| ///                         max(L, R)  iff L and R are not NaN
 | |
| ///  m_UnordFMin(L, R) =    L          iff L or R are NaN
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
 | |
| m_UnordFMax(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| /// \brief Match an 'unordered' floating point minimum function.
 | |
| /// Floating point has one special value 'NaN'. Therefore, there is no total
 | |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a
 | |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
 | |
| /// semantics. In the presence of 'NaN' we have to preserve the original
 | |
| /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
 | |
| ///
 | |
| ///                          max(L, R)  iff L and R are not NaN
 | |
| ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
 | |
| template<typename LHS, typename RHS>
 | |
| inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
 | |
| m_UnordFMin(const LHS &L, const RHS &R) {
 | |
|   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
 | |
| }
 | |
| 
 | |
| template<typename Opnd_t>
 | |
| struct Argument_match {
 | |
|   unsigned OpI;
 | |
|   Opnd_t Val;
 | |
|   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     CallSite CS(V);
 | |
|     return CS.isCall() && Val.match(CS.getArgument(OpI));
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Match an argument
 | |
| template<unsigned OpI, typename Opnd_t>
 | |
| inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
 | |
|   return Argument_match<Opnd_t>(OpI, Op);
 | |
| }
 | |
| 
 | |
| /// Intrinsic matchers.
 | |
| struct IntrinsicID_match {
 | |
|   unsigned ID;
 | |
|   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { }
 | |
| 
 | |
|   template<typename OpTy>
 | |
|   bool match(OpTy *V) {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
 | |
|     return II && II->getIntrinsicID() == ID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Intrinsic matches are combinations of ID matchers, and argument
 | |
| /// matchers. Higher arity matcher are defined recursively in terms of and-ing
 | |
| /// them with lower arity matchers. Here's some convenient typedefs for up to
 | |
| /// several arguments, and more can be added as needed
 | |
| template <typename T0 = void, typename T1 = void, typename T2 = void,
 | |
|           typename T3 = void, typename T4 = void, typename T5 = void,
 | |
|           typename T6 = void, typename T7 = void, typename T8 = void,
 | |
|           typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
 | |
| template <typename T0>
 | |
| struct m_Intrinsic_Ty<T0> {
 | |
|   typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
 | |
| };
 | |
| template <typename T0, typename T1>
 | |
| struct m_Intrinsic_Ty<T0, T1> {
 | |
|   typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
 | |
|                             Argument_match<T1> > Ty;
 | |
| };
 | |
| template <typename T0, typename T1, typename T2>
 | |
| struct m_Intrinsic_Ty<T0, T1, T2> {
 | |
|   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
 | |
|                             Argument_match<T2> > Ty;
 | |
| };
 | |
| template <typename T0, typename T1, typename T2, typename T3>
 | |
| struct m_Intrinsic_Ty<T0, T1, T2, T3> {
 | |
|   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
 | |
|                             Argument_match<T3> > Ty;
 | |
| };
 | |
| 
 | |
| /// Match intrinsic calls like this:
 | |
| ///   m_Intrinsic<Intrinsic::fabs>(m_Value(X))
 | |
| template <Intrinsic::ID IntrID>
 | |
| inline IntrinsicID_match
 | |
| m_Intrinsic() { return IntrinsicID_match(IntrID); }
 | |
| 
 | |
| template<Intrinsic::ID IntrID, typename T0>
 | |
| inline typename m_Intrinsic_Ty<T0>::Ty
 | |
| m_Intrinsic(const T0 &Op0) {
 | |
|   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
 | |
| }
 | |
| 
 | |
| template<Intrinsic::ID IntrID, typename T0, typename T1>
 | |
| inline typename m_Intrinsic_Ty<T0, T1>::Ty
 | |
| m_Intrinsic(const T0 &Op0, const T1 &Op1) {
 | |
|   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
 | |
| }
 | |
| 
 | |
| template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
 | |
| inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
 | |
| m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
 | |
|   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
 | |
| }
 | |
| 
 | |
| template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3>
 | |
| inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
 | |
| m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
 | |
|   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
 | |
| }
 | |
| 
 | |
| // Helper intrinsic matching specializations
 | |
| template<typename Opnd0>
 | |
| inline typename m_Intrinsic_Ty<Opnd0>::Ty
 | |
| m_BSwap(const Opnd0 &Op0) {
 | |
|   return m_Intrinsic<Intrinsic::bswap>(Op0);
 | |
| }
 | |
| 
 | |
| } // end namespace PatternMatch
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |