mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
f917d20561
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157708 91177308-0d34-0410-b5e6-96231b3b80d8
8793 lines
342 KiB
C++
8793 lines
342 KiB
C++
//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
|
|
// both before and after the DAG is legalized.
|
|
//
|
|
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
|
|
// primarily intended to handle simplification opportunities that are implicit
|
|
// in the LLVM IR and exposed by the various codegen lowering phases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dagcombine"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NodesCombined , "Number of dag nodes combined");
|
|
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
|
|
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
|
|
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
|
|
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
|
|
|
|
namespace {
|
|
static cl::opt<bool>
|
|
CombinerAA("combiner-alias-analysis", cl::Hidden,
|
|
cl::desc("Turn on alias analysis during testing"));
|
|
|
|
static cl::opt<bool>
|
|
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
|
|
cl::desc("Include global information in alias analysis"));
|
|
|
|
//------------------------------ DAGCombiner ---------------------------------//
|
|
|
|
class DAGCombiner {
|
|
SelectionDAG &DAG;
|
|
const TargetLowering &TLI;
|
|
CombineLevel Level;
|
|
CodeGenOpt::Level OptLevel;
|
|
bool LegalOperations;
|
|
bool LegalTypes;
|
|
|
|
// Worklist of all of the nodes that need to be simplified.
|
|
//
|
|
// This has the semantics that when adding to the worklist,
|
|
// the item added must be next to be processed. It should
|
|
// also only appear once. The naive approach to this takes
|
|
// linear time.
|
|
//
|
|
// To reduce the insert/remove time to logarithmic, we use
|
|
// a set and a vector to maintain our worklist.
|
|
//
|
|
// The set contains the items on the worklist, but does not
|
|
// maintain the order they should be visited.
|
|
//
|
|
// The vector maintains the order nodes should be visited, but may
|
|
// contain duplicate or removed nodes. When choosing a node to
|
|
// visit, we pop off the order stack until we find an item that is
|
|
// also in the contents set. All operations are O(log N).
|
|
SmallPtrSet<SDNode*, 64> WorkListContents;
|
|
SmallVector<SDNode*, 64> WorkListOrder;
|
|
|
|
// AA - Used for DAG load/store alias analysis.
|
|
AliasAnalysis &AA;
|
|
|
|
/// AddUsersToWorkList - When an instruction is simplified, add all users of
|
|
/// the instruction to the work lists because they might get more simplified
|
|
/// now.
|
|
///
|
|
void AddUsersToWorkList(SDNode *N) {
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI)
|
|
AddToWorkList(*UI);
|
|
}
|
|
|
|
/// visit - call the node-specific routine that knows how to fold each
|
|
/// particular type of node.
|
|
SDValue visit(SDNode *N);
|
|
|
|
public:
|
|
/// AddToWorkList - Add to the work list making sure its instance is at the
|
|
/// back (next to be processed.)
|
|
void AddToWorkList(SDNode *N) {
|
|
WorkListContents.insert(N);
|
|
WorkListOrder.push_back(N);
|
|
}
|
|
|
|
/// removeFromWorkList - remove all instances of N from the worklist.
|
|
///
|
|
void removeFromWorkList(SDNode *N) {
|
|
WorkListContents.erase(N);
|
|
}
|
|
|
|
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
|
|
bool AddTo = true);
|
|
|
|
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
|
|
return CombineTo(N, &Res, 1, AddTo);
|
|
}
|
|
|
|
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
|
|
bool AddTo = true) {
|
|
SDValue To[] = { Res0, Res1 };
|
|
return CombineTo(N, To, 2, AddTo);
|
|
}
|
|
|
|
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
|
|
|
|
private:
|
|
|
|
/// SimplifyDemandedBits - Check the specified integer node value to see if
|
|
/// it can be simplified or if things it uses can be simplified by bit
|
|
/// propagation. If so, return true.
|
|
bool SimplifyDemandedBits(SDValue Op) {
|
|
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
|
|
APInt Demanded = APInt::getAllOnesValue(BitWidth);
|
|
return SimplifyDemandedBits(Op, Demanded);
|
|
}
|
|
|
|
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
|
|
|
|
bool CombineToPreIndexedLoadStore(SDNode *N);
|
|
bool CombineToPostIndexedLoadStore(SDNode *N);
|
|
|
|
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
|
|
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
|
|
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
|
|
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
|
|
SDValue PromoteIntBinOp(SDValue Op);
|
|
SDValue PromoteIntShiftOp(SDValue Op);
|
|
SDValue PromoteExtend(SDValue Op);
|
|
bool PromoteLoad(SDValue Op);
|
|
|
|
void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
|
|
SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
|
|
ISD::NodeType ExtType);
|
|
|
|
/// combine - call the node-specific routine that knows how to fold each
|
|
/// particular type of node. If that doesn't do anything, try the
|
|
/// target-specific DAG combines.
|
|
SDValue combine(SDNode *N);
|
|
|
|
// Visitation implementation - Implement dag node combining for different
|
|
// node types. The semantics are as follows:
|
|
// Return Value:
|
|
// SDValue.getNode() == 0 - No change was made
|
|
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
|
|
// otherwise - N should be replaced by the returned Operand.
|
|
//
|
|
SDValue visitTokenFactor(SDNode *N);
|
|
SDValue visitMERGE_VALUES(SDNode *N);
|
|
SDValue visitADD(SDNode *N);
|
|
SDValue visitSUB(SDNode *N);
|
|
SDValue visitADDC(SDNode *N);
|
|
SDValue visitSUBC(SDNode *N);
|
|
SDValue visitADDE(SDNode *N);
|
|
SDValue visitSUBE(SDNode *N);
|
|
SDValue visitMUL(SDNode *N);
|
|
SDValue visitSDIV(SDNode *N);
|
|
SDValue visitUDIV(SDNode *N);
|
|
SDValue visitSREM(SDNode *N);
|
|
SDValue visitUREM(SDNode *N);
|
|
SDValue visitMULHU(SDNode *N);
|
|
SDValue visitMULHS(SDNode *N);
|
|
SDValue visitSMUL_LOHI(SDNode *N);
|
|
SDValue visitUMUL_LOHI(SDNode *N);
|
|
SDValue visitSMULO(SDNode *N);
|
|
SDValue visitUMULO(SDNode *N);
|
|
SDValue visitSDIVREM(SDNode *N);
|
|
SDValue visitUDIVREM(SDNode *N);
|
|
SDValue visitAND(SDNode *N);
|
|
SDValue visitOR(SDNode *N);
|
|
SDValue visitXOR(SDNode *N);
|
|
SDValue SimplifyVBinOp(SDNode *N);
|
|
SDValue visitSHL(SDNode *N);
|
|
SDValue visitSRA(SDNode *N);
|
|
SDValue visitSRL(SDNode *N);
|
|
SDValue visitCTLZ(SDNode *N);
|
|
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
|
|
SDValue visitCTTZ(SDNode *N);
|
|
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
|
|
SDValue visitCTPOP(SDNode *N);
|
|
SDValue visitSELECT(SDNode *N);
|
|
SDValue visitSELECT_CC(SDNode *N);
|
|
SDValue visitSETCC(SDNode *N);
|
|
SDValue visitSIGN_EXTEND(SDNode *N);
|
|
SDValue visitZERO_EXTEND(SDNode *N);
|
|
SDValue visitANY_EXTEND(SDNode *N);
|
|
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
|
|
SDValue visitTRUNCATE(SDNode *N);
|
|
SDValue visitBITCAST(SDNode *N);
|
|
SDValue visitBUILD_PAIR(SDNode *N);
|
|
SDValue visitFADD(SDNode *N);
|
|
SDValue visitFSUB(SDNode *N);
|
|
SDValue visitFMUL(SDNode *N);
|
|
SDValue visitFMA(SDNode *N);
|
|
SDValue visitFDIV(SDNode *N);
|
|
SDValue visitFREM(SDNode *N);
|
|
SDValue visitFCOPYSIGN(SDNode *N);
|
|
SDValue visitSINT_TO_FP(SDNode *N);
|
|
SDValue visitUINT_TO_FP(SDNode *N);
|
|
SDValue visitFP_TO_SINT(SDNode *N);
|
|
SDValue visitFP_TO_UINT(SDNode *N);
|
|
SDValue visitFP_ROUND(SDNode *N);
|
|
SDValue visitFP_ROUND_INREG(SDNode *N);
|
|
SDValue visitFP_EXTEND(SDNode *N);
|
|
SDValue visitFNEG(SDNode *N);
|
|
SDValue visitFABS(SDNode *N);
|
|
SDValue visitBRCOND(SDNode *N);
|
|
SDValue visitBR_CC(SDNode *N);
|
|
SDValue visitLOAD(SDNode *N);
|
|
SDValue visitSTORE(SDNode *N);
|
|
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
|
|
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
|
|
SDValue visitBUILD_VECTOR(SDNode *N);
|
|
SDValue visitCONCAT_VECTORS(SDNode *N);
|
|
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
|
|
SDValue visitVECTOR_SHUFFLE(SDNode *N);
|
|
SDValue visitMEMBARRIER(SDNode *N);
|
|
|
|
SDValue XformToShuffleWithZero(SDNode *N);
|
|
SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
|
|
|
|
SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
|
|
|
|
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
|
|
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
|
|
SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
|
|
SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
|
|
SDValue N3, ISD::CondCode CC,
|
|
bool NotExtCompare = false);
|
|
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
|
|
DebugLoc DL, bool foldBooleans = true);
|
|
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
|
|
unsigned HiOp);
|
|
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
|
|
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
|
|
SDValue BuildSDIV(SDNode *N);
|
|
SDValue BuildUDIV(SDNode *N);
|
|
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
|
|
bool DemandHighBits = true);
|
|
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
|
|
SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
|
|
SDValue ReduceLoadWidth(SDNode *N);
|
|
SDValue ReduceLoadOpStoreWidth(SDNode *N);
|
|
SDValue TransformFPLoadStorePair(SDNode *N);
|
|
|
|
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
|
|
|
|
/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
|
|
/// looking for aliasing nodes and adding them to the Aliases vector.
|
|
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
|
|
SmallVector<SDValue, 8> &Aliases);
|
|
|
|
/// isAlias - Return true if there is any possibility that the two addresses
|
|
/// overlap.
|
|
bool isAlias(SDValue Ptr1, int64_t Size1,
|
|
const Value *SrcValue1, int SrcValueOffset1,
|
|
unsigned SrcValueAlign1,
|
|
const MDNode *TBAAInfo1,
|
|
SDValue Ptr2, int64_t Size2,
|
|
const Value *SrcValue2, int SrcValueOffset2,
|
|
unsigned SrcValueAlign2,
|
|
const MDNode *TBAAInfo2) const;
|
|
|
|
/// FindAliasInfo - Extracts the relevant alias information from the memory
|
|
/// node. Returns true if the operand was a load.
|
|
bool FindAliasInfo(SDNode *N,
|
|
SDValue &Ptr, int64_t &Size,
|
|
const Value *&SrcValue, int &SrcValueOffset,
|
|
unsigned &SrcValueAlignment,
|
|
const MDNode *&TBAAInfo) const;
|
|
|
|
/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
|
|
/// looking for a better chain (aliasing node.)
|
|
SDValue FindBetterChain(SDNode *N, SDValue Chain);
|
|
|
|
public:
|
|
DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
|
|
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
|
|
OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
|
|
|
|
/// Run - runs the dag combiner on all nodes in the work list
|
|
void Run(CombineLevel AtLevel);
|
|
|
|
SelectionDAG &getDAG() const { return DAG; }
|
|
|
|
/// getShiftAmountTy - Returns a type large enough to hold any valid
|
|
/// shift amount - before type legalization these can be huge.
|
|
EVT getShiftAmountTy(EVT LHSTy) {
|
|
return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
|
|
}
|
|
|
|
/// isTypeLegal - This method returns true if we are running before type
|
|
/// legalization or if the specified VT is legal.
|
|
bool isTypeLegal(const EVT &VT) {
|
|
if (!LegalTypes) return true;
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
namespace {
|
|
/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
|
|
/// nodes from the worklist.
|
|
class WorkListRemover : public SelectionDAG::DAGUpdateListener {
|
|
DAGCombiner &DC;
|
|
public:
|
|
explicit WorkListRemover(DAGCombiner &dc)
|
|
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
|
|
|
|
virtual void NodeDeleted(SDNode *N, SDNode *E) {
|
|
DC.removeFromWorkList(N);
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetLowering::DAGCombinerInfo implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
|
|
((DAGCombiner*)DC)->AddToWorkList(N);
|
|
}
|
|
|
|
void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
|
|
((DAGCombiner*)DC)->removeFromWorkList(N);
|
|
}
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
|
|
}
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
|
|
}
|
|
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
|
|
}
|
|
|
|
void TargetLowering::DAGCombinerInfo::
|
|
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
|
|
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isNegatibleForFree - Return 1 if we can compute the negated form of the
|
|
/// specified expression for the same cost as the expression itself, or 2 if we
|
|
/// can compute the negated form more cheaply than the expression itself.
|
|
static char isNegatibleForFree(SDValue Op, bool LegalOperations,
|
|
const TargetLowering &TLI,
|
|
const TargetOptions *Options,
|
|
unsigned Depth = 0) {
|
|
// No compile time optimizations on this type.
|
|
if (Op.getValueType() == MVT::ppcf128)
|
|
return 0;
|
|
|
|
// fneg is removable even if it has multiple uses.
|
|
if (Op.getOpcode() == ISD::FNEG) return 2;
|
|
|
|
// Don't allow anything with multiple uses.
|
|
if (!Op.hasOneUse()) return 0;
|
|
|
|
// Don't recurse exponentially.
|
|
if (Depth > 6) return 0;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: return false;
|
|
case ISD::ConstantFP:
|
|
// Don't invert constant FP values after legalize. The negated constant
|
|
// isn't necessarily legal.
|
|
return LegalOperations ? 0 : 1;
|
|
case ISD::FADD:
|
|
// FIXME: determine better conditions for this xform.
|
|
if (!Options->UnsafeFPMath) return 0;
|
|
|
|
// After operation legalization, it might not be legal to create new FSUBs.
|
|
if (LegalOperations &&
|
|
!TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType()))
|
|
return 0;
|
|
|
|
// fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
|
|
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
|
|
Options, Depth + 1))
|
|
return V;
|
|
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
|
|
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
|
|
Depth + 1);
|
|
case ISD::FSUB:
|
|
// We can't turn -(A-B) into B-A when we honor signed zeros.
|
|
if (!Options->UnsafeFPMath) return 0;
|
|
|
|
// fold (fneg (fsub A, B)) -> (fsub B, A)
|
|
return 1;
|
|
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
if (Options->HonorSignDependentRoundingFPMath()) return 0;
|
|
|
|
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
|
|
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
|
|
Options, Depth + 1))
|
|
return V;
|
|
|
|
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
|
|
Depth + 1);
|
|
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FP_ROUND:
|
|
case ISD::FSIN:
|
|
return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
|
|
Depth + 1);
|
|
}
|
|
}
|
|
|
|
/// GetNegatedExpression - If isNegatibleForFree returns true, this function
|
|
/// returns the newly negated expression.
|
|
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
|
|
bool LegalOperations, unsigned Depth = 0) {
|
|
// fneg is removable even if it has multiple uses.
|
|
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
|
|
|
|
// Don't allow anything with multiple uses.
|
|
assert(Op.hasOneUse() && "Unknown reuse!");
|
|
|
|
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Unknown code");
|
|
case ISD::ConstantFP: {
|
|
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
|
|
V.changeSign();
|
|
return DAG.getConstantFP(V, Op.getValueType());
|
|
}
|
|
case ISD::FADD:
|
|
// FIXME: determine better conditions for this xform.
|
|
assert(DAG.getTarget().Options.UnsafeFPMath);
|
|
|
|
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
|
|
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
|
|
DAG.getTargetLoweringInfo(),
|
|
&DAG.getTarget().Options, Depth+1))
|
|
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
|
|
GetNegatedExpression(Op.getOperand(0), DAG,
|
|
LegalOperations, Depth+1),
|
|
Op.getOperand(1));
|
|
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
|
|
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
|
|
GetNegatedExpression(Op.getOperand(1), DAG,
|
|
LegalOperations, Depth+1),
|
|
Op.getOperand(0));
|
|
case ISD::FSUB:
|
|
// We can't turn -(A-B) into B-A when we honor signed zeros.
|
|
assert(DAG.getTarget().Options.UnsafeFPMath);
|
|
|
|
// fold (fneg (fsub 0, B)) -> B
|
|
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
|
|
if (N0CFP->getValueAPF().isZero())
|
|
return Op.getOperand(1);
|
|
|
|
// fold (fneg (fsub A, B)) -> (fsub B, A)
|
|
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(0));
|
|
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
|
|
|
|
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
|
|
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
|
|
DAG.getTargetLoweringInfo(),
|
|
&DAG.getTarget().Options, Depth+1))
|
|
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
|
|
GetNegatedExpression(Op.getOperand(0), DAG,
|
|
LegalOperations, Depth+1),
|
|
Op.getOperand(1));
|
|
|
|
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
|
|
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
|
|
Op.getOperand(0),
|
|
GetNegatedExpression(Op.getOperand(1), DAG,
|
|
LegalOperations, Depth+1));
|
|
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FSIN:
|
|
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
|
|
GetNegatedExpression(Op.getOperand(0), DAG,
|
|
LegalOperations, Depth+1));
|
|
case ISD::FP_ROUND:
|
|
return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
|
|
GetNegatedExpression(Op.getOperand(0), DAG,
|
|
LegalOperations, Depth+1),
|
|
Op.getOperand(1));
|
|
}
|
|
}
|
|
|
|
|
|
// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
|
|
// that selects between the values 1 and 0, making it equivalent to a setcc.
|
|
// Also, set the incoming LHS, RHS, and CC references to the appropriate
|
|
// nodes based on the type of node we are checking. This simplifies life a
|
|
// bit for the callers.
|
|
static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
|
|
SDValue &CC) {
|
|
if (N.getOpcode() == ISD::SETCC) {
|
|
LHS = N.getOperand(0);
|
|
RHS = N.getOperand(1);
|
|
CC = N.getOperand(2);
|
|
return true;
|
|
}
|
|
if (N.getOpcode() == ISD::SELECT_CC &&
|
|
N.getOperand(2).getOpcode() == ISD::Constant &&
|
|
N.getOperand(3).getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
|
|
cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
|
|
LHS = N.getOperand(0);
|
|
RHS = N.getOperand(1);
|
|
CC = N.getOperand(4);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
|
|
// one use. If this is true, it allows the users to invert the operation for
|
|
// free when it is profitable to do so.
|
|
static bool isOneUseSetCC(SDValue N) {
|
|
SDValue N0, N1, N2;
|
|
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
|
|
SDValue N0, SDValue N1) {
|
|
EVT VT = N0.getValueType();
|
|
if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
|
|
if (isa<ConstantSDNode>(N1)) {
|
|
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
|
|
SDValue OpNode =
|
|
DAG.FoldConstantArithmetic(Opc, VT,
|
|
cast<ConstantSDNode>(N0.getOperand(1)),
|
|
cast<ConstantSDNode>(N1));
|
|
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
|
|
}
|
|
if (N0.hasOneUse()) {
|
|
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
|
|
SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), N1);
|
|
AddToWorkList(OpNode.getNode());
|
|
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
|
|
}
|
|
}
|
|
|
|
if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
|
|
if (isa<ConstantSDNode>(N0)) {
|
|
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
|
|
SDValue OpNode =
|
|
DAG.FoldConstantArithmetic(Opc, VT,
|
|
cast<ConstantSDNode>(N1.getOperand(1)),
|
|
cast<ConstantSDNode>(N0));
|
|
return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
|
|
}
|
|
if (N1.hasOneUse()) {
|
|
// reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
|
|
SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
|
|
N1.getOperand(0), N0);
|
|
AddToWorkList(OpNode.getNode());
|
|
return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
|
|
bool AddTo) {
|
|
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
|
|
++NodesCombined;
|
|
DEBUG(dbgs() << "\nReplacing.1 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
To[0].getNode()->dump(&DAG);
|
|
dbgs() << " and " << NumTo-1 << " other values\n";
|
|
for (unsigned i = 0, e = NumTo; i != e; ++i)
|
|
assert((!To[i].getNode() ||
|
|
N->getValueType(i) == To[i].getValueType()) &&
|
|
"Cannot combine value to value of different type!"));
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesWith(N, To);
|
|
if (AddTo) {
|
|
// Push the new nodes and any users onto the worklist
|
|
for (unsigned i = 0, e = NumTo; i != e; ++i) {
|
|
if (To[i].getNode()) {
|
|
AddToWorkList(To[i].getNode());
|
|
AddUsersToWorkList(To[i].getNode());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node.
|
|
if (N->use_empty()) {
|
|
// Nodes can be reintroduced into the worklist. Make sure we do not
|
|
// process a node that has been replaced.
|
|
removeFromWorkList(N);
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
DAG.DeleteNode(N);
|
|
}
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
void DAGCombiner::
|
|
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
|
|
// Replace all uses. If any nodes become isomorphic to other nodes and
|
|
// are deleted, make sure to remove them from our worklist.
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
|
|
|
|
// Push the new node and any (possibly new) users onto the worklist.
|
|
AddToWorkList(TLO.New.getNode());
|
|
AddUsersToWorkList(TLO.New.getNode());
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node.
|
|
if (TLO.Old.getNode()->use_empty()) {
|
|
removeFromWorkList(TLO.Old.getNode());
|
|
|
|
// If the operands of this node are only used by the node, they will now
|
|
// be dead. Make sure to visit them first to delete dead nodes early.
|
|
for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
|
|
if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
|
|
AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
|
|
|
|
DAG.DeleteNode(TLO.Old.getNode());
|
|
}
|
|
}
|
|
|
|
/// SimplifyDemandedBits - Check the specified integer node value to see if
|
|
/// it can be simplified or if things it uses can be simplified by bit
|
|
/// propagation. If so, return true.
|
|
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
|
|
APInt KnownZero, KnownOne;
|
|
if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
|
|
return false;
|
|
|
|
// Revisit the node.
|
|
AddToWorkList(Op.getNode());
|
|
|
|
// Replace the old value with the new one.
|
|
++NodesCombined;
|
|
DEBUG(dbgs() << "\nReplacing.2 ";
|
|
TLO.Old.getNode()->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
TLO.New.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
|
|
CommitTargetLoweringOpt(TLO);
|
|
return true;
|
|
}
|
|
|
|
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
|
|
DebugLoc dl = Load->getDebugLoc();
|
|
EVT VT = Load->getValueType(0);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
|
|
|
|
DEBUG(dbgs() << "\nReplacing.9 ";
|
|
Load->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
Trunc.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
|
|
removeFromWorkList(Load);
|
|
DAG.DeleteNode(Load);
|
|
AddToWorkList(Trunc.getNode());
|
|
}
|
|
|
|
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
|
|
Replace = false;
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
|
|
EVT MemVT = LD->getMemoryVT();
|
|
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
|
|
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
|
|
: ISD::EXTLOAD)
|
|
: LD->getExtensionType();
|
|
Replace = true;
|
|
return DAG.getExtLoad(ExtType, dl, PVT,
|
|
LD->getChain(), LD->getBasePtr(),
|
|
LD->getPointerInfo(),
|
|
MemVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->getAlignment());
|
|
}
|
|
|
|
unsigned Opc = Op.getOpcode();
|
|
switch (Opc) {
|
|
default: break;
|
|
case ISD::AssertSext:
|
|
return DAG.getNode(ISD::AssertSext, dl, PVT,
|
|
SExtPromoteOperand(Op.getOperand(0), PVT),
|
|
Op.getOperand(1));
|
|
case ISD::AssertZext:
|
|
return DAG.getNode(ISD::AssertZext, dl, PVT,
|
|
ZExtPromoteOperand(Op.getOperand(0), PVT),
|
|
Op.getOperand(1));
|
|
case ISD::Constant: {
|
|
unsigned ExtOpc =
|
|
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
return DAG.getNode(ExtOpc, dl, PVT, Op);
|
|
}
|
|
}
|
|
|
|
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
|
|
return SDValue();
|
|
return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
|
|
}
|
|
|
|
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
|
|
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
|
|
return SDValue();
|
|
EVT OldVT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
bool Replace = false;
|
|
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
|
|
if (NewOp.getNode() == 0)
|
|
return SDValue();
|
|
AddToWorkList(NewOp.getNode());
|
|
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
|
|
DAG.getValueType(OldVT));
|
|
}
|
|
|
|
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
|
|
EVT OldVT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
bool Replace = false;
|
|
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
|
|
if (NewOp.getNode() == 0)
|
|
return SDValue();
|
|
AddToWorkList(NewOp.getNode());
|
|
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
|
|
return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
|
|
}
|
|
|
|
/// PromoteIntBinOp - Promote the specified integer binary operation if the
|
|
/// target indicates it is beneficial. e.g. On x86, it's usually better to
|
|
/// promote i16 operations to i32 since i16 instructions are longer.
|
|
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
bool Replace0 = false;
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
|
|
if (NN0.getNode() == 0)
|
|
return SDValue();
|
|
|
|
bool Replace1 = false;
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue NN1;
|
|
if (N0 == N1)
|
|
NN1 = NN0;
|
|
else {
|
|
NN1 = PromoteOperand(N1, PVT, Replace1);
|
|
if (NN1.getNode() == 0)
|
|
return SDValue();
|
|
}
|
|
|
|
AddToWorkList(NN0.getNode());
|
|
if (NN1.getNode())
|
|
AddToWorkList(NN1.getNode());
|
|
|
|
if (Replace0)
|
|
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
|
|
if (Replace1)
|
|
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
|
|
|
|
DEBUG(dbgs() << "\nPromoting ";
|
|
Op.getNode()->dump(&DAG));
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(Opc, dl, PVT, NN0, NN1));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PromoteIntShiftOp - Promote the specified integer shift operation if the
|
|
/// target indicates it is beneficial. e.g. On x86, it's usually better to
|
|
/// promote i16 operations to i32 since i16 instructions are longer.
|
|
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
bool Replace = false;
|
|
SDValue N0 = Op.getOperand(0);
|
|
if (Opc == ISD::SRA)
|
|
N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
|
|
else if (Opc == ISD::SRL)
|
|
N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
|
|
else
|
|
N0 = PromoteOperand(N0, PVT, Replace);
|
|
if (N0.getNode() == 0)
|
|
return SDValue();
|
|
|
|
AddToWorkList(N0.getNode());
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
|
|
|
|
DEBUG(dbgs() << "\nPromoting ";
|
|
Op.getNode()->dump(&DAG));
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
// fold (aext (aext x)) -> (aext x)
|
|
// fold (aext (zext x)) -> (zext x)
|
|
// fold (aext (sext x)) -> (sext x)
|
|
DEBUG(dbgs() << "\nPromoting ";
|
|
Op.getNode()->dump(&DAG));
|
|
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool DAGCombiner::PromoteLoad(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return false;
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return false;
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return false;
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDNode *N = Op.getNode();
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
EVT MemVT = LD->getMemoryVT();
|
|
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
|
|
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
|
|
: ISD::EXTLOAD)
|
|
: LD->getExtensionType();
|
|
SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
|
|
LD->getChain(), LD->getBasePtr(),
|
|
LD->getPointerInfo(),
|
|
MemVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->getAlignment());
|
|
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
|
|
|
|
DEBUG(dbgs() << "\nPromoting ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nTo: ";
|
|
Result.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
|
|
removeFromWorkList(N);
|
|
DAG.DeleteNode(N);
|
|
AddToWorkList(Result.getNode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main DAG Combiner implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void DAGCombiner::Run(CombineLevel AtLevel) {
|
|
// set the instance variables, so that the various visit routines may use it.
|
|
Level = AtLevel;
|
|
LegalOperations = Level >= AfterLegalizeVectorOps;
|
|
LegalTypes = Level >= AfterLegalizeTypes;
|
|
|
|
// Add all the dag nodes to the worklist.
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = DAG.allnodes_end(); I != E; ++I)
|
|
AddToWorkList(I);
|
|
|
|
// Create a dummy node (which is not added to allnodes), that adds a reference
|
|
// to the root node, preventing it from being deleted, and tracking any
|
|
// changes of the root.
|
|
HandleSDNode Dummy(DAG.getRoot());
|
|
|
|
// The root of the dag may dangle to deleted nodes until the dag combiner is
|
|
// done. Set it to null to avoid confusion.
|
|
DAG.setRoot(SDValue());
|
|
|
|
// while the worklist isn't empty, find a node and
|
|
// try and combine it.
|
|
while (!WorkListContents.empty()) {
|
|
SDNode *N;
|
|
// The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
|
|
// In order to avoid a linear scan, we use a set (O(log N)) to hold what the
|
|
// worklist *should* contain, and check the node we want to visit is should
|
|
// actually be visited.
|
|
do {
|
|
N = WorkListOrder.pop_back_val();
|
|
} while (!WorkListContents.erase(N));
|
|
|
|
// If N has no uses, it is dead. Make sure to revisit all N's operands once
|
|
// N is deleted from the DAG, since they too may now be dead or may have a
|
|
// reduced number of uses, allowing other xforms.
|
|
if (N->use_empty() && N != &Dummy) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
AddToWorkList(N->getOperand(i).getNode());
|
|
|
|
DAG.DeleteNode(N);
|
|
continue;
|
|
}
|
|
|
|
SDValue RV = combine(N);
|
|
|
|
if (RV.getNode() == 0)
|
|
continue;
|
|
|
|
++NodesCombined;
|
|
|
|
// If we get back the same node we passed in, rather than a new node or
|
|
// zero, we know that the node must have defined multiple values and
|
|
// CombineTo was used. Since CombineTo takes care of the worklist
|
|
// mechanics for us, we have no work to do in this case.
|
|
if (RV.getNode() == N)
|
|
continue;
|
|
|
|
assert(N->getOpcode() != ISD::DELETED_NODE &&
|
|
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
|
|
"Node was deleted but visit returned new node!");
|
|
|
|
DEBUG(dbgs() << "\nReplacing.3 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
RV.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
|
|
// Transfer debug value.
|
|
DAG.TransferDbgValues(SDValue(N, 0), RV);
|
|
WorkListRemover DeadNodes(*this);
|
|
if (N->getNumValues() == RV.getNode()->getNumValues())
|
|
DAG.ReplaceAllUsesWith(N, RV.getNode());
|
|
else {
|
|
assert(N->getValueType(0) == RV.getValueType() &&
|
|
N->getNumValues() == 1 && "Type mismatch");
|
|
SDValue OpV = RV;
|
|
DAG.ReplaceAllUsesWith(N, &OpV);
|
|
}
|
|
|
|
// Push the new node and any users onto the worklist
|
|
AddToWorkList(RV.getNode());
|
|
AddUsersToWorkList(RV.getNode());
|
|
|
|
// Add any uses of the old node to the worklist in case this node is the
|
|
// last one that uses them. They may become dead after this node is
|
|
// deleted.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
AddToWorkList(N->getOperand(i).getNode());
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node.
|
|
if (N->use_empty()) {
|
|
// Nodes can be reintroduced into the worklist. Make sure we do not
|
|
// process a node that has been replaced.
|
|
removeFromWorkList(N);
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
DAG.DeleteNode(N);
|
|
}
|
|
}
|
|
|
|
// If the root changed (e.g. it was a dead load, update the root).
|
|
DAG.setRoot(Dummy.getValue());
|
|
DAG.RemoveDeadNodes();
|
|
}
|
|
|
|
SDValue DAGCombiner::visit(SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::TokenFactor: return visitTokenFactor(N);
|
|
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
|
|
case ISD::ADD: return visitADD(N);
|
|
case ISD::SUB: return visitSUB(N);
|
|
case ISD::ADDC: return visitADDC(N);
|
|
case ISD::SUBC: return visitSUBC(N);
|
|
case ISD::ADDE: return visitADDE(N);
|
|
case ISD::SUBE: return visitSUBE(N);
|
|
case ISD::MUL: return visitMUL(N);
|
|
case ISD::SDIV: return visitSDIV(N);
|
|
case ISD::UDIV: return visitUDIV(N);
|
|
case ISD::SREM: return visitSREM(N);
|
|
case ISD::UREM: return visitUREM(N);
|
|
case ISD::MULHU: return visitMULHU(N);
|
|
case ISD::MULHS: return visitMULHS(N);
|
|
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
|
|
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
|
|
case ISD::SMULO: return visitSMULO(N);
|
|
case ISD::UMULO: return visitUMULO(N);
|
|
case ISD::SDIVREM: return visitSDIVREM(N);
|
|
case ISD::UDIVREM: return visitUDIVREM(N);
|
|
case ISD::AND: return visitAND(N);
|
|
case ISD::OR: return visitOR(N);
|
|
case ISD::XOR: return visitXOR(N);
|
|
case ISD::SHL: return visitSHL(N);
|
|
case ISD::SRA: return visitSRA(N);
|
|
case ISD::SRL: return visitSRL(N);
|
|
case ISD::CTLZ: return visitCTLZ(N);
|
|
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
|
|
case ISD::CTTZ: return visitCTTZ(N);
|
|
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
|
|
case ISD::CTPOP: return visitCTPOP(N);
|
|
case ISD::SELECT: return visitSELECT(N);
|
|
case ISD::SELECT_CC: return visitSELECT_CC(N);
|
|
case ISD::SETCC: return visitSETCC(N);
|
|
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
|
|
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
|
|
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
|
|
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
|
|
case ISD::TRUNCATE: return visitTRUNCATE(N);
|
|
case ISD::BITCAST: return visitBITCAST(N);
|
|
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
|
|
case ISD::FADD: return visitFADD(N);
|
|
case ISD::FSUB: return visitFSUB(N);
|
|
case ISD::FMUL: return visitFMUL(N);
|
|
case ISD::FMA: return visitFMA(N);
|
|
case ISD::FDIV: return visitFDIV(N);
|
|
case ISD::FREM: return visitFREM(N);
|
|
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
|
|
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
|
|
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
|
|
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
|
|
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
|
|
case ISD::FP_ROUND: return visitFP_ROUND(N);
|
|
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
|
|
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
|
|
case ISD::FNEG: return visitFNEG(N);
|
|
case ISD::FABS: return visitFABS(N);
|
|
case ISD::BRCOND: return visitBRCOND(N);
|
|
case ISD::BR_CC: return visitBR_CC(N);
|
|
case ISD::LOAD: return visitLOAD(N);
|
|
case ISD::STORE: return visitSTORE(N);
|
|
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
|
|
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
|
|
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
|
|
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
|
|
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
|
|
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
|
|
case ISD::MEMBARRIER: return visitMEMBARRIER(N);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::combine(SDNode *N) {
|
|
SDValue RV = visit(N);
|
|
|
|
// If nothing happened, try a target-specific DAG combine.
|
|
if (RV.getNode() == 0) {
|
|
assert(N->getOpcode() != ISD::DELETED_NODE &&
|
|
"Node was deleted but visit returned NULL!");
|
|
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
|
|
|
|
// Expose the DAG combiner to the target combiner impls.
|
|
TargetLowering::DAGCombinerInfo
|
|
DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
|
|
|
|
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
|
|
}
|
|
}
|
|
|
|
// If nothing happened still, try promoting the operation.
|
|
if (RV.getNode() == 0) {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
RV = PromoteIntBinOp(SDValue(N, 0));
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
RV = PromoteIntShiftOp(SDValue(N, 0));
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
RV = PromoteExtend(SDValue(N, 0));
|
|
break;
|
|
case ISD::LOAD:
|
|
if (PromoteLoad(SDValue(N, 0)))
|
|
RV = SDValue(N, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If N is a commutative binary node, try commuting it to enable more
|
|
// sdisel CSE.
|
|
if (RV.getNode() == 0 &&
|
|
SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
|
|
N->getNumValues() == 1) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Constant operands are canonicalized to RHS.
|
|
if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
|
|
SDValue Ops[] = { N1, N0 };
|
|
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
|
|
Ops, 2);
|
|
if (CSENode)
|
|
return SDValue(CSENode, 0);
|
|
}
|
|
}
|
|
|
|
return RV;
|
|
}
|
|
|
|
/// getInputChainForNode - Given a node, return its input chain if it has one,
|
|
/// otherwise return a null sd operand.
|
|
static SDValue getInputChainForNode(SDNode *N) {
|
|
if (unsigned NumOps = N->getNumOperands()) {
|
|
if (N->getOperand(0).getValueType() == MVT::Other)
|
|
return N->getOperand(0);
|
|
else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
|
|
return N->getOperand(NumOps-1);
|
|
for (unsigned i = 1; i < NumOps-1; ++i)
|
|
if (N->getOperand(i).getValueType() == MVT::Other)
|
|
return N->getOperand(i);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
|
|
// If N has two operands, where one has an input chain equal to the other,
|
|
// the 'other' chain is redundant.
|
|
if (N->getNumOperands() == 2) {
|
|
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
|
|
return N->getOperand(0);
|
|
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
|
|
return N->getOperand(1);
|
|
}
|
|
|
|
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
|
|
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
|
|
SmallPtrSet<SDNode*, 16> SeenOps;
|
|
bool Changed = false; // If we should replace this token factor.
|
|
|
|
// Start out with this token factor.
|
|
TFs.push_back(N);
|
|
|
|
// Iterate through token factors. The TFs grows when new token factors are
|
|
// encountered.
|
|
for (unsigned i = 0; i < TFs.size(); ++i) {
|
|
SDNode *TF = TFs[i];
|
|
|
|
// Check each of the operands.
|
|
for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
|
|
SDValue Op = TF->getOperand(i);
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::EntryToken:
|
|
// Entry tokens don't need to be added to the list. They are
|
|
// rededundant.
|
|
Changed = true;
|
|
break;
|
|
|
|
case ISD::TokenFactor:
|
|
if (Op.hasOneUse() &&
|
|
std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
|
|
// Queue up for processing.
|
|
TFs.push_back(Op.getNode());
|
|
// Clean up in case the token factor is removed.
|
|
AddToWorkList(Op.getNode());
|
|
Changed = true;
|
|
break;
|
|
}
|
|
// Fall thru
|
|
|
|
default:
|
|
// Only add if it isn't already in the list.
|
|
if (SeenOps.insert(Op.getNode()))
|
|
Ops.push_back(Op);
|
|
else
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue Result;
|
|
|
|
// If we've change things around then replace token factor.
|
|
if (Changed) {
|
|
if (Ops.empty()) {
|
|
// The entry token is the only possible outcome.
|
|
Result = DAG.getEntryNode();
|
|
} else {
|
|
// New and improved token factor.
|
|
Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
|
|
MVT::Other, &Ops[0], Ops.size());
|
|
}
|
|
|
|
// Don't add users to work list.
|
|
return CombineTo(N, Result, false);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// MERGE_VALUES can always be eliminated.
|
|
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
|
|
WorkListRemover DeadNodes(*this);
|
|
// Replacing results may cause a different MERGE_VALUES to suddenly
|
|
// be CSE'd with N, and carry its uses with it. Iterate until no
|
|
// uses remain, to ensure that the node can be safely deleted.
|
|
do {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
|
|
} while (!N->use_empty());
|
|
removeFromWorkList(N);
|
|
DAG.DeleteNode(N);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
static
|
|
SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = N0.getValueType();
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
|
|
|
|
if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
|
|
isa<ConstantSDNode>(N00.getOperand(1))) {
|
|
// fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
|
|
N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
|
|
DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
|
|
N00.getOperand(0), N01),
|
|
DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
|
|
N00.getOperand(1), N01));
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADD(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (add x, undef) -> undef
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return N0;
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
// fold (add c1, c2) -> c1+c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (add x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// fold (add Sym, c) -> Sym+c
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
|
|
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
|
|
GA->getOpcode() == ISD::GlobalAddress)
|
|
return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
|
|
GA->getOffset() +
|
|
(uint64_t)N1C->getSExtValue());
|
|
// fold ((c1-A)+c2) -> (c1+c2)-A
|
|
if (N1C && N0.getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getConstant(N1C->getAPIntValue()+
|
|
N0C->getAPIntValue(), VT),
|
|
N0.getOperand(1));
|
|
// reassociate add
|
|
SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
|
|
if (RADD.getNode() != 0)
|
|
return RADD;
|
|
// fold ((0-A) + B) -> B-A
|
|
if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
|
|
cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
|
|
// fold (A + (0-B)) -> A-B
|
|
if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
|
|
cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
|
|
// fold (A+(B-A)) -> B
|
|
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
|
|
return N1.getOperand(0);
|
|
// fold ((B-A)+A) -> B
|
|
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
|
|
return N0.getOperand(0);
|
|
// fold (A+(B-(A+C))) to (B-C)
|
|
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0 == N1.getOperand(1).getOperand(0))
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
|
|
N1.getOperand(1).getOperand(1));
|
|
// fold (A+(B-(C+A))) to (B-C)
|
|
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0 == N1.getOperand(1).getOperand(1))
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
|
|
N1.getOperand(1).getOperand(0));
|
|
// fold (A+((B-A)+or-C)) to (B+or-C)
|
|
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
|
|
N1.getOperand(0).getOpcode() == ISD::SUB &&
|
|
N0 == N1.getOperand(0).getOperand(1))
|
|
return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
|
|
N1.getOperand(0).getOperand(0), N1.getOperand(1));
|
|
|
|
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
|
|
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
SDValue N10 = N1.getOperand(0);
|
|
SDValue N11 = N1.getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
|
|
DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
|
|
}
|
|
|
|
if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (a+b) -> (a|b) iff a and b share no bits.
|
|
if (VT.isInteger() && !VT.isVector()) {
|
|
APInt LHSZero, LHSOne;
|
|
APInt RHSZero, RHSOne;
|
|
DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
|
|
|
|
if (LHSZero.getBoolValue()) {
|
|
DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
|
|
|
|
// If all possibly-set bits on the LHS are clear on the RHS, return an OR.
|
|
// If all possibly-set bits on the RHS are clear on the LHS, return an OR.
|
|
if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
|
|
}
|
|
}
|
|
|
|
// fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
|
|
if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
|
|
SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
|
|
SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
|
|
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
|
|
if (N1.getOpcode() == ISD::SHL &&
|
|
N1.getOperand(0).getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
|
|
if (C->getAPIntValue() == 0)
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
|
|
DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
|
|
N1.getOperand(0).getOperand(1),
|
|
N1.getOperand(1)));
|
|
if (N0.getOpcode() == ISD::SHL &&
|
|
N0.getOperand(0).getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
|
|
if (C->getAPIntValue() == 0)
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
|
|
DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
|
|
N0.getOperand(0).getOperand(1),
|
|
N0.getOperand(1)));
|
|
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
SDValue AndOp0 = N1.getOperand(0);
|
|
ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
|
|
unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
|
|
unsigned DestBits = VT.getScalarType().getSizeInBits();
|
|
|
|
// (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
|
|
// and similar xforms where the inner op is either ~0 or 0.
|
|
if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
|
|
}
|
|
}
|
|
|
|
// add (sext i1), X -> sub X, (zext i1)
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
|
|
N0.getOperand(0).getValueType() == MVT::i1 &&
|
|
!TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// If the flag result is dead, turn this into an ADD.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE,
|
|
N->getDebugLoc(), MVT::Glue));
|
|
|
|
// canonicalize constant to RHS.
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
|
|
|
|
// fold (addc x, 0) -> x + no carry out
|
|
if (N1C && N1C->isNullValue())
|
|
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
|
|
N->getDebugLoc(), MVT::Glue));
|
|
|
|
// fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
|
|
APInt LHSZero, LHSOne;
|
|
APInt RHSZero, RHSOne;
|
|
DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
|
|
|
|
if (LHSZero.getBoolValue()) {
|
|
DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
|
|
|
|
// If all possibly-set bits on the LHS are clear on the RHS, return an OR.
|
|
// If all possibly-set bits on the RHS are clear on the LHS, return an OR.
|
|
if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
|
|
return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE,
|
|
N->getDebugLoc(), MVT::Glue));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
|
|
N1, N0, CarryIn);
|
|
|
|
// fold (adde x, y, false) -> (addc x, y)
|
|
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
|
|
return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Since it may not be valid to emit a fold to zero for vector initializers
|
|
// check if we can before folding.
|
|
static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
|
|
SelectionDAG &DAG, bool LegalOperations) {
|
|
if (!VT.isVector()) {
|
|
return DAG.getConstant(0, VT);
|
|
}
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
|
|
// Produce a vector of zeros.
|
|
SDValue El = DAG.getConstant(0, VT.getVectorElementType());
|
|
std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
|
|
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
|
|
&Ops[0], Ops.size());
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUB(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
|
|
dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (sub x, x) -> 0
|
|
// FIXME: Refactor this and xor and other similar operations together.
|
|
if (N0 == N1)
|
|
return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
|
|
// fold (sub c1, c2) -> c1-c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
|
|
// fold (sub x, c) -> (add x, -c)
|
|
if (N1C)
|
|
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(-N1C->getAPIntValue(), VT));
|
|
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
|
|
if (N0C && N0C->isAllOnesValue())
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
|
|
// fold A-(A-B) -> B
|
|
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
|
|
return N1.getOperand(1);
|
|
// fold (A+B)-A -> B
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
|
|
return N0.getOperand(1);
|
|
// fold (A+B)-B -> A
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
|
|
return N0.getOperand(0);
|
|
// fold C2-(A+C1) -> (C2-C1)-A
|
|
if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
|
|
SDValue NewC = DAG.getConstant((N0C->getAPIntValue() - N1C1->getAPIntValue()), VT);
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
|
|
N1.getOperand(0));
|
|
}
|
|
// fold ((A+(B+or-C))-B) -> A+or-C
|
|
if (N0.getOpcode() == ISD::ADD &&
|
|
(N0.getOperand(1).getOpcode() == ISD::SUB ||
|
|
N0.getOperand(1).getOpcode() == ISD::ADD) &&
|
|
N0.getOperand(1).getOperand(0) == N1)
|
|
return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N0.getOperand(1).getOperand(1));
|
|
// fold ((A+(C+B))-B) -> A+C
|
|
if (N0.getOpcode() == ISD::ADD &&
|
|
N0.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0.getOperand(1).getOperand(1) == N1)
|
|
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N0.getOperand(1).getOperand(0));
|
|
// fold ((A-(B-C))-C) -> A-B
|
|
if (N0.getOpcode() == ISD::SUB &&
|
|
N0.getOperand(1).getOpcode() == ISD::SUB &&
|
|
N0.getOperand(1).getOperand(1) == N1)
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N0.getOperand(1).getOperand(0));
|
|
|
|
// If either operand of a sub is undef, the result is undef
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return N0;
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
|
|
// If the relocation model supports it, consider symbol offsets.
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
|
|
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
|
|
// fold (sub Sym, c) -> Sym-c
|
|
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
|
|
return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
|
|
GA->getOffset() -
|
|
(uint64_t)N1C->getSExtValue());
|
|
// fold (sub Sym+c1, Sym+c2) -> c1-c2
|
|
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
|
|
if (GA->getGlobal() == GB->getGlobal())
|
|
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
|
|
VT);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// If the flag result is dead, turn this into an SUB.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
|
|
MVT::Glue));
|
|
|
|
// fold (subc x, x) -> 0 + no borrow
|
|
if (N0 == N1)
|
|
return CombineTo(N, DAG.getConstant(0, VT),
|
|
DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
|
|
MVT::Glue));
|
|
|
|
// fold (subc x, 0) -> x + no borrow
|
|
if (N1C && N1C->isNullValue())
|
|
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
|
|
MVT::Glue));
|
|
|
|
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
|
|
if (N0C && N0C->isAllOnesValue())
|
|
return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
|
|
DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
|
|
MVT::Glue));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
|
|
// fold (sube x, y, false) -> (subc x, y)
|
|
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
|
|
return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMUL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (mul x, undef) -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// fold (mul c1, c2) -> c1*c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (mul x, 0) -> 0
|
|
if (N1C && N1C->isNullValue())
|
|
return N1;
|
|
// fold (mul x, -1) -> 0-x
|
|
if (N1C && N1C->isAllOnesValue())
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getConstant(0, VT), N0);
|
|
// fold (mul x, (1 << c)) -> x << c
|
|
if (N1C && N1C->getAPIntValue().isPowerOf2())
|
|
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(N1C->getAPIntValue().logBase2(),
|
|
getShiftAmountTy(N0.getValueType())));
|
|
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
|
|
if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
|
|
unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
|
|
// FIXME: If the input is something that is easily negated (e.g. a
|
|
// single-use add), we should put the negate there.
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getConstant(0, VT),
|
|
DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(Log2Val,
|
|
getShiftAmountTy(N0.getValueType()))));
|
|
}
|
|
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
|
|
if (N1C && N0.getOpcode() == ISD::SHL &&
|
|
isa<ConstantSDNode>(N0.getOperand(1))) {
|
|
SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
|
|
N1, N0.getOperand(1));
|
|
AddToWorkList(C3.getNode());
|
|
return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), C3);
|
|
}
|
|
|
|
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
|
|
// use.
|
|
{
|
|
SDValue Sh(0,0), Y(0,0);
|
|
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
|
|
if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
|
|
N0.getNode()->hasOneUse()) {
|
|
Sh = N0; Y = N1;
|
|
} else if (N1.getOpcode() == ISD::SHL &&
|
|
isa<ConstantSDNode>(N1.getOperand(1)) &&
|
|
N1.getNode()->hasOneUse()) {
|
|
Sh = N1; Y = N0;
|
|
}
|
|
|
|
if (Sh.getNode()) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
|
|
Sh.getOperand(0), Y);
|
|
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
|
|
Mul, Sh.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
|
|
if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
|
|
isa<ConstantSDNode>(N0.getOperand(1)))
|
|
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), N1),
|
|
DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
|
|
N0.getOperand(1), N1));
|
|
|
|
// reassociate mul
|
|
SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
|
|
if (RMUL.getNode() != 0)
|
|
return RMUL;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (sdiv c1, c2) -> c1/c2
|
|
if (N0C && N1C && !N1C->isNullValue())
|
|
return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
|
|
// fold (sdiv X, 1) -> X
|
|
if (N1C && N1C->getAPIntValue() == 1LL)
|
|
return N0;
|
|
// fold (sdiv X, -1) -> 0-X
|
|
if (N1C && N1C->isAllOnesValue())
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getConstant(0, VT), N0);
|
|
// If we know the sign bits of both operands are zero, strength reduce to a
|
|
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
|
|
if (!VT.isVector()) {
|
|
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
|
|
N0, N1);
|
|
}
|
|
// fold (sdiv X, pow2) -> simple ops after legalize
|
|
if (N1C && !N1C->isNullValue() &&
|
|
(N1C->getAPIntValue().isPowerOf2() ||
|
|
(-N1C->getAPIntValue()).isPowerOf2())) {
|
|
// If dividing by powers of two is cheap, then don't perform the following
|
|
// fold.
|
|
if (TLI.isPow2DivCheap())
|
|
return SDValue();
|
|
|
|
unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
|
|
|
|
// Splat the sign bit into the register
|
|
SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(VT.getSizeInBits()-1,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
AddToWorkList(SGN.getNode());
|
|
|
|
// Add (N0 < 0) ? abs2 - 1 : 0;
|
|
SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
|
|
DAG.getConstant(VT.getSizeInBits() - lg2,
|
|
getShiftAmountTy(SGN.getValueType())));
|
|
SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
|
|
AddToWorkList(SRL.getNode());
|
|
AddToWorkList(ADD.getNode()); // Divide by pow2
|
|
SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
|
|
DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
|
|
|
|
// If we're dividing by a positive value, we're done. Otherwise, we must
|
|
// negate the result.
|
|
if (N1C->getAPIntValue().isNonNegative())
|
|
return SRA;
|
|
|
|
AddToWorkList(SRA.getNode());
|
|
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
|
|
DAG.getConstant(0, VT), SRA);
|
|
}
|
|
|
|
// if integer divide is expensive and we satisfy the requirements, emit an
|
|
// alternate sequence.
|
|
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
|
|
SDValue Op = BuildSDIV(N);
|
|
if (Op.getNode()) return Op;
|
|
}
|
|
|
|
// undef / X -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// X / undef -> undef
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (udiv c1, c2) -> c1/c2
|
|
if (N0C && N1C && !N1C->isNullValue())
|
|
return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
|
|
// fold (udiv x, (1 << c)) -> x >>u c
|
|
if (N1C && N1C->getAPIntValue().isPowerOf2())
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(N1C->getAPIntValue().logBase2(),
|
|
getShiftAmountTy(N0.getValueType())));
|
|
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
|
|
if (N1.getOpcode() == ISD::SHL) {
|
|
if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
|
|
if (SHC->getAPIntValue().isPowerOf2()) {
|
|
EVT ADDVT = N1.getOperand(1).getValueType();
|
|
SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
|
|
N1.getOperand(1),
|
|
DAG.getConstant(SHC->getAPIntValue()
|
|
.logBase2(),
|
|
ADDVT));
|
|
AddToWorkList(Add.getNode());
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
|
|
}
|
|
}
|
|
}
|
|
// fold (udiv x, c) -> alternate
|
|
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
|
|
SDValue Op = BuildUDIV(N);
|
|
if (Op.getNode()) return Op;
|
|
}
|
|
|
|
// undef / X -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// X / undef -> undef
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSREM(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (srem c1, c2) -> c1%c2
|
|
if (N0C && N1C && !N1C->isNullValue())
|
|
return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
|
|
// If we know the sign bits of both operands are zero, strength reduce to a
|
|
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
|
|
if (!VT.isVector()) {
|
|
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
|
|
}
|
|
|
|
// If X/C can be simplified by the division-by-constant logic, lower
|
|
// X%C to the equivalent of X-X/C*C.
|
|
if (N1C && !N1C->isNullValue()) {
|
|
SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
|
|
AddToWorkList(Div.getNode());
|
|
SDValue OptimizedDiv = combine(Div.getNode());
|
|
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
|
|
OptimizedDiv, N1);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
|
|
AddToWorkList(Mul.getNode());
|
|
return Sub;
|
|
}
|
|
}
|
|
|
|
// undef % X -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// X % undef -> undef
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUREM(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (urem c1, c2) -> c1%c2
|
|
if (N0C && N1C && !N1C->isNullValue())
|
|
return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
|
|
// fold (urem x, pow2) -> (and x, pow2-1)
|
|
if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstant(N1C->getAPIntValue()-1,VT));
|
|
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
|
|
if (N1.getOpcode() == ISD::SHL) {
|
|
if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
|
|
if (SHC->getAPIntValue().isPowerOf2()) {
|
|
SDValue Add =
|
|
DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
|
|
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
|
|
VT));
|
|
AddToWorkList(Add.getNode());
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If X/C can be simplified by the division-by-constant logic, lower
|
|
// X%C to the equivalent of X-X/C*C.
|
|
if (N1C && !N1C->isNullValue()) {
|
|
SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
|
|
AddToWorkList(Div.getNode());
|
|
SDValue OptimizedDiv = combine(Div.getNode());
|
|
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
|
|
OptimizedDiv, N1);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
|
|
AddToWorkList(Mul.getNode());
|
|
return Sub;
|
|
}
|
|
}
|
|
|
|
// undef % X -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// X % undef -> undef
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMULHS(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// fold (mulhs x, 0) -> 0
|
|
if (N1C && N1C->isNullValue())
|
|
return N1;
|
|
// fold (mulhs x, 1) -> (sra x, size(x)-1)
|
|
if (N1C && N1C->getAPIntValue() == 1)
|
|
return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
|
|
DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
// fold (mulhs x, undef) -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
|
|
// If the type twice as wide is legal, transform the mulhs to a wider multiply
|
|
// plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
|
|
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
|
|
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
|
|
DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMULHU(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// fold (mulhu x, 0) -> 0
|
|
if (N1C && N1C->isNullValue())
|
|
return N1;
|
|
// fold (mulhu x, 1) -> 0
|
|
if (N1C && N1C->getAPIntValue() == 1)
|
|
return DAG.getConstant(0, N0.getValueType());
|
|
// fold (mulhu x, undef) -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
|
|
// If the type twice as wide is legal, transform the mulhu to a wider multiply
|
|
// plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
|
|
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
|
|
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
|
|
DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
|
|
/// compute two values. LoOp and HiOp give the opcodes for the two computations
|
|
/// that are being performed. Return true if a simplification was made.
|
|
///
|
|
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
|
|
unsigned HiOp) {
|
|
// If the high half is not needed, just compute the low half.
|
|
bool HiExists = N->hasAnyUseOfValue(1);
|
|
if (!HiExists &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
|
|
SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
|
|
N->op_begin(), N->getNumOperands());
|
|
return CombineTo(N, Res, Res);
|
|
}
|
|
|
|
// If the low half is not needed, just compute the high half.
|
|
bool LoExists = N->hasAnyUseOfValue(0);
|
|
if (!LoExists &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
|
|
SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
|
|
N->op_begin(), N->getNumOperands());
|
|
return CombineTo(N, Res, Res);
|
|
}
|
|
|
|
// If both halves are used, return as it is.
|
|
if (LoExists && HiExists)
|
|
return SDValue();
|
|
|
|
// If the two computed results can be simplified separately, separate them.
|
|
if (LoExists) {
|
|
SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
|
|
N->op_begin(), N->getNumOperands());
|
|
AddToWorkList(Lo.getNode());
|
|
SDValue LoOpt = combine(Lo.getNode());
|
|
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
|
|
return CombineTo(N, LoOpt, LoOpt);
|
|
}
|
|
|
|
if (HiExists) {
|
|
SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
|
|
N->op_begin(), N->getNumOperands());
|
|
AddToWorkList(Hi.getNode());
|
|
SDValue HiOpt = combine(Hi.getNode());
|
|
if (HiOpt.getNode() && HiOpt != Hi &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
|
|
return CombineTo(N, HiOpt, HiOpt);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
|
|
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
|
|
if (Res.getNode()) return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// If the type twice as wide is legal, transform the mulhu to a wider multiply
|
|
// plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
|
|
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
|
|
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
|
|
// Compute the high part as N1.
|
|
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
|
|
DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
|
|
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
|
|
// Compute the low part as N0.
|
|
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
|
|
return CombineTo(N, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
|
|
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
|
|
if (Res.getNode()) return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// If the type twice as wide is legal, transform the mulhu to a wider multiply
|
|
// plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
|
|
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
|
|
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
|
|
// Compute the high part as N1.
|
|
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
|
|
DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
|
|
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
|
|
// Compute the low part as N0.
|
|
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
|
|
return CombineTo(N, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSMULO(SDNode *N) {
|
|
// (smulo x, 2) -> (saddo x, x)
|
|
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (C2->getAPIntValue() == 2)
|
|
return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
|
|
N->getOperand(0), N->getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUMULO(SDNode *N) {
|
|
// (umulo x, 2) -> (uaddo x, x)
|
|
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (C2->getAPIntValue() == 2)
|
|
return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
|
|
N->getOperand(0), N->getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
|
|
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
|
|
if (Res.getNode()) return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
|
|
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
|
|
if (Res.getNode()) return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
|
|
/// two operands of the same opcode, try to simplify it.
|
|
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
|
|
|
|
// Bail early if none of these transforms apply.
|
|
if (N0.getNode()->getNumOperands() == 0) return SDValue();
|
|
|
|
// For each of OP in AND/OR/XOR:
|
|
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
|
|
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
|
|
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
|
|
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
|
|
//
|
|
// do not sink logical op inside of a vector extend, since it may combine
|
|
// into a vsetcc.
|
|
EVT Op0VT = N0.getOperand(0).getValueType();
|
|
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND ||
|
|
// Avoid infinite looping with PromoteIntBinOp.
|
|
(N0.getOpcode() == ISD::ANY_EXTEND &&
|
|
(!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
|
|
(N0.getOpcode() == ISD::TRUNCATE &&
|
|
(!TLI.isZExtFree(VT, Op0VT) ||
|
|
!TLI.isTruncateFree(Op0VT, VT)) &&
|
|
TLI.isTypeLegal(Op0VT))) &&
|
|
!VT.isVector() &&
|
|
Op0VT == N1.getOperand(0).getValueType() &&
|
|
(!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
|
|
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
|
|
N0.getOperand(0).getValueType(),
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
AddToWorkList(ORNode.getNode());
|
|
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
|
|
}
|
|
|
|
// For each of OP in SHL/SRL/SRA/AND...
|
|
// fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
|
|
// fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
|
|
// fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
|
|
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
|
|
N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
|
|
N0.getOperand(1) == N1.getOperand(1)) {
|
|
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
|
|
N0.getOperand(0).getValueType(),
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
AddToWorkList(ORNode.getNode());
|
|
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
|
|
ORNode, N0.getOperand(1));
|
|
}
|
|
|
|
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
|
|
// Only perform this optimization after type legalization and before
|
|
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
|
|
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
|
|
// we don't want to undo this promotion.
|
|
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
|
|
// on scalars.
|
|
if ((N0.getOpcode() == ISD::BITCAST || N0.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
&& Level == AfterLegalizeVectorOps) {
|
|
SDValue In0 = N0.getOperand(0);
|
|
SDValue In1 = N1.getOperand(0);
|
|
EVT In0Ty = In0.getValueType();
|
|
EVT In1Ty = In1.getValueType();
|
|
// If both incoming values are integers, and the original types are the same.
|
|
if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
|
|
SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), In0Ty, In0, In1);
|
|
SDValue BC = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, Op);
|
|
AddToWorkList(Op.getNode());
|
|
return BC;
|
|
}
|
|
}
|
|
|
|
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
|
|
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
|
|
// If both shuffles use the same mask, and both shuffle within a single
|
|
// vector, then it is worthwhile to move the swizzle after the operation.
|
|
// The type-legalizer generates this pattern when loading illegal
|
|
// vector types from memory. In many cases this allows additional shuffle
|
|
// optimizations.
|
|
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
|
|
N0.getOperand(1).getOpcode() == ISD::UNDEF &&
|
|
N1.getOperand(1).getOpcode() == ISD::UNDEF) {
|
|
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
|
|
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
|
|
|
|
assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
|
|
"Inputs to shuffles are not the same type");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Check that both shuffles use the same mask. The masks are known to be of
|
|
// the same length because the result vector type is the same.
|
|
bool SameMask = true;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx0 = SVN0->getMaskElt(i);
|
|
int Idx1 = SVN1->getMaskElt(i);
|
|
if (Idx0 != Idx1) {
|
|
SameMask = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (SameMask) {
|
|
SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
AddToWorkList(Op.getNode());
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
|
|
DAG.getUNDEF(VT), &SVN0->getMask()[0]);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitAND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue LL, LR, RL, RR, CC0, CC1;
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N1.getValueType();
|
|
unsigned BitWidth = VT.getScalarType().getSizeInBits();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (and x, undef) -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// fold (and c1, c2) -> c1&c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (and x, -1) -> x
|
|
if (N1C && N1C->isAllOnesValue())
|
|
return N0;
|
|
// if (and x, c) is known to be zero, return 0
|
|
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(BitWidth)))
|
|
return DAG.getConstant(0, VT);
|
|
// reassociate and
|
|
SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
|
|
if (RAND.getNode() != 0)
|
|
return RAND;
|
|
// fold (and (or x, C), D) -> D if (C & D) == D
|
|
if (N1C && N0.getOpcode() == ISD::OR)
|
|
if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
|
|
if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
|
|
return N1;
|
|
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
|
|
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
SDValue N0Op0 = N0.getOperand(0);
|
|
APInt Mask = ~N1C->getAPIntValue();
|
|
Mask = Mask.trunc(N0Op0.getValueSizeInBits());
|
|
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
|
|
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
|
|
N0.getValueType(), N0Op0);
|
|
|
|
// Replace uses of the AND with uses of the Zero extend node.
|
|
CombineTo(N, Zext);
|
|
|
|
// We actually want to replace all uses of the any_extend with the
|
|
// zero_extend, to avoid duplicating things. This will later cause this
|
|
// AND to be folded.
|
|
CombineTo(N0.getNode(), Zext);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
|
|
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
|
|
// already be zero by virtue of the width of the base type of the load.
|
|
//
|
|
// the 'X' node here can either be nothing or an extract_vector_elt to catch
|
|
// more cases.
|
|
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
N0.getOperand(0).getOpcode() == ISD::LOAD) ||
|
|
N0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
|
|
N0 : N0.getOperand(0) );
|
|
|
|
// Get the constant (if applicable) the zero'th operand is being ANDed with.
|
|
// This can be a pure constant or a vector splat, in which case we treat the
|
|
// vector as a scalar and use the splat value.
|
|
APInt Constant = APInt::getNullValue(1);
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
Constant = C->getAPIntValue();
|
|
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
|
|
SplatBitSize, HasAnyUndefs);
|
|
if (IsSplat) {
|
|
// Undef bits can contribute to a possible optimisation if set, so
|
|
// set them.
|
|
SplatValue |= SplatUndef;
|
|
|
|
// The splat value may be something like "0x00FFFFFF", which means 0 for
|
|
// the first vector value and FF for the rest, repeating. We need a mask
|
|
// that will apply equally to all members of the vector, so AND all the
|
|
// lanes of the constant together.
|
|
EVT VT = Vector->getValueType(0);
|
|
unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
|
|
Constant = APInt::getAllOnesValue(BitWidth);
|
|
for (unsigned i = 0, n = VT.getVectorNumElements(); i < n; ++i)
|
|
Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
|
|
}
|
|
}
|
|
|
|
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
|
|
// actually legal and isn't going to get expanded, else this is a false
|
|
// optimisation.
|
|
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
|
|
Load->getMemoryVT());
|
|
|
|
// Resize the constant to the same size as the original memory access before
|
|
// extension. If it is still the AllOnesValue then this AND is completely
|
|
// unneeded.
|
|
Constant =
|
|
Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
|
|
|
|
bool B;
|
|
switch (Load->getExtensionType()) {
|
|
default: B = false; break;
|
|
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::NON_EXTLOAD: B = true; break;
|
|
}
|
|
|
|
if (B && Constant.isAllOnesValue()) {
|
|
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
|
|
// preserve semantics once we get rid of the AND.
|
|
SDValue NewLoad(Load, 0);
|
|
if (Load->getExtensionType() == ISD::EXTLOAD) {
|
|
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
|
|
Load->getValueType(0), Load->getDebugLoc(),
|
|
Load->getChain(), Load->getBasePtr(),
|
|
Load->getOffset(), Load->getMemoryVT(),
|
|
Load->getMemOperand());
|
|
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
|
|
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
|
|
}
|
|
|
|
// Fold the AND away, taking care not to fold to the old load node if we
|
|
// replaced it.
|
|
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
|
|
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
// fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
|
|
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
|
|
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
|
|
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
|
|
|
|
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
|
|
LL.getValueType().isInteger()) {
|
|
// fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
|
|
if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
|
|
SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
|
|
LR.getValueType(), LL, RL);
|
|
AddToWorkList(ORNode.getNode());
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
|
|
}
|
|
// fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
|
|
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
|
|
SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
|
|
LR.getValueType(), LL, RL);
|
|
AddToWorkList(ANDNode.getNode());
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
|
|
}
|
|
// fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
|
|
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
|
|
SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
|
|
LR.getValueType(), LL, RL);
|
|
AddToWorkList(ORNode.getNode());
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
|
|
}
|
|
}
|
|
// canonicalize equivalent to ll == rl
|
|
if (LL == RR && LR == RL) {
|
|
Op1 = ISD::getSetCCSwappedOperands(Op1);
|
|
std::swap(RL, RR);
|
|
}
|
|
if (LL == RL && LR == RR) {
|
|
bool isInteger = LL.getValueType().isInteger();
|
|
ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
|
|
if (Result != ISD::SETCC_INVALID &&
|
|
(!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
|
|
return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
|
|
LL, LR, Result);
|
|
}
|
|
}
|
|
|
|
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
|
|
if (N0.getOpcode() == N1.getOpcode()) {
|
|
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
|
|
if (Tmp.getNode()) return Tmp;
|
|
}
|
|
|
|
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
|
|
// fold (and (sra)) -> (and (srl)) when possible.
|
|
if (!VT.isVector() &&
|
|
SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (zext_inreg (extload x)) -> (zextload x)
|
|
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
// If we zero all the possible extended bits, then we can turn this into
|
|
// a zextload if we are running before legalize or the operation is legal.
|
|
unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
|
|
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
|
|
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
|
|
((!LegalOperations && !LN0->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
|
|
LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(), MemVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
AddToWorkList(N);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
|
|
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
N0.hasOneUse()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
// If we zero all the possible extended bits, then we can turn this into
|
|
// a zextload if we are running before legalize or the operation is legal.
|
|
unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
|
|
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
|
|
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
|
|
((!LegalOperations && !LN0->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
MemVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
AddToWorkList(N);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (and (load x), 255) -> (zextload x, i8)
|
|
// fold (and (extload x, i16), 255) -> (zextload x, i8)
|
|
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
|
|
if (N1C && (N0.getOpcode() == ISD::LOAD ||
|
|
(N0.getOpcode() == ISD::ANY_EXTEND &&
|
|
N0.getOperand(0).getOpcode() == ISD::LOAD))) {
|
|
bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
|
|
LoadSDNode *LN0 = HasAnyExt
|
|
? cast<LoadSDNode>(N0.getOperand(0))
|
|
: cast<LoadSDNode>(N0);
|
|
if (LN0->getExtensionType() != ISD::SEXTLOAD &&
|
|
LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
|
|
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
|
|
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
|
|
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
|
|
EVT LoadedVT = LN0->getMemoryVT();
|
|
|
|
if (ExtVT == LoadedVT &&
|
|
(!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
|
|
EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
|
|
|
|
SDValue NewLoad =
|
|
DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
|
|
LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(),
|
|
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
AddToWorkList(N);
|
|
CombineTo(LN0, NewLoad, NewLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// Do not change the width of a volatile load.
|
|
// Do not generate loads of non-round integer types since these can
|
|
// be expensive (and would be wrong if the type is not byte sized).
|
|
if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
|
|
(!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
|
|
EVT PtrType = LN0->getOperand(1).getValueType();
|
|
|
|
unsigned Alignment = LN0->getAlignment();
|
|
SDValue NewPtr = LN0->getBasePtr();
|
|
|
|
// For big endian targets, we need to add an offset to the pointer
|
|
// to load the correct bytes. For little endian systems, we merely
|
|
// need to read fewer bytes from the same pointer.
|
|
if (TLI.isBigEndian()) {
|
|
unsigned LVTStoreBytes = LoadedVT.getStoreSize();
|
|
unsigned EVTStoreBytes = ExtVT.getStoreSize();
|
|
unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
|
|
NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
|
|
NewPtr, DAG.getConstant(PtrOff, PtrType));
|
|
Alignment = MinAlign(Alignment, PtrOff);
|
|
}
|
|
|
|
AddToWorkList(NewPtr.getNode());
|
|
|
|
EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
|
|
SDValue Load =
|
|
DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
|
|
LN0->getChain(), NewPtr,
|
|
LN0->getPointerInfo(),
|
|
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
|
|
Alignment);
|
|
AddToWorkList(N);
|
|
CombineTo(LN0, Load, Load.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
|
|
///
|
|
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
|
|
bool DemandHighBits) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
|
|
return SDValue();
|
|
if (!TLI.isOperationLegal(ISD::BSWAP, VT))
|
|
return SDValue();
|
|
|
|
// Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
|
|
bool LookPassAnd0 = false;
|
|
bool LookPassAnd1 = false;
|
|
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
|
|
std::swap(N0, N1);
|
|
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() == ISD::AND) {
|
|
if (!N0.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!N01C || N01C->getZExtValue() != 0xFF00)
|
|
return SDValue();
|
|
N0 = N0.getOperand(0);
|
|
LookPassAnd0 = true;
|
|
}
|
|
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
if (!N1.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C || N11C->getZExtValue() != 0xFF)
|
|
return SDValue();
|
|
N1 = N1.getOperand(0);
|
|
LookPassAnd1 = true;
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
if (!N0.getNode()->hasOneUse() ||
|
|
!N1.getNode()->hasOneUse())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N01C || !N11C)
|
|
return SDValue();
|
|
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
|
|
return SDValue();
|
|
|
|
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
|
|
SDValue N00 = N0->getOperand(0);
|
|
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
|
|
if (!N00.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
|
|
if (!N001C || N001C->getZExtValue() != 0xFF)
|
|
return SDValue();
|
|
N00 = N00.getOperand(0);
|
|
LookPassAnd0 = true;
|
|
}
|
|
|
|
SDValue N10 = N1->getOperand(0);
|
|
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
|
|
if (!N10.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
|
|
if (!N101C || N101C->getZExtValue() != 0xFF00)
|
|
return SDValue();
|
|
N10 = N10.getOperand(0);
|
|
LookPassAnd1 = true;
|
|
}
|
|
|
|
if (N00 != N10)
|
|
return SDValue();
|
|
|
|
// Make sure everything beyond the low halfword is zero since the SRL 16
|
|
// will clear the top bits.
|
|
unsigned OpSizeInBits = VT.getSizeInBits();
|
|
if (DemandHighBits && OpSizeInBits > 16 &&
|
|
(!LookPassAnd0 || !LookPassAnd1) &&
|
|
!DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
|
|
return SDValue();
|
|
|
|
SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
|
|
if (OpSizeInBits > 16)
|
|
Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
|
|
DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
|
|
return Res;
|
|
}
|
|
|
|
/// isBSwapHWordElement - Return true if the specified node is an element
|
|
/// that makes up a 32-bit packed halfword byteswap. i.e.
|
|
/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
|
|
static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
|
|
if (!N.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
unsigned Opc = N.getOpcode();
|
|
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
|
|
return false;
|
|
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!N1C)
|
|
return false;
|
|
|
|
unsigned Num;
|
|
switch (N1C->getZExtValue()) {
|
|
default:
|
|
return false;
|
|
case 0xFF: Num = 0; break;
|
|
case 0xFF00: Num = 1; break;
|
|
case 0xFF0000: Num = 2; break;
|
|
case 0xFF000000: Num = 3; break;
|
|
}
|
|
|
|
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
|
|
SDValue N0 = N.getOperand(0);
|
|
if (Opc == ISD::AND) {
|
|
if (Num == 0 || Num == 2) {
|
|
// (x >> 8) & 0xff
|
|
// (x >> 8) & 0xff0000
|
|
if (N0.getOpcode() != ISD::SRL)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
} else {
|
|
// (x << 8) & 0xff00
|
|
// (x << 8) & 0xff000000
|
|
if (N0.getOpcode() != ISD::SHL)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
}
|
|
} else if (Opc == ISD::SHL) {
|
|
// (x & 0xff) << 8
|
|
// (x & 0xff0000) << 8
|
|
if (Num != 0 && Num != 2)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
} else { // Opc == ISD::SRL
|
|
// (x & 0xff00) >> 8
|
|
// (x & 0xff000000) >> 8
|
|
if (Num != 1 && Num != 3)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
}
|
|
|
|
if (Parts[Num])
|
|
return false;
|
|
|
|
Parts[Num] = N0.getOperand(0).getNode();
|
|
return true;
|
|
}
|
|
|
|
/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
|
|
/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
|
|
/// => (rotl (bswap x), 16)
|
|
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
if (!TLI.isOperationLegal(ISD::BSWAP, VT))
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
|
|
// Look for either
|
|
// (or (or (and), (and)), (or (and), (and)))
|
|
// (or (or (or (and), (and)), (and)), (and))
|
|
if (N0.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
|
|
if (N1.getOpcode() == ISD::OR) {
|
|
// (or (or (and), (and)), (or (and), (and)))
|
|
SDValue N000 = N00.getOperand(0);
|
|
if (!isBSwapHWordElement(N000, Parts))
|
|
return SDValue();
|
|
|
|
SDValue N001 = N00.getOperand(1);
|
|
if (!isBSwapHWordElement(N001, Parts))
|
|
return SDValue();
|
|
SDValue N010 = N01.getOperand(0);
|
|
if (!isBSwapHWordElement(N010, Parts))
|
|
return SDValue();
|
|
SDValue N011 = N01.getOperand(1);
|
|
if (!isBSwapHWordElement(N011, Parts))
|
|
return SDValue();
|
|
} else {
|
|
// (or (or (or (and), (and)), (and)), (and))
|
|
if (!isBSwapHWordElement(N1, Parts))
|
|
return SDValue();
|
|
if (!isBSwapHWordElement(N01, Parts))
|
|
return SDValue();
|
|
if (N00.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
SDValue N000 = N00.getOperand(0);
|
|
if (!isBSwapHWordElement(N000, Parts))
|
|
return SDValue();
|
|
SDValue N001 = N00.getOperand(1);
|
|
if (!isBSwapHWordElement(N001, Parts))
|
|
return SDValue();
|
|
}
|
|
|
|
// Make sure the parts are all coming from the same node.
|
|
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
|
|
return SDValue();
|
|
|
|
SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
|
|
SDValue(Parts[0],0));
|
|
|
|
// Result of the bswap should be rotated by 16. If it's not legal, than
|
|
// do (x << 16) | (x >> 16).
|
|
SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
|
|
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
|
|
return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
|
|
else if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
|
|
return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
|
|
DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
|
|
}
|
|
|
|
SDValue DAGCombiner::visitOR(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue LL, LR, RL, RR, CC0, CC1;
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N1.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (or x, undef) -> -1
|
|
if (!LegalOperations &&
|
|
(N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
|
|
EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
|
|
return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
|
|
}
|
|
// fold (or c1, c2) -> c1|c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (or x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// fold (or x, -1) -> -1
|
|
if (N1C && N1C->isAllOnesValue())
|
|
return N1;
|
|
// fold (or x, c) -> c iff (x & ~c) == 0
|
|
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
|
|
return N1;
|
|
|
|
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
|
|
SDValue BSwap = MatchBSwapHWord(N, N0, N1);
|
|
if (BSwap.getNode() != 0)
|
|
return BSwap;
|
|
BSwap = MatchBSwapHWordLow(N, N0, N1);
|
|
if (BSwap.getNode() != 0)
|
|
return BSwap;
|
|
|
|
// reassociate or
|
|
SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
|
|
if (ROR.getNode() != 0)
|
|
return ROR;
|
|
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
|
|
// iff (c1 & c2) == 0.
|
|
if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
|
|
isa<ConstantSDNode>(N0.getOperand(1))) {
|
|
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
|
|
if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), N1),
|
|
DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
|
|
}
|
|
// fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
|
|
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
|
|
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
|
|
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
|
|
|
|
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
|
|
LL.getValueType().isInteger()) {
|
|
// fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
|
|
// fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
|
|
if (cast<ConstantSDNode>(LR)->isNullValue() &&
|
|
(Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
|
|
SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
|
|
LR.getValueType(), LL, RL);
|
|
AddToWorkList(ORNode.getNode());
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
|
|
}
|
|
// fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
|
|
// fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
|
|
if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
|
|
(Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
|
|
SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
|
|
LR.getValueType(), LL, RL);
|
|
AddToWorkList(ANDNode.getNode());
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
|
|
}
|
|
}
|
|
// canonicalize equivalent to ll == rl
|
|
if (LL == RR && LR == RL) {
|
|
Op1 = ISD::getSetCCSwappedOperands(Op1);
|
|
std::swap(RL, RR);
|
|
}
|
|
if (LL == RL && LR == RR) {
|
|
bool isInteger = LL.getValueType().isInteger();
|
|
ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
|
|
if (Result != ISD::SETCC_INVALID &&
|
|
(!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
|
|
return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
|
|
LL, LR, Result);
|
|
}
|
|
}
|
|
|
|
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
|
|
if (N0.getOpcode() == N1.getOpcode()) {
|
|
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
|
|
if (Tmp.getNode()) return Tmp;
|
|
}
|
|
|
|
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N1.getOpcode() == ISD::AND &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
N1.getOperand(1).getOpcode() == ISD::Constant &&
|
|
// Don't increase # computations.
|
|
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
|
|
// We can only do this xform if we know that bits from X that are set in C2
|
|
// but not in C1 are already zero. Likewise for Y.
|
|
const APInt &LHSMask =
|
|
cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
const APInt &RHSMask =
|
|
cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
|
|
|
|
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
|
|
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
|
|
SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
|
|
DAG.getConstant(LHSMask | RHSMask, VT));
|
|
}
|
|
}
|
|
|
|
// See if this is some rotate idiom.
|
|
if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
|
|
return SDValue(Rot, 0);
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (!VT.isVector() &&
|
|
SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
|
|
static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
|
|
if (Op.getOpcode() == ISD::AND) {
|
|
if (isa<ConstantSDNode>(Op.getOperand(1))) {
|
|
Mask = Op.getOperand(1);
|
|
Op = Op.getOperand(0);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
|
|
Shift = Op;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
|
|
// idioms for rotate, and if the target supports rotation instructions, generate
|
|
// a rot[lr].
|
|
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
|
|
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
|
|
EVT VT = LHS.getValueType();
|
|
if (!TLI.isTypeLegal(VT)) return 0;
|
|
|
|
// The target must have at least one rotate flavor.
|
|
bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
|
|
bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
|
|
if (!HasROTL && !HasROTR) return 0;
|
|
|
|
// Match "(X shl/srl V1) & V2" where V2 may not be present.
|
|
SDValue LHSShift; // The shift.
|
|
SDValue LHSMask; // AND value if any.
|
|
if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
|
|
return 0; // Not part of a rotate.
|
|
|
|
SDValue RHSShift; // The shift.
|
|
SDValue RHSMask; // AND value if any.
|
|
if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
|
|
return 0; // Not part of a rotate.
|
|
|
|
if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
|
|
return 0; // Not shifting the same value.
|
|
|
|
if (LHSShift.getOpcode() == RHSShift.getOpcode())
|
|
return 0; // Shifts must disagree.
|
|
|
|
// Canonicalize shl to left side in a shl/srl pair.
|
|
if (RHSShift.getOpcode() == ISD::SHL) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSShift, RHSShift);
|
|
std::swap(LHSMask , RHSMask );
|
|
}
|
|
|
|
unsigned OpSizeInBits = VT.getSizeInBits();
|
|
SDValue LHSShiftArg = LHSShift.getOperand(0);
|
|
SDValue LHSShiftAmt = LHSShift.getOperand(1);
|
|
SDValue RHSShiftAmt = RHSShift.getOperand(1);
|
|
|
|
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
|
|
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
|
|
if (LHSShiftAmt.getOpcode() == ISD::Constant &&
|
|
RHSShiftAmt.getOpcode() == ISD::Constant) {
|
|
uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
|
|
uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
|
|
if ((LShVal + RShVal) != OpSizeInBits)
|
|
return 0;
|
|
|
|
SDValue Rot;
|
|
if (HasROTL)
|
|
Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
|
|
else
|
|
Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
|
|
|
|
// If there is an AND of either shifted operand, apply it to the result.
|
|
if (LHSMask.getNode() || RHSMask.getNode()) {
|
|
APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
|
|
|
|
if (LHSMask.getNode()) {
|
|
APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
|
|
Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
|
|
}
|
|
if (RHSMask.getNode()) {
|
|
APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
|
|
Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
|
|
}
|
|
|
|
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
|
|
}
|
|
|
|
return Rot.getNode();
|
|
}
|
|
|
|
// If there is a mask here, and we have a variable shift, we can't be sure
|
|
// that we're masking out the right stuff.
|
|
if (LHSMask.getNode() || RHSMask.getNode())
|
|
return 0;
|
|
|
|
// fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
|
|
// fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
|
|
if (RHSShiftAmt.getOpcode() == ISD::SUB &&
|
|
LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
|
|
if (ConstantSDNode *SUBC =
|
|
dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
|
|
if (SUBC->getAPIntValue() == OpSizeInBits) {
|
|
if (HasROTL)
|
|
return DAG.getNode(ISD::ROTL, DL, VT,
|
|
LHSShiftArg, LHSShiftAmt).getNode();
|
|
else
|
|
return DAG.getNode(ISD::ROTR, DL, VT,
|
|
LHSShiftArg, RHSShiftAmt).getNode();
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
|
|
// fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
|
|
if (LHSShiftAmt.getOpcode() == ISD::SUB &&
|
|
RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
|
|
if (ConstantSDNode *SUBC =
|
|
dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
|
|
if (SUBC->getAPIntValue() == OpSizeInBits) {
|
|
if (HasROTR)
|
|
return DAG.getNode(ISD::ROTR, DL, VT,
|
|
LHSShiftArg, RHSShiftAmt).getNode();
|
|
else
|
|
return DAG.getNode(ISD::ROTL, DL, VT,
|
|
LHSShiftArg, LHSShiftAmt).getNode();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for sign/zext/any-extended or truncate cases:
|
|
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
|
|
|| LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
|
|
|| LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
|
|
|| LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
|
|
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
|
|
|| RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
|
|
|| RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
|
|
|| RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
|
|
SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
|
|
SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
|
|
if (RExtOp0.getOpcode() == ISD::SUB &&
|
|
RExtOp0.getOperand(1) == LExtOp0) {
|
|
// fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
|
|
// (rotl x, y)
|
|
// fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
|
|
// (rotr x, (sub 32, y))
|
|
if (ConstantSDNode *SUBC =
|
|
dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
|
|
if (SUBC->getAPIntValue() == OpSizeInBits) {
|
|
return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
|
|
LHSShiftArg,
|
|
HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
|
|
}
|
|
}
|
|
} else if (LExtOp0.getOpcode() == ISD::SUB &&
|
|
RExtOp0 == LExtOp0.getOperand(1)) {
|
|
// fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
|
|
// (rotr x, y)
|
|
// fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
|
|
// (rotl x, (sub 32, y))
|
|
if (ConstantSDNode *SUBC =
|
|
dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
|
|
if (SUBC->getAPIntValue() == OpSizeInBits) {
|
|
return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
|
|
LHSShiftArg,
|
|
HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitXOR(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue LHS, RHS, CC;
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
|
|
if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// fold (xor x, undef) -> undef
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return N0;
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return N1;
|
|
// fold (xor c1, c2) -> c1^c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
|
|
// canonicalize constant to RHS
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (xor x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// reassociate xor
|
|
SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
|
|
if (RXOR.getNode() != 0)
|
|
return RXOR;
|
|
|
|
// fold !(x cc y) -> (x !cc y)
|
|
if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
|
|
bool isInt = LHS.getValueType().isInteger();
|
|
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
|
|
isInt);
|
|
|
|
if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
|
|
switch (N0.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unhandled SetCC Equivalent!");
|
|
case ISD::SETCC:
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
|
|
case ISD::SELECT_CC:
|
|
return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
|
|
N0.getOperand(3), NotCC);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
|
|
if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
|
|
N0.getNode()->hasOneUse() &&
|
|
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
|
|
SDValue V = N0.getOperand(0);
|
|
V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
|
|
DAG.getConstant(1, V.getValueType()));
|
|
AddToWorkList(V.getNode());
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
|
|
}
|
|
|
|
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
|
|
if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
|
|
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
|
|
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
|
|
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
|
|
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
|
|
LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
|
|
RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
|
|
AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
|
|
return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
|
|
}
|
|
}
|
|
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
|
|
if (N1C && N1C->isAllOnesValue() &&
|
|
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
|
|
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
|
|
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
|
|
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
|
|
LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
|
|
RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
|
|
AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
|
|
return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
|
|
}
|
|
}
|
|
// fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
|
|
if (N1C && N0.getOpcode() == ISD::XOR) {
|
|
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (N00C)
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
|
|
DAG.getConstant(N1C->getAPIntValue() ^
|
|
N00C->getAPIntValue(), VT));
|
|
if (N01C)
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(N1C->getAPIntValue() ^
|
|
N01C->getAPIntValue(), VT));
|
|
}
|
|
// fold (xor x, x) -> 0
|
|
if (N0 == N1)
|
|
return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
|
|
|
|
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
|
|
if (N0.getOpcode() == N1.getOpcode()) {
|
|
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
|
|
if (Tmp.getNode()) return Tmp;
|
|
}
|
|
|
|
// Simplify the expression using non-local knowledge.
|
|
if (!VT.isVector() &&
|
|
SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// visitShiftByConstant - Handle transforms common to the three shifts, when
|
|
/// the shift amount is a constant.
|
|
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
|
|
SDNode *LHS = N->getOperand(0).getNode();
|
|
if (!LHS->hasOneUse()) return SDValue();
|
|
|
|
// We want to pull some binops through shifts, so that we have (and (shift))
|
|
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
|
|
// thing happens with address calculations, so it's important to canonicalize
|
|
// it.
|
|
bool HighBitSet = false; // Can we transform this if the high bit is set?
|
|
|
|
switch (LHS->getOpcode()) {
|
|
default: return SDValue();
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
HighBitSet = false; // We can only transform sra if the high bit is clear.
|
|
break;
|
|
case ISD::AND:
|
|
HighBitSet = true; // We can only transform sra if the high bit is set.
|
|
break;
|
|
case ISD::ADD:
|
|
if (N->getOpcode() != ISD::SHL)
|
|
return SDValue(); // only shl(add) not sr[al](add).
|
|
HighBitSet = false; // We can only transform sra if the high bit is clear.
|
|
break;
|
|
}
|
|
|
|
// We require the RHS of the binop to be a constant as well.
|
|
ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
|
|
if (!BinOpCst) return SDValue();
|
|
|
|
// FIXME: disable this unless the input to the binop is a shift by a constant.
|
|
// If it is not a shift, it pessimizes some common cases like:
|
|
//
|
|
// void foo(int *X, int i) { X[i & 1235] = 1; }
|
|
// int bar(int *X, int i) { return X[i & 255]; }
|
|
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
|
|
if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
|
|
BinOpLHSVal->getOpcode() != ISD::SRA &&
|
|
BinOpLHSVal->getOpcode() != ISD::SRL) ||
|
|
!isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If this is a signed shift right, and the high bit is modified by the
|
|
// logical operation, do not perform the transformation. The highBitSet
|
|
// boolean indicates the value of the high bit of the constant which would
|
|
// cause it to be modified for this operation.
|
|
if (N->getOpcode() == ISD::SRA) {
|
|
bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
|
|
if (BinOpRHSSignSet != HighBitSet)
|
|
return SDValue();
|
|
}
|
|
|
|
// Fold the constants, shifting the binop RHS by the shift amount.
|
|
SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
|
|
N->getValueType(0),
|
|
LHS->getOperand(1), N->getOperand(1));
|
|
|
|
// Create the new shift.
|
|
SDValue NewShift = DAG.getNode(N->getOpcode(),
|
|
LHS->getOperand(0).getDebugLoc(),
|
|
VT, LHS->getOperand(0), N->getOperand(1));
|
|
|
|
// Create the new binop.
|
|
return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSHL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
|
|
|
|
// fold (shl c1, c2) -> c1<<c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
|
|
// fold (shl 0, x) -> 0
|
|
if (N0C && N0C->isNullValue())
|
|
return N0;
|
|
// fold (shl x, c >= size(x)) -> undef
|
|
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
|
|
return DAG.getUNDEF(VT);
|
|
// fold (shl x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// fold (shl undef, x) -> 0
|
|
if (N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getConstant(0, VT);
|
|
// if (shl x, c) is known to be zero, return 0
|
|
if (DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(OpSizeInBits)))
|
|
return DAG.getConstant(0, VT);
|
|
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND &&
|
|
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
|
|
SDValue N101 = N1.getOperand(0).getOperand(1);
|
|
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
|
|
EVT TruncVT = N1.getValueType();
|
|
SDValue N100 = N1.getOperand(0).getOperand(0);
|
|
APInt TruncC = N101C->getAPIntValue();
|
|
TruncC = TruncC.trunc(TruncVT.getSizeInBits());
|
|
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
|
|
DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
|
|
DAG.getNode(ISD::TRUNCATE,
|
|
N->getDebugLoc(),
|
|
TruncVT, N100),
|
|
DAG.getConstant(TruncC, TruncVT)));
|
|
}
|
|
}
|
|
|
|
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
|
|
if (N1C && N0.getOpcode() == ISD::SHL &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
if (c1 + c2 >= OpSizeInBits)
|
|
return DAG.getConstant(0, VT);
|
|
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(c1 + c2, N1.getValueType()));
|
|
}
|
|
|
|
// fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
|
|
// For this to be valid, the second form must not preserve any of the bits
|
|
// that are shifted out by the inner shift in the first form. This means
|
|
// the outer shift size must be >= the number of bits added by the ext.
|
|
// As a corollary, we don't care what kind of ext it is.
|
|
if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::ANY_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND) &&
|
|
N0.getOperand(0).getOpcode() == ISD::SHL &&
|
|
isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
|
|
uint64_t c1 =
|
|
cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
EVT InnerShiftVT = N0.getOperand(0).getValueType();
|
|
uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
|
|
if (c2 >= OpSizeInBits - InnerShiftSize) {
|
|
if (c1 + c2 >= OpSizeInBits)
|
|
return DAG.getConstant(0, VT);
|
|
return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
|
|
DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
|
|
N0.getOperand(0)->getOperand(0)),
|
|
DAG.getConstant(c1 + c2, N1.getValueType()));
|
|
}
|
|
}
|
|
|
|
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
|
|
// (and (srl x, (sub c1, c2), MASK)
|
|
// Only fold this if the inner shift has no other uses -- if it does, folding
|
|
// this will increase the total number of instructions.
|
|
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
|
|
if (c1 < VT.getSizeInBits()) {
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
|
|
VT.getSizeInBits() - c1);
|
|
SDValue Shift;
|
|
if (c2 > c1) {
|
|
Mask = Mask.shl(c2-c1);
|
|
Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(c2-c1, N1.getValueType()));
|
|
} else {
|
|
Mask = Mask.lshr(c1-c2);
|
|
Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(c1-c2, N1.getValueType()));
|
|
}
|
|
return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
|
|
DAG.getConstant(Mask, VT));
|
|
}
|
|
}
|
|
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
|
|
if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
|
|
SDValue HiBitsMask =
|
|
DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
|
|
VT.getSizeInBits() -
|
|
N1C->getZExtValue()),
|
|
VT);
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
HiBitsMask);
|
|
}
|
|
|
|
if (N1C) {
|
|
SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
|
|
if (NewSHL.getNode())
|
|
return NewSHL;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSRA(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
|
|
|
|
// fold (sra c1, c2) -> (sra c1, c2)
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
|
|
// fold (sra 0, x) -> 0
|
|
if (N0C && N0C->isNullValue())
|
|
return N0;
|
|
// fold (sra -1, x) -> -1
|
|
if (N0C && N0C->isAllOnesValue())
|
|
return N0;
|
|
// fold (sra x, (setge c, size(x))) -> undef
|
|
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
|
|
return DAG.getUNDEF(VT);
|
|
// fold (sra x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
|
|
// sext_inreg.
|
|
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
|
|
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
|
|
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
|
|
if (VT.isVector())
|
|
ExtVT = EVT::getVectorVT(*DAG.getContext(),
|
|
ExtVT, VT.getVectorNumElements());
|
|
if ((!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), DAG.getValueType(ExtVT));
|
|
}
|
|
|
|
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
|
|
if (N1C && N0.getOpcode() == ISD::SRA) {
|
|
if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
|
|
if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
|
|
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(Sum, N1C->getValueType(0)));
|
|
}
|
|
}
|
|
|
|
// fold (sra (shl X, m), (sub result_size, n))
|
|
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
|
|
// result_size - n != m.
|
|
// If truncate is free for the target sext(shl) is likely to result in better
|
|
// code.
|
|
if (N0.getOpcode() == ISD::SHL) {
|
|
// Get the two constanst of the shifts, CN0 = m, CN = n.
|
|
const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (N01C && N1C) {
|
|
// Determine what the truncate's result bitsize and type would be.
|
|
EVT TruncVT =
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
OpSizeInBits - N1C->getZExtValue());
|
|
// Determine the residual right-shift amount.
|
|
signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
|
|
|
|
// If the shift is not a no-op (in which case this should be just a sign
|
|
// extend already), the truncated to type is legal, sign_extend is legal
|
|
// on that type, and the truncate to that type is both legal and free,
|
|
// perform the transform.
|
|
if ((ShiftAmt > 0) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
|
|
TLI.isTruncateFree(VT, TruncVT)) {
|
|
|
|
SDValue Amt = DAG.getConstant(ShiftAmt,
|
|
getShiftAmountTy(N0.getOperand(0).getValueType()));
|
|
SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), Amt);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
|
|
Shift);
|
|
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
|
|
N->getValueType(0), Trunc);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND &&
|
|
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
|
|
SDValue N101 = N1.getOperand(0).getOperand(1);
|
|
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
|
|
EVT TruncVT = N1.getValueType();
|
|
SDValue N100 = N1.getOperand(0).getOperand(0);
|
|
APInt TruncC = N101C->getAPIntValue();
|
|
TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
|
|
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
|
|
DAG.getNode(ISD::AND, N->getDebugLoc(),
|
|
TruncVT,
|
|
DAG.getNode(ISD::TRUNCATE,
|
|
N->getDebugLoc(),
|
|
TruncVT, N100),
|
|
DAG.getConstant(TruncC, TruncVT)));
|
|
}
|
|
}
|
|
|
|
// fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
|
|
// if c1 is equal to the number of bits the trunc removes
|
|
if (N0.getOpcode() == ISD::TRUNCATE &&
|
|
(N0.getOperand(0).getOpcode() == ISD::SRL ||
|
|
N0.getOperand(0).getOpcode() == ISD::SRA) &&
|
|
N0.getOperand(0).hasOneUse() &&
|
|
N0.getOperand(0).getOperand(1).hasOneUse() &&
|
|
N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
|
|
EVT LargeVT = N0.getOperand(0).getValueType();
|
|
ConstantSDNode *LargeShiftAmt =
|
|
cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
|
|
|
|
if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
|
|
LargeShiftAmt->getZExtValue()) {
|
|
SDValue Amt =
|
|
DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
|
|
getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
|
|
SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
|
|
N0.getOperand(0).getOperand(0), Amt);
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
|
|
}
|
|
}
|
|
|
|
// Simplify, based on bits shifted out of the LHS.
|
|
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
|
|
// If the sign bit is known to be zero, switch this to a SRL.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
if (N1C) {
|
|
SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
|
|
if (NewSRA.getNode())
|
|
return NewSRA;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSRL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
|
|
|
|
// fold (srl c1, c2) -> c1 >>u c2
|
|
if (N0C && N1C)
|
|
return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
|
|
// fold (srl 0, x) -> 0
|
|
if (N0C && N0C->isNullValue())
|
|
return N0;
|
|
// fold (srl x, c >= size(x)) -> undef
|
|
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
|
|
return DAG.getUNDEF(VT);
|
|
// fold (srl x, 0) -> x
|
|
if (N1C && N1C->isNullValue())
|
|
return N0;
|
|
// if (srl x, c) is known to be zero, return 0
|
|
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(OpSizeInBits)))
|
|
return DAG.getConstant(0, VT);
|
|
|
|
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
|
|
if (N1C && N0.getOpcode() == ISD::SRL &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
if (c1 + c2 >= OpSizeInBits)
|
|
return DAG.getConstant(0, VT);
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(c1 + c2, N1.getValueType()));
|
|
}
|
|
|
|
// fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
|
|
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(0).getOpcode() == ISD::SRL &&
|
|
isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
|
|
uint64_t c1 =
|
|
cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
EVT InnerShiftVT = N0.getOperand(0).getValueType();
|
|
EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
|
|
uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
|
|
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
|
|
if (c1 + OpSizeInBits == InnerShiftSize) {
|
|
if (c1 + c2 >= InnerShiftSize)
|
|
return DAG.getConstant(0, VT);
|
|
return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
|
|
N0.getOperand(0)->getOperand(0),
|
|
DAG.getConstant(c1 + c2, ShiftCountVT)));
|
|
}
|
|
}
|
|
|
|
// fold (srl (shl x, c), c) -> (and x, cst2)
|
|
if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
|
|
N0.getValueSizeInBits() <= 64) {
|
|
uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getConstant(~0ULL >> ShAmt, VT));
|
|
}
|
|
|
|
|
|
// fold (srl (anyextend x), c) -> (anyextend (srl x, c))
|
|
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
// Shifting in all undef bits?
|
|
EVT SmallVT = N0.getOperand(0).getValueType();
|
|
if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
|
|
uint64_t ShiftAmt = N1C->getZExtValue();
|
|
SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
|
|
N0.getOperand(0),
|
|
DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
|
|
AddToWorkList(SmallShift.getNode());
|
|
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
|
|
}
|
|
}
|
|
|
|
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
|
|
// bit, which is unmodified by sra.
|
|
if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
|
|
if (N0.getOpcode() == ISD::SRA)
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
|
|
}
|
|
|
|
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
|
|
if (N1C && N0.getOpcode() == ISD::CTLZ &&
|
|
N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
|
|
APInt KnownZero, KnownOne;
|
|
DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
|
|
|
|
// If any of the input bits are KnownOne, then the input couldn't be all
|
|
// zeros, thus the result of the srl will always be zero.
|
|
if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
|
|
|
|
// If all of the bits input the to ctlz node are known to be zero, then
|
|
// the result of the ctlz is "32" and the result of the shift is one.
|
|
APInt UnknownBits = ~KnownZero;
|
|
if (UnknownBits == 0) return DAG.getConstant(1, VT);
|
|
|
|
// Otherwise, check to see if there is exactly one bit input to the ctlz.
|
|
if ((UnknownBits & (UnknownBits - 1)) == 0) {
|
|
// Okay, we know that only that the single bit specified by UnknownBits
|
|
// could be set on input to the CTLZ node. If this bit is set, the SRL
|
|
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
|
|
// to an SRL/XOR pair, which is likely to simplify more.
|
|
unsigned ShAmt = UnknownBits.countTrailingZeros();
|
|
SDValue Op = N0.getOperand(0);
|
|
|
|
if (ShAmt) {
|
|
Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
|
|
DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
|
|
AddToWorkList(Op.getNode());
|
|
}
|
|
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
|
|
Op, DAG.getConstant(1, VT));
|
|
}
|
|
}
|
|
|
|
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND &&
|
|
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
|
|
SDValue N101 = N1.getOperand(0).getOperand(1);
|
|
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
|
|
EVT TruncVT = N1.getValueType();
|
|
SDValue N100 = N1.getOperand(0).getOperand(0);
|
|
APInt TruncC = N101C->getAPIntValue();
|
|
TruncC = TruncC.trunc(TruncVT.getSizeInBits());
|
|
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
|
|
DAG.getNode(ISD::AND, N->getDebugLoc(),
|
|
TruncVT,
|
|
DAG.getNode(ISD::TRUNCATE,
|
|
N->getDebugLoc(),
|
|
TruncVT, N100),
|
|
DAG.getConstant(TruncC, TruncVT)));
|
|
}
|
|
}
|
|
|
|
// fold operands of srl based on knowledge that the low bits are not
|
|
// demanded.
|
|
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
if (N1C) {
|
|
SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
|
|
if (NewSRL.getNode())
|
|
return NewSRL;
|
|
}
|
|
|
|
// Attempt to convert a srl of a load into a narrower zero-extending load.
|
|
SDValue NarrowLoad = ReduceLoadWidth(N);
|
|
if (NarrowLoad.getNode())
|
|
return NarrowLoad;
|
|
|
|
// Here is a common situation. We want to optimize:
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = srl i32 %b, 1
|
|
// brcond i32 %c ...
|
|
//
|
|
// into
|
|
//
|
|
// %a = ...
|
|
// %b = and %a, 2
|
|
// %c = setcc eq %b, 0
|
|
// brcond %c ...
|
|
//
|
|
// However when after the source operand of SRL is optimized into AND, the SRL
|
|
// itself may not be optimized further. Look for it and add the BRCOND into
|
|
// the worklist.
|
|
if (N->hasOneUse()) {
|
|
SDNode *Use = *N->use_begin();
|
|
if (Use->getOpcode() == ISD::BRCOND)
|
|
AddToWorkList(Use);
|
|
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
|
|
// Also look pass the truncate.
|
|
Use = *Use->use_begin();
|
|
if (Use->getOpcode() == ISD::BRCOND)
|
|
AddToWorkList(Use);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctlz c1) -> c2
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctlz_zero_undef c1) -> c2
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (cttz c1) -> c2
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (cttz_zero_undef c1) -> c2
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctpop c1) -> c2
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSELECT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
|
|
EVT VT = N->getValueType(0);
|
|
EVT VT0 = N0.getValueType();
|
|
|
|
// fold (select C, X, X) -> X
|
|
if (N1 == N2)
|
|
return N1;
|
|
// fold (select true, X, Y) -> X
|
|
if (N0C && !N0C->isNullValue())
|
|
return N1;
|
|
// fold (select false, X, Y) -> Y
|
|
if (N0C && N0C->isNullValue())
|
|
return N2;
|
|
// fold (select C, 1, X) -> (or C, X)
|
|
if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
|
|
// fold (select C, 0, 1) -> (xor C, 1)
|
|
if (VT.isInteger() &&
|
|
(VT0 == MVT::i1 ||
|
|
(VT0.isInteger() &&
|
|
TLI.getBooleanContents(false) == TargetLowering::ZeroOrOneBooleanContent)) &&
|
|
N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
|
|
SDValue XORNode;
|
|
if (VT == VT0)
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
|
|
N0, DAG.getConstant(1, VT0));
|
|
XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
|
|
N0, DAG.getConstant(1, VT0));
|
|
AddToWorkList(XORNode.getNode());
|
|
if (VT.bitsGT(VT0))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
|
|
}
|
|
// fold (select C, 0, X) -> (and (not C), X)
|
|
if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
|
|
SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
|
|
AddToWorkList(NOTNode.getNode());
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
|
|
}
|
|
// fold (select C, X, 1) -> (or (not C), X)
|
|
if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
|
|
SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
|
|
AddToWorkList(NOTNode.getNode());
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
|
|
}
|
|
// fold (select C, X, 0) -> (and C, X)
|
|
if (VT == MVT::i1 && N2C && N2C->isNullValue())
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
|
|
// fold (select X, X, Y) -> (or X, Y)
|
|
// fold (select X, 1, Y) -> (or X, Y)
|
|
if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
|
|
// fold (select X, Y, X) -> (and X, Y)
|
|
// fold (select X, Y, 0) -> (and X, Y)
|
|
if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
// If we can fold this based on the true/false value, do so.
|
|
if (SimplifySelectOps(N, N1, N2))
|
|
return SDValue(N, 0); // Don't revisit N.
|
|
|
|
// fold selects based on a setcc into other things, such as min/max/abs
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
// FIXME:
|
|
// Check against MVT::Other for SELECT_CC, which is a workaround for targets
|
|
// having to say they don't support SELECT_CC on every type the DAG knows
|
|
// about, since there is no way to mark an opcode illegal at all value types
|
|
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
|
|
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
N1, N2, N0.getOperand(2));
|
|
return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue N3 = N->getOperand(3);
|
|
SDValue N4 = N->getOperand(4);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
|
|
|
|
// fold select_cc lhs, rhs, x, x, cc -> x
|
|
if (N2 == N3)
|
|
return N2;
|
|
|
|
// Determine if the condition we're dealing with is constant
|
|
SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
|
|
N0, N1, CC, N->getDebugLoc(), false);
|
|
if (SCC.getNode()) AddToWorkList(SCC.getNode());
|
|
|
|
if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
|
|
if (!SCCC->isNullValue())
|
|
return N2; // cond always true -> true val
|
|
else
|
|
return N3; // cond always false -> false val
|
|
}
|
|
|
|
// Fold to a simpler select_cc
|
|
if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
|
|
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
|
|
SCC.getOperand(0), SCC.getOperand(1), N2, N3,
|
|
SCC.getOperand(2));
|
|
|
|
// If we can fold this based on the true/false value, do so.
|
|
if (SimplifySelectOps(N, N2, N3))
|
|
return SDValue(N, 0); // Don't revisit N.
|
|
|
|
// fold select_cc into other things, such as min/max/abs
|
|
return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSETCC(SDNode *N) {
|
|
return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
|
|
cast<CondCodeSDNode>(N->getOperand(2))->get(),
|
|
N->getDebugLoc());
|
|
}
|
|
|
|
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
|
|
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
|
|
// transformation. Returns true if extension are possible and the above
|
|
// mentioned transformation is profitable.
|
|
static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
|
|
unsigned ExtOpc,
|
|
SmallVector<SDNode*, 4> &ExtendNodes,
|
|
const TargetLowering &TLI) {
|
|
bool HasCopyToRegUses = false;
|
|
bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
|
|
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
|
|
UE = N0.getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User == N)
|
|
continue;
|
|
if (UI.getUse().getResNo() != N0.getResNo())
|
|
continue;
|
|
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
|
|
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
|
|
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
|
|
// Sign bits will be lost after a zext.
|
|
return false;
|
|
bool Add = false;
|
|
for (unsigned i = 0; i != 2; ++i) {
|
|
SDValue UseOp = User->getOperand(i);
|
|
if (UseOp == N0)
|
|
continue;
|
|
if (!isa<ConstantSDNode>(UseOp))
|
|
return false;
|
|
Add = true;
|
|
}
|
|
if (Add)
|
|
ExtendNodes.push_back(User);
|
|
continue;
|
|
}
|
|
// If truncates aren't free and there are users we can't
|
|
// extend, it isn't worthwhile.
|
|
if (!isTruncFree)
|
|
return false;
|
|
// Remember if this value is live-out.
|
|
if (User->getOpcode() == ISD::CopyToReg)
|
|
HasCopyToRegUses = true;
|
|
}
|
|
|
|
if (HasCopyToRegUses) {
|
|
bool BothLiveOut = false;
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI) {
|
|
SDUse &Use = UI.getUse();
|
|
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
|
|
BothLiveOut = true;
|
|
break;
|
|
}
|
|
}
|
|
if (BothLiveOut)
|
|
// Both unextended and extended values are live out. There had better be
|
|
// a good reason for the transformation.
|
|
return ExtendNodes.size();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
|
|
SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
|
|
ISD::NodeType ExtType) {
|
|
// Extend SetCC uses if necessary.
|
|
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
|
|
SDNode *SetCC = SetCCs[i];
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
SDValue SOp = SetCC->getOperand(j);
|
|
if (SOp == Trunc)
|
|
Ops.push_back(ExtLoad);
|
|
else
|
|
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
|
|
}
|
|
|
|
Ops.push_back(SetCC->getOperand(2));
|
|
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
|
|
&Ops[0], Ops.size()));
|
|
}
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (sext c1) -> c1
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
|
|
|
|
// fold (sext (sext x)) -> (sext x)
|
|
// fold (sext (aext x)) -> (sext x)
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
|
|
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
|
|
N0.getOperand(0));
|
|
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
// fold (sext (truncate (load x))) -> (sext (smaller load x))
|
|
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
|
|
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
|
|
if (NarrowLoad.getNode()) {
|
|
SDNode* oye = N0.getNode()->getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorkList(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// See if the value being truncated is already sign extended. If so, just
|
|
// eliminate the trunc/sext pair.
|
|
SDValue Op = N0.getOperand(0);
|
|
unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
|
|
unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
|
|
unsigned DestBits = VT.getScalarType().getSizeInBits();
|
|
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
|
|
|
|
if (OpBits == DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
|
|
// bits, it is already ready.
|
|
if (NumSignBits > DestBits-MidBits)
|
|
return Op;
|
|
} else if (OpBits < DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
|
|
// bits, just sext from i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
|
|
} else {
|
|
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
|
|
// bits, just truncate to i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
|
|
}
|
|
|
|
// fold (sext (truncate x)) -> (sextinreg x).
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
|
|
N0.getValueType())) {
|
|
if (OpBits < DestBits)
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
|
|
else if (OpBits > DestBits)
|
|
Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
|
|
DAG.getValueType(N0.getValueType()));
|
|
}
|
|
}
|
|
|
|
// fold (sext (load x)) -> (sext (truncate (sextload x)))
|
|
// None of the supported targets knows how to perform load and sign extend
|
|
// on vectors in one instruction. We only perform this transformation on
|
|
// scalars.
|
|
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
N0.getValueType(),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad);
|
|
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
|
|
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
|
|
ISD::SIGN_EXTEND);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (sext (sextload x)) -> (sext (truncate (sextload x)))
|
|
// fold (sext ( extload x)) -> (sext (truncate (sextload x)))
|
|
if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
if ((!LegalOperations && !LN0->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
MemVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad),
|
|
ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (sext (and/or/xor (load x), cst)) ->
|
|
// (and/or/xor (sextload x), (sext cst))
|
|
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
|
|
N0.getOpcode() == ISD::XOR) &&
|
|
isa<LoadSDNode>(N0.getOperand(0)) &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
|
|
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
|
|
if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
|
|
SetCCs, TLI);
|
|
if (DoXform) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
|
|
LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(),
|
|
LN0->getMemoryVT(),
|
|
LN0->isVolatile(),
|
|
LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
Mask = Mask.sext(VT.getSizeInBits());
|
|
SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
|
|
ExtLoad, DAG.getConstant(Mask, VT));
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
|
|
N0.getOperand(0).getDebugLoc(),
|
|
N0.getOperand(0).getValueType(), ExtLoad);
|
|
CombineTo(N, And);
|
|
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
|
|
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
|
|
ISD::SIGN_EXTEND);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
// sext(setcc) -> sext_in_reg(vsetcc) for vectors.
|
|
// Only do this before legalize for now.
|
|
if (VT.isVector() && !LegalOperations) {
|
|
EVT N0VT = N0.getOperand(0).getValueType();
|
|
// On some architectures (such as SSE/NEON/etc) the SETCC result type is
|
|
// of the same size as the compared operands. Only optimize sext(setcc())
|
|
// if this is the case.
|
|
EVT SVT = TLI.getSetCCResultType(N0VT);
|
|
|
|
// We know that the # elements of the results is the same as the
|
|
// # elements of the compare (and the # elements of the compare result
|
|
// for that matter). Check to see that they are the same size. If so,
|
|
// we know that the element size of the sext'd result matches the
|
|
// element size of the compare operands.
|
|
if (VT.getSizeInBits() == SVT.getSizeInBits())
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements we can use a matching integer vector type and then
|
|
// truncate/sign extend
|
|
else {
|
|
EVT MatchingElementType =
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
N0VT.getScalarType().getSizeInBits());
|
|
EVT MatchingVectorType =
|
|
EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
|
|
N0VT.getVectorNumElements());
|
|
|
|
if (SVT == MatchingVectorType) {
|
|
SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
|
|
}
|
|
}
|
|
}
|
|
|
|
// sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
|
|
unsigned ElementWidth = VT.getScalarType().getSizeInBits();
|
|
SDValue NegOne =
|
|
DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
|
|
SDValue SCC =
|
|
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
|
|
NegOne, DAG.getConstant(0, VT),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
|
|
if (SCC.getNode()) return SCC;
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
|
|
return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
|
|
DAG.getSetCC(N->getDebugLoc(),
|
|
TLI.getSetCCResultType(VT),
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get()),
|
|
NegOne, DAG.getConstant(0, VT));
|
|
}
|
|
|
|
// fold (sext x) -> (zext x) if the sign bit is known zero.
|
|
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
|
|
DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// isTruncateOf - If N is a truncate of some other value, return true, record
|
|
// the value being truncated in Op and which of Op's bits are zero in KnownZero.
|
|
// This function computes KnownZero to avoid a duplicated call to
|
|
// ComputeMaskedBits in the caller.
|
|
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
|
|
APInt &KnownZero) {
|
|
APInt KnownOne;
|
|
if (N->getOpcode() == ISD::TRUNCATE) {
|
|
Op = N->getOperand(0);
|
|
DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
|
|
return true;
|
|
}
|
|
|
|
if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
|
|
cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
|
|
return false;
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
assert(Op0.getValueType() == Op1.getValueType());
|
|
|
|
ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
|
|
ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
|
|
if (COp0 && COp0->isNullValue())
|
|
Op = Op1;
|
|
else if (COp1 && COp1->isNullValue())
|
|
Op = Op0;
|
|
else
|
|
return false;
|
|
|
|
DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
|
|
|
|
if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (zext c1) -> c1
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
|
|
// fold (zext (zext x)) -> (zext x)
|
|
// fold (zext (aext x)) -> (zext x)
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
|
|
N0.getOperand(0));
|
|
|
|
// fold (zext (truncate x)) -> (zext x) or
|
|
// (zext (truncate x)) -> (truncate x)
|
|
// This is valid when the truncated bits of x are already zero.
|
|
// FIXME: We should extend this to work for vectors too.
|
|
SDValue Op;
|
|
APInt KnownZero;
|
|
if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
|
|
APInt TruncatedBits =
|
|
(Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
|
|
APInt(Op.getValueSizeInBits(), 0) :
|
|
APInt::getBitsSet(Op.getValueSizeInBits(),
|
|
N0.getValueSizeInBits(),
|
|
std::min(Op.getValueSizeInBits(),
|
|
VT.getSizeInBits()));
|
|
if (TruncatedBits == (KnownZero & TruncatedBits)) {
|
|
if (VT.bitsGT(Op.getValueType()))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
|
|
if (VT.bitsLT(Op.getValueType()))
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
|
|
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// fold (zext (truncate (load x))) -> (zext (smaller load x))
|
|
// fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
|
|
if (NarrowLoad.getNode()) {
|
|
SDNode* oye = N0.getNode()->getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorkList(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (zext (truncate x)) -> (and x, mask)
|
|
if (N0.getOpcode() == ISD::TRUNCATE &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
|
|
|
|
// fold (zext (truncate (load x))) -> (zext (smaller load x))
|
|
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
|
|
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
|
|
if (NarrowLoad.getNode()) {
|
|
SDNode* oye = N0.getNode()->getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorkList(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
SDValue Op = N0.getOperand(0);
|
|
if (Op.getValueType().bitsLT(VT)) {
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
|
|
AddToWorkList(Op.getNode());
|
|
} else if (Op.getValueType().bitsGT(VT)) {
|
|
Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
|
|
AddToWorkList(Op.getNode());
|
|
}
|
|
return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
|
|
N0.getValueType().getScalarType());
|
|
}
|
|
|
|
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
|
|
// if either of the casts is not free.
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
|
|
N0.getValueType()) ||
|
|
!TLI.isZExtFree(N0.getValueType(), VT))) {
|
|
SDValue X = N0.getOperand(0).getOperand(0);
|
|
if (X.getValueType().bitsLT(VT)) {
|
|
X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
|
|
} else if (X.getValueType().bitsGT(VT)) {
|
|
X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
|
|
}
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
Mask = Mask.zext(VT.getSizeInBits());
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
X, DAG.getConstant(Mask, VT));
|
|
}
|
|
|
|
// fold (zext (load x)) -> (zext (truncate (zextload x)))
|
|
// None of the supported targets knows how to perform load and vector_zext
|
|
// on vectors in one instruction. We only perform this transformation on
|
|
// scalars.
|
|
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
N0.getValueType(),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad);
|
|
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
|
|
|
|
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
|
|
ISD::ZERO_EXTEND);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (zext (and/or/xor (load x), cst)) ->
|
|
// (and/or/xor (zextload x), (zext cst))
|
|
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
|
|
N0.getOpcode() == ISD::XOR) &&
|
|
isa<LoadSDNode>(N0.getOperand(0)) &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
|
|
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
|
|
if (LN0->getExtensionType() != ISD::SEXTLOAD) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
|
|
SetCCs, TLI);
|
|
if (DoXform) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
|
|
LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(),
|
|
LN0->getMemoryVT(),
|
|
LN0->isVolatile(),
|
|
LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
Mask = Mask.zext(VT.getSizeInBits());
|
|
SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
|
|
ExtLoad, DAG.getConstant(Mask, VT));
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
|
|
N0.getOperand(0).getDebugLoc(),
|
|
N0.getOperand(0).getValueType(), ExtLoad);
|
|
CombineTo(N, And);
|
|
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
|
|
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
|
|
ISD::ZERO_EXTEND);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (zext (zextload x)) -> (zext (truncate (zextload x)))
|
|
// fold (zext ( extload x)) -> (zext (truncate (zextload x)))
|
|
if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
if ((!LegalOperations && !LN0->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
MemVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
|
|
ExtLoad),
|
|
ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
if (!LegalOperations && VT.isVector()) {
|
|
// zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
|
|
// Only do this before legalize for now.
|
|
EVT N0VT = N0.getOperand(0).getValueType();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
|
|
DAG.getConstant(1, EltVT));
|
|
if (VT.getSizeInBits() == N0VT.getSizeInBits())
|
|
// We know that the # elements of the results is the same as the
|
|
// # elements of the compare (and the # elements of the compare result
|
|
// for that matter). Check to see that they are the same size. If so,
|
|
// we know that the element size of the sext'd result matches the
|
|
// element size of the compare operands.
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get()),
|
|
DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
|
|
&OneOps[0], OneOps.size()));
|
|
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements we can use a matching integer vector type and then
|
|
// truncate/sign extend
|
|
EVT MatchingElementType =
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
N0VT.getScalarType().getSizeInBits());
|
|
EVT MatchingVectorType =
|
|
EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
|
|
N0VT.getVectorNumElements());
|
|
SDValue VsetCC =
|
|
DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
|
|
DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
|
|
&OneOps[0], OneOps.size()));
|
|
}
|
|
|
|
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
|
|
SDValue SCC =
|
|
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
|
|
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
|
|
if (SCC.getNode()) return SCC;
|
|
}
|
|
|
|
// (zext (shl (zext x), cst)) -> (shl (zext x), cst)
|
|
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
|
|
isa<ConstantSDNode>(N0.getOperand(1)) &&
|
|
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
|
|
N0.hasOneUse()) {
|
|
SDValue ShAmt = N0.getOperand(1);
|
|
unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
|
|
if (N0.getOpcode() == ISD::SHL) {
|
|
SDValue InnerZExt = N0.getOperand(0);
|
|
// If the original shl may be shifting out bits, do not perform this
|
|
// transformation.
|
|
unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
|
|
InnerZExt.getOperand(0).getValueType().getSizeInBits();
|
|
if (ShAmtVal > KnownZeroBits)
|
|
return SDValue();
|
|
}
|
|
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// Ensure that the shift amount is wide enough for the shifted value.
|
|
if (VT.getSizeInBits() >= 256)
|
|
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
|
|
|
|
return DAG.getNode(N0.getOpcode(), DL, VT,
|
|
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
|
|
ShAmt);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (aext c1) -> c1
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
|
|
// fold (aext (aext x)) -> (aext x)
|
|
// fold (aext (zext x)) -> (zext x)
|
|
// fold (aext (sext x)) -> (sext x)
|
|
if (N0.getOpcode() == ISD::ANY_EXTEND ||
|
|
N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND)
|
|
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
|
|
|
|
// fold (aext (truncate (load x))) -> (aext (smaller load x))
|
|
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
|
|
if (NarrowLoad.getNode()) {
|
|
SDNode* oye = N0.getNode()->getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorkList(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (aext (truncate x))
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue TruncOp = N0.getOperand(0);
|
|
if (TruncOp.getValueType() == VT)
|
|
return TruncOp; // x iff x size == zext size.
|
|
if (TruncOp.getValueType().bitsGT(VT))
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
|
|
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
|
|
}
|
|
|
|
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
|
|
// if the trunc is not free.
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
|
|
N0.getValueType())) {
|
|
SDValue X = N0.getOperand(0).getOperand(0);
|
|
if (X.getValueType().bitsLT(VT)) {
|
|
X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
|
|
} else if (X.getValueType().bitsGT(VT)) {
|
|
X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
|
|
}
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
Mask = Mask.zext(VT.getSizeInBits());
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
X, DAG.getConstant(Mask, VT));
|
|
}
|
|
|
|
// fold (aext (load x)) -> (aext (truncate (extload x)))
|
|
// None of the supported targets knows how to perform load and any_ext
|
|
// on vectors in one instruction. We only perform this transformation on
|
|
// scalars.
|
|
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
N0.getValueType(),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad);
|
|
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
|
|
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
|
|
ISD::ANY_EXTEND);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
|
|
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
|
|
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
|
|
if (N0.getOpcode() == ISD::LOAD &&
|
|
!ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
N0.hasOneUse()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
|
|
VT, LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(), MemVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad),
|
|
ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
// aext(setcc) -> sext_in_reg(vsetcc) for vectors.
|
|
// Only do this before legalize for now.
|
|
if (VT.isVector() && !LegalOperations) {
|
|
EVT N0VT = N0.getOperand(0).getValueType();
|
|
// We know that the # elements of the results is the same as the
|
|
// # elements of the compare (and the # elements of the compare result
|
|
// for that matter). Check to see that they are the same size. If so,
|
|
// we know that the element size of the sext'd result matches the
|
|
// element size of the compare operands.
|
|
if (VT.getSizeInBits() == N0VT.getSizeInBits())
|
|
return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements we can use a matching integer vector type and then
|
|
// truncate/sign extend
|
|
else {
|
|
EVT MatchingElementType =
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
N0VT.getScalarType().getSizeInBits());
|
|
EVT MatchingVectorType =
|
|
EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
|
|
N0VT.getVectorNumElements());
|
|
SDValue VsetCC =
|
|
DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
|
|
}
|
|
}
|
|
|
|
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
|
|
SDValue SCC =
|
|
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
|
|
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
|
|
if (SCC.getNode())
|
|
return SCC;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// GetDemandedBits - See if the specified operand can be simplified with the
|
|
/// knowledge that only the bits specified by Mask are used. If so, return the
|
|
/// simpler operand, otherwise return a null SDValue.
|
|
SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
|
|
switch (V.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
|
|
assert(CV != 0 && "Const value should be ConstSDNode.");
|
|
const APInt &CVal = CV->getAPIntValue();
|
|
APInt NewVal = CVal & Mask;
|
|
if (NewVal != CVal) {
|
|
return DAG.getConstant(NewVal, V.getValueType());
|
|
}
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
// If the LHS or RHS don't contribute bits to the or, drop them.
|
|
if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
|
|
return V.getOperand(1);
|
|
if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
|
|
return V.getOperand(0);
|
|
break;
|
|
case ISD::SRL:
|
|
// Only look at single-use SRLs.
|
|
if (!V.getNode()->hasOneUse())
|
|
break;
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
|
|
// See if we can recursively simplify the LHS.
|
|
unsigned Amt = RHSC->getZExtValue();
|
|
|
|
// Watch out for shift count overflow though.
|
|
if (Amt >= Mask.getBitWidth()) break;
|
|
APInt NewMask = Mask << Amt;
|
|
SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
|
|
if (SimplifyLHS.getNode())
|
|
return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
|
|
SimplifyLHS, V.getOperand(1));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
|
|
/// bits and then truncated to a narrower type and where N is a multiple
|
|
/// of number of bits of the narrower type, transform it to a narrower load
|
|
/// from address + N / num of bits of new type. If the result is to be
|
|
/// extended, also fold the extension to form a extending load.
|
|
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
|
|
unsigned Opc = N->getOpcode();
|
|
|
|
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT ExtVT = VT;
|
|
|
|
// This transformation isn't valid for vector loads.
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
|
|
// extended to VT.
|
|
if (Opc == ISD::SIGN_EXTEND_INREG) {
|
|
ExtType = ISD::SEXTLOAD;
|
|
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
} else if (Opc == ISD::SRL) {
|
|
// Another special-case: SRL is basically zero-extending a narrower value.
|
|
ExtType = ISD::ZEXTLOAD;
|
|
N0 = SDValue(N, 0);
|
|
ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!N01) return SDValue();
|
|
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
VT.getSizeInBits() - N01->getZExtValue());
|
|
}
|
|
if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
|
|
return SDValue();
|
|
|
|
unsigned EVTBits = ExtVT.getSizeInBits();
|
|
|
|
// Do not generate loads of non-round integer types since these can
|
|
// be expensive (and would be wrong if the type is not byte sized).
|
|
if (!ExtVT.isRound())
|
|
return SDValue();
|
|
|
|
unsigned ShAmt = 0;
|
|
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
|
|
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
ShAmt = N01->getZExtValue();
|
|
// Is the shift amount a multiple of size of VT?
|
|
if ((ShAmt & (EVTBits-1)) == 0) {
|
|
N0 = N0.getOperand(0);
|
|
// Is the load width a multiple of size of VT?
|
|
if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
|
|
return SDValue();
|
|
}
|
|
|
|
// At this point, we must have a load or else we can't do the transform.
|
|
if (!isa<LoadSDNode>(N0)) return SDValue();
|
|
|
|
// If the shift amount is larger than the input type then we're not
|
|
// accessing any of the loaded bytes. If the load was a zextload/extload
|
|
// then the result of the shift+trunc is zero/undef (handled elsewhere).
|
|
// If the load was a sextload then the result is a splat of the sign bit
|
|
// of the extended byte. This is not worth optimizing for.
|
|
if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// If the load is shifted left (and the result isn't shifted back right),
|
|
// we can fold the truncate through the shift.
|
|
unsigned ShLeftAmt = 0;
|
|
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
|
|
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
|
|
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
ShLeftAmt = N01->getZExtValue();
|
|
N0 = N0.getOperand(0);
|
|
}
|
|
}
|
|
|
|
// If we haven't found a load, we can't narrow it. Don't transform one with
|
|
// multiple uses, this would require adding a new load.
|
|
if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
|
|
// Don't change the width of a volatile load.
|
|
cast<LoadSDNode>(N0)->isVolatile())
|
|
return SDValue();
|
|
|
|
// Verify that we are actually reducing a load width here.
|
|
if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
|
|
return SDValue();
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT PtrType = N0.getOperand(1).getValueType();
|
|
|
|
// For big endian targets, we need to adjust the offset to the pointer to
|
|
// load the correct bytes.
|
|
if (TLI.isBigEndian()) {
|
|
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
|
|
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
|
|
ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
|
|
}
|
|
|
|
uint64_t PtrOff = ShAmt / 8;
|
|
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
|
|
PtrType, LN0->getBasePtr(),
|
|
DAG.getConstant(PtrOff, PtrType));
|
|
AddToWorkList(NewPtr.getNode());
|
|
|
|
SDValue Load;
|
|
if (ExtType == ISD::NON_EXTLOAD)
|
|
Load = DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
|
|
LN0->getPointerInfo().getWithOffset(PtrOff),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->isInvariant(), NewAlign);
|
|
else
|
|
Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
|
|
LN0->getPointerInfo().getWithOffset(PtrOff),
|
|
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
|
|
NewAlign);
|
|
|
|
// Replace the old load's chain with the new load's chain.
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
|
|
|
|
// Shift the result left, if we've swallowed a left shift.
|
|
SDValue Result = Load;
|
|
if (ShLeftAmt != 0) {
|
|
EVT ShImmTy = getShiftAmountTy(Result.getValueType());
|
|
if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
|
|
ShImmTy = VT;
|
|
Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
|
|
Result, DAG.getConstant(ShLeftAmt, ShImmTy));
|
|
}
|
|
|
|
// Return the new loaded value.
|
|
return Result;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT EVT = cast<VTSDNode>(N1)->getVT();
|
|
unsigned VTBits = VT.getScalarType().getSizeInBits();
|
|
unsigned EVTBits = EVT.getScalarType().getSizeInBits();
|
|
|
|
// fold (sext_in_reg c1) -> c1
|
|
if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
// If the input is already sign extended, just drop the extension.
|
|
if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
|
|
return N0;
|
|
|
|
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N1);
|
|
}
|
|
|
|
// fold (sext_in_reg (sext x)) -> (sext x)
|
|
// fold (sext_in_reg (aext x)) -> (sext x)
|
|
// if x is small enough.
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
|
|
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
|
|
}
|
|
|
|
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
|
|
if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
|
|
return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
|
|
|
|
// fold operands of sext_in_reg based on knowledge that the top bits are not
|
|
// demanded.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (sext_in_reg (load x)) -> (smaller sextload x)
|
|
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
|
|
SDValue NarrowLoad = ReduceLoadWidth(N);
|
|
if (NarrowLoad.getNode())
|
|
return NarrowLoad;
|
|
|
|
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
|
|
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
|
|
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
|
|
if (N0.getOpcode() == ISD::SRL) {
|
|
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
|
|
if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
|
|
// We can turn this into an SRA iff the input to the SRL is already sign
|
|
// extended enough.
|
|
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
|
|
if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
|
|
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N0.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// fold (sext_inreg (extload x)) -> (sextload x)
|
|
if (ISD::isEXTLoad(N0.getNode()) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
EVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
|
|
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
N0.hasOneUse() &&
|
|
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
EVT,
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
|
|
if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
|
|
SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
|
|
N0.getOperand(1), false);
|
|
if (BSwap.getNode() != 0)
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
|
|
BSwap, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
bool isLE = TLI.isLittleEndian();
|
|
|
|
// noop truncate
|
|
if (N0.getValueType() == N->getValueType(0))
|
|
return N0;
|
|
// fold (truncate c1) -> c1
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
|
|
// fold (truncate (truncate x)) -> (truncate x)
|
|
if (N0.getOpcode() == ISD::TRUNCATE)
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
|
|
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND ||
|
|
N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
if (N0.getOperand(0).getValueType().bitsLT(VT))
|
|
// if the source is smaller than the dest, we still need an extend
|
|
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
|
|
N0.getOperand(0));
|
|
else if (N0.getOperand(0).getValueType().bitsGT(VT))
|
|
// if the source is larger than the dest, than we just need the truncate
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
|
|
else
|
|
// if the source and dest are the same type, we can drop both the extend
|
|
// and the truncate.
|
|
return N0.getOperand(0);
|
|
}
|
|
|
|
// Fold extract-and-trunc into a narrow extract. For example:
|
|
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
|
|
// i32 y = TRUNCATE(i64 x)
|
|
// -- becomes --
|
|
// v16i8 b = BITCAST (v2i64 val)
|
|
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
|
|
//
|
|
// Note: We only run this optimization after type legalization (which often
|
|
// creates this pattern) and before operation legalization after which
|
|
// we need to be more careful about the vector instructions that we generate.
|
|
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
LegalTypes && !LegalOperations && N0->hasOneUse()) {
|
|
|
|
EVT VecTy = N0.getOperand(0).getValueType();
|
|
EVT ExTy = N0.getValueType();
|
|
EVT TrTy = N->getValueType(0);
|
|
|
|
unsigned NumElem = VecTy.getVectorNumElements();
|
|
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
|
|
|
|
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
|
|
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
|
|
|
|
SDValue EltNo = N0->getOperand(1);
|
|
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
|
|
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
EVT IndexTy = N0->getOperand(1).getValueType();
|
|
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
|
|
|
|
SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
|
|
NVT, N0.getOperand(0));
|
|
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
|
|
N->getDebugLoc(), TrTy, V,
|
|
DAG.getConstant(Index, IndexTy));
|
|
}
|
|
}
|
|
|
|
// See if we can simplify the input to this truncate through knowledge that
|
|
// only the low bits are being used.
|
|
// For example "trunc (or (shl x, 8), y)" // -> trunc y
|
|
// Currently we only perform this optimization on scalars because vectors
|
|
// may have different active low bits.
|
|
if (!VT.isVector()) {
|
|
SDValue Shorter =
|
|
GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
|
|
VT.getSizeInBits()));
|
|
if (Shorter.getNode())
|
|
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
|
|
}
|
|
// fold (truncate (load x)) -> (smaller load x)
|
|
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
|
|
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
|
|
SDValue Reduced = ReduceLoadWidth(N);
|
|
if (Reduced.getNode())
|
|
return Reduced;
|
|
}
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (!VT.isVector() &&
|
|
SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
|
|
SDValue Elt = N->getOperand(i);
|
|
if (Elt.getOpcode() != ISD::MERGE_VALUES)
|
|
return Elt.getNode();
|
|
return Elt.getOperand(Elt.getResNo()).getNode();
|
|
}
|
|
|
|
/// CombineConsecutiveLoads - build_pair (load, load) -> load
|
|
/// if load locations are consecutive.
|
|
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
|
|
assert(N->getOpcode() == ISD::BUILD_PAIR);
|
|
|
|
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
|
|
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
|
|
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
|
|
LD1->getPointerInfo().getAddrSpace() !=
|
|
LD2->getPointerInfo().getAddrSpace())
|
|
return SDValue();
|
|
EVT LD1VT = LD1->getValueType(0);
|
|
|
|
if (ISD::isNON_EXTLoad(LD2) &&
|
|
LD2->hasOneUse() &&
|
|
// If both are volatile this would reduce the number of volatile loads.
|
|
// If one is volatile it might be ok, but play conservative and bail out.
|
|
!LD1->isVolatile() &&
|
|
!LD2->isVolatile() &&
|
|
DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
|
|
unsigned Align = LD1->getAlignment();
|
|
unsigned NewAlign = TLI.getTargetData()->
|
|
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign <= Align &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
|
|
return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
|
|
LD1->getBasePtr(), LD1->getPointerInfo(),
|
|
false, false, false, Align);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
|
|
// Only do this before legalize, since afterward the target may be depending
|
|
// on the bitconvert.
|
|
// First check to see if this is all constant.
|
|
if (!LegalTypes &&
|
|
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
|
|
VT.isVector()) {
|
|
bool isSimple = true;
|
|
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
|
|
if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
|
|
N0.getOperand(i).getOpcode() != ISD::Constant &&
|
|
N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
|
|
isSimple = false;
|
|
break;
|
|
}
|
|
|
|
EVT DestEltVT = N->getValueType(0).getVectorElementType();
|
|
assert(!DestEltVT.isVector() &&
|
|
"Element type of vector ValueType must not be vector!");
|
|
if (isSimple)
|
|
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
|
|
}
|
|
|
|
// If the input is a constant, let getNode fold it.
|
|
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
|
|
SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
|
|
if (Res.getNode() != N) {
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
|
|
return Res;
|
|
|
|
// Folding it resulted in an illegal node, and it's too late to
|
|
// do that. Clean up the old node and forego the transformation.
|
|
// Ideally this won't happen very often, because instcombine
|
|
// and the earlier dagcombine runs (where illegal nodes are
|
|
// permitted) should have folded most of them already.
|
|
DAG.DeleteNode(Res.getNode());
|
|
}
|
|
}
|
|
|
|
// (conv (conv x, t1), t2) -> (conv x, t2)
|
|
if (N0.getOpcode() == ISD::BITCAST)
|
|
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
|
|
N0.getOperand(0));
|
|
|
|
// fold (conv (load x)) -> (load (conv*)x)
|
|
// If the resultant load doesn't need a higher alignment than the original!
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
// Do not change the width of a volatile load.
|
|
!cast<LoadSDNode>(N0)->isVolatile() &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
unsigned Align = TLI.getTargetData()->
|
|
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
|
|
unsigned OrigAlign = LN0->getAlignment();
|
|
|
|
if (Align <= OrigAlign) {
|
|
SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->isInvariant(), OrigAlign);
|
|
AddToWorkList(N);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
|
|
N0.getValueType(), Load),
|
|
Load.getValue(1));
|
|
return Load;
|
|
}
|
|
}
|
|
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
// This often reduces constant pool loads.
|
|
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
|
|
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
|
|
N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
|
|
SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0));
|
|
AddToWorkList(NewConv.getNode());
|
|
|
|
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
|
|
if (N0.getOpcode() == ISD::FNEG)
|
|
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
|
|
NewConv, DAG.getConstant(SignBit, VT));
|
|
assert(N0.getOpcode() == ISD::FABS);
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
NewConv, DAG.getConstant(~SignBit, VT));
|
|
}
|
|
|
|
// fold (bitconvert (fcopysign cst, x)) ->
|
|
// (or (and (bitconvert x), sign), (and cst, (not sign)))
|
|
// Note that we don't handle (copysign x, cst) because this can always be
|
|
// folded to an fneg or fabs.
|
|
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
|
|
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
|
|
VT.isInteger() && !VT.isVector()) {
|
|
unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
|
|
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
|
|
if (isTypeLegal(IntXVT)) {
|
|
SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
|
|
IntXVT, N0.getOperand(1));
|
|
AddToWorkList(X.getNode());
|
|
|
|
// If X has a different width than the result/lhs, sext it or truncate it.
|
|
unsigned VTWidth = VT.getSizeInBits();
|
|
if (OrigXWidth < VTWidth) {
|
|
X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
|
|
AddToWorkList(X.getNode());
|
|
} else if (OrigXWidth > VTWidth) {
|
|
// To get the sign bit in the right place, we have to shift it right
|
|
// before truncating.
|
|
X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
|
|
X.getValueType(), X,
|
|
DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
|
|
AddToWorkList(X.getNode());
|
|
X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
|
|
AddToWorkList(X.getNode());
|
|
}
|
|
|
|
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
|
|
X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
|
|
X, DAG.getConstant(SignBit, VT));
|
|
AddToWorkList(X.getNode());
|
|
|
|
SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
|
|
VT, N0.getOperand(0));
|
|
Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
|
|
Cst, DAG.getConstant(~SignBit, VT));
|
|
AddToWorkList(Cst.getNode());
|
|
|
|
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
|
|
}
|
|
}
|
|
|
|
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
|
|
if (N0.getOpcode() == ISD::BUILD_PAIR) {
|
|
SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
|
|
if (CombineLD.getNode())
|
|
return CombineLD;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
return CombineConsecutiveLoads(N, VT);
|
|
}
|
|
|
|
/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
|
|
/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
|
|
/// destination element value type.
|
|
SDValue DAGCombiner::
|
|
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
|
|
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
|
|
|
|
// If this is already the right type, we're done.
|
|
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
|
|
|
|
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
|
|
unsigned DstBitSize = DstEltVT.getSizeInBits();
|
|
|
|
// If this is a conversion of N elements of one type to N elements of another
|
|
// type, convert each element. This handles FP<->INT cases.
|
|
if (SrcBitSize == DstBitSize) {
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
|
|
BV->getValueType(0).getVectorNumElements());
|
|
|
|
// Due to the FP element handling below calling this routine recursively,
|
|
// we can end up with a scalar-to-vector node here.
|
|
if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
|
|
DstEltVT, BV->getOperand(0)));
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
|
|
SDValue Op = BV->getOperand(i);
|
|
// If the vector element type is not legal, the BUILD_VECTOR operands
|
|
// are promoted and implicitly truncated. Make that explicit here.
|
|
if (Op.getValueType() != SrcEltVT)
|
|
Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
|
|
DstEltVT, Op));
|
|
AddToWorkList(Ops.back().getNode());
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
|
|
&Ops[0], Ops.size());
|
|
}
|
|
|
|
// Otherwise, we're growing or shrinking the elements. To avoid having to
|
|
// handle annoying details of growing/shrinking FP values, we convert them to
|
|
// int first.
|
|
if (SrcEltVT.isFloatingPoint()) {
|
|
// Convert the input float vector to a int vector where the elements are the
|
|
// same sizes.
|
|
assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
|
|
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
|
|
SrcEltVT = IntVT;
|
|
}
|
|
|
|
// Now we know the input is an integer vector. If the output is a FP type,
|
|
// convert to integer first, then to FP of the right size.
|
|
if (DstEltVT.isFloatingPoint()) {
|
|
assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
|
|
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
|
|
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
|
|
|
|
// Next, convert to FP elements of the same size.
|
|
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
|
|
}
|
|
|
|
// Okay, we know the src/dst types are both integers of differing types.
|
|
// Handling growing first.
|
|
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
|
|
if (SrcBitSize < DstBitSize) {
|
|
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
|
|
i += NumInputsPerOutput) {
|
|
bool isLE = TLI.isLittleEndian();
|
|
APInt NewBits = APInt(DstBitSize, 0);
|
|
bool EltIsUndef = true;
|
|
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
|
|
// Shift the previously computed bits over.
|
|
NewBits <<= SrcBitSize;
|
|
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
|
|
if (Op.getOpcode() == ISD::UNDEF) continue;
|
|
EltIsUndef = false;
|
|
|
|
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
|
|
zextOrTrunc(SrcBitSize).zext(DstBitSize);
|
|
}
|
|
|
|
if (EltIsUndef)
|
|
Ops.push_back(DAG.getUNDEF(DstEltVT));
|
|
else
|
|
Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
|
|
}
|
|
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
|
|
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
|
|
&Ops[0], Ops.size());
|
|
}
|
|
|
|
// Finally, this must be the case where we are shrinking elements: each input
|
|
// turns into multiple outputs.
|
|
bool isS2V = ISD::isScalarToVector(BV);
|
|
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
|
|
NumOutputsPerInput*BV->getNumOperands());
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
|
|
if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
|
|
for (unsigned j = 0; j != NumOutputsPerInput; ++j)
|
|
Ops.push_back(DAG.getUNDEF(DstEltVT));
|
|
continue;
|
|
}
|
|
|
|
APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
|
|
getAPIntValue().zextOrTrunc(SrcBitSize);
|
|
|
|
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
|
|
APInt ThisVal = OpVal.trunc(DstBitSize);
|
|
Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
|
|
if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
|
|
// Simply turn this into a SCALAR_TO_VECTOR of the new type.
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
|
|
Ops[0]);
|
|
OpVal = OpVal.lshr(DstBitSize);
|
|
}
|
|
|
|
// For big endian targets, swap the order of the pieces of each element.
|
|
if (TLI.isBigEndian())
|
|
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
|
|
}
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
|
|
&Ops[0], Ops.size());
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFADD(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (fadd c1, c2) -> (fadd c1, c2)
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
|
|
// canonicalize constant to RHS
|
|
if (N0CFP && !N1CFP)
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (fadd A, 0) -> A
|
|
if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
|
|
N1CFP->getValueAPF().isZero())
|
|
return N0;
|
|
// fold (fadd A, (fneg B)) -> (fsub A, B)
|
|
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
|
|
isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
|
|
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
|
|
GetNegatedExpression(N1, DAG, LegalOperations));
|
|
// fold (fadd (fneg A), B) -> (fsub B, A)
|
|
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
|
|
isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
|
|
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
|
|
GetNegatedExpression(N0, DAG, LegalOperations));
|
|
|
|
// If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
|
|
if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
|
|
N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
|
|
isa<ConstantFPSDNode>(N0.getOperand(1)))
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
|
|
N0.getOperand(1), N1));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFSUB(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (fsub c1, c2) -> c1-c2
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
|
|
// fold (fsub A, 0) -> A
|
|
if (DAG.getTarget().Options.UnsafeFPMath &&
|
|
N1CFP && N1CFP->getValueAPF().isZero())
|
|
return N0;
|
|
// fold (fsub 0, B) -> -B
|
|
if (DAG.getTarget().Options.UnsafeFPMath &&
|
|
N0CFP && N0CFP->getValueAPF().isZero()) {
|
|
if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
|
|
return GetNegatedExpression(N1, DAG, LegalOperations);
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
|
|
}
|
|
// fold (fsub A, (fneg B)) -> (fadd A, B)
|
|
if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
|
|
GetNegatedExpression(N1, DAG, LegalOperations));
|
|
|
|
// If 'unsafe math' is enabled, fold
|
|
// (fsub x, x) -> 0.0 &
|
|
// (fsub x, (fadd x, y)) -> (fneg y) &
|
|
// (fsub x, (fadd y, x)) -> (fneg y)
|
|
if (DAG.getTarget().Options.UnsafeFPMath) {
|
|
if (N0 == N1)
|
|
return DAG.getConstantFP(0.0f, VT);
|
|
|
|
if (N1.getOpcode() == ISD::FADD) {
|
|
SDValue N10 = N1->getOperand(0);
|
|
SDValue N11 = N1->getOperand(1);
|
|
|
|
if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
|
|
&DAG.getTarget().Options))
|
|
return GetNegatedExpression(N11, DAG, LegalOperations);
|
|
else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
|
|
&DAG.getTarget().Options))
|
|
return GetNegatedExpression(N10, DAG, LegalOperations);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMUL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (fmul c1, c2) -> c1*c2
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
|
|
// canonicalize constant to RHS
|
|
if (N0CFP && !N1CFP)
|
|
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
|
|
// fold (fmul A, 0) -> 0
|
|
if (DAG.getTarget().Options.UnsafeFPMath &&
|
|
N1CFP && N1CFP->getValueAPF().isZero())
|
|
return N1;
|
|
// fold (fmul A, 0) -> 0, vector edition.
|
|
if (DAG.getTarget().Options.UnsafeFPMath &&
|
|
ISD::isBuildVectorAllZeros(N1.getNode()))
|
|
return N1;
|
|
// fold (fmul A, 1.0) -> A
|
|
if (N1CFP && N1CFP->isExactlyValue(1.0))
|
|
return N0;
|
|
// fold (fmul X, 2.0) -> (fadd X, X)
|
|
if (N1CFP && N1CFP->isExactlyValue(+2.0))
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
|
|
// fold (fmul X, -1.0) -> (fneg X)
|
|
if (N1CFP && N1CFP->isExactlyValue(-1.0))
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
|
|
|
|
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
|
|
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
|
|
&DAG.getTarget().Options)) {
|
|
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
|
|
&DAG.getTarget().Options)) {
|
|
// Both can be negated for free, check to see if at least one is cheaper
|
|
// negated.
|
|
if (LHSNeg == 2 || RHSNeg == 2)
|
|
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
|
|
GetNegatedExpression(N0, DAG, LegalOperations),
|
|
GetNegatedExpression(N1, DAG, LegalOperations));
|
|
}
|
|
}
|
|
|
|
// If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
|
|
if (DAG.getTarget().Options.UnsafeFPMath &&
|
|
N1CFP && N0.getOpcode() == ISD::FMUL &&
|
|
N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
|
|
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
|
|
N0.getOperand(1), N1));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMA(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0CFP && N0CFP->isExactlyValue(1.0))
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
|
|
if (N1CFP && N1CFP->isExactlyValue(1.0))
|
|
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
|
|
|
|
// Canonicalize (fma c, x, y) -> (fma x, c, y)
|
|
if (N0CFP && !N1CFP)
|
|
return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
SDValue FoldedVOp = SimplifyVBinOp(N);
|
|
if (FoldedVOp.getNode()) return FoldedVOp;
|
|
}
|
|
|
|
// fold (fdiv c1, c2) -> c1/c2
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
|
|
if (N1CFP && VT != MVT::ppcf128 && DAG.getTarget().Options.UnsafeFPMath) {
|
|
// Compute the reciprocal 1.0 / c2.
|
|
APFloat N1APF = N1CFP->getValueAPF();
|
|
APFloat Recip(N1APF.getSemantics(), 1); // 1.0
|
|
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
|
|
// Only do the transform if the reciprocal is a legal fp immediate that
|
|
// isn't too nasty (eg NaN, denormal, ...).
|
|
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
|
|
(!LegalOperations ||
|
|
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
|
|
// backend)... we should handle this gracefully after Legalize.
|
|
// TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
|
|
TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
|
|
TLI.isFPImmLegal(Recip, VT)))
|
|
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
|
|
DAG.getConstantFP(Recip, VT));
|
|
}
|
|
|
|
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
|
|
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
|
|
&DAG.getTarget().Options)) {
|
|
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
|
|
&DAG.getTarget().Options)) {
|
|
// Both can be negated for free, check to see if at least one is cheaper
|
|
// negated.
|
|
if (LHSNeg == 2 || RHSNeg == 2)
|
|
return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
|
|
GetNegatedExpression(N0, DAG, LegalOperations),
|
|
GetNegatedExpression(N1, DAG, LegalOperations));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFREM(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (frem c1, c2) -> fmod(c1,c2)
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
|
|
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
if (N1CFP) {
|
|
const APFloat& V = N1CFP->getValueAPF();
|
|
// copysign(x, c1) -> fabs(x) iff ispos(c1)
|
|
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
|
|
if (!V.isNegative()) {
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
|
|
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
|
|
} else {
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
|
|
DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
|
|
}
|
|
}
|
|
|
|
// copysign(fabs(x), y) -> copysign(x, y)
|
|
// copysign(fneg(x), y) -> copysign(x, y)
|
|
// copysign(copysign(x,z), y) -> copysign(x, y)
|
|
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
|
|
N0.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
|
|
N0.getOperand(0), N1);
|
|
|
|
// copysign(x, abs(y)) -> abs(x)
|
|
if (N1.getOpcode() == ISD::FABS)
|
|
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
|
|
|
|
// copysign(x, copysign(y,z)) -> copysign(x, z)
|
|
if (N1.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
|
|
N0, N1.getOperand(1));
|
|
|
|
// copysign(x, fp_extend(y)) -> copysign(x, y)
|
|
// copysign(x, fp_round(y)) -> copysign(x, y)
|
|
if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
|
|
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
|
|
N0, N1.getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
// fold (sint_to_fp c1) -> c1fp
|
|
if (N0C && OpVT != MVT::ppcf128 &&
|
|
// ...but only if the target supports immediate floating-point values
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
|
|
return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
|
|
|
|
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
|
|
// but UINT_TO_FP is legal on this target, try to convert.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
|
|
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
// fold (uint_to_fp c1) -> c1fp
|
|
if (N0C && OpVT != MVT::ppcf128 &&
|
|
// ...but only if the target supports immediate floating-point values
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
|
|
return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
|
|
|
|
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
|
|
// but SINT_TO_FP is legal on this target, try to convert.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
|
|
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_to_sint c1fp) -> c1
|
|
if (N0CFP)
|
|
return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_to_uint c1fp) -> c1
|
|
if (N0CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_round c1fp) -> c1fp
|
|
if (N0CFP && N0.getValueType() != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
|
|
|
|
// fold (fp_round (fp_extend x)) -> x
|
|
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
|
|
return N0.getOperand(0);
|
|
|
|
// fold (fp_round (fp_round x)) -> (fp_round x)
|
|
if (N0.getOpcode() == ISD::FP_ROUND) {
|
|
// This is a value preserving truncation if both round's are.
|
|
bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
|
|
N0.getNode()->getConstantOperandVal(1) == 1;
|
|
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
|
|
DAG.getIntPtrConstant(IsTrunc));
|
|
}
|
|
|
|
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
|
|
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
|
|
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
|
|
N0.getOperand(0), N1);
|
|
AddToWorkList(Tmp.getNode());
|
|
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
|
|
Tmp, N0.getOperand(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
|
|
// fold (fp_round_inreg c1fp) -> c1fp
|
|
if (N0CFP && isTypeLegal(EVT)) {
|
|
SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
|
|
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
|
|
if (N->hasOneUse() &&
|
|
N->use_begin()->getOpcode() == ISD::FP_ROUND)
|
|
return SDValue();
|
|
|
|
// fold (fp_extend c1fp) -> c1fp
|
|
if (N0CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
|
|
|
|
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
|
|
// value of X.
|
|
if (N0.getOpcode() == ISD::FP_ROUND
|
|
&& N0.getNode()->getConstantOperandVal(1) == 1) {
|
|
SDValue In = N0.getOperand(0);
|
|
if (In.getValueType() == VT) return In;
|
|
if (VT.bitsLT(In.getValueType()))
|
|
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
|
|
In, N0.getOperand(1));
|
|
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
|
|
}
|
|
|
|
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
|
|
if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), LN0->getPointerInfo(),
|
|
N0.getValueType(),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->getAlignment());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
|
|
N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
|
|
ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFNEG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
|
|
&DAG.getTarget().Options))
|
|
return GetNegatedExpression(N0, DAG, LegalOperations);
|
|
|
|
// Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
|
|
// constant pool values.
|
|
if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
|
|
!VT.isVector() &&
|
|
N0.getNode()->hasOneUse() &&
|
|
N0.getOperand(0).getValueType().isInteger()) {
|
|
SDValue Int = N0.getOperand(0);
|
|
EVT IntVT = Int.getValueType();
|
|
if (IntVT.isInteger() && !IntVT.isVector()) {
|
|
Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
|
|
DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
|
|
AddToWorkList(Int.getNode());
|
|
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
|
|
VT, Int);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFABS(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fabs c1) -> fabs(c1)
|
|
if (N0CFP && VT != MVT::ppcf128)
|
|
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
|
|
// fold (fabs (fabs x)) -> (fabs x)
|
|
if (N0.getOpcode() == ISD::FABS)
|
|
return N->getOperand(0);
|
|
// fold (fabs (fneg x)) -> (fabs x)
|
|
// fold (fabs (fcopysign x, y)) -> (fabs x)
|
|
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
|
|
|
|
// Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
|
|
// constant pool values.
|
|
if (!TLI.isFAbsFree(VT) &&
|
|
N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
|
|
N0.getOperand(0).getValueType().isInteger() &&
|
|
!N0.getOperand(0).getValueType().isVector()) {
|
|
SDValue Int = N0.getOperand(0);
|
|
EVT IntVT = Int.getValueType();
|
|
if (IntVT.isInteger() && !IntVT.isVector()) {
|
|
Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
|
|
DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
|
|
AddToWorkList(Int.getNode());
|
|
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
|
|
N->getValueType(0), Int);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
|
|
// If N is a constant we could fold this into a fallthrough or unconditional
|
|
// branch. However that doesn't happen very often in normal code, because
|
|
// Instcombine/SimplifyCFG should have handled the available opportunities.
|
|
// If we did this folding here, it would be necessary to update the
|
|
// MachineBasicBlock CFG, which is awkward.
|
|
|
|
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
|
|
// on the target.
|
|
if (N1.getOpcode() == ISD::SETCC &&
|
|
TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
|
|
return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
|
|
Chain, N1.getOperand(2),
|
|
N1.getOperand(0), N1.getOperand(1), N2);
|
|
}
|
|
|
|
if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
|
|
((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
|
|
(N1.getOperand(0).hasOneUse() &&
|
|
N1.getOperand(0).getOpcode() == ISD::SRL))) {
|
|
SDNode *Trunc = 0;
|
|
if (N1.getOpcode() == ISD::TRUNCATE) {
|
|
// Look pass the truncate.
|
|
Trunc = N1.getNode();
|
|
N1 = N1.getOperand(0);
|
|
}
|
|
|
|
// Match this pattern so that we can generate simpler code:
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = srl i32 %b, 1
|
|
// brcond i32 %c ...
|
|
//
|
|
// into
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = setcc eq %b, 0
|
|
// brcond %c ...
|
|
//
|
|
// This applies only when the AND constant value has one bit set and the
|
|
// SRL constant is equal to the log2 of the AND constant. The back-end is
|
|
// smart enough to convert the result into a TEST/JMP sequence.
|
|
SDValue Op0 = N1.getOperand(0);
|
|
SDValue Op1 = N1.getOperand(1);
|
|
|
|
if (Op0.getOpcode() == ISD::AND &&
|
|
Op1.getOpcode() == ISD::Constant) {
|
|
SDValue AndOp1 = Op0.getOperand(1);
|
|
|
|
if (AndOp1.getOpcode() == ISD::Constant) {
|
|
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
|
|
|
|
if (AndConst.isPowerOf2() &&
|
|
cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
|
|
SDValue SetCC =
|
|
DAG.getSetCC(N->getDebugLoc(),
|
|
TLI.getSetCCResultType(Op0.getValueType()),
|
|
Op0, DAG.getConstant(0, Op0.getValueType()),
|
|
ISD::SETNE);
|
|
|
|
SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
|
|
MVT::Other, Chain, SetCC, N2);
|
|
// Don't add the new BRCond into the worklist or else SimplifySelectCC
|
|
// will convert it back to (X & C1) >> C2.
|
|
CombineTo(N, NewBRCond, false);
|
|
// Truncate is dead.
|
|
if (Trunc) {
|
|
removeFromWorkList(Trunc);
|
|
DAG.DeleteNode(Trunc);
|
|
}
|
|
// Replace the uses of SRL with SETCC
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
|
|
removeFromWorkList(N1.getNode());
|
|
DAG.DeleteNode(N1.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Trunc)
|
|
// Restore N1 if the above transformation doesn't match.
|
|
N1 = N->getOperand(1);
|
|
}
|
|
|
|
// Transform br(xor(x, y)) -> br(x != y)
|
|
// Transform br(xor(xor(x,y), 1)) -> br (x == y)
|
|
if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
|
|
SDNode *TheXor = N1.getNode();
|
|
SDValue Op0 = TheXor->getOperand(0);
|
|
SDValue Op1 = TheXor->getOperand(1);
|
|
if (Op0.getOpcode() == Op1.getOpcode()) {
|
|
// Avoid missing important xor optimizations.
|
|
SDValue Tmp = visitXOR(TheXor);
|
|
if (Tmp.getNode() && Tmp.getNode() != TheXor) {
|
|
DEBUG(dbgs() << "\nReplacing.8 ";
|
|
TheXor->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
Tmp.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
|
|
removeFromWorkList(TheXor);
|
|
DAG.DeleteNode(TheXor);
|
|
return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
|
|
MVT::Other, Chain, Tmp, N2);
|
|
}
|
|
}
|
|
|
|
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
|
|
bool Equal = false;
|
|
if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
|
|
if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
|
|
Op0.getOpcode() == ISD::XOR) {
|
|
TheXor = Op0.getNode();
|
|
Equal = true;
|
|
}
|
|
|
|
EVT SetCCVT = N1.getValueType();
|
|
if (LegalTypes)
|
|
SetCCVT = TLI.getSetCCResultType(SetCCVT);
|
|
SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
|
|
SetCCVT,
|
|
Op0, Op1,
|
|
Equal ? ISD::SETEQ : ISD::SETNE);
|
|
// Replace the uses of XOR with SETCC
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
|
|
removeFromWorkList(N1.getNode());
|
|
DAG.DeleteNode(N1.getNode());
|
|
return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
|
|
MVT::Other, Chain, SetCC, N2);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
|
|
//
|
|
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
|
|
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
|
|
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
|
|
|
|
// If N is a constant we could fold this into a fallthrough or unconditional
|
|
// branch. However that doesn't happen very often in normal code, because
|
|
// Instcombine/SimplifyCFG should have handled the available opportunities.
|
|
// If we did this folding here, it would be necessary to update the
|
|
// MachineBasicBlock CFG, which is awkward.
|
|
|
|
// Use SimplifySetCC to simplify SETCC's.
|
|
SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
|
|
CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
|
|
false);
|
|
if (Simp.getNode()) AddToWorkList(Simp.getNode());
|
|
|
|
// fold to a simpler setcc
|
|
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
|
|
return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
|
|
N->getOperand(0), Simp.getOperand(2),
|
|
Simp.getOperand(0), Simp.getOperand(1),
|
|
N->getOperand(4));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
|
|
/// uses N as its base pointer and that N may be folded in the load / store
|
|
/// addressing mode.
|
|
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
EVT VT;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
|
|
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = Use->getValueType(0);
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
|
|
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = ST->getValue().getValueType();
|
|
} else
|
|
return false;
|
|
|
|
TargetLowering::AddrMode AM;
|
|
if (N->getOpcode() == ISD::ADD) {
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (Offset)
|
|
// [reg +/- imm]
|
|
AM.BaseOffs = Offset->getSExtValue();
|
|
else
|
|
// [reg +/- reg]
|
|
AM.Scale = 1;
|
|
} else if (N->getOpcode() == ISD::SUB) {
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (Offset)
|
|
// [reg +/- imm]
|
|
AM.BaseOffs = -Offset->getSExtValue();
|
|
else
|
|
// [reg +/- reg]
|
|
AM.Scale = 1;
|
|
} else
|
|
return false;
|
|
|
|
return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
|
|
}
|
|
|
|
/// CombineToPreIndexedLoadStore - Try turning a load / store into a
|
|
/// pre-indexed load / store when the base pointer is an add or subtract
|
|
/// and it has other uses besides the load / store. After the
|
|
/// transformation, the new indexed load / store has effectively folded
|
|
/// the add / subtract in and all of its other uses are redirected to the
|
|
/// new load / store.
|
|
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
|
|
if (Level < AfterLegalizeDAG)
|
|
return false;
|
|
|
|
bool isLoad = true;
|
|
SDValue Ptr;
|
|
EVT VT;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
if (LD->isIndexed())
|
|
return false;
|
|
VT = LD->getMemoryVT();
|
|
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
|
|
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
|
|
return false;
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
if (ST->isIndexed())
|
|
return false;
|
|
VT = ST->getMemoryVT();
|
|
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
|
|
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
|
|
return false;
|
|
Ptr = ST->getBasePtr();
|
|
isLoad = false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
|
|
// out. There is no reason to make this a preinc/predec.
|
|
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
|
|
Ptr.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
// Ask the target to do addressing mode selection.
|
|
SDValue BasePtr;
|
|
SDValue Offset;
|
|
ISD::MemIndexedMode AM = ISD::UNINDEXED;
|
|
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
|
|
return false;
|
|
// Don't create a indexed load / store with zero offset.
|
|
if (isa<ConstantSDNode>(Offset) &&
|
|
cast<ConstantSDNode>(Offset)->isNullValue())
|
|
return false;
|
|
|
|
// Try turning it into a pre-indexed load / store except when:
|
|
// 1) The new base ptr is a frame index.
|
|
// 2) If N is a store and the new base ptr is either the same as or is a
|
|
// predecessor of the value being stored.
|
|
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
|
|
// that would create a cycle.
|
|
// 4) All uses are load / store ops that use it as old base ptr.
|
|
|
|
// Check #1. Preinc'ing a frame index would require copying the stack pointer
|
|
// (plus the implicit offset) to a register to preinc anyway.
|
|
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
|
|
return false;
|
|
|
|
// Check #2.
|
|
if (!isLoad) {
|
|
SDValue Val = cast<StoreSDNode>(N)->getValue();
|
|
if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
|
|
return false;
|
|
}
|
|
|
|
// Now check for #3 and #4.
|
|
bool RealUse = false;
|
|
|
|
// Caches for hasPredecessorHelper
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
|
|
for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
|
|
E = Ptr.getNode()->use_end(); I != E; ++I) {
|
|
SDNode *Use = *I;
|
|
if (Use == N)
|
|
continue;
|
|
if (N->hasPredecessorHelper(Use, Visited, Worklist))
|
|
return false;
|
|
|
|
// If Ptr may be folded in addressing mode of other use, then it's
|
|
// not profitable to do this transformation.
|
|
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
|
|
RealUse = true;
|
|
}
|
|
|
|
if (!RealUse)
|
|
return false;
|
|
|
|
SDValue Result;
|
|
if (isLoad)
|
|
Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
|
|
BasePtr, Offset, AM);
|
|
else
|
|
Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
|
|
BasePtr, Offset, AM);
|
|
++PreIndexedNodes;
|
|
++NodesCombined;
|
|
DEBUG(dbgs() << "\nReplacing.4 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
Result.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorkListRemover DeadNodes(*this);
|
|
if (isLoad) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
|
|
} else {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
|
|
}
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
DAG.DeleteNode(N);
|
|
|
|
// Replace the uses of Ptr with uses of the updated base value.
|
|
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
|
|
removeFromWorkList(Ptr.getNode());
|
|
DAG.DeleteNode(Ptr.getNode());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
|
|
/// add / sub of the base pointer node into a post-indexed load / store.
|
|
/// The transformation folded the add / subtract into the new indexed
|
|
/// load / store effectively and all of its uses are redirected to the
|
|
/// new load / store.
|
|
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
|
|
if (Level < AfterLegalizeDAG)
|
|
return false;
|
|
|
|
bool isLoad = true;
|
|
SDValue Ptr;
|
|
EVT VT;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
if (LD->isIndexed())
|
|
return false;
|
|
VT = LD->getMemoryVT();
|
|
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
|
|
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
|
|
return false;
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
if (ST->isIndexed())
|
|
return false;
|
|
VT = ST->getMemoryVT();
|
|
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
|
|
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
|
|
return false;
|
|
Ptr = ST->getBasePtr();
|
|
isLoad = false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (Ptr.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
|
|
E = Ptr.getNode()->use_end(); I != E; ++I) {
|
|
SDNode *Op = *I;
|
|
if (Op == N ||
|
|
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
|
|
continue;
|
|
|
|
SDValue BasePtr;
|
|
SDValue Offset;
|
|
ISD::MemIndexedMode AM = ISD::UNINDEXED;
|
|
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
|
|
// Don't create a indexed load / store with zero offset.
|
|
if (isa<ConstantSDNode>(Offset) &&
|
|
cast<ConstantSDNode>(Offset)->isNullValue())
|
|
continue;
|
|
|
|
// Try turning it into a post-indexed load / store except when
|
|
// 1) All uses are load / store ops that use it as base ptr (and
|
|
// it may be folded as addressing mmode).
|
|
// 2) Op must be independent of N, i.e. Op is neither a predecessor
|
|
// nor a successor of N. Otherwise, if Op is folded that would
|
|
// create a cycle.
|
|
|
|
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
|
|
continue;
|
|
|
|
// Check for #1.
|
|
bool TryNext = false;
|
|
for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
|
|
EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
|
|
SDNode *Use = *II;
|
|
if (Use == Ptr.getNode())
|
|
continue;
|
|
|
|
// If all the uses are load / store addresses, then don't do the
|
|
// transformation.
|
|
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
|
|
bool RealUse = false;
|
|
for (SDNode::use_iterator III = Use->use_begin(),
|
|
EEE = Use->use_end(); III != EEE; ++III) {
|
|
SDNode *UseUse = *III;
|
|
if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
|
|
RealUse = true;
|
|
}
|
|
|
|
if (!RealUse) {
|
|
TryNext = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TryNext)
|
|
continue;
|
|
|
|
// Check for #2
|
|
if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
|
|
SDValue Result = isLoad
|
|
? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
|
|
BasePtr, Offset, AM)
|
|
: DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
|
|
BasePtr, Offset, AM);
|
|
++PostIndexedNodes;
|
|
++NodesCombined;
|
|
DEBUG(dbgs() << "\nReplacing.5 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
Result.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorkListRemover DeadNodes(*this);
|
|
if (isLoad) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
|
|
} else {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
|
|
}
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
DAG.DeleteNode(N);
|
|
|
|
// Replace the uses of Use with uses of the updated base value.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
|
|
Result.getValue(isLoad ? 1 : 0));
|
|
removeFromWorkList(Op);
|
|
DAG.DeleteNode(Op);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitLOAD(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Ptr = LD->getBasePtr();
|
|
|
|
// If load is not volatile and there are no uses of the loaded value (and
|
|
// the updated indexed value in case of indexed loads), change uses of the
|
|
// chain value into uses of the chain input (i.e. delete the dead load).
|
|
if (!LD->isVolatile()) {
|
|
if (N->getValueType(1) == MVT::Other) {
|
|
// Unindexed loads.
|
|
if (!N->hasAnyUseOfValue(0)) {
|
|
// It's not safe to use the two value CombineTo variant here. e.g.
|
|
// v1, chain2 = load chain1, loc
|
|
// v2, chain3 = load chain2, loc
|
|
// v3 = add v2, c
|
|
// Now we replace use of chain2 with chain1. This makes the second load
|
|
// isomorphic to the one we are deleting, and thus makes this load live.
|
|
DEBUG(dbgs() << "\nReplacing.6 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith chain: ";
|
|
Chain.getNode()->dump(&DAG);
|
|
dbgs() << "\n");
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
|
|
|
|
if (N->use_empty()) {
|
|
removeFromWorkList(N);
|
|
DAG.DeleteNode(N);
|
|
}
|
|
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
} else {
|
|
// Indexed loads.
|
|
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
|
|
if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
|
|
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
|
|
DEBUG(dbgs() << "\nReplacing.7 ";
|
|
N->dump(&DAG);
|
|
dbgs() << "\nWith: ";
|
|
Undef.getNode()->dump(&DAG);
|
|
dbgs() << " and 2 other values\n");
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
|
|
DAG.getUNDEF(N->getValueType(1)));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
|
|
removeFromWorkList(N);
|
|
DAG.DeleteNode(N);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this load is directly stored, replace the load value with the stored
|
|
// value.
|
|
// TODO: Handle store large -> read small portion.
|
|
// TODO: Handle TRUNCSTORE/LOADEXT
|
|
if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
|
|
if (ISD::isNON_TRUNCStore(Chain.getNode())) {
|
|
StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
|
|
if (PrevST->getBasePtr() == Ptr &&
|
|
PrevST->getValue().getValueType() == N->getValueType(0))
|
|
return CombineTo(N, Chain.getOperand(1), Chain);
|
|
}
|
|
}
|
|
|
|
// Try to infer better alignment information than the load already has.
|
|
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
|
|
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
|
|
if (Align > LD->getAlignment())
|
|
return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
|
|
LD->getValueType(0),
|
|
Chain, Ptr, LD->getPointerInfo(),
|
|
LD->getMemoryVT(),
|
|
LD->isVolatile(), LD->isNonTemporal(), Align);
|
|
}
|
|
}
|
|
|
|
if (CombinerAA) {
|
|
// Walk up chain skipping non-aliasing memory nodes.
|
|
SDValue BetterChain = FindBetterChain(N, Chain);
|
|
|
|
// If there is a better chain.
|
|
if (Chain != BetterChain) {
|
|
SDValue ReplLoad;
|
|
|
|
// Replace the chain to void dependency.
|
|
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
|
|
ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
|
|
BetterChain, Ptr, LD->getPointerInfo(),
|
|
LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->isInvariant(), LD->getAlignment());
|
|
} else {
|
|
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
|
|
LD->getValueType(0),
|
|
BetterChain, Ptr, LD->getPointerInfo(),
|
|
LD->getMemoryVT(),
|
|
LD->isVolatile(),
|
|
LD->isNonTemporal(),
|
|
LD->getAlignment());
|
|
}
|
|
|
|
// Create token factor to keep old chain connected.
|
|
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
|
|
MVT::Other, Chain, ReplLoad.getValue(1));
|
|
|
|
// Make sure the new and old chains are cleaned up.
|
|
AddToWorkList(Token.getNode());
|
|
|
|
// Replace uses with load result and token factor. Don't add users
|
|
// to work list.
|
|
return CombineTo(N, ReplLoad.getValue(0), Token, false);
|
|
}
|
|
}
|
|
|
|
// Try transforming N to an indexed load.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
|
|
/// load is having specific bytes cleared out. If so, return the byte size
|
|
/// being masked out and the shift amount.
|
|
static std::pair<unsigned, unsigned>
|
|
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
|
|
std::pair<unsigned, unsigned> Result(0, 0);
|
|
|
|
// Check for the structure we're looking for.
|
|
if (V->getOpcode() != ISD::AND ||
|
|
!isa<ConstantSDNode>(V->getOperand(1)) ||
|
|
!ISD::isNormalLoad(V->getOperand(0).getNode()))
|
|
return Result;
|
|
|
|
// Check the chain and pointer.
|
|
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
|
|
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
|
|
|
|
// The store should be chained directly to the load or be an operand of a
|
|
// tokenfactor.
|
|
if (LD == Chain.getNode())
|
|
; // ok.
|
|
else if (Chain->getOpcode() != ISD::TokenFactor)
|
|
return Result; // Fail.
|
|
else {
|
|
bool isOk = false;
|
|
for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
|
|
if (Chain->getOperand(i).getNode() == LD) {
|
|
isOk = true;
|
|
break;
|
|
}
|
|
if (!isOk) return Result;
|
|
}
|
|
|
|
// This only handles simple types.
|
|
if (V.getValueType() != MVT::i16 &&
|
|
V.getValueType() != MVT::i32 &&
|
|
V.getValueType() != MVT::i64)
|
|
return Result;
|
|
|
|
// Check the constant mask. Invert it so that the bits being masked out are
|
|
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits
|
|
// follow the sign bit for uniformity.
|
|
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
|
|
unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
|
|
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
|
|
unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
|
|
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
|
|
if (NotMaskLZ == 64) return Result; // All zero mask.
|
|
|
|
// See if we have a continuous run of bits. If so, we have 0*1+0*
|
|
if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
|
|
return Result;
|
|
|
|
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
|
|
if (V.getValueType() != MVT::i64 && NotMaskLZ)
|
|
NotMaskLZ -= 64-V.getValueSizeInBits();
|
|
|
|
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
|
|
switch (MaskedBytes) {
|
|
case 1:
|
|
case 2:
|
|
case 4: break;
|
|
default: return Result; // All one mask, or 5-byte mask.
|
|
}
|
|
|
|
// Verify that the first bit starts at a multiple of mask so that the access
|
|
// is aligned the same as the access width.
|
|
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
|
|
|
|
Result.first = MaskedBytes;
|
|
Result.second = NotMaskTZ/8;
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
|
|
/// provides a value as specified by MaskInfo. If so, replace the specified
|
|
/// store with a narrower store of truncated IVal.
|
|
static SDNode *
|
|
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
|
|
SDValue IVal, StoreSDNode *St,
|
|
DAGCombiner *DC) {
|
|
unsigned NumBytes = MaskInfo.first;
|
|
unsigned ByteShift = MaskInfo.second;
|
|
SelectionDAG &DAG = DC->getDAG();
|
|
|
|
// Check to see if IVal is all zeros in the part being masked in by the 'or'
|
|
// that uses this. If not, this is not a replacement.
|
|
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
|
|
ByteShift*8, (ByteShift+NumBytes)*8);
|
|
if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
|
|
|
|
// Check that it is legal on the target to do this. It is legal if the new
|
|
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type
|
|
// legalization.
|
|
MVT VT = MVT::getIntegerVT(NumBytes*8);
|
|
if (!DC->isTypeLegal(VT))
|
|
return 0;
|
|
|
|
// Okay, we can do this! Replace the 'St' store with a store of IVal that is
|
|
// shifted by ByteShift and truncated down to NumBytes.
|
|
if (ByteShift)
|
|
IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
|
|
DAG.getConstant(ByteShift*8,
|
|
DC->getShiftAmountTy(IVal.getValueType())));
|
|
|
|
// Figure out the offset for the store and the alignment of the access.
|
|
unsigned StOffset;
|
|
unsigned NewAlign = St->getAlignment();
|
|
|
|
if (DAG.getTargetLoweringInfo().isLittleEndian())
|
|
StOffset = ByteShift;
|
|
else
|
|
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
|
|
|
|
SDValue Ptr = St->getBasePtr();
|
|
if (StOffset) {
|
|
Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
|
|
Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
|
|
NewAlign = MinAlign(NewAlign, StOffset);
|
|
}
|
|
|
|
// Truncate down to the new size.
|
|
IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
|
|
|
|
++OpsNarrowed;
|
|
return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
|
|
St->getPointerInfo().getWithOffset(StOffset),
|
|
false, false, NewAlign).getNode();
|
|
}
|
|
|
|
|
|
/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
|
|
/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
|
|
/// of the loaded bits, try narrowing the load and store if it would end up
|
|
/// being a win for performance or code size.
|
|
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
if (ST->isVolatile())
|
|
return SDValue();
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Value = ST->getValue();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
EVT VT = Value.getValueType();
|
|
|
|
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
|
|
return SDValue();
|
|
|
|
unsigned Opc = Value.getOpcode();
|
|
|
|
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
|
|
// is a byte mask indicating a consecutive number of bytes, check to see if
|
|
// Y is known to provide just those bytes. If so, we try to replace the
|
|
// load + replace + store sequence with a single (narrower) store, which makes
|
|
// the load dead.
|
|
if (Opc == ISD::OR) {
|
|
std::pair<unsigned, unsigned> MaskedLoad;
|
|
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
|
|
if (MaskedLoad.first)
|
|
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
|
|
Value.getOperand(1), ST,this))
|
|
return SDValue(NewST, 0);
|
|
|
|
// Or is commutative, so try swapping X and Y.
|
|
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
|
|
if (MaskedLoad.first)
|
|
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
|
|
Value.getOperand(0), ST,this))
|
|
return SDValue(NewST, 0);
|
|
}
|
|
|
|
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
|
|
Value.getOperand(1).getOpcode() != ISD::Constant)
|
|
return SDValue();
|
|
|
|
SDValue N0 = Value.getOperand(0);
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
Chain == SDValue(N0.getNode(), 1)) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N0);
|
|
if (LD->getBasePtr() != Ptr ||
|
|
LD->getPointerInfo().getAddrSpace() !=
|
|
ST->getPointerInfo().getAddrSpace())
|
|
return SDValue();
|
|
|
|
// Find the type to narrow it the load / op / store to.
|
|
SDValue N1 = Value.getOperand(1);
|
|
unsigned BitWidth = N1.getValueSizeInBits();
|
|
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
|
|
if (Opc == ISD::AND)
|
|
Imm ^= APInt::getAllOnesValue(BitWidth);
|
|
if (Imm == 0 || Imm.isAllOnesValue())
|
|
return SDValue();
|
|
unsigned ShAmt = Imm.countTrailingZeros();
|
|
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
|
|
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
|
|
while (NewBW < BitWidth &&
|
|
!(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
|
|
TLI.isNarrowingProfitable(VT, NewVT))) {
|
|
NewBW = NextPowerOf2(NewBW);
|
|
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
|
|
}
|
|
if (NewBW >= BitWidth)
|
|
return SDValue();
|
|
|
|
// If the lsb changed does not start at the type bitwidth boundary,
|
|
// start at the previous one.
|
|
if (ShAmt % NewBW)
|
|
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
|
|
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
|
|
if ((Imm & Mask) == Imm) {
|
|
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
|
|
if (Opc == ISD::AND)
|
|
NewImm ^= APInt::getAllOnesValue(NewBW);
|
|
uint64_t PtrOff = ShAmt / 8;
|
|
// For big endian targets, we need to adjust the offset to the pointer to
|
|
// load the correct bytes.
|
|
if (TLI.isBigEndian())
|
|
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
|
|
|
|
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
|
|
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
|
|
if (NewAlign < TLI.getTargetData()->getABITypeAlignment(NewVTTy))
|
|
return SDValue();
|
|
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
|
|
Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(PtrOff, Ptr.getValueType()));
|
|
SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
|
|
LD->getChain(), NewPtr,
|
|
LD->getPointerInfo().getWithOffset(PtrOff),
|
|
LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->isInvariant(), NewAlign);
|
|
SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
|
|
DAG.getConstant(NewImm, NewVT));
|
|
SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
|
|
NewVal, NewPtr,
|
|
ST->getPointerInfo().getWithOffset(PtrOff),
|
|
false, false, NewAlign);
|
|
|
|
AddToWorkList(NewPtr.getNode());
|
|
AddToWorkList(NewLD.getNode());
|
|
AddToWorkList(NewVal.getNode());
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
|
|
++OpsNarrowed;
|
|
return NewST;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// TransformFPLoadStorePair - For a given floating point load / store pair,
|
|
/// if the load value isn't used by any other operations, then consider
|
|
/// transforming the pair to integer load / store operations if the target
|
|
/// deems the transformation profitable.
|
|
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Value = ST->getValue();
|
|
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
|
|
Value.hasOneUse() &&
|
|
Chain == SDValue(Value.getNode(), 1)) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Value);
|
|
EVT VT = LD->getMemoryVT();
|
|
if (!VT.isFloatingPoint() ||
|
|
VT != ST->getMemoryVT() ||
|
|
LD->isNonTemporal() ||
|
|
ST->isNonTemporal() ||
|
|
LD->getPointerInfo().getAddrSpace() != 0 ||
|
|
ST->getPointerInfo().getAddrSpace() != 0)
|
|
return SDValue();
|
|
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
|
|
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
|
|
!TLI.isOperationLegal(ISD::STORE, IntVT) ||
|
|
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
|
|
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
|
|
return SDValue();
|
|
|
|
unsigned LDAlign = LD->getAlignment();
|
|
unsigned STAlign = ST->getAlignment();
|
|
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
|
|
unsigned ABIAlign = TLI.getTargetData()->getABITypeAlignment(IntVTTy);
|
|
if (LDAlign < ABIAlign || STAlign < ABIAlign)
|
|
return SDValue();
|
|
|
|
SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
|
|
LD->getChain(), LD->getBasePtr(),
|
|
LD->getPointerInfo(),
|
|
false, false, false, LDAlign);
|
|
|
|
SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
|
|
NewLD, ST->getBasePtr(),
|
|
ST->getPointerInfo(),
|
|
false, false, STAlign);
|
|
|
|
AddToWorkList(NewLD.getNode());
|
|
AddToWorkList(NewST.getNode());
|
|
WorkListRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
|
|
++LdStFP2Int;
|
|
return NewST;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSTORE(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Value = ST->getValue();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
|
|
// If this is a store of a bit convert, store the input value if the
|
|
// resultant store does not need a higher alignment than the original.
|
|
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
|
|
ST->isUnindexed()) {
|
|
unsigned OrigAlign = ST->getAlignment();
|
|
EVT SVT = Value.getOperand(0).getValueType();
|
|
unsigned Align = TLI.getTargetData()->
|
|
getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
|
|
if (Align <= OrigAlign &&
|
|
((!LegalOperations && !ST->isVolatile()) ||
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
|
|
return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
|
|
Ptr, ST->getPointerInfo(), ST->isVolatile(),
|
|
ST->isNonTemporal(), OrigAlign);
|
|
}
|
|
|
|
// Turn 'store undef, Ptr' -> nothing.
|
|
if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
|
|
return Chain;
|
|
|
|
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
|
|
// NOTE: If the original store is volatile, this transform must not increase
|
|
// the number of stores. For example, on x86-32 an f64 can be stored in one
|
|
// processor operation but an i64 (which is not legal) requires two. So the
|
|
// transform should not be done in this case.
|
|
if (Value.getOpcode() != ISD::TargetConstantFP) {
|
|
SDValue Tmp;
|
|
switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unknown FP type");
|
|
case MVT::f80: // We don't do this for these yet.
|
|
case MVT::f128:
|
|
case MVT::ppcf128:
|
|
break;
|
|
case MVT::f32:
|
|
if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
|
|
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
|
|
bitcastToAPInt().getZExtValue(), MVT::i32);
|
|
return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
|
|
Ptr, ST->getPointerInfo(), ST->isVolatile(),
|
|
ST->isNonTemporal(), ST->getAlignment());
|
|
}
|
|
break;
|
|
case MVT::f64:
|
|
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
|
|
!ST->isVolatile()) ||
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
|
|
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
|
|
getZExtValue(), MVT::i64);
|
|
return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
|
|
Ptr, ST->getPointerInfo(), ST->isVolatile(),
|
|
ST->isNonTemporal(), ST->getAlignment());
|
|
}
|
|
|
|
if (!ST->isVolatile() &&
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
|
|
// Many FP stores are not made apparent until after legalize, e.g. for
|
|
// argument passing. Since this is so common, custom legalize the
|
|
// 64-bit integer store into two 32-bit stores.
|
|
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
|
|
SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
|
|
if (TLI.isBigEndian()) std::swap(Lo, Hi);
|
|
|
|
unsigned Alignment = ST->getAlignment();
|
|
bool isVolatile = ST->isVolatile();
|
|
bool isNonTemporal = ST->isNonTemporal();
|
|
|
|
SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
|
|
Ptr, ST->getPointerInfo(),
|
|
isVolatile, isNonTemporal,
|
|
ST->getAlignment());
|
|
Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(4, Ptr.getValueType()));
|
|
Alignment = MinAlign(Alignment, 4U);
|
|
SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
|
|
Ptr, ST->getPointerInfo().getWithOffset(4),
|
|
isVolatile, isNonTemporal,
|
|
Alignment);
|
|
return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
|
|
St0, St1);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to infer better alignment information than the store already has.
|
|
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
|
|
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
|
|
if (Align > ST->getAlignment())
|
|
return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
|
|
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
|
|
ST->isVolatile(), ST->isNonTemporal(), Align);
|
|
}
|
|
}
|
|
|
|
// Try transforming a pair floating point load / store ops to integer
|
|
// load / store ops.
|
|
SDValue NewST = TransformFPLoadStorePair(N);
|
|
if (NewST.getNode())
|
|
return NewST;
|
|
|
|
if (CombinerAA) {
|
|
// Walk up chain skipping non-aliasing memory nodes.
|
|
SDValue BetterChain = FindBetterChain(N, Chain);
|
|
|
|
// If there is a better chain.
|
|
if (Chain != BetterChain) {
|
|
SDValue ReplStore;
|
|
|
|
// Replace the chain to avoid dependency.
|
|
if (ST->isTruncatingStore()) {
|
|
ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
|
|
ST->getPointerInfo(),
|
|
ST->getMemoryVT(), ST->isVolatile(),
|
|
ST->isNonTemporal(), ST->getAlignment());
|
|
} else {
|
|
ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
|
|
ST->getPointerInfo(),
|
|
ST->isVolatile(), ST->isNonTemporal(),
|
|
ST->getAlignment());
|
|
}
|
|
|
|
// Create token to keep both nodes around.
|
|
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
|
|
MVT::Other, Chain, ReplStore);
|
|
|
|
// Make sure the new and old chains are cleaned up.
|
|
AddToWorkList(Token.getNode());
|
|
|
|
// Don't add users to work list.
|
|
return CombineTo(N, Token, false);
|
|
}
|
|
}
|
|
|
|
// Try transforming N to an indexed store.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
// FIXME: is there such a thing as a truncating indexed store?
|
|
if (ST->isTruncatingStore() && ST->isUnindexed() &&
|
|
Value.getValueType().isInteger()) {
|
|
// See if we can simplify the input to this truncstore with knowledge that
|
|
// only the low bits are being used. For example:
|
|
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
|
|
SDValue Shorter =
|
|
GetDemandedBits(Value,
|
|
APInt::getLowBitsSet(
|
|
Value.getValueType().getScalarType().getSizeInBits(),
|
|
ST->getMemoryVT().getScalarType().getSizeInBits()));
|
|
AddToWorkList(Value.getNode());
|
|
if (Shorter.getNode())
|
|
return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
|
|
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
|
|
ST->isVolatile(), ST->isNonTemporal(),
|
|
ST->getAlignment());
|
|
|
|
// Otherwise, see if we can simplify the operation with
|
|
// SimplifyDemandedBits, which only works if the value has a single use.
|
|
if (SimplifyDemandedBits(Value,
|
|
APInt::getLowBitsSet(
|
|
Value.getValueType().getScalarType().getSizeInBits(),
|
|
ST->getMemoryVT().getScalarType().getSizeInBits())))
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// If this is a load followed by a store to the same location, then the store
|
|
// is dead/noop.
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
|
|
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
|
|
ST->isUnindexed() && !ST->isVolatile() &&
|
|
// There can't be any side effects between the load and store, such as
|
|
// a call or store.
|
|
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
|
|
// The store is dead, remove it.
|
|
return Chain;
|
|
}
|
|
}
|
|
|
|
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
|
|
// truncating store. We can do this even if this is already a truncstore.
|
|
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
|
|
&& Value.getNode()->hasOneUse() && ST->isUnindexed() &&
|
|
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
|
|
ST->getMemoryVT())) {
|
|
return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
|
|
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
|
|
ST->isVolatile(), ST->isNonTemporal(),
|
|
ST->getAlignment());
|
|
}
|
|
|
|
return ReduceLoadOpStoreWidth(N);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
|
|
SDValue InVec = N->getOperand(0);
|
|
SDValue InVal = N->getOperand(1);
|
|
SDValue EltNo = N->getOperand(2);
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
// If the inserted element is an UNDEF, just use the input vector.
|
|
if (InVal.getOpcode() == ISD::UNDEF)
|
|
return InVec;
|
|
|
|
EVT VT = InVec.getValueType();
|
|
|
|
// If we can't generate a legal BUILD_VECTOR, exit
|
|
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
|
|
return SDValue();
|
|
|
|
// Check that we know which element is being inserted
|
|
if (!isa<ConstantSDNode>(EltNo))
|
|
return SDValue();
|
|
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
|
|
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
|
|
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
|
|
// vector elements.
|
|
SmallVector<SDValue, 8> Ops;
|
|
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
|
|
Ops.append(InVec.getNode()->op_begin(),
|
|
InVec.getNode()->op_end());
|
|
} else if (InVec.getOpcode() == ISD::UNDEF) {
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// Insert the element
|
|
if (Elt < Ops.size()) {
|
|
// All the operands of BUILD_VECTOR must have the same type;
|
|
// we enforce that here.
|
|
EVT OpVT = Ops[0].getValueType();
|
|
if (InVal.getValueType() != OpVT)
|
|
InVal = OpVT.bitsGT(InVal.getValueType()) ?
|
|
DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
|
|
DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
|
|
Ops[Elt] = InVal;
|
|
}
|
|
|
|
// Return the new vector
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
VT, &Ops[0], Ops.size());
|
|
}
|
|
|
|
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
|
|
// (vextract (scalar_to_vector val, 0) -> val
|
|
SDValue InVec = N->getOperand(0);
|
|
EVT VT = InVec.getValueType();
|
|
EVT NVT = N->getValueType(0);
|
|
|
|
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
// Check if the result type doesn't match the inserted element type. A
|
|
// SCALAR_TO_VECTOR may truncate the inserted element and the
|
|
// EXTRACT_VECTOR_ELT may widen the extracted vector.
|
|
SDValue InOp = InVec.getOperand(0);
|
|
if (InOp.getValueType() != NVT) {
|
|
assert(InOp.getValueType().isInteger() && NVT.isInteger());
|
|
return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
|
|
}
|
|
return InOp;
|
|
}
|
|
|
|
SDValue EltNo = N->getOperand(1);
|
|
bool ConstEltNo = isa<ConstantSDNode>(EltNo);
|
|
|
|
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
|
|
// We only perform this optimization before the op legalization phase because
|
|
// we may introduce new vector instructions which are not backed by TD patterns.
|
|
// For example on AVX, extracting elements from a wide vector without using
|
|
// extract_subvector.
|
|
if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
|
|
&& ConstEltNo && !LegalOperations) {
|
|
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
int NumElem = VT.getVectorNumElements();
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
|
|
// Find the new index to extract from.
|
|
int OrigElt = SVOp->getMaskElt(Elt);
|
|
|
|
// Extracting an undef index is undef.
|
|
if (OrigElt == -1)
|
|
return DAG.getUNDEF(NVT);
|
|
|
|
// Select the right vector half to extract from.
|
|
if (OrigElt < NumElem) {
|
|
InVec = InVec->getOperand(0);
|
|
} else {
|
|
InVec = InVec->getOperand(1);
|
|
OrigElt -= NumElem;
|
|
}
|
|
|
|
EVT IndexTy = N->getOperand(1).getValueType();
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
|
|
InVec, DAG.getConstant(OrigElt, IndexTy));
|
|
}
|
|
|
|
// Perform only after legalization to ensure build_vector / vector_shuffle
|
|
// optimizations have already been done.
|
|
if (!LegalOperations) return SDValue();
|
|
|
|
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
|
|
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
|
|
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
|
|
|
|
if (ConstEltNo) {
|
|
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
bool NewLoad = false;
|
|
bool BCNumEltsChanged = false;
|
|
EVT ExtVT = VT.getVectorElementType();
|
|
EVT LVT = ExtVT;
|
|
|
|
// If the result of load has to be truncated, then it's not necessarily
|
|
// profitable.
|
|
if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
|
|
return SDValue();
|
|
|
|
if (InVec.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
EVT BCVT = InVec.getOperand(0).getValueType();
|
|
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
|
|
return SDValue();
|
|
if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
|
|
BCNumEltsChanged = true;
|
|
InVec = InVec.getOperand(0);
|
|
ExtVT = BCVT.getVectorElementType();
|
|
NewLoad = true;
|
|
}
|
|
|
|
LoadSDNode *LN0 = NULL;
|
|
const ShuffleVectorSDNode *SVN = NULL;
|
|
if (ISD::isNormalLoad(InVec.getNode())) {
|
|
LN0 = cast<LoadSDNode>(InVec);
|
|
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
InVec.getOperand(0).getValueType() == ExtVT &&
|
|
ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
LN0 = cast<LoadSDNode>(InVec.getOperand(0));
|
|
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
|
|
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
|
|
// =>
|
|
// (load $addr+1*size)
|
|
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
// If the bit convert changed the number of elements, it is unsafe
|
|
// to examine the mask.
|
|
if (BCNumEltsChanged)
|
|
return SDValue();
|
|
|
|
// Select the input vector, guarding against out of range extract vector.
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
|
|
InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
|
|
|
|
if (InVec.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
InVec = InVec.getOperand(0);
|
|
}
|
|
if (ISD::isNormalLoad(InVec.getNode())) {
|
|
LN0 = cast<LoadSDNode>(InVec);
|
|
Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
|
|
}
|
|
}
|
|
|
|
// Make sure we found a non-volatile load and the extractelement is
|
|
// the only use.
|
|
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
|
|
return SDValue();
|
|
|
|
// If Idx was -1 above, Elt is going to be -1, so just return undef.
|
|
if (Elt == -1)
|
|
return DAG.getUNDEF(LVT);
|
|
|
|
unsigned Align = LN0->getAlignment();
|
|
if (NewLoad) {
|
|
// Check the resultant load doesn't need a higher alignment than the
|
|
// original load.
|
|
unsigned NewAlign =
|
|
TLI.getTargetData()
|
|
->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
|
|
return SDValue();
|
|
|
|
Align = NewAlign;
|
|
}
|
|
|
|
SDValue NewPtr = LN0->getBasePtr();
|
|
unsigned PtrOff = 0;
|
|
|
|
if (Elt) {
|
|
PtrOff = LVT.getSizeInBits() * Elt / 8;
|
|
EVT PtrType = NewPtr.getValueType();
|
|
if (TLI.isBigEndian())
|
|
PtrOff = VT.getSizeInBits() / 8 - PtrOff;
|
|
NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
|
|
DAG.getConstant(PtrOff, PtrType));
|
|
}
|
|
|
|
// The replacement we need to do here is a little tricky: we need to
|
|
// replace an extractelement of a load with a load.
|
|
// Use ReplaceAllUsesOfValuesWith to do the replacement.
|
|
// Note that this replacement assumes that the extractvalue is the only
|
|
// use of the load; that's okay because we don't want to perform this
|
|
// transformation in other cases anyway.
|
|
SDValue Load;
|
|
SDValue Chain;
|
|
if (NVT.bitsGT(LVT)) {
|
|
// If the result type of vextract is wider than the load, then issue an
|
|
// extending load instead.
|
|
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
|
|
? ISD::ZEXTLOAD : ISD::EXTLOAD;
|
|
Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
|
|
NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
|
|
LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
|
|
Chain = Load.getValue(1);
|
|
} else {
|
|
Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
|
|
LN0->getPointerInfo().getWithOffset(PtrOff),
|
|
LN0->isVolatile(), LN0->isNonTemporal(),
|
|
LN0->isInvariant(), Align);
|
|
Chain = Load.getValue(1);
|
|
if (NVT.bitsLT(LVT))
|
|
Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
|
|
else
|
|
Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
|
|
}
|
|
WorkListRemover DeadNodes(*this);
|
|
SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
|
|
SDValue To[] = { Load, Chain };
|
|
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
|
|
// Since we're explcitly calling ReplaceAllUses, add the new node to the
|
|
// worklist explicitly as well.
|
|
AddToWorkList(Load.getNode());
|
|
AddUsersToWorkList(Load.getNode()); // Add users too
|
|
// Make sure to revisit this node to clean it up; it will usually be dead.
|
|
AddToWorkList(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
|
|
unsigned NumInScalars = N->getNumOperands();
|
|
DebugLoc dl = N->getDebugLoc();
|
|
EVT VT = N->getValueType(0);
|
|
// Check to see if this is a BUILD_VECTOR of a bunch of values
|
|
// which come from any_extend or zero_extend nodes. If so, we can create
|
|
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
|
|
// optimizations. We do not handle sign-extend because we can't fill the sign
|
|
// using shuffles.
|
|
EVT SourceType = MVT::Other;
|
|
bool AllAnyExt = true;
|
|
bool AllUndef = true;
|
|
for (unsigned i = 0; i != NumInScalars; ++i) {
|
|
SDValue In = N->getOperand(i);
|
|
// Ignore undef inputs.
|
|
if (In.getOpcode() == ISD::UNDEF) continue;
|
|
AllUndef = false;
|
|
|
|
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
|
|
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
|
|
|
|
// Abort if the element is not an extension.
|
|
if (!ZeroExt && !AnyExt) {
|
|
SourceType = MVT::Other;
|
|
break;
|
|
}
|
|
|
|
// The input is a ZeroExt or AnyExt. Check the original type.
|
|
EVT InTy = In.getOperand(0).getValueType();
|
|
|
|
// Check that all of the widened source types are the same.
|
|
if (SourceType == MVT::Other)
|
|
// First time.
|
|
SourceType = InTy;
|
|
else if (InTy != SourceType) {
|
|
// Multiple income types. Abort.
|
|
SourceType = MVT::Other;
|
|
break;
|
|
}
|
|
|
|
// Check if all of the extends are ANY_EXTENDs.
|
|
AllAnyExt &= AnyExt;
|
|
}
|
|
|
|
if (AllUndef)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// In order to have valid types, all of the inputs must be extended from the
|
|
// same source type and all of the inputs must be any or zero extend.
|
|
// Scalar sizes must be a power of two.
|
|
EVT OutScalarTy = N->getValueType(0).getScalarType();
|
|
bool ValidTypes = SourceType != MVT::Other &&
|
|
isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
|
|
isPowerOf2_32(SourceType.getSizeInBits());
|
|
|
|
// We perform this optimization post type-legalization because
|
|
// the type-legalizer often scalarizes integer-promoted vectors.
|
|
// Performing this optimization before may create bit-casts which
|
|
// will be type-legalized to complex code sequences.
|
|
// We perform this optimization only before the operation legalizer because we
|
|
// may introduce illegal operations.
|
|
// Create a new simpler BUILD_VECTOR sequence which other optimizations can
|
|
// turn into a single shuffle instruction.
|
|
if ((Level == AfterLegalizeVectorOps || Level == AfterLegalizeTypes) &&
|
|
ValidTypes) {
|
|
bool isLE = TLI.isLittleEndian();
|
|
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
|
|
assert(ElemRatio > 1 && "Invalid element size ratio");
|
|
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
|
|
DAG.getConstant(0, SourceType);
|
|
|
|
unsigned NewBVElems = ElemRatio * N->getValueType(0).getVectorNumElements();
|
|
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
|
|
|
|
// Populate the new build_vector
|
|
for (unsigned i=0; i < N->getNumOperands(); ++i) {
|
|
SDValue Cast = N->getOperand(i);
|
|
assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
|
|
Cast.getOpcode() == ISD::ZERO_EXTEND ||
|
|
Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
|
|
SDValue In;
|
|
if (Cast.getOpcode() == ISD::UNDEF)
|
|
In = DAG.getUNDEF(SourceType);
|
|
else
|
|
In = Cast->getOperand(0);
|
|
unsigned Index = isLE ? (i * ElemRatio) :
|
|
(i * ElemRatio + (ElemRatio - 1));
|
|
|
|
assert(Index < Ops.size() && "Invalid index");
|
|
Ops[Index] = In;
|
|
}
|
|
|
|
// The type of the new BUILD_VECTOR node.
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
|
|
assert(VecVT.getSizeInBits() == N->getValueType(0).getSizeInBits() &&
|
|
"Invalid vector size");
|
|
// Check if the new vector type is legal.
|
|
if (!isTypeLegal(VecVT)) return SDValue();
|
|
|
|
// Make the new BUILD_VECTOR.
|
|
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
|
|
VecVT, &Ops[0], Ops.size());
|
|
|
|
// The new BUILD_VECTOR node has the potential to be further optimized.
|
|
AddToWorkList(BV.getNode());
|
|
// Bitcast to the desired type.
|
|
return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), BV);
|
|
}
|
|
|
|
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
|
|
// operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
|
|
// at most two distinct vectors, turn this into a shuffle node.
|
|
|
|
// May only combine to shuffle after legalize if shuffle is legal.
|
|
if (LegalOperations &&
|
|
!TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
|
|
return SDValue();
|
|
|
|
SDValue VecIn1, VecIn2;
|
|
for (unsigned i = 0; i != NumInScalars; ++i) {
|
|
// Ignore undef inputs.
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
|
|
// If this input is something other than a EXTRACT_VECTOR_ELT with a
|
|
// constant index, bail out.
|
|
if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
|
|
VecIn1 = VecIn2 = SDValue(0, 0);
|
|
break;
|
|
}
|
|
|
|
// We allow up to two distinct input vectors.
|
|
SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
|
|
if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
|
|
continue;
|
|
|
|
if (VecIn1.getNode() == 0) {
|
|
VecIn1 = ExtractedFromVec;
|
|
} else if (VecIn2.getNode() == 0) {
|
|
VecIn2 = ExtractedFromVec;
|
|
} else {
|
|
// Too many inputs.
|
|
VecIn1 = VecIn2 = SDValue(0, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If everything is good, we can make a shuffle operation.
|
|
if (VecIn1.getNode()) {
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0; i != NumInScalars; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
|
|
// If extracting from the first vector, just use the index directly.
|
|
SDValue Extract = N->getOperand(i);
|
|
SDValue ExtVal = Extract.getOperand(1);
|
|
if (Extract.getOperand(0) == VecIn1) {
|
|
unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
|
|
if (ExtIndex > VT.getVectorNumElements())
|
|
return SDValue();
|
|
|
|
Mask.push_back(ExtIndex);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, use InIdx + VecSize
|
|
unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
|
|
Mask.push_back(Idx+NumInScalars);
|
|
}
|
|
|
|
// We can't generate a shuffle node with mismatched input and output types.
|
|
// Attempt to transform a single input vector to the correct type.
|
|
if ((VT != VecIn1.getValueType())) {
|
|
// We don't support shuffeling between TWO values of different types.
|
|
if (VecIn2.getNode() != 0)
|
|
return SDValue();
|
|
|
|
// We only support widening of vectors which are half the size of the
|
|
// output registers. For example XMM->YMM widening on X86 with AVX.
|
|
if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Widen the input vector by adding undef values.
|
|
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
|
|
VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
|
|
}
|
|
|
|
// If VecIn2 is unused then change it to undef.
|
|
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
|
|
|
|
// Check that we were able to transform all incoming values to the same type.
|
|
if (VecIn2.getValueType() != VecIn1.getValueType() ||
|
|
VecIn1.getValueType() != VT)
|
|
return SDValue();
|
|
|
|
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
|
|
if (!isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// Return the new VECTOR_SHUFFLE node.
|
|
SDValue Ops[2];
|
|
Ops[0] = VecIn1;
|
|
Ops[1] = VecIn2;
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
|
|
// TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
|
|
// EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
|
|
// inputs come from at most two distinct vectors, turn this into a shuffle
|
|
// node.
|
|
|
|
// If we only have one input vector, we don't need to do any concatenation.
|
|
if (N->getNumOperands() == 1)
|
|
return N->getOperand(0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
|
|
EVT NVT = N->getValueType(0);
|
|
SDValue V = N->getOperand(0);
|
|
|
|
if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
|
|
// Handle only simple case where vector being inserted and vector
|
|
// being extracted are of same type, and are half size of larger vectors.
|
|
EVT BigVT = V->getOperand(0).getValueType();
|
|
EVT SmallVT = V->getOperand(1).getValueType();
|
|
if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Only handle cases where both indexes are constants with the same type.
|
|
ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
|
|
|
|
if (InsIdx && ExtIdx &&
|
|
InsIdx->getValueType(0).getSizeInBits() <= 64 &&
|
|
ExtIdx->getValueType(0).getSizeInBits() <= 64) {
|
|
// Combine:
|
|
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
|
|
// Into:
|
|
// indices are equal => V1
|
|
// otherwise => (extract_subvec V1, ExtIdx)
|
|
if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
|
|
return V->getOperand(1);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
|
|
V->getOperand(0), N->getOperand(1));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
|
|
|
|
// Canonicalize shuffle undef, undef -> undef
|
|
if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
|
|
// Canonicalize shuffle v, v -> v, undef
|
|
if (N0 == N1) {
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= (int)NumElts) Idx -= NumElts;
|
|
NewMask.push_back(Idx);
|
|
}
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
|
|
&NewMask[0]);
|
|
}
|
|
|
|
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
|
|
if (N0.getOpcode() == ISD::UNDEF) {
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= 0) {
|
|
if (Idx < (int)NumElts)
|
|
Idx += NumElts;
|
|
else
|
|
Idx -= NumElts;
|
|
}
|
|
NewMask.push_back(Idx);
|
|
}
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
|
|
&NewMask[0]);
|
|
}
|
|
|
|
// Remove references to rhs if it is undef
|
|
if (N1.getOpcode() == ISD::UNDEF) {
|
|
bool Changed = false;
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= (int)NumElts) {
|
|
Idx = -1;
|
|
Changed = true;
|
|
}
|
|
NewMask.push_back(Idx);
|
|
}
|
|
if (Changed)
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
|
|
}
|
|
|
|
// If it is a splat, check if the argument vector is another splat or a
|
|
// build_vector with all scalar elements the same.
|
|
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
|
|
SDNode *V = N0.getNode();
|
|
|
|
// If this is a bit convert that changes the element type of the vector but
|
|
// not the number of vector elements, look through it. Be careful not to
|
|
// look though conversions that change things like v4f32 to v2f64.
|
|
if (V->getOpcode() == ISD::BITCAST) {
|
|
SDValue ConvInput = V->getOperand(0);
|
|
if (ConvInput.getValueType().isVector() &&
|
|
ConvInput.getValueType().getVectorNumElements() == NumElts)
|
|
V = ConvInput.getNode();
|
|
}
|
|
|
|
if (V->getOpcode() == ISD::BUILD_VECTOR) {
|
|
assert(V->getNumOperands() == NumElts &&
|
|
"BUILD_VECTOR has wrong number of operands");
|
|
SDValue Base;
|
|
bool AllSame = true;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
Base = V->getOperand(i);
|
|
break;
|
|
}
|
|
}
|
|
// Splat of <u, u, u, u>, return <u, u, u, u>
|
|
if (!Base.getNode())
|
|
return N0;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (V->getOperand(i) != Base) {
|
|
AllSame = false;
|
|
break;
|
|
}
|
|
}
|
|
// Splat of <x, x, x, x>, return <x, x, x, x>
|
|
if (AllSame)
|
|
return N0;
|
|
}
|
|
}
|
|
|
|
// If this shuffle node is simply a swizzle of another shuffle node,
|
|
// and it reverses the swizzle of the previous shuffle then we can
|
|
// optimize shuffle(shuffle(x, undef), undef) -> x.
|
|
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
|
|
N1.getOpcode() == ISD::UNDEF) {
|
|
|
|
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
|
|
|
|
// Shuffle nodes can only reverse shuffles with a single non-undef value.
|
|
if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
|
|
return SDValue();
|
|
|
|
// The incoming shuffle must be of the same type as the result of the
|
|
// current shuffle.
|
|
assert(OtherSV->getOperand(0).getValueType() == VT &&
|
|
"Shuffle types don't match");
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
assert(Idx < (int)NumElts && "Index references undef operand");
|
|
// Next, this index comes from the first value, which is the incoming
|
|
// shuffle. Adopt the incoming index.
|
|
if (Idx >= 0)
|
|
Idx = OtherSV->getMaskElt(Idx);
|
|
|
|
// The combined shuffle must map each index to itself.
|
|
if (Idx >= 0 && (unsigned)Idx != i)
|
|
return SDValue();
|
|
}
|
|
|
|
return OtherSV->getOperand(0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
|
|
if (!TLI.getShouldFoldAtomicFences())
|
|
return SDValue();
|
|
|
|
SDValue atomic = N->getOperand(0);
|
|
switch (atomic.getOpcode()) {
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue fence = atomic.getOperand(0);
|
|
if (fence.getOpcode() != ISD::MEMBARRIER)
|
|
return SDValue();
|
|
|
|
switch (atomic.getOpcode()) {
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
|
|
fence.getOperand(0),
|
|
atomic.getOperand(1), atomic.getOperand(2),
|
|
atomic.getOperand(3)), atomic.getResNo());
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
|
|
fence.getOperand(0),
|
|
atomic.getOperand(1), atomic.getOperand(2)),
|
|
atomic.getResNo());
|
|
default:
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
|
|
/// an AND to a vector_shuffle with the destination vector and a zero vector.
|
|
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
|
|
/// vector_shuffle V, Zero, <0, 4, 2, 4>
|
|
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc dl = N->getDebugLoc();
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
if (N->getOpcode() == ISD::AND) {
|
|
if (RHS.getOpcode() == ISD::BITCAST)
|
|
RHS = RHS.getOperand(0);
|
|
if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SmallVector<int, 8> Indices;
|
|
unsigned NumElts = RHS.getNumOperands();
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
SDValue Elt = RHS.getOperand(i);
|
|
if (!isa<ConstantSDNode>(Elt))
|
|
return SDValue();
|
|
|
|
if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
|
|
Indices.push_back(i);
|
|
else if (cast<ConstantSDNode>(Elt)->isNullValue())
|
|
Indices.push_back(NumElts);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
// Let's see if the target supports this vector_shuffle.
|
|
EVT RVT = RHS.getValueType();
|
|
if (!TLI.isVectorClearMaskLegal(Indices, RVT))
|
|
return SDValue();
|
|
|
|
// Return the new VECTOR_SHUFFLE node.
|
|
EVT EltVT = RVT.getVectorElementType();
|
|
SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
|
|
DAG.getConstant(0, EltVT));
|
|
SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
|
|
RVT, &ZeroOps[0], ZeroOps.size());
|
|
LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
|
|
SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
|
|
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
|
|
// After legalize, the target may be depending on adds and other
|
|
// binary ops to provide legal ways to construct constants or other
|
|
// things. Simplifying them may result in a loss of legality.
|
|
if (LegalOperations) return SDValue();
|
|
|
|
assert(N->getValueType(0).isVector() &&
|
|
"SimplifyVBinOp only works on vectors!");
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue Shuffle = XformToShuffleWithZero(N);
|
|
if (Shuffle.getNode()) return Shuffle;
|
|
|
|
// If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
|
|
// this operation.
|
|
if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
|
|
RHS.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
|
|
SDValue LHSOp = LHS.getOperand(i);
|
|
SDValue RHSOp = RHS.getOperand(i);
|
|
// If these two elements can't be folded, bail out.
|
|
if ((LHSOp.getOpcode() != ISD::UNDEF &&
|
|
LHSOp.getOpcode() != ISD::Constant &&
|
|
LHSOp.getOpcode() != ISD::ConstantFP) ||
|
|
(RHSOp.getOpcode() != ISD::UNDEF &&
|
|
RHSOp.getOpcode() != ISD::Constant &&
|
|
RHSOp.getOpcode() != ISD::ConstantFP))
|
|
break;
|
|
|
|
// Can't fold divide by zero.
|
|
if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
|
|
N->getOpcode() == ISD::FDIV) {
|
|
if ((RHSOp.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
|
|
(RHSOp.getOpcode() == ISD::ConstantFP &&
|
|
cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
|
|
break;
|
|
}
|
|
|
|
EVT VT = LHSOp.getValueType();
|
|
EVT RVT = RHSOp.getValueType();
|
|
if (RVT != VT) {
|
|
// Integer BUILD_VECTOR operands may have types larger than the element
|
|
// size (e.g., when the element type is not legal). Prior to type
|
|
// legalization, the types may not match between the two BUILD_VECTORS.
|
|
// Truncate one of the operands to make them match.
|
|
if (RVT.getSizeInBits() > VT.getSizeInBits()) {
|
|
RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
|
|
} else {
|
|
LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
|
|
VT = RVT;
|
|
}
|
|
}
|
|
SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
|
|
LHSOp, RHSOp);
|
|
if (FoldOp.getOpcode() != ISD::UNDEF &&
|
|
FoldOp.getOpcode() != ISD::Constant &&
|
|
FoldOp.getOpcode() != ISD::ConstantFP)
|
|
break;
|
|
Ops.push_back(FoldOp);
|
|
AddToWorkList(FoldOp.getNode());
|
|
}
|
|
|
|
if (Ops.size() == LHS.getNumOperands())
|
|
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
|
|
LHS.getValueType(), &Ops[0], Ops.size());
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
|
|
SDValue N1, SDValue N2){
|
|
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
|
|
|
|
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
|
|
// If we got a simplified select_cc node back from SimplifySelectCC, then
|
|
// break it down into a new SETCC node, and a new SELECT node, and then return
|
|
// the SELECT node, since we were called with a SELECT node.
|
|
if (SCC.getNode()) {
|
|
// Check to see if we got a select_cc back (to turn into setcc/select).
|
|
// Otherwise, just return whatever node we got back, like fabs.
|
|
if (SCC.getOpcode() == ISD::SELECT_CC) {
|
|
SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
|
|
N0.getValueType(),
|
|
SCC.getOperand(0), SCC.getOperand(1),
|
|
SCC.getOperand(4));
|
|
AddToWorkList(SETCC.getNode());
|
|
return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
|
|
SCC.getOperand(2), SCC.getOperand(3), SETCC);
|
|
}
|
|
|
|
return SCC;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
|
|
/// are the two values being selected between, see if we can simplify the
|
|
/// select. Callers of this should assume that TheSelect is deleted if this
|
|
/// returns true. As such, they should return the appropriate thing (e.g. the
|
|
/// node) back to the top-level of the DAG combiner loop to avoid it being
|
|
/// looked at.
|
|
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
|
|
SDValue RHS) {
|
|
|
|
// Cannot simplify select with vector condition
|
|
if (TheSelect->getOperand(0).getValueType().isVector()) return false;
|
|
|
|
// If this is a select from two identical things, try to pull the operation
|
|
// through the select.
|
|
if (LHS.getOpcode() != RHS.getOpcode() ||
|
|
!LHS.hasOneUse() || !RHS.hasOneUse())
|
|
return false;
|
|
|
|
// If this is a load and the token chain is identical, replace the select
|
|
// of two loads with a load through a select of the address to load from.
|
|
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
|
|
// constants have been dropped into the constant pool.
|
|
if (LHS.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
|
|
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
|
|
|
|
// Token chains must be identical.
|
|
if (LHS.getOperand(0) != RHS.getOperand(0) ||
|
|
// Do not let this transformation reduce the number of volatile loads.
|
|
LLD->isVolatile() || RLD->isVolatile() ||
|
|
// If this is an EXTLOAD, the VT's must match.
|
|
LLD->getMemoryVT() != RLD->getMemoryVT() ||
|
|
// If this is an EXTLOAD, the kind of extension must match.
|
|
(LLD->getExtensionType() != RLD->getExtensionType() &&
|
|
// The only exception is if one of the extensions is anyext.
|
|
LLD->getExtensionType() != ISD::EXTLOAD &&
|
|
RLD->getExtensionType() != ISD::EXTLOAD) ||
|
|
// FIXME: this discards src value information. This is
|
|
// over-conservative. It would be beneficial to be able to remember
|
|
// both potential memory locations. Since we are discarding
|
|
// src value info, don't do the transformation if the memory
|
|
// locations are not in the default address space.
|
|
LLD->getPointerInfo().getAddrSpace() != 0 ||
|
|
RLD->getPointerInfo().getAddrSpace() != 0)
|
|
return false;
|
|
|
|
// Check that the select condition doesn't reach either load. If so,
|
|
// folding this will induce a cycle into the DAG. If not, this is safe to
|
|
// xform, so create a select of the addresses.
|
|
SDValue Addr;
|
|
if (TheSelect->getOpcode() == ISD::SELECT) {
|
|
SDNode *CondNode = TheSelect->getOperand(0).getNode();
|
|
if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
|
|
(RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
|
|
return false;
|
|
Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
|
|
LLD->getBasePtr().getValueType(),
|
|
TheSelect->getOperand(0), LLD->getBasePtr(),
|
|
RLD->getBasePtr());
|
|
} else { // Otherwise SELECT_CC
|
|
SDNode *CondLHS = TheSelect->getOperand(0).getNode();
|
|
SDNode *CondRHS = TheSelect->getOperand(1).getNode();
|
|
|
|
if ((LLD->hasAnyUseOfValue(1) &&
|
|
(LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
|
|
(RLD->hasAnyUseOfValue(1) &&
|
|
(RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
|
|
return false;
|
|
|
|
Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
|
|
LLD->getBasePtr().getValueType(),
|
|
TheSelect->getOperand(0),
|
|
TheSelect->getOperand(1),
|
|
LLD->getBasePtr(), RLD->getBasePtr(),
|
|
TheSelect->getOperand(4));
|
|
}
|
|
|
|
SDValue Load;
|
|
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
|
|
Load = DAG.getLoad(TheSelect->getValueType(0),
|
|
TheSelect->getDebugLoc(),
|
|
// FIXME: Discards pointer info.
|
|
LLD->getChain(), Addr, MachinePointerInfo(),
|
|
LLD->isVolatile(), LLD->isNonTemporal(),
|
|
LLD->isInvariant(), LLD->getAlignment());
|
|
} else {
|
|
Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
|
|
RLD->getExtensionType() : LLD->getExtensionType(),
|
|
TheSelect->getDebugLoc(),
|
|
TheSelect->getValueType(0),
|
|
// FIXME: Discards pointer info.
|
|
LLD->getChain(), Addr, MachinePointerInfo(),
|
|
LLD->getMemoryVT(), LLD->isVolatile(),
|
|
LLD->isNonTemporal(), LLD->getAlignment());
|
|
}
|
|
|
|
// Users of the select now use the result of the load.
|
|
CombineTo(TheSelect, Load);
|
|
|
|
// Users of the old loads now use the new load's chain. We know the
|
|
// old-load value is dead now.
|
|
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
|
|
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
|
|
/// where 'cond' is the comparison specified by CC.
|
|
SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
|
|
SDValue N2, SDValue N3,
|
|
ISD::CondCode CC, bool NotExtCompare) {
|
|
// (x ? y : y) -> y.
|
|
if (N2 == N3) return N2;
|
|
|
|
EVT VT = N2.getValueType();
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
|
|
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
|
|
|
|
// Determine if the condition we're dealing with is constant
|
|
SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
|
|
N0, N1, CC, DL, false);
|
|
if (SCC.getNode()) AddToWorkList(SCC.getNode());
|
|
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
|
|
|
|
// fold select_cc true, x, y -> x
|
|
if (SCCC && !SCCC->isNullValue())
|
|
return N2;
|
|
// fold select_cc false, x, y -> y
|
|
if (SCCC && SCCC->isNullValue())
|
|
return N3;
|
|
|
|
// Check to see if we can simplify the select into an fabs node
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
|
|
// Allow either -0.0 or 0.0
|
|
if (CFP->getValueAPF().isZero()) {
|
|
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
|
|
if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
|
|
N0 == N2 && N3.getOpcode() == ISD::FNEG &&
|
|
N2 == N3.getOperand(0))
|
|
return DAG.getNode(ISD::FABS, DL, VT, N0);
|
|
|
|
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs
|
|
if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
|
|
N0 == N3 && N2.getOpcode() == ISD::FNEG &&
|
|
N2.getOperand(0) == N3)
|
|
return DAG.getNode(ISD::FABS, DL, VT, N3);
|
|
}
|
|
}
|
|
|
|
// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
|
|
// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
|
|
// in it. This is a win when the constant is not otherwise available because
|
|
// it replaces two constant pool loads with one. We only do this if the FP
|
|
// type is known to be legal, because if it isn't, then we are before legalize
|
|
// types an we want the other legalization to happen first (e.g. to avoid
|
|
// messing with soft float) and if the ConstantFP is not legal, because if
|
|
// it is legal, we may not need to store the FP constant in a constant pool.
|
|
if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
|
|
if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
|
|
if (TLI.isTypeLegal(N2.getValueType()) &&
|
|
(TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
|
|
TargetLowering::Legal) &&
|
|
// If both constants have multiple uses, then we won't need to do an
|
|
// extra load, they are likely around in registers for other users.
|
|
(TV->hasOneUse() || FV->hasOneUse())) {
|
|
Constant *Elts[] = {
|
|
const_cast<ConstantFP*>(FV->getConstantFPValue()),
|
|
const_cast<ConstantFP*>(TV->getConstantFPValue())
|
|
};
|
|
Type *FPTy = Elts[0]->getType();
|
|
const TargetData &TD = *TLI.getTargetData();
|
|
|
|
// Create a ConstantArray of the two constants.
|
|
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
|
|
SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
|
|
TD.getPrefTypeAlignment(FPTy));
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
|
|
// Get the offsets to the 0 and 1 element of the array so that we can
|
|
// select between them.
|
|
SDValue Zero = DAG.getIntPtrConstant(0);
|
|
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
|
|
SDValue One = DAG.getIntPtrConstant(EltSize);
|
|
|
|
SDValue Cond = DAG.getSetCC(DL,
|
|
TLI.getSetCCResultType(N0.getValueType()),
|
|
N0, N1, CC);
|
|
AddToWorkList(Cond.getNode());
|
|
SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
|
|
Cond, One, Zero);
|
|
AddToWorkList(CstOffset.getNode());
|
|
CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
|
|
CstOffset);
|
|
AddToWorkList(CPIdx.getNode());
|
|
return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(), false,
|
|
false, false, Alignment);
|
|
|
|
}
|
|
}
|
|
|
|
// Check to see if we can perform the "gzip trick", transforming
|
|
// (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
|
|
if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
|
|
(N1C->isNullValue() || // (a < 0) ? b : 0
|
|
(N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
|
|
EVT XType = N0.getValueType();
|
|
EVT AType = N2.getValueType();
|
|
if (XType.bitsGE(AType)) {
|
|
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
|
|
// single-bit constant.
|
|
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
|
|
unsigned ShCtV = N2C->getAPIntValue().logBase2();
|
|
ShCtV = XType.getSizeInBits()-ShCtV-1;
|
|
SDValue ShCt = DAG.getConstant(ShCtV,
|
|
getShiftAmountTy(N0.getValueType()));
|
|
SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
|
|
XType, N0, ShCt);
|
|
AddToWorkList(Shift.getNode());
|
|
|
|
if (XType.bitsGT(AType)) {
|
|
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
|
|
AddToWorkList(Shift.getNode());
|
|
}
|
|
|
|
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
|
|
}
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
|
|
XType, N0,
|
|
DAG.getConstant(XType.getSizeInBits()-1,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
AddToWorkList(Shift.getNode());
|
|
|
|
if (XType.bitsGT(AType)) {
|
|
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
|
|
AddToWorkList(Shift.getNode());
|
|
}
|
|
|
|
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
|
|
}
|
|
}
|
|
|
|
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
|
|
// where y is has a single bit set.
|
|
// A plaintext description would be, we can turn the SELECT_CC into an AND
|
|
// when the condition can be materialized as an all-ones register. Any
|
|
// single bit-test can be materialized as an all-ones register with
|
|
// shift-left and shift-right-arith.
|
|
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
|
|
N0->getValueType(0) == VT &&
|
|
N1C && N1C->isNullValue() &&
|
|
N2C && N2C->isNullValue()) {
|
|
SDValue AndLHS = N0->getOperand(0);
|
|
ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
|
|
// Shift the tested bit over the sign bit.
|
|
APInt AndMask = ConstAndRHS->getAPIntValue();
|
|
SDValue ShlAmt =
|
|
DAG.getConstant(AndMask.countLeadingZeros(),
|
|
getShiftAmountTy(AndLHS.getValueType()));
|
|
SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
|
|
|
|
// Now arithmetic right shift it all the way over, so the result is either
|
|
// all-ones, or zero.
|
|
SDValue ShrAmt =
|
|
DAG.getConstant(AndMask.getBitWidth()-1,
|
|
getShiftAmountTy(Shl.getValueType()));
|
|
SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
|
|
|
|
return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
|
|
}
|
|
}
|
|
|
|
// fold select C, 16, 0 -> shl C, 4
|
|
if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
|
|
TLI.getBooleanContents(N0.getValueType().isVector()) ==
|
|
TargetLowering::ZeroOrOneBooleanContent) {
|
|
|
|
// If the caller doesn't want us to simplify this into a zext of a compare,
|
|
// don't do it.
|
|
if (NotExtCompare && N2C->getAPIntValue() == 1)
|
|
return SDValue();
|
|
|
|
// Get a SetCC of the condition
|
|
// FIXME: Should probably make sure that setcc is legal if we ever have a
|
|
// target where it isn't.
|
|
SDValue Temp, SCC;
|
|
// cast from setcc result type to select result type
|
|
if (LegalTypes) {
|
|
SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
|
|
N0, N1, CC);
|
|
if (N2.getValueType().bitsLT(SCC.getValueType()))
|
|
Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
|
|
else
|
|
Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
|
|
N2.getValueType(), SCC);
|
|
} else {
|
|
SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
|
|
Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
|
|
N2.getValueType(), SCC);
|
|
}
|
|
|
|
AddToWorkList(SCC.getNode());
|
|
AddToWorkList(Temp.getNode());
|
|
|
|
if (N2C->getAPIntValue() == 1)
|
|
return Temp;
|
|
|
|
// shl setcc result by log2 n2c
|
|
return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
|
|
DAG.getConstant(N2C->getAPIntValue().logBase2(),
|
|
getShiftAmountTy(Temp.getValueType())));
|
|
}
|
|
|
|
// Check to see if this is the equivalent of setcc
|
|
// FIXME: Turn all of these into setcc if setcc if setcc is legal
|
|
// otherwise, go ahead with the folds.
|
|
if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
|
|
EVT XType = N0.getValueType();
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
|
|
SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
|
|
if (Res.getValueType() != VT)
|
|
Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
|
|
return Res;
|
|
}
|
|
|
|
// fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
|
|
if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::CTLZ, XType))) {
|
|
SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
|
|
return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
|
|
DAG.getConstant(Log2_32(XType.getSizeInBits()),
|
|
getShiftAmountTy(Ctlz.getValueType())));
|
|
}
|
|
// fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
|
|
if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
|
|
SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
|
|
XType, DAG.getConstant(0, XType), N0);
|
|
SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
|
|
return DAG.getNode(ISD::SRL, DL, XType,
|
|
DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
|
|
DAG.getConstant(XType.getSizeInBits()-1,
|
|
getShiftAmountTy(XType)));
|
|
}
|
|
// fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
|
|
if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
|
|
SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
|
|
DAG.getConstant(XType.getSizeInBits()-1,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
|
|
}
|
|
}
|
|
|
|
// Check to see if this is an integer abs.
|
|
// select_cc setg[te] X, 0, X, -X ->
|
|
// select_cc setgt X, -1, X, -X ->
|
|
// select_cc setl[te] X, 0, -X, X ->
|
|
// select_cc setlt X, 1, -X, X ->
|
|
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
|
|
if (N1C) {
|
|
ConstantSDNode *SubC = NULL;
|
|
if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
|
|
(N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
|
|
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
|
|
SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
|
|
else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
|
|
(N1C->isOne() && CC == ISD::SETLT)) &&
|
|
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
|
|
SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
|
|
|
|
EVT XType = N0.getValueType();
|
|
if (SubC && SubC->isNullValue() && XType.isInteger()) {
|
|
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
|
|
N0,
|
|
DAG.getConstant(XType.getSizeInBits()-1,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
|
|
XType, N0, Shift);
|
|
AddToWorkList(Shift.getNode());
|
|
AddToWorkList(Add.getNode());
|
|
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
|
|
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
|
|
SDValue N1, ISD::CondCode Cond,
|
|
DebugLoc DL, bool foldBooleans) {
|
|
TargetLowering::DAGCombinerInfo
|
|
DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
|
|
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
|
|
}
|
|
|
|
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
|
|
std::vector<SDNode*> Built;
|
|
SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
|
|
|
|
for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
|
|
ii != ee; ++ii)
|
|
AddToWorkList(*ii);
|
|
return S;
|
|
}
|
|
|
|
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
|
|
std::vector<SDNode*> Built;
|
|
SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
|
|
|
|
for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
|
|
ii != ee; ++ii)
|
|
AddToWorkList(*ii);
|
|
return S;
|
|
}
|
|
|
|
/// FindBaseOffset - Return true if base is a frame index, which is known not
|
|
// to alias with anything but itself. Provides base object and offset as
|
|
// results.
|
|
static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
|
|
const GlobalValue *&GV, void *&CV) {
|
|
// Assume it is a primitive operation.
|
|
Base = Ptr; Offset = 0; GV = 0; CV = 0;
|
|
|
|
// If it's an adding a simple constant then integrate the offset.
|
|
if (Base.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
|
|
Base = Base.getOperand(0);
|
|
Offset += C->getZExtValue();
|
|
}
|
|
}
|
|
|
|
// Return the underlying GlobalValue, and update the Offset. Return false
|
|
// for GlobalAddressSDNode since the same GlobalAddress may be represented
|
|
// by multiple nodes with different offsets.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
|
|
GV = G->getGlobal();
|
|
Offset += G->getOffset();
|
|
return false;
|
|
}
|
|
|
|
// Return the underlying Constant value, and update the Offset. Return false
|
|
// for ConstantSDNodes since the same constant pool entry may be represented
|
|
// by multiple nodes with different offsets.
|
|
if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
|
|
CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal()
|
|
: (void *)C->getConstVal();
|
|
Offset += C->getOffset();
|
|
return false;
|
|
}
|
|
// If it's any of the following then it can't alias with anything but itself.
|
|
return isa<FrameIndexSDNode>(Base);
|
|
}
|
|
|
|
/// isAlias - Return true if there is any possibility that the two addresses
|
|
/// overlap.
|
|
bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
|
|
const Value *SrcValue1, int SrcValueOffset1,
|
|
unsigned SrcValueAlign1,
|
|
const MDNode *TBAAInfo1,
|
|
SDValue Ptr2, int64_t Size2,
|
|
const Value *SrcValue2, int SrcValueOffset2,
|
|
unsigned SrcValueAlign2,
|
|
const MDNode *TBAAInfo2) const {
|
|
// If they are the same then they must be aliases.
|
|
if (Ptr1 == Ptr2) return true;
|
|
|
|
// Gather base node and offset information.
|
|
SDValue Base1, Base2;
|
|
int64_t Offset1, Offset2;
|
|
const GlobalValue *GV1, *GV2;
|
|
void *CV1, *CV2;
|
|
bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
|
|
bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
|
|
|
|
// If they have a same base address then check to see if they overlap.
|
|
if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
|
|
return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
|
|
|
|
// It is possible for different frame indices to alias each other, mostly
|
|
// when tail call optimization reuses return address slots for arguments.
|
|
// To catch this case, look up the actual index of frame indices to compute
|
|
// the real alias relationship.
|
|
if (isFrameIndex1 && isFrameIndex2) {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
|
|
Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
|
|
return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
|
|
}
|
|
|
|
// Otherwise, if we know what the bases are, and they aren't identical, then
|
|
// we know they cannot alias.
|
|
if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
|
|
return false;
|
|
|
|
// If we know required SrcValue1 and SrcValue2 have relatively large alignment
|
|
// compared to the size and offset of the access, we may be able to prove they
|
|
// do not alias. This check is conservative for now to catch cases created by
|
|
// splitting vector types.
|
|
if ((SrcValueAlign1 == SrcValueAlign2) &&
|
|
(SrcValueOffset1 != SrcValueOffset2) &&
|
|
(Size1 == Size2) && (SrcValueAlign1 > Size1)) {
|
|
int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
|
|
int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
|
|
|
|
// There is no overlap between these relatively aligned accesses of similar
|
|
// size, return no alias.
|
|
if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
|
|
return false;
|
|
}
|
|
|
|
if (CombinerGlobalAA) {
|
|
// Use alias analysis information.
|
|
int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
|
|
int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
|
|
int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
|
|
AliasAnalysis::AliasResult AAResult =
|
|
AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
|
|
AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
|
|
if (AAResult == AliasAnalysis::NoAlias)
|
|
return false;
|
|
}
|
|
|
|
// Otherwise we have to assume they alias.
|
|
return true;
|
|
}
|
|
|
|
/// FindAliasInfo - Extracts the relevant alias information from the memory
|
|
/// node. Returns true if the operand was a load.
|
|
bool DAGCombiner::FindAliasInfo(SDNode *N,
|
|
SDValue &Ptr, int64_t &Size,
|
|
const Value *&SrcValue,
|
|
int &SrcValueOffset,
|
|
unsigned &SrcValueAlign,
|
|
const MDNode *&TBAAInfo) const {
|
|
LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
|
|
|
|
Ptr = LS->getBasePtr();
|
|
Size = LS->getMemoryVT().getSizeInBits() >> 3;
|
|
SrcValue = LS->getSrcValue();
|
|
SrcValueOffset = LS->getSrcValueOffset();
|
|
SrcValueAlign = LS->getOriginalAlignment();
|
|
TBAAInfo = LS->getTBAAInfo();
|
|
return isa<LoadSDNode>(LS);
|
|
}
|
|
|
|
/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
|
|
/// looking for aliasing nodes and adding them to the Aliases vector.
|
|
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
|
|
SmallVector<SDValue, 8> &Aliases) {
|
|
SmallVector<SDValue, 8> Chains; // List of chains to visit.
|
|
SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
|
|
|
|
// Get alias information for node.
|
|
SDValue Ptr;
|
|
int64_t Size;
|
|
const Value *SrcValue;
|
|
int SrcValueOffset;
|
|
unsigned SrcValueAlign;
|
|
const MDNode *SrcTBAAInfo;
|
|
bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
|
|
SrcValueAlign, SrcTBAAInfo);
|
|
|
|
// Starting off.
|
|
Chains.push_back(OriginalChain);
|
|
unsigned Depth = 0;
|
|
|
|
// Look at each chain and determine if it is an alias. If so, add it to the
|
|
// aliases list. If not, then continue up the chain looking for the next
|
|
// candidate.
|
|
while (!Chains.empty()) {
|
|
SDValue Chain = Chains.back();
|
|
Chains.pop_back();
|
|
|
|
// For TokenFactor nodes, look at each operand and only continue up the
|
|
// chain until we find two aliases. If we've seen two aliases, assume we'll
|
|
// find more and revert to original chain since the xform is unlikely to be
|
|
// profitable.
|
|
//
|
|
// FIXME: The depth check could be made to return the last non-aliasing
|
|
// chain we found before we hit a tokenfactor rather than the original
|
|
// chain.
|
|
if (Depth > 6 || Aliases.size() == 2) {
|
|
Aliases.clear();
|
|
Aliases.push_back(OriginalChain);
|
|
break;
|
|
}
|
|
|
|
// Don't bother if we've been before.
|
|
if (!Visited.insert(Chain.getNode()))
|
|
continue;
|
|
|
|
switch (Chain.getOpcode()) {
|
|
case ISD::EntryToken:
|
|
// Entry token is ideal chain operand, but handled in FindBetterChain.
|
|
break;
|
|
|
|
case ISD::LOAD:
|
|
case ISD::STORE: {
|
|
// Get alias information for Chain.
|
|
SDValue OpPtr;
|
|
int64_t OpSize;
|
|
const Value *OpSrcValue;
|
|
int OpSrcValueOffset;
|
|
unsigned OpSrcValueAlign;
|
|
const MDNode *OpSrcTBAAInfo;
|
|
bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
|
|
OpSrcValue, OpSrcValueOffset,
|
|
OpSrcValueAlign,
|
|
OpSrcTBAAInfo);
|
|
|
|
// If chain is alias then stop here.
|
|
if (!(IsLoad && IsOpLoad) &&
|
|
isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
|
|
SrcTBAAInfo,
|
|
OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
|
|
OpSrcValueAlign, OpSrcTBAAInfo)) {
|
|
Aliases.push_back(Chain);
|
|
} else {
|
|
// Look further up the chain.
|
|
Chains.push_back(Chain.getOperand(0));
|
|
++Depth;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::TokenFactor:
|
|
// We have to check each of the operands of the token factor for "small"
|
|
// token factors, so we queue them up. Adding the operands to the queue
|
|
// (stack) in reverse order maintains the original order and increases the
|
|
// likelihood that getNode will find a matching token factor (CSE.)
|
|
if (Chain.getNumOperands() > 16) {
|
|
Aliases.push_back(Chain);
|
|
break;
|
|
}
|
|
for (unsigned n = Chain.getNumOperands(); n;)
|
|
Chains.push_back(Chain.getOperand(--n));
|
|
++Depth;
|
|
break;
|
|
|
|
default:
|
|
// For all other instructions we will just have to take what we can get.
|
|
Aliases.push_back(Chain);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
|
|
/// for a better chain (aliasing node.)
|
|
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
|
|
SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
|
|
|
|
// Accumulate all the aliases to this node.
|
|
GatherAllAliases(N, OldChain, Aliases);
|
|
|
|
// If no operands then chain to entry token.
|
|
if (Aliases.size() == 0)
|
|
return DAG.getEntryNode();
|
|
|
|
// If a single operand then chain to it. We don't need to revisit it.
|
|
if (Aliases.size() == 1)
|
|
return Aliases[0];
|
|
|
|
// Construct a custom tailored token factor.
|
|
return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
|
|
&Aliases[0], Aliases.size());
|
|
}
|
|
|
|
// SelectionDAG::Combine - This is the entry point for the file.
|
|
//
|
|
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
|
|
CodeGenOpt::Level OptLevel) {
|
|
/// run - This is the main entry point to this class.
|
|
///
|
|
DAGCombiner(*this, AA, OptLevel).Run(Level);
|
|
}
|