mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124611 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2761 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2761 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/GCStrategy.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
 | |
| STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
 | |
| STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
 | |
| STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| STATISTIC(NumBBWithOutOfOrderLineInfo,
 | |
|           "Number of blocks with out of order line number info");
 | |
| STATISTIC(NumMBBWithOutOfOrderLineInfo,
 | |
|           "Number of machine blocks with out of order line number info");
 | |
| #endif
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
 | |
|           cl::desc("Enable verbose messages in the \"fast\" "
 | |
|                    "instruction selector"));
 | |
| static cl::opt<bool>
 | |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden,
 | |
|           cl::desc("Enable abort calls when \"fast\" instruction fails"));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the first "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before legalize types"));
 | |
| static cl::opt<bool>
 | |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before legalize"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the second "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the post legalize types"
 | |
|                    " dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewISelDAGs("view-isel-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| static cl::opt<bool>
 | |
| ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| static cl::opt<bool>
 | |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
 | |
|       cl::desc("Pop up a window to show SUnit dags after they are processed"));
 | |
| #else
 | |
| static const bool ViewDAGCombine1 = false,
 | |
|                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
 | |
|                   ViewDAGCombine2 = false,
 | |
|                   ViewDAGCombineLT = false,
 | |
|                   ViewISelDAGs = false, ViewSchedDAGs = false,
 | |
|                   ViewSUnitDAGs = false;
 | |
| #endif
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// RegisterScheduler class - Track the registration of instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| MachinePassRegistry RegisterScheduler::Registry;
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// ISHeuristic command line option for instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | |
|                RegisterPassParser<RegisterScheduler> >
 | |
| ISHeuristic("pre-RA-sched",
 | |
|             cl::init(&createDefaultScheduler),
 | |
|             cl::desc("Instruction schedulers available (before register"
 | |
|                      " allocation):"));
 | |
| 
 | |
| static RegisterScheduler
 | |
| defaultListDAGScheduler("default", "Best scheduler for the target",
 | |
|                         createDefaultScheduler);
 | |
| 
 | |
| namespace llvm {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | |
|   /// for the target.
 | |
|   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
 | |
|                                              CodeGenOpt::Level OptLevel) {
 | |
|     const TargetLowering &TLI = IS->getTargetLowering();
 | |
| 
 | |
|     if (OptLevel == CodeGenOpt::None)
 | |
|       return createSourceListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI.getSchedulingPreference() == Sched::Latency)
 | |
|       return createTDListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI.getSchedulingPreference() == Sched::RegPressure)
 | |
|       return createBURRListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI.getSchedulingPreference() == Sched::Hybrid)
 | |
|       return createHybridListDAGScheduler(IS, OptLevel);
 | |
|     assert(TLI.getSchedulingPreference() == Sched::ILP &&
 | |
|            "Unknown sched type!");
 | |
|     return createILPListDAGScheduler(IS, OptLevel);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitInstrWithCustomInserter - This method should be implemented by targets
 | |
| // that mark instructions with the 'usesCustomInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and this method is called to expand it into a sequence of
 | |
| // instructions, potentially also creating new basic blocks and control flow.
 | |
| // When new basic blocks are inserted and the edges from MBB to its successors
 | |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
 | |
| // DenseMap.
 | |
| MachineBasicBlock *
 | |
| TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                             MachineBasicBlock *MBB) const {
 | |
| #ifndef NDEBUG
 | |
|   dbgs() << "If a target marks an instruction with "
 | |
|           "'usesCustomInserter', it must implement "
 | |
|           "TargetLowering::EmitInstrWithCustomInserter!";
 | |
| #endif
 | |
|   llvm_unreachable(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
 | |
|                                    CodeGenOpt::Level OL) :
 | |
|   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
 | |
|   FuncInfo(new FunctionLoweringInfo(TLI)),
 | |
|   CurDAG(new SelectionDAG(tm)),
 | |
|   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
 | |
|   GFI(),
 | |
|   OptLevel(OL),
 | |
|   DAGSize(0) {
 | |
|     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
 | |
|     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
| SelectionDAGISel::~SelectionDAGISel() {
 | |
|   delete SDB;
 | |
|   delete CurDAG;
 | |
|   delete FuncInfo;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<GCModuleInfo>();
 | |
|   AU.addPreserved<GCModuleInfo>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| /// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
 | |
| /// other function that gcc recognizes as "returning twice". This is used to
 | |
| /// limit code-gen optimizations on the machine function.
 | |
| ///
 | |
| /// FIXME: Remove after <rdar://problem/8031714> is fixed.
 | |
| static bool FunctionCallsSetJmp(const Function *F) {
 | |
|   const Module *M = F->getParent();
 | |
|   static const char *ReturnsTwiceFns[] = {
 | |
|     "_setjmp",
 | |
|     "setjmp",
 | |
|     "sigsetjmp",
 | |
|     "setjmp_syscall",
 | |
|     "savectx",
 | |
|     "qsetjmp",
 | |
|     "vfork",
 | |
|     "getcontext"
 | |
|   };
 | |
| #define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
 | |
| 
 | |
|   for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
 | |
|     if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
 | |
|       if (!Callee->use_empty())
 | |
|         for (Value::const_use_iterator
 | |
|                I = Callee->use_begin(), E = Callee->use_end();
 | |
|              I != E; ++I)
 | |
|           if (const CallInst *CI = dyn_cast<CallInst>(*I))
 | |
|             if (CI->getParent()->getParent() == F)
 | |
|               return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| #undef NUM_RETURNS_TWICE_FNS
 | |
| }
 | |
| 
 | |
| /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
 | |
| /// may trap on it.  In this case we have to split the edge so that the path
 | |
| /// through the predecessor block that doesn't go to the phi block doesn't
 | |
| /// execute the possibly trapping instruction.
 | |
| ///
 | |
| /// This is required for correctness, so it must be done at -O0.
 | |
| ///
 | |
| static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
 | |
|   // Loop for blocks with phi nodes.
 | |
|   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(BB->begin());
 | |
|     if (PN == 0) continue;
 | |
| 
 | |
|   ReprocessBlock:
 | |
|     // For each block with a PHI node, check to see if any of the input values
 | |
|     // are potentially trapping constant expressions.  Constant expressions are
 | |
|     // the only potentially trapping value that can occur as the argument to a
 | |
|     // PHI.
 | |
|     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
 | |
|         if (CE == 0 || !CE->canTrap()) continue;
 | |
| 
 | |
|         // The only case we have to worry about is when the edge is critical.
 | |
|         // Since this block has a PHI Node, we assume it has multiple input
 | |
|         // edges: check to see if the pred has multiple successors.
 | |
|         BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|         if (Pred->getTerminator()->getNumSuccessors() == 1)
 | |
|           continue;
 | |
| 
 | |
|         // Okay, we have to split this edge.
 | |
|         SplitCriticalEdge(Pred->getTerminator(),
 | |
|                           GetSuccessorNumber(Pred, BB), SDISel, true);
 | |
|         goto ReprocessBlock;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
 | |
|   // Do some sanity-checking on the command-line options.
 | |
|   assert((!EnableFastISelVerbose || EnableFastISel) &&
 | |
|          "-fast-isel-verbose requires -fast-isel");
 | |
|   assert((!EnableFastISelAbort || EnableFastISel) &&
 | |
|          "-fast-isel-abort requires -fast-isel");
 | |
| 
 | |
|   const Function &Fn = *mf.getFunction();
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
 | |
| 
 | |
|   MF = &mf;
 | |
|   RegInfo = &MF->getRegInfo();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
 | |
| 
 | |
|   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
 | |
| 
 | |
|   CurDAG->init(*MF);
 | |
|   FuncInfo->set(Fn, *MF);
 | |
|   SDB->init(GFI, *AA);
 | |
| 
 | |
|   SelectAllBasicBlocks(Fn);
 | |
| 
 | |
|   // If the first basic block in the function has live ins that need to be
 | |
|   // copied into vregs, emit the copies into the top of the block before
 | |
|   // emitting the code for the block.
 | |
|   MachineBasicBlock *EntryMBB = MF->begin();
 | |
|   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
 | |
| 
 | |
|   DenseMap<unsigned, unsigned> LiveInMap;
 | |
|   if (!FuncInfo->ArgDbgValues.empty())
 | |
|     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
 | |
|            E = RegInfo->livein_end(); LI != E; ++LI)
 | |
|       if (LI->second)
 | |
|         LiveInMap.insert(std::make_pair(LI->first, LI->second));
 | |
| 
 | |
|   // Insert DBG_VALUE instructions for function arguments to the entry block.
 | |
|   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
 | |
|     unsigned Reg = MI->getOperand(0).getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       EntryMBB->insert(EntryMBB->begin(), MI);
 | |
|     else {
 | |
|       MachineInstr *Def = RegInfo->getVRegDef(Reg);
 | |
|       MachineBasicBlock::iterator InsertPos = Def;
 | |
|       // FIXME: VR def may not be in entry block.
 | |
|       Def->getParent()->insert(llvm::next(InsertPos), MI);
 | |
|     }
 | |
| 
 | |
|     // If Reg is live-in then update debug info to track its copy in a vreg.
 | |
|     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
 | |
|     if (LDI != LiveInMap.end()) {
 | |
|       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
 | |
|       MachineBasicBlock::iterator InsertPos = Def;
 | |
|       const MDNode *Variable =
 | |
|         MI->getOperand(MI->getNumOperands()-1).getMetadata();
 | |
|       unsigned Offset = MI->getOperand(1).getImm();
 | |
|       // Def is never a terminator here, so it is ok to increment InsertPos.
 | |
|       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
 | |
|               TII.get(TargetOpcode::DBG_VALUE))
 | |
|         .addReg(LDI->second, RegState::Debug)
 | |
|         .addImm(Offset).addMetadata(Variable);
 | |
| 
 | |
|       // If this vreg is directly copied into an exported register then
 | |
|       // that COPY instructions also need DBG_VALUE, if it is the only
 | |
|       // user of LDI->second.
 | |
|       MachineInstr *CopyUseMI = NULL;
 | |
|       for (MachineRegisterInfo::use_iterator
 | |
|              UI = RegInfo->use_begin(LDI->second);
 | |
|            MachineInstr *UseMI = UI.skipInstruction();) {
 | |
|         if (UseMI->isDebugValue()) continue;
 | |
|         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
 | |
|           CopyUseMI = UseMI; continue;
 | |
|         }
 | |
|         // Otherwise this is another use or second copy use.
 | |
|         CopyUseMI = NULL; break;
 | |
|       }
 | |
|       if (CopyUseMI) {
 | |
|         MachineInstr *NewMI =
 | |
|           BuildMI(*MF, CopyUseMI->getDebugLoc(),
 | |
|                   TII.get(TargetOpcode::DBG_VALUE))
 | |
|           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
 | |
|           .addImm(Offset).addMetadata(Variable);
 | |
|         EntryMBB->insertAfter(CopyUseMI, NewMI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine if there are any calls in this machine function.
 | |
|   MachineFrameInfo *MFI = MF->getFrameInfo();
 | |
|   if (!MFI->hasCalls()) {
 | |
|     for (MachineFunction::const_iterator
 | |
|            I = MF->begin(), E = MF->end(); I != E; ++I) {
 | |
|       const MachineBasicBlock *MBB = I;
 | |
|       for (MachineBasicBlock::const_iterator
 | |
|              II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
 | |
|         const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
 | |
| 
 | |
|         if ((TID.isCall() && !TID.isReturn()) ||
 | |
|             II->isStackAligningInlineAsm()) {
 | |
|           MFI->setHasCalls(true);
 | |
|           goto done;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   done:;
 | |
|   }
 | |
| 
 | |
|   // Determine if there is a call to setjmp in the machine function.
 | |
|   MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
 | |
| 
 | |
|   // Replace forward-declared registers with the registers containing
 | |
|   // the desired value.
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   for (DenseMap<unsigned, unsigned>::iterator
 | |
|        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned From = I->first;
 | |
|     unsigned To = I->second;
 | |
|     // If To is also scheduled to be replaced, find what its ultimate
 | |
|     // replacement is.
 | |
|     for (;;) {
 | |
|       DenseMap<unsigned, unsigned>::iterator J =
 | |
|         FuncInfo->RegFixups.find(To);
 | |
|       if (J == E) break;
 | |
|       To = J->second;
 | |
|     }
 | |
|     // Replace it.
 | |
|     MRI.replaceRegWith(From, To);
 | |
|   }
 | |
| 
 | |
|   // Release function-specific state. SDB and CurDAG are already cleared
 | |
|   // at this point.
 | |
|   FuncInfo->clear();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
 | |
|                                    BasicBlock::const_iterator End,
 | |
|                                    bool &HadTailCall) {
 | |
|   // Lower all of the non-terminator instructions. If a call is emitted
 | |
|   // as a tail call, cease emitting nodes for this block. Terminators
 | |
|   // are handled below.
 | |
|   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
 | |
|     SDB->visit(*I);
 | |
| 
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   CurDAG->setRoot(SDB->getControlRoot());
 | |
|   HadTailCall = SDB->HasTailCall;
 | |
|   SDB->clear();
 | |
| 
 | |
|   // Final step, emit the lowered DAG as machine code.
 | |
|   CodeGenAndEmitDAG();
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() {
 | |
|   SmallPtrSet<SDNode*, 128> VisitedNodes;
 | |
|   SmallVector<SDNode*, 128> Worklist;
 | |
| 
 | |
|   Worklist.push_back(CurDAG->getRoot().getNode());
 | |
| 
 | |
|   APInt Mask;
 | |
|   APInt KnownZero;
 | |
|   APInt KnownOne;
 | |
| 
 | |
|   do {
 | |
|     SDNode *N = Worklist.pop_back_val();
 | |
| 
 | |
|     // If we've already seen this node, ignore it.
 | |
|     if (!VisitedNodes.insert(N))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, add all chain operands to the worklist.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|       if (N->getOperand(i).getValueType() == MVT::Other)
 | |
|         Worklist.push_back(N->getOperand(i).getNode());
 | |
| 
 | |
|     // If this is a CopyToReg with a vreg dest, process it.
 | |
|     if (N->getOpcode() != ISD::CopyToReg)
 | |
|       continue;
 | |
| 
 | |
|     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore non-scalar or non-integer values.
 | |
|     SDValue Src = N->getOperand(2);
 | |
|     EVT SrcVT = Src.getValueType();
 | |
|     if (!SrcVT.isInteger() || SrcVT.isVector())
 | |
|       continue;
 | |
| 
 | |
|     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
 | |
|     Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
 | |
|     CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
 | |
| 
 | |
|     // Only install this information if it tells us something.
 | |
|     if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
 | |
|       FuncInfo->LiveOutRegInfo.grow(DestReg);
 | |
|       FunctionLoweringInfo::LiveOutInfo &LOI =
 | |
|         FuncInfo->LiveOutRegInfo[DestReg];
 | |
|       LOI.NumSignBits = NumSignBits;
 | |
|       LOI.KnownOne = KnownOne;
 | |
|       LOI.KnownZero = KnownZero;
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CodeGenAndEmitDAG() {
 | |
|   std::string GroupName;
 | |
|   if (TimePassesIsEnabled)
 | |
|     GroupName = "Instruction Selection and Scheduling";
 | |
|   std::string BlockName;
 | |
|   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
 | |
|       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
 | |
|       ViewSUnitDAGs)
 | |
|     BlockName = MF->getFunction()->getNameStr() + ":" +
 | |
|                 FuncInfo->MBB->getBasicBlock()->getNameStr();
 | |
| 
 | |
|   DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   {
 | |
|     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
 | |
|     CurDAG->Combine(Unrestricted, *AA, OptLevel);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
 | |
|                                                BlockName);
 | |
| 
 | |
|   bool Changed;
 | |
|   {
 | |
|     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
 | |
|     Changed = CurDAG->LegalizeTypes();
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   if (Changed) {
 | |
|     if (ViewDAGCombineLT)
 | |
|       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
 | |
| 
 | |
|     // Run the DAG combiner in post-type-legalize mode.
 | |
|     {
 | |
|       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
 | |
|                          TimePassesIsEnabled);
 | |
|       CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
 | |
|           CurDAG->dump());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
 | |
|     Changed = CurDAG->LegalizeVectors();
 | |
|   }
 | |
| 
 | |
|   if (Changed) {
 | |
|     {
 | |
|       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
 | |
|       CurDAG->LegalizeTypes();
 | |
|     }
 | |
| 
 | |
|     if (ViewDAGCombineLT)
 | |
|       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
 | |
| 
 | |
|     // Run the DAG combiner in post-type-legalize mode.
 | |
|     {
 | |
|       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
 | |
|                          TimePassesIsEnabled);
 | |
|       CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
 | |
|           CurDAG->dump());
 | |
|   }
 | |
| 
 | |
|   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
 | |
| 
 | |
|   {
 | |
|     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
 | |
|     CurDAG->Legalize(OptLevel);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   {
 | |
|     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
 | |
|     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     ComputeLiveOutVRegInfo();
 | |
| 
 | |
|   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
 | |
| 
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   {
 | |
|     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
 | |
|     DoInstructionSelection();
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
 | |
| 
 | |
|   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
 | |
| 
 | |
|   // Schedule machine code.
 | |
|   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
 | |
|   {
 | |
|     NamedRegionTimer T("Instruction Scheduling", GroupName,
 | |
|                        TimePassesIsEnabled);
 | |
|     Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
 | |
|   }
 | |
| 
 | |
|   if (ViewSUnitDAGs) Scheduler->viewGraph();
 | |
| 
 | |
|   // Emit machine code to BB.  This can change 'BB' to the last block being
 | |
|   // inserted into.
 | |
|   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
 | |
|   {
 | |
|     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
 | |
| 
 | |
|     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
 | |
|     FuncInfo->InsertPt = Scheduler->InsertPos;
 | |
|   }
 | |
| 
 | |
|   // If the block was split, make sure we update any references that are used to
 | |
|   // update PHI nodes later on.
 | |
|   if (FirstMBB != LastMBB)
 | |
|     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
 | |
| 
 | |
|   // Free the scheduler state.
 | |
|   {
 | |
|     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
 | |
|                        TimePassesIsEnabled);
 | |
|     delete Scheduler;
 | |
|   }
 | |
| 
 | |
|   // Free the SelectionDAG state, now that we're finished with it.
 | |
|   CurDAG->clear();
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::DoInstructionSelection() {
 | |
|   DEBUG(errs() << "===== Instruction selection begins:\n");
 | |
| 
 | |
|   PreprocessISelDAG();
 | |
| 
 | |
|   // Select target instructions for the DAG.
 | |
|   {
 | |
|     // Number all nodes with a topological order and set DAGSize.
 | |
|     DAGSize = CurDAG->AssignTopologicalOrder();
 | |
| 
 | |
|     // Create a dummy node (which is not added to allnodes), that adds
 | |
|     // a reference to the root node, preventing it from being deleted,
 | |
|     // and tracking any changes of the root.
 | |
|     HandleSDNode Dummy(CurDAG->getRoot());
 | |
|     ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
 | |
|     ++ISelPosition;
 | |
| 
 | |
|     // The AllNodes list is now topological-sorted. Visit the
 | |
|     // nodes by starting at the end of the list (the root of the
 | |
|     // graph) and preceding back toward the beginning (the entry
 | |
|     // node).
 | |
|     while (ISelPosition != CurDAG->allnodes_begin()) {
 | |
|       SDNode *Node = --ISelPosition;
 | |
|       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
 | |
|       // but there are currently some corner cases that it misses. Also, this
 | |
|       // makes it theoretically possible to disable the DAGCombiner.
 | |
|       if (Node->use_empty())
 | |
|         continue;
 | |
| 
 | |
|       SDNode *ResNode = Select(Node);
 | |
| 
 | |
|       // FIXME: This is pretty gross.  'Select' should be changed to not return
 | |
|       // anything at all and this code should be nuked with a tactical strike.
 | |
| 
 | |
|       // If node should not be replaced, continue with the next one.
 | |
|       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
 | |
|         continue;
 | |
|       // Replace node.
 | |
|       if (ResNode)
 | |
|         ReplaceUses(Node, ResNode);
 | |
| 
 | |
|       // If after the replacement this node is not used any more,
 | |
|       // remove this dead node.
 | |
|       if (Node->use_empty()) { // Don't delete EntryToken, etc.
 | |
|         ISelUpdater ISU(ISelPosition);
 | |
|         CurDAG->RemoveDeadNode(Node, &ISU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CurDAG->setRoot(Dummy.getValue());
 | |
|   }
 | |
| 
 | |
|   DEBUG(errs() << "===== Instruction selection ends:\n");
 | |
| 
 | |
|   PostprocessISelDAG();
 | |
| }
 | |
| 
 | |
| /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
 | |
| /// do other setup for EH landing-pad blocks.
 | |
| void SelectionDAGISel::PrepareEHLandingPad() {
 | |
|   // Add a label to mark the beginning of the landing pad.  Deletion of the
 | |
|   // landing pad can thus be detected via the MachineModuleInfo.
 | |
|   MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
 | |
| 
 | |
|   const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
 | |
|   BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
 | |
|     .addSym(Label);
 | |
| 
 | |
|   // Mark exception register as live in.
 | |
|   unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|   if (Reg) FuncInfo->MBB->addLiveIn(Reg);
 | |
| 
 | |
|   // Mark exception selector register as live in.
 | |
|   Reg = TLI.getExceptionSelectorRegister();
 | |
|   if (Reg) FuncInfo->MBB->addLiveIn(Reg);
 | |
| 
 | |
|   // FIXME: Hack around an exception handling flaw (PR1508): the personality
 | |
|   // function and list of typeids logically belong to the invoke (or, if you
 | |
|   // like, the basic block containing the invoke), and need to be associated
 | |
|   // with it in the dwarf exception handling tables.  Currently however the
 | |
|   // information is provided by an intrinsic (eh.selector) that can be moved
 | |
|   // to unexpected places by the optimizers: if the unwind edge is critical,
 | |
|   // then breaking it can result in the intrinsics being in the successor of
 | |
|   // the landing pad, not the landing pad itself.  This results
 | |
|   // in exceptions not being caught because no typeids are associated with
 | |
|   // the invoke.  This may not be the only way things can go wrong, but it
 | |
|   // is the only way we try to work around for the moment.
 | |
|   const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
 | |
|   const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
 | |
| 
 | |
|   if (Br && Br->isUnconditional()) { // Critical edge?
 | |
|     BasicBlock::const_iterator I, E;
 | |
|     for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
 | |
|       if (isa<EHSelectorInst>(I))
 | |
|         break;
 | |
| 
 | |
|     if (I == E)
 | |
|       // No catch info found - try to extract some from the successor.
 | |
|       CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
 | |
|                                              FastISel *FastIS) {
 | |
|   // Don't try to fold volatile loads.  Target has to deal with alignment
 | |
|   // constraints.
 | |
|   if (LI->isVolatile()) return false;
 | |
| 
 | |
|   // Figure out which vreg this is going into.
 | |
|   unsigned LoadReg = FastIS->getRegForValue(LI);
 | |
|   assert(LoadReg && "Load isn't already assigned a vreg? ");
 | |
| 
 | |
|   // Check to see what the uses of this vreg are.  If it has no uses, or more
 | |
|   // than one use (at the machine instr level) then we can't fold it.
 | |
|   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
 | |
|   if (RI == RegInfo->reg_end())
 | |
|     return false;
 | |
| 
 | |
|   // See if there is exactly one use of the vreg.  If there are multiple uses,
 | |
|   // then the instruction got lowered to multiple machine instructions or the
 | |
|   // use of the loaded value ended up being multiple operands of the result, in
 | |
|   // either case, we can't fold this.
 | |
|   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
 | |
|   if (PostRI != RegInfo->reg_end())
 | |
|     return false;
 | |
| 
 | |
|   assert(RI.getOperand().isUse() &&
 | |
|          "The only use of the vreg must be a use, we haven't emitted the def!");
 | |
| 
 | |
|   MachineInstr *User = &*RI;
 | |
|   
 | |
|   // Set the insertion point properly.  Folding the load can cause generation of
 | |
|   // other random instructions (like sign extends) for addressing modes, make
 | |
|   // sure they get inserted in a logical place before the new instruction.
 | |
|   FuncInfo->InsertPt = User;
 | |
|   FuncInfo->MBB = User->getParent();
 | |
| 
 | |
|   // Ask the target to try folding the load.
 | |
|   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// CheckLineNumbers - Check if basic block instructions follow source order
 | |
| /// or not.
 | |
| static void CheckLineNumbers(const BasicBlock *BB) {
 | |
|   unsigned Line = 0;
 | |
|   unsigned Col = 0;
 | |
|   for (BasicBlock::const_iterator BI = BB->begin(),
 | |
|          BE = BB->end(); BI != BE; ++BI) {
 | |
|     const DebugLoc DL = BI->getDebugLoc();
 | |
|     if (DL.isUnknown()) continue;
 | |
|     unsigned L = DL.getLine();
 | |
|     unsigned C = DL.getCol();
 | |
|     if (L < Line || (L == Line && C < Col)) {
 | |
|       ++NumBBWithOutOfOrderLineInfo;
 | |
|       return;
 | |
|     }
 | |
|     Line = L;
 | |
|     Col = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckLineNumbers - Check if machine basic block instructions follow source
 | |
| /// order or not.
 | |
| static void CheckLineNumbers(const MachineBasicBlock *MBB) {
 | |
|   unsigned Line = 0;
 | |
|   unsigned Col = 0;
 | |
|   for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
 | |
|          MBE = MBB->end(); MBI != MBE; ++MBI) {
 | |
|     const DebugLoc DL = MBI->getDebugLoc();
 | |
|     if (DL.isUnknown()) continue;
 | |
|     unsigned L = DL.getLine();
 | |
|     unsigned C = DL.getCol();
 | |
|     if (L < Line || (L == Line && C < Col)) {
 | |
|       ++NumMBBWithOutOfOrderLineInfo;
 | |
|       return;
 | |
|     }
 | |
|     Line = L;
 | |
|     Col = C;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
 | |
|   // Initialize the Fast-ISel state, if needed.
 | |
|   FastISel *FastIS = 0;
 | |
|   if (EnableFastISel)
 | |
|     FastIS = TLI.createFastISel(*FuncInfo);
 | |
| 
 | |
|   // Iterate over all basic blocks in the function.
 | |
|   for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
 | |
|     const BasicBlock *LLVMBB = &*I;
 | |
| #ifndef NDEBUG
 | |
|     CheckLineNumbers(LLVMBB);
 | |
| #endif
 | |
|     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
 | |
| 
 | |
|     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
 | |
|     BasicBlock::const_iterator const End = LLVMBB->end();
 | |
|     BasicBlock::const_iterator BI = End;
 | |
| 
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
 | |
| 
 | |
|     // Setup an EH landing-pad block.
 | |
|     if (FuncInfo->MBB->isLandingPad())
 | |
|       PrepareEHLandingPad();
 | |
| 
 | |
|     // Lower any arguments needed in this block if this is the entry block.
 | |
|     if (LLVMBB == &Fn.getEntryBlock()) {
 | |
|       for (BasicBlock::const_iterator DBI = LLVMBB->begin(), DBE = LLVMBB->end();
 | |
|            DBI != DBE; ++DBI) {
 | |
|         if (const DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(DBI)) {
 | |
|           const DebugLoc DL = DI->getDebugLoc();
 | |
|           SDB->setCurDebugLoc(DL);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       LowerArguments(LLVMBB);
 | |
|     }
 | |
| 
 | |
|     // Before doing SelectionDAG ISel, see if FastISel has been requested.
 | |
|     if (FastIS) {
 | |
|       FastIS->startNewBlock();
 | |
| 
 | |
|       // Emit code for any incoming arguments. This must happen before
 | |
|       // beginning FastISel on the entry block.
 | |
|       if (LLVMBB == &Fn.getEntryBlock()) {
 | |
|         CurDAG->setRoot(SDB->getControlRoot());
 | |
|         SDB->clear();
 | |
|         CodeGenAndEmitDAG();
 | |
| 
 | |
|         // If we inserted any instructions at the beginning, make a note of
 | |
|         // where they are, so we can be sure to emit subsequent instructions
 | |
|         // after them.
 | |
|         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
 | |
|           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
 | |
|         else
 | |
|           FastIS->setLastLocalValue(0);
 | |
|       }
 | |
| 
 | |
|       // Do FastISel on as many instructions as possible.
 | |
|       for (; BI != Begin; --BI) {
 | |
|         const Instruction *Inst = llvm::prior(BI);
 | |
| 
 | |
|         // If we no longer require this instruction, skip it.
 | |
|         if (!Inst->mayWriteToMemory() &&
 | |
|             !isa<TerminatorInst>(Inst) &&
 | |
|             !isa<DbgInfoIntrinsic>(Inst) &&
 | |
|             !FuncInfo->isExportedInst(Inst))
 | |
|           continue;
 | |
| 
 | |
|         // Bottom-up: reset the insert pos at the top, after any local-value
 | |
|         // instructions.
 | |
|         FastIS->recomputeInsertPt();
 | |
| 
 | |
|         // Try to select the instruction with FastISel.
 | |
|         if (FastIS->SelectInstruction(Inst)) {
 | |
|           // If fast isel succeeded, check to see if there is a single-use
 | |
|           // non-volatile load right before the selected instruction, and see if
 | |
|           // the load is used by the instruction.  If so, try to fold it.
 | |
|           const Instruction *BeforeInst = 0;
 | |
|           if (Inst != Begin)
 | |
|             BeforeInst = llvm::prior(llvm::prior(BI));
 | |
|           if (BeforeInst && isa<LoadInst>(BeforeInst) &&
 | |
|               BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
 | |
|               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS))
 | |
|             --BI; // If we succeeded, don't re-select the load.
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Then handle certain instructions as single-LLVM-Instruction blocks.
 | |
|         if (isa<CallInst>(Inst)) {
 | |
|           ++NumFastIselFailures;
 | |
|           if (EnableFastISelVerbose || EnableFastISelAbort) {
 | |
|             dbgs() << "FastISel missed call: ";
 | |
|             Inst->dump();
 | |
|           }
 | |
| 
 | |
|           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
 | |
|             unsigned &R = FuncInfo->ValueMap[Inst];
 | |
|             if (!R)
 | |
|               R = FuncInfo->CreateRegs(Inst->getType());
 | |
|           }
 | |
| 
 | |
|           bool HadTailCall = false;
 | |
|           SelectBasicBlock(Inst, BI, HadTailCall);
 | |
| 
 | |
|           // If the call was emitted as a tail call, we're done with the block.
 | |
|           if (HadTailCall) {
 | |
|             --BI;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, give up on FastISel for the rest of the block.
 | |
|         // For now, be a little lenient about non-branch terminators.
 | |
|         if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
 | |
|           ++NumFastIselFailures;
 | |
|           if (EnableFastISelVerbose || EnableFastISelAbort) {
 | |
|             dbgs() << "FastISel miss: ";
 | |
|             Inst->dump();
 | |
|           }
 | |
|           if (EnableFastISelAbort)
 | |
|             // The "fast" selector couldn't handle something and bailed.
 | |
|             // For the purpose of debugging, just abort.
 | |
|             llvm_unreachable("FastISel didn't select the entire block");
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       FastIS->recomputeInsertPt();
 | |
|     }
 | |
| 
 | |
|     if (Begin != BI)
 | |
|       ++NumDAGBlocks;
 | |
|     else
 | |
|       ++NumFastIselBlocks;
 | |
| 
 | |
|     // Run SelectionDAG instruction selection on the remainder of the block
 | |
|     // not handled by FastISel. If FastISel is not run, this is the entire
 | |
|     // block.
 | |
|     bool HadTailCall;
 | |
|     SelectBasicBlock(Begin, BI, HadTailCall);
 | |
| 
 | |
|     FinishBasicBlock();
 | |
|     FuncInfo->PHINodesToUpdate.clear();
 | |
|   }
 | |
| 
 | |
|   delete FastIS;
 | |
| #ifndef NDEBUG
 | |
|   for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
 | |
|        MBI != MBE; ++MBI)
 | |
|     CheckLineNumbers(MBI);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGISel::FinishBasicBlock() {
 | |
| 
 | |
|   DEBUG(dbgs() << "Total amount of phi nodes to update: "
 | |
|                << FuncInfo->PHINodesToUpdate.size() << "\n";
 | |
|         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
 | |
|           dbgs() << "Node " << i << " : ("
 | |
|                  << FuncInfo->PHINodesToUpdate[i].first
 | |
|                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
 | |
| 
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   if (SDB->SwitchCases.empty() &&
 | |
|       SDB->JTCases.empty() &&
 | |
|       SDB->BitTestCases.empty()) {
 | |
|     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
 | |
|       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
 | |
|       assert(PHI->isPHI() &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
 | |
|         continue;
 | |
|       PHI->addOperand(
 | |
|         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
 | |
|       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!SDB->BitTestCases[i].Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
|       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
|       if (j+1 != ej)
 | |
|         SDB->visitBitTestCase(SDB->BitTestCases[i],
 | |
|                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
 | |
|                               SDB->BitTestCases[i].Reg,
 | |
|                               SDB->BitTestCases[i].Cases[j],
 | |
|                               FuncInfo->MBB);
 | |
|       else
 | |
|         SDB->visitBitTestCase(SDB->BitTestCases[i],
 | |
|                               SDB->BitTestCases[i].Default,
 | |
|                               SDB->BitTestCases[i].Reg,
 | |
|                               SDB->BitTestCases[i].Cases[j],
 | |
|                               FuncInfo->MBB);
 | |
| 
 | |
| 
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
 | |
|          pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->isPHI() &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // This is "default" BB. We have two jumps to it. From "header" BB and
 | |
|       // from last "case" BB.
 | |
|       if (PHIBB == SDB->BitTestCases[i].Default) {
 | |
|         PHI->addOperand(MachineOperand::
 | |
|                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
 | |
|                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
 | |
|         PHI->addOperand(MachineOperand::
 | |
|                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
 | |
|                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
 | |
|                                                   back().ThisBB));
 | |
|       }
 | |
|       // One of "cases" BB.
 | |
|       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
 | |
|            j != ej; ++j) {
 | |
|         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
 | |
|         if (cBB->isSuccessor(PHIBB)) {
 | |
|           PHI->addOperand(MachineOperand::
 | |
|                           CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
 | |
|                                     false));
 | |
|           PHI->addOperand(MachineOperand::CreateMBB(cBB));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDB->BitTestCases.clear();
 | |
| 
 | |
|   // If the JumpTable record is filled in, then we need to emit a jump table.
 | |
|   // Updating the PHI nodes is tricky in this case, since we need to determine
 | |
|   // whether the PHI is a successor of the range check MBB or the jump table MBB
 | |
|   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!SDB->JTCases[i].first.Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
|       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
 | |
|                                 FuncInfo->MBB);
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|     // Emit the code
 | |
|     SDB->visitJumpTable(SDB->JTCases[i].second);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
 | |
|          pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->isPHI() &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // "default" BB. We can go there only from header BB.
 | |
|       if (PHIBB == SDB->JTCases[i].second.Default) {
 | |
|         PHI->addOperand
 | |
|           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
 | |
|                                      false));
 | |
|         PHI->addOperand
 | |
|           (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
 | |
|       }
 | |
|       // JT BB. Just iterate over successors here
 | |
|       if (FuncInfo->MBB->isSuccessor(PHIBB)) {
 | |
|         PHI->addOperand
 | |
|           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
 | |
|                                      false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDB->JTCases.clear();
 | |
| 
 | |
|   // If the switch block involved a branch to one of the actual successors, we
 | |
|   // need to update PHI nodes in that block.
 | |
|   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
 | |
|     MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
 | |
|     assert(PHI->isPHI() &&
 | |
|            "This is not a machine PHI node that we are updating!");
 | |
|     if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
 | |
|       PHI->addOperand(
 | |
|         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
 | |
|       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we generated any switch lowering information, build and codegen any
 | |
|   // additional DAGs necessary.
 | |
|   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
| 
 | |
|     // Determine the unique successors.
 | |
|     SmallVector<MachineBasicBlock *, 2> Succs;
 | |
|     Succs.push_back(SDB->SwitchCases[i].TrueBB);
 | |
|     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
 | |
|       Succs.push_back(SDB->SwitchCases[i].FalseBB);
 | |
| 
 | |
|     // Emit the code. Note that this could result in FuncInfo->MBB being split.
 | |
|     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // Remember the last block, now that any splitting is done, for use in
 | |
|     // populating PHI nodes in successors.
 | |
|     MachineBasicBlock *ThisBB = FuncInfo->MBB;
 | |
| 
 | |
|     // Handle any PHI nodes in successors of this chunk, as if we were coming
 | |
|     // from the original BB before switch expansion.  Note that PHI nodes can
 | |
|     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | |
|     // handle them the right number of times.
 | |
|     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
 | |
|       FuncInfo->MBB = Succs[i];
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // FuncInfo->MBB may have been removed from the CFG if a branch was
 | |
|       // constant folded.
 | |
|       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
 | |
|         for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
 | |
|              Phi != FuncInfo->MBB->end() && Phi->isPHI();
 | |
|              ++Phi) {
 | |
|           // This value for this PHI node is recorded in PHINodesToUpdate.
 | |
|           for (unsigned pn = 0; ; ++pn) {
 | |
|             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
 | |
|                    "Didn't find PHI entry!");
 | |
|             if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
 | |
|               Phi->addOperand(MachineOperand::
 | |
|                               CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
 | |
|                                         false));
 | |
|               Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDB->SwitchCases.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Create the scheduler. If a specific scheduler was specified
 | |
| /// via the SchedulerRegistry, use it, otherwise select the
 | |
| /// one preferred by the target.
 | |
| ///
 | |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
 | |
|   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
 | |
| 
 | |
|   if (!Ctor) {
 | |
|     Ctor = ISHeuristic;
 | |
|     RegisterScheduler::setDefault(Ctor);
 | |
|   }
 | |
| 
 | |
|   return Ctor(this, OptLevel);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions used by the generated instruction selector.
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calls to these methods are generated by tblgen.
 | |
| 
 | |
| /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
 | |
|                                     int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
| 
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
| 
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask.intersects(~DesiredMask))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
|   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
 | |
|                                    int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
| 
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
| 
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask.intersects(~DesiredMask))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
| 
 | |
|   APInt KnownZero, KnownOne;
 | |
|   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
 | |
| 
 | |
|   // If all the missing bits in the or are already known to be set, match!
 | |
|   if ((NeededMask & KnownOne) == NeededMask)
 | |
|     return true;
 | |
| 
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | |
| /// by tblgen.  Others should not call it.
 | |
| void SelectionDAGISel::
 | |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
 | |
|   std::vector<SDValue> InOps;
 | |
|   std::swap(InOps, Ops);
 | |
| 
 | |
|   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
 | |
|   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
 | |
|   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
 | |
|   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
 | |
| 
 | |
|   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
 | |
|   if (InOps[e-1].getValueType() == MVT::Glue)
 | |
|     --e;  // Don't process a glue operand if it is here.
 | |
| 
 | |
|   while (i != e) {
 | |
|     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
 | |
|     if (!InlineAsm::isMemKind(Flags)) {
 | |
|       // Just skip over this operand, copying the operands verbatim.
 | |
|       Ops.insert(Ops.end(), InOps.begin()+i,
 | |
|                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
 | |
|       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
 | |
|     } else {
 | |
|       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
 | |
|              "Memory operand with multiple values?");
 | |
|       // Otherwise, this is a memory operand.  Ask the target to select it.
 | |
|       std::vector<SDValue> SelOps;
 | |
|       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
 | |
|         report_fatal_error("Could not match memory address.  Inline asm"
 | |
|                            " failure!");
 | |
| 
 | |
|       // Add this to the output node.
 | |
|       unsigned NewFlags =
 | |
|         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
 | |
|       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
 | |
|       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the glue input back if present.
 | |
|   if (e != InOps.size())
 | |
|     Ops.push_back(InOps.back());
 | |
| }
 | |
| 
 | |
| /// findGlueUse - Return use of MVT::Glue value produced by the specified
 | |
| /// SDNode.
 | |
| ///
 | |
| static SDNode *findGlueUse(SDNode *N) {
 | |
|   unsigned FlagResNo = N->getNumValues()-1;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDUse &Use = I.getUse();
 | |
|     if (Use.getResNo() == FlagResNo)
 | |
|       return Use.getUser();
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
 | |
| /// This function recursively traverses up the operand chain, ignoring
 | |
| /// certain nodes.
 | |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | |
|                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
 | |
|                           bool IgnoreChains) {
 | |
|   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
 | |
|   // greater than all of its (recursive) operands.  If we scan to a point where
 | |
|   // 'use' is smaller than the node we're scanning for, then we know we will
 | |
|   // never find it.
 | |
|   //
 | |
|   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
 | |
|   // happen because we scan down to newly selected nodes in the case of glue
 | |
|   // uses.
 | |
|   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
 | |
|     return false;
 | |
| 
 | |
|   // Don't revisit nodes if we already scanned it and didn't fail, we know we
 | |
|   // won't fail if we scan it again.
 | |
|   if (!Visited.insert(Use))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
 | |
|     // Ignore chain uses, they are validated by HandleMergeInputChains.
 | |
|     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
 | |
|       continue;
 | |
| 
 | |
|     SDNode *N = Use->getOperand(i).getNode();
 | |
|     if (N == Def) {
 | |
|       if (Use == ImmedUse || Use == Root)
 | |
|         continue;  // We are not looking for immediate use.
 | |
|       assert(N != Root);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Traverse up the operand chain.
 | |
|     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific
 | |
| /// operand node N of U during instruction selection that starts at Root.
 | |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
 | |
|                                           SDNode *Root) const {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
|   return N.hasOneUse();
 | |
| }
 | |
| 
 | |
| /// IsLegalToFold - Returns true if the specific operand node N of
 | |
| /// U can be folded during instruction selection that starts at Root.
 | |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
 | |
|                                      CodeGenOpt::Level OptLevel,
 | |
|                                      bool IgnoreChains) {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
| 
 | |
|   // If Root use can somehow reach N through a path that that doesn't contain
 | |
|   // U then folding N would create a cycle. e.g. In the following
 | |
|   // diagram, Root can reach N through X. If N is folded into into Root, then
 | |
|   // X is both a predecessor and a successor of U.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^     ^          //
 | |
|   //         \   /           //
 | |
|   //          \ /            //
 | |
|   //         [Root*]         //
 | |
|   //
 | |
|   // * indicates nodes to be folded together.
 | |
|   //
 | |
|   // If Root produces glue, then it gets (even more) interesting. Since it
 | |
|   // will be "glued" together with its glue use in the scheduler, we need to
 | |
|   // check if it might reach N.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^       ^        //
 | |
|   //         \       \       //
 | |
|   //          \      |       //
 | |
|   //         [Root*] |       //
 | |
|   //          ^      |       //
 | |
|   //          f      |       //
 | |
|   //          |      /       //
 | |
|   //         [Y]    /        //
 | |
|   //           ^   /         //
 | |
|   //           f  /          //
 | |
|   //           | /           //
 | |
|   //          [GU]           //
 | |
|   //
 | |
|   // If GU (glue use) indirectly reaches N (the load), and Root folds N
 | |
|   // (call it Fold), then X is a predecessor of GU and a successor of
 | |
|   // Fold. But since Fold and GU are glued together, this will create
 | |
|   // a cycle in the scheduling graph.
 | |
| 
 | |
|   // If the node has glue, walk down the graph to the "lowest" node in the
 | |
|   // glueged set.
 | |
|   EVT VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   while (VT == MVT::Glue) {
 | |
|     SDNode *GU = findGlueUse(Root);
 | |
|     if (GU == NULL)
 | |
|       break;
 | |
|     Root = GU;
 | |
|     VT = Root->getValueType(Root->getNumValues()-1);
 | |
| 
 | |
|     // If our query node has a glue result with a use, we've walked up it.  If
 | |
|     // the user (which has already been selected) has a chain or indirectly uses
 | |
|     // the chain, our WalkChainUsers predicate will not consider it.  Because of
 | |
|     // this, we cannot ignore chains in this predicate.
 | |
|     IgnoreChains = false;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   SmallPtrSet<SDNode*, 16> Visited;
 | |
|   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
 | |
|   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
 | |
|   SelectInlineAsmMemoryOperands(Ops);
 | |
| 
 | |
|   std::vector<EVT> VTs;
 | |
|   VTs.push_back(MVT::Other);
 | |
|   VTs.push_back(MVT::Glue);
 | |
|   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
 | |
|                                 VTs, &Ops[0], Ops.size());
 | |
|   New->setNodeId(-1);
 | |
|   return New.getNode();
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
 | |
|   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// GetVBR - decode a vbr encoding whose top bit is set.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
 | |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
 | |
|   assert(Val >= 128 && "Not a VBR");
 | |
|   Val &= 127;  // Remove first vbr bit.
 | |
| 
 | |
|   unsigned Shift = 7;
 | |
|   uint64_t NextBits;
 | |
|   do {
 | |
|     NextBits = MatcherTable[Idx++];
 | |
|     Val |= (NextBits&127) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (NextBits & 128);
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
 | |
| /// interior glue and chain results to use the new glue and chain results.
 | |
| void SelectionDAGISel::
 | |
| UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
 | |
|                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
 | |
|                     SDValue InputGlue,
 | |
|                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
 | |
|                     bool isMorphNodeTo) {
 | |
|   SmallVector<SDNode*, 4> NowDeadNodes;
 | |
| 
 | |
|   ISelUpdater ISU(ISelPosition);
 | |
| 
 | |
|   // Now that all the normal results are replaced, we replace the chain and
 | |
|   // glue results if present.
 | |
|   if (!ChainNodesMatched.empty()) {
 | |
|     assert(InputChain.getNode() != 0 &&
 | |
|            "Matched input chains but didn't produce a chain");
 | |
|     // Loop over all of the nodes we matched that produced a chain result.
 | |
|     // Replace all the chain results with the final chain we ended up with.
 | |
|     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | |
|       SDNode *ChainNode = ChainNodesMatched[i];
 | |
| 
 | |
|       // If this node was already deleted, don't look at it.
 | |
|       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
 | |
|         continue;
 | |
| 
 | |
|       // Don't replace the results of the root node if we're doing a
 | |
|       // MorphNodeTo.
 | |
|       if (ChainNode == NodeToMatch && isMorphNodeTo)
 | |
|         continue;
 | |
| 
 | |
|       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
 | |
|       if (ChainVal.getValueType() == MVT::Glue)
 | |
|         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
 | |
|       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
 | |
|       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
 | |
| 
 | |
|       // If the node became dead and we haven't already seen it, delete it.
 | |
|       if (ChainNode->use_empty() &&
 | |
|           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
 | |
|         NowDeadNodes.push_back(ChainNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the result produces glue, update any glue results in the matched
 | |
|   // pattern with the glue result.
 | |
|   if (InputGlue.getNode() != 0) {
 | |
|     // Handle any interior nodes explicitly marked.
 | |
|     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
 | |
|       SDNode *FRN = GlueResultNodesMatched[i];
 | |
| 
 | |
|       // If this node was already deleted, don't look at it.
 | |
|       if (FRN->getOpcode() == ISD::DELETED_NODE)
 | |
|         continue;
 | |
| 
 | |
|       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
 | |
|              "Doesn't have a glue result");
 | |
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
 | |
|                                         InputGlue, &ISU);
 | |
| 
 | |
|       // If the node became dead and we haven't already seen it, delete it.
 | |
|       if (FRN->use_empty() &&
 | |
|           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
 | |
|         NowDeadNodes.push_back(FRN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!NowDeadNodes.empty())
 | |
|     CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
 | |
| 
 | |
|   DEBUG(errs() << "ISEL: Match complete!\n");
 | |
| }
 | |
| 
 | |
| enum ChainResult {
 | |
|   CR_Simple,
 | |
|   CR_InducesCycle,
 | |
|   CR_LeadsToInteriorNode
 | |
| };
 | |
| 
 | |
| /// WalkChainUsers - Walk down the users of the specified chained node that is
 | |
| /// part of the pattern we're matching, looking at all of the users we find.
 | |
| /// This determines whether something is an interior node, whether we have a
 | |
| /// non-pattern node in between two pattern nodes (which prevent folding because
 | |
| /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
 | |
| /// between pattern nodes (in which case the TF becomes part of the pattern).
 | |
| ///
 | |
| /// The walk we do here is guaranteed to be small because we quickly get down to
 | |
| /// already selected nodes "below" us.
 | |
| static ChainResult
 | |
| WalkChainUsers(SDNode *ChainedNode,
 | |
|                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
 | |
|                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
 | |
|   ChainResult Result = CR_Simple;
 | |
| 
 | |
|   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
 | |
|          E = ChainedNode->use_end(); UI != E; ++UI) {
 | |
|     // Make sure the use is of the chain, not some other value we produce.
 | |
|     if (UI.getUse().getValueType() != MVT::Other) continue;
 | |
| 
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // If we see an already-selected machine node, then we've gone beyond the
 | |
|     // pattern that we're selecting down into the already selected chunk of the
 | |
|     // DAG.
 | |
|     if (User->isMachineOpcode() ||
 | |
|         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
 | |
|       continue;
 | |
| 
 | |
|     if (User->getOpcode() == ISD::CopyToReg ||
 | |
|         User->getOpcode() == ISD::CopyFromReg ||
 | |
|         User->getOpcode() == ISD::INLINEASM ||
 | |
|         User->getOpcode() == ISD::EH_LABEL) {
 | |
|       // If their node ID got reset to -1 then they've already been selected.
 | |
|       // Treat them like a MachineOpcode.
 | |
|       if (User->getNodeId() == -1)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // If we have a TokenFactor, we handle it specially.
 | |
|     if (User->getOpcode() != ISD::TokenFactor) {
 | |
|       // If the node isn't a token factor and isn't part of our pattern, then it
 | |
|       // must be a random chained node in between two nodes we're selecting.
 | |
|       // This happens when we have something like:
 | |
|       //   x = load ptr
 | |
|       //   call
 | |
|       //   y = x+4
 | |
|       //   store y -> ptr
 | |
|       // Because we structurally match the load/store as a read/modify/write,
 | |
|       // but the call is chained between them.  We cannot fold in this case
 | |
|       // because it would induce a cycle in the graph.
 | |
|       if (!std::count(ChainedNodesInPattern.begin(),
 | |
|                       ChainedNodesInPattern.end(), User))
 | |
|         return CR_InducesCycle;
 | |
| 
 | |
|       // Otherwise we found a node that is part of our pattern.  For example in:
 | |
|       //   x = load ptr
 | |
|       //   y = x+4
 | |
|       //   store y -> ptr
 | |
|       // This would happen when we're scanning down from the load and see the
 | |
|       // store as a user.  Record that there is a use of ChainedNode that is
 | |
|       // part of the pattern and keep scanning uses.
 | |
|       Result = CR_LeadsToInteriorNode;
 | |
|       InteriorChainedNodes.push_back(User);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we found a TokenFactor, there are two cases to consider: first if the
 | |
|     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
 | |
|     // uses of the TF are in our pattern) we just want to ignore it.  Second,
 | |
|     // the TokenFactor can be sandwiched in between two chained nodes, like so:
 | |
|     //     [Load chain]
 | |
|     //         ^
 | |
|     //         |
 | |
|     //       [Load]
 | |
|     //       ^    ^
 | |
|     //       |    \                    DAG's like cheese
 | |
|     //      /       \                       do you?
 | |
|     //     /         |
 | |
|     // [TokenFactor] [Op]
 | |
|     //     ^          ^
 | |
|     //     |          |
 | |
|     //      \        /
 | |
|     //       \      /
 | |
|     //       [Store]
 | |
|     //
 | |
|     // In this case, the TokenFactor becomes part of our match and we rewrite it
 | |
|     // as a new TokenFactor.
 | |
|     //
 | |
|     // To distinguish these two cases, do a recursive walk down the uses.
 | |
|     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
 | |
|     case CR_Simple:
 | |
|       // If the uses of the TokenFactor are just already-selected nodes, ignore
 | |
|       // it, it is "below" our pattern.
 | |
|       continue;
 | |
|     case CR_InducesCycle:
 | |
|       // If the uses of the TokenFactor lead to nodes that are not part of our
 | |
|       // pattern that are not selected, folding would turn this into a cycle,
 | |
|       // bail out now.
 | |
|       return CR_InducesCycle;
 | |
|     case CR_LeadsToInteriorNode:
 | |
|       break;  // Otherwise, keep processing.
 | |
|     }
 | |
| 
 | |
|     // Okay, we know we're in the interesting interior case.  The TokenFactor
 | |
|     // is now going to be considered part of the pattern so that we rewrite its
 | |
|     // uses (it may have uses that are not part of the pattern) with the
 | |
|     // ultimate chain result of the generated code.  We will also add its chain
 | |
|     // inputs as inputs to the ultimate TokenFactor we create.
 | |
|     Result = CR_LeadsToInteriorNode;
 | |
|     ChainedNodesInPattern.push_back(User);
 | |
|     InteriorChainedNodes.push_back(User);
 | |
|     continue;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
 | |
| /// operation for when the pattern matched at least one node with a chains.  The
 | |
| /// input vector contains a list of all of the chained nodes that we match.  We
 | |
| /// must determine if this is a valid thing to cover (i.e. matching it won't
 | |
| /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
 | |
| /// be used as the input node chain for the generated nodes.
 | |
| static SDValue
 | |
| HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
 | |
|                        SelectionDAG *CurDAG) {
 | |
|   // Walk all of the chained nodes we've matched, recursively scanning down the
 | |
|   // users of the chain result. This adds any TokenFactor nodes that are caught
 | |
|   // in between chained nodes to the chained and interior nodes list.
 | |
|   SmallVector<SDNode*, 3> InteriorChainedNodes;
 | |
|   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | |
|     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
 | |
|                        InteriorChainedNodes) == CR_InducesCycle)
 | |
|       return SDValue(); // Would induce a cycle.
 | |
|   }
 | |
| 
 | |
|   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
 | |
|   // that we are interested in.  Form our input TokenFactor node.
 | |
|   SmallVector<SDValue, 3> InputChains;
 | |
|   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | |
|     // Add the input chain of this node to the InputChains list (which will be
 | |
|     // the operands of the generated TokenFactor) if it's not an interior node.
 | |
|     SDNode *N = ChainNodesMatched[i];
 | |
|     if (N->getOpcode() != ISD::TokenFactor) {
 | |
|       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, add the input chain.
 | |
|       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
 | |
|       assert(InChain.getValueType() == MVT::Other && "Not a chain");
 | |
|       InputChains.push_back(InChain);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we have a token factor, we want to add all inputs of the token factor
 | |
|     // that are not part of the pattern we're matching.
 | |
|     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
 | |
|       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
 | |
|                       N->getOperand(op).getNode()))
 | |
|         InputChains.push_back(N->getOperand(op));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Res;
 | |
|   if (InputChains.size() == 1)
 | |
|     return InputChains[0];
 | |
|   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
 | |
|                          MVT::Other, &InputChains[0], InputChains.size());
 | |
| }
 | |
| 
 | |
| /// MorphNode - Handle morphing a node in place for the selector.
 | |
| SDNode *SelectionDAGISel::
 | |
| MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
 | |
|           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
 | |
|   // It is possible we're using MorphNodeTo to replace a node with no
 | |
|   // normal results with one that has a normal result (or we could be
 | |
|   // adding a chain) and the input could have glue and chains as well.
 | |
|   // In this case we need to shift the operands down.
 | |
|   // FIXME: This is a horrible hack and broken in obscure cases, no worse
 | |
|   // than the old isel though.
 | |
|   int OldGlueResultNo = -1, OldChainResultNo = -1;
 | |
| 
 | |
|   unsigned NTMNumResults = Node->getNumValues();
 | |
|   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
 | |
|     OldGlueResultNo = NTMNumResults-1;
 | |
|     if (NTMNumResults != 1 &&
 | |
|         Node->getValueType(NTMNumResults-2) == MVT::Other)
 | |
|       OldChainResultNo = NTMNumResults-2;
 | |
|   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
 | |
|     OldChainResultNo = NTMNumResults-1;
 | |
| 
 | |
|   // Call the underlying SelectionDAG routine to do the transmogrification. Note
 | |
|   // that this deletes operands of the old node that become dead.
 | |
|   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
 | |
| 
 | |
|   // MorphNodeTo can operate in two ways: if an existing node with the
 | |
|   // specified operands exists, it can just return it.  Otherwise, it
 | |
|   // updates the node in place to have the requested operands.
 | |
|   if (Res == Node) {
 | |
|     // If we updated the node in place, reset the node ID.  To the isel,
 | |
|     // this should be just like a newly allocated machine node.
 | |
|     Res->setNodeId(-1);
 | |
|   }
 | |
| 
 | |
|   unsigned ResNumResults = Res->getNumValues();
 | |
|   // Move the glue if needed.
 | |
|   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
 | |
|       (unsigned)OldGlueResultNo != ResNumResults-1)
 | |
|     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
 | |
|                                       SDValue(Res, ResNumResults-1));
 | |
| 
 | |
|   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
 | |
|     --ResNumResults;
 | |
| 
 | |
|   // Move the chain reference if needed.
 | |
|   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
 | |
|       (unsigned)OldChainResultNo != ResNumResults-1)
 | |
|     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
 | |
|                                       SDValue(Res, ResNumResults-1));
 | |
| 
 | |
|   // Otherwise, no replacement happened because the node already exists. Replace
 | |
|   // Uses of the old node with the new one.
 | |
|   if (Res != Node)
 | |
|     CurDAG->ReplaceAllUsesWith(Node, Res);
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|           SDValue N,
 | |
|           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
 | |
|   // Accept if it is exactly the same as a previously recorded node.
 | |
|   unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|   return N == RecordedNodes[RecNo].first;
 | |
| }
 | |
| 
 | |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                       SelectionDAGISel &SDISel) {
 | |
|   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
 | |
| }
 | |
| 
 | |
| /// CheckNodePredicate - Implements OP_CheckNodePredicate.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                    SelectionDAGISel &SDISel, SDNode *N) {
 | |
|   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|             SDNode *N) {
 | |
|   uint16_t Opc = MatcherTable[MatcherIndex++];
 | |
|   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
|   return N->getOpcode() == Opc;
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|           SDValue N, const TargetLowering &TLI) {
 | |
|   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|   if (N.getValueType() == VT) return true;
 | |
| 
 | |
|   // Handle the case when VT is iPTR.
 | |
|   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                SDValue N, const TargetLowering &TLI,
 | |
|                unsigned ChildNo) {
 | |
|   if (ChildNo >= N.getNumOperands())
 | |
|     return false;  // Match fails if out of range child #.
 | |
|   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
 | |
| }
 | |
| 
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|               SDValue N) {
 | |
|   return cast<CondCodeSDNode>(N)->get() ==
 | |
|       (ISD::CondCode)MatcherTable[MatcherIndex++];
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                SDValue N, const TargetLowering &TLI) {
 | |
|   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|   if (cast<VTSDNode>(N)->getVT() == VT)
 | |
|     return true;
 | |
| 
 | |
|   // Handle the case when VT is iPTR.
 | |
|   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|              SDValue N) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
 | |
|   return C != 0 && C->getSExtValue() == Val;
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|             SDValue N, SelectionDAGISel &SDISel) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   if (N->getOpcode() != ISD::AND) return false;
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|            SDValue N, SelectionDAGISel &SDISel) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   if (N->getOpcode() != ISD::OR) return false;
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
 | |
| }
 | |
| 
 | |
| /// IsPredicateKnownToFail - If we know how and can do so without pushing a
 | |
| /// scope, evaluate the current node.  If the current predicate is known to
 | |
| /// fail, set Result=true and return anything.  If the current predicate is
 | |
| /// known to pass, set Result=false and return the MatcherIndex to continue
 | |
| /// with.  If the current predicate is unknown, set Result=false and return the
 | |
| /// MatcherIndex to continue with.
 | |
| static unsigned IsPredicateKnownToFail(const unsigned char *Table,
 | |
|                                        unsigned Index, SDValue N,
 | |
|                                        bool &Result, SelectionDAGISel &SDISel,
 | |
|                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
 | |
|   switch (Table[Index++]) {
 | |
|   default:
 | |
|     Result = false;
 | |
|     return Index-1;  // Could not evaluate this predicate.
 | |
|   case SelectionDAGISel::OPC_CheckSame:
 | |
|     Result = !::CheckSame(Table, Index, N, RecordedNodes);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckPatternPredicate:
 | |
|     Result = !::CheckPatternPredicate(Table, Index, SDISel);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckPredicate:
 | |
|     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckOpcode:
 | |
|     Result = !::CheckOpcode(Table, Index, N.getNode());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckType:
 | |
|     Result = !::CheckType(Table, Index, N, SDISel.TLI);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckChild0Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild1Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild2Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild3Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild4Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild5Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild6Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild7Type:
 | |
|     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
 | |
|                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckCondCode:
 | |
|     Result = !::CheckCondCode(Table, Index, N);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckValueType:
 | |
|     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckInteger:
 | |
|     Result = !::CheckInteger(Table, Index, N);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckAndImm:
 | |
|     Result = !::CheckAndImm(Table, Index, N, SDISel);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckOrImm:
 | |
|     Result = !::CheckOrImm(Table, Index, N, SDISel);
 | |
|     return Index;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct MatchScope {
 | |
|   /// FailIndex - If this match fails, this is the index to continue with.
 | |
|   unsigned FailIndex;
 | |
| 
 | |
|   /// NodeStack - The node stack when the scope was formed.
 | |
|   SmallVector<SDValue, 4> NodeStack;
 | |
| 
 | |
|   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
 | |
|   unsigned NumRecordedNodes;
 | |
| 
 | |
|   /// NumMatchedMemRefs - The number of matched memref entries.
 | |
|   unsigned NumMatchedMemRefs;
 | |
| 
 | |
|   /// InputChain/InputGlue - The current chain/glue
 | |
|   SDValue InputChain, InputGlue;
 | |
| 
 | |
|   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
 | |
|   bool HasChainNodesMatched, HasGlueResultNodesMatched;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAGISel::
 | |
| SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
 | |
|                  unsigned TableSize) {
 | |
|   // FIXME: Should these even be selected?  Handle these cases in the caller?
 | |
|   switch (NodeToMatch->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::EntryToken:       // These nodes remain the same.
 | |
|   case ISD::BasicBlock:
 | |
|   case ISD::Register:
 | |
|   //case ISD::VALUETYPE:
 | |
|   //case ISD::CONDCODE:
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::MDNODE_SDNODE:
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::TargetConstantPool:
 | |
|   case ISD::TargetFrameIndex:
 | |
|   case ISD::TargetExternalSymbol:
 | |
|   case ISD::TargetBlockAddress:
 | |
|   case ISD::TargetJumpTable:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::CopyToReg:
 | |
|   case ISD::EH_LABEL:
 | |
|     NodeToMatch->setNodeId(-1); // Mark selected.
 | |
|     return 0;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext:
 | |
|     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
 | |
|                                       NodeToMatch->getOperand(0));
 | |
|     return 0;
 | |
|   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
 | |
|   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
 | |
|   }
 | |
| 
 | |
|   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
 | |
| 
 | |
|   // Set up the node stack with NodeToMatch as the only node on the stack.
 | |
|   SmallVector<SDValue, 8> NodeStack;
 | |
|   SDValue N = SDValue(NodeToMatch, 0);
 | |
|   NodeStack.push_back(N);
 | |
| 
 | |
|   // MatchScopes - Scopes used when matching, if a match failure happens, this
 | |
|   // indicates where to continue checking.
 | |
|   SmallVector<MatchScope, 8> MatchScopes;
 | |
| 
 | |
|   // RecordedNodes - This is the set of nodes that have been recorded by the
 | |
|   // state machine.  The second value is the parent of the node, or null if the
 | |
|   // root is recorded.
 | |
|   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
 | |
| 
 | |
|   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
 | |
|   // pattern.
 | |
|   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
 | |
| 
 | |
|   // These are the current input chain and glue for use when generating nodes.
 | |
|   // Various Emit operations change these.  For example, emitting a copytoreg
 | |
|   // uses and updates these.
 | |
|   SDValue InputChain, InputGlue;
 | |
| 
 | |
|   // ChainNodesMatched - If a pattern matches nodes that have input/output
 | |
|   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
 | |
|   // which ones they are.  The result is captured into this list so that we can
 | |
|   // update the chain results when the pattern is complete.
 | |
|   SmallVector<SDNode*, 3> ChainNodesMatched;
 | |
|   SmallVector<SDNode*, 3> GlueResultNodesMatched;
 | |
| 
 | |
|   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
 | |
|         NodeToMatch->dump(CurDAG);
 | |
|         errs() << '\n');
 | |
| 
 | |
|   // Determine where to start the interpreter.  Normally we start at opcode #0,
 | |
|   // but if the state machine starts with an OPC_SwitchOpcode, then we
 | |
|   // accelerate the first lookup (which is guaranteed to be hot) with the
 | |
|   // OpcodeOffset table.
 | |
|   unsigned MatcherIndex = 0;
 | |
| 
 | |
|   if (!OpcodeOffset.empty()) {
 | |
|     // Already computed the OpcodeOffset table, just index into it.
 | |
|     if (N.getOpcode() < OpcodeOffset.size())
 | |
|       MatcherIndex = OpcodeOffset[N.getOpcode()];
 | |
|     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
 | |
| 
 | |
|   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
 | |
|     // Otherwise, the table isn't computed, but the state machine does start
 | |
|     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
 | |
|     // is the first time we're selecting an instruction.
 | |
|     unsigned Idx = 1;
 | |
|     while (1) {
 | |
|       // Get the size of this case.
 | |
|       unsigned CaseSize = MatcherTable[Idx++];
 | |
|       if (CaseSize & 128)
 | |
|         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Get the opcode, add the index to the table.
 | |
|       uint16_t Opc = MatcherTable[Idx++];
 | |
|       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
 | |
|       if (Opc >= OpcodeOffset.size())
 | |
|         OpcodeOffset.resize((Opc+1)*2);
 | |
|       OpcodeOffset[Opc] = Idx;
 | |
|       Idx += CaseSize;
 | |
|     }
 | |
| 
 | |
|     // Okay, do the lookup for the first opcode.
 | |
|     if (N.getOpcode() < OpcodeOffset.size())
 | |
|       MatcherIndex = OpcodeOffset[N.getOpcode()];
 | |
|   }
 | |
| 
 | |
|   while (1) {
 | |
|     assert(MatcherIndex < TableSize && "Invalid index");
 | |
| #ifndef NDEBUG
 | |
|     unsigned CurrentOpcodeIndex = MatcherIndex;
 | |
| #endif
 | |
|     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
 | |
|     switch (Opcode) {
 | |
|     case OPC_Scope: {
 | |
|       // Okay, the semantics of this operation are that we should push a scope
 | |
|       // then evaluate the first child.  However, pushing a scope only to have
 | |
|       // the first check fail (which then pops it) is inefficient.  If we can
 | |
|       // determine immediately that the first check (or first several) will
 | |
|       // immediately fail, don't even bother pushing a scope for them.
 | |
|       unsigned FailIndex;
 | |
| 
 | |
|       while (1) {
 | |
|         unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | |
|         if (NumToSkip & 128)
 | |
|           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | |
|         // Found the end of the scope with no match.
 | |
|         if (NumToSkip == 0) {
 | |
|           FailIndex = 0;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         FailIndex = MatcherIndex+NumToSkip;
 | |
| 
 | |
|         unsigned MatcherIndexOfPredicate = MatcherIndex;
 | |
|         (void)MatcherIndexOfPredicate; // silence warning.
 | |
| 
 | |
|         // If we can't evaluate this predicate without pushing a scope (e.g. if
 | |
|         // it is a 'MoveParent') or if the predicate succeeds on this node, we
 | |
|         // push the scope and evaluate the full predicate chain.
 | |
|         bool Result;
 | |
|         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
 | |
|                                               Result, *this, RecordedNodes);
 | |
|         if (!Result)
 | |
|           break;
 | |
| 
 | |
|         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
 | |
|                      << "index " << MatcherIndexOfPredicate
 | |
|                      << ", continuing at " << FailIndex << "\n");
 | |
|         ++NumDAGIselRetries;
 | |
| 
 | |
|         // Otherwise, we know that this case of the Scope is guaranteed to fail,
 | |
|         // move to the next case.
 | |
|         MatcherIndex = FailIndex;
 | |
|       }
 | |
| 
 | |
|       // If the whole scope failed to match, bail.
 | |
|       if (FailIndex == 0) break;
 | |
| 
 | |
|       // Push a MatchScope which indicates where to go if the first child fails
 | |
|       // to match.
 | |
|       MatchScope NewEntry;
 | |
|       NewEntry.FailIndex = FailIndex;
 | |
|       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
 | |
|       NewEntry.NumRecordedNodes = RecordedNodes.size();
 | |
|       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
 | |
|       NewEntry.InputChain = InputChain;
 | |
|       NewEntry.InputGlue = InputGlue;
 | |
|       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
 | |
|       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
 | |
|       MatchScopes.push_back(NewEntry);
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_RecordNode: {
 | |
|       // Remember this node, it may end up being an operand in the pattern.
 | |
|       SDNode *Parent = 0;
 | |
|       if (NodeStack.size() > 1)
 | |
|         Parent = NodeStack[NodeStack.size()-2].getNode();
 | |
|       RecordedNodes.push_back(std::make_pair(N, Parent));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_RecordChild0: case OPC_RecordChild1:
 | |
|     case OPC_RecordChild2: case OPC_RecordChild3:
 | |
|     case OPC_RecordChild4: case OPC_RecordChild5:
 | |
|     case OPC_RecordChild6: case OPC_RecordChild7: {
 | |
|       unsigned ChildNo = Opcode-OPC_RecordChild0;
 | |
|       if (ChildNo >= N.getNumOperands())
 | |
|         break;  // Match fails if out of range child #.
 | |
| 
 | |
|       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
 | |
|                                              N.getNode()));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_RecordMemRef:
 | |
|       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CaptureGlueInput:
 | |
|       // If the current node has an input glue, capture it in InputGlue.
 | |
|       if (N->getNumOperands() != 0 &&
 | |
|           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|         InputGlue = N->getOperand(N->getNumOperands()-1);
 | |
|       continue;
 | |
| 
 | |
|     case OPC_MoveChild: {
 | |
|       unsigned ChildNo = MatcherTable[MatcherIndex++];
 | |
|       if (ChildNo >= N.getNumOperands())
 | |
|         break;  // Match fails if out of range child #.
 | |
|       N = N.getOperand(ChildNo);
 | |
|       NodeStack.push_back(N);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_MoveParent:
 | |
|       // Pop the current node off the NodeStack.
 | |
|       NodeStack.pop_back();
 | |
|       assert(!NodeStack.empty() && "Node stack imbalance!");
 | |
|       N = NodeStack.back();
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckSame:
 | |
|       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
 | |
|       continue;
 | |
|     case OPC_CheckPatternPredicate:
 | |
|       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
 | |
|       continue;
 | |
|     case OPC_CheckPredicate:
 | |
|       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
 | |
|                                 N.getNode()))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckComplexPat: {
 | |
|       unsigned CPNum = MatcherTable[MatcherIndex++];
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
 | |
|       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
 | |
|                                RecordedNodes[RecNo].first, CPNum,
 | |
|                                RecordedNodes))
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_CheckOpcode:
 | |
|       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckType:
 | |
|       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_SwitchOpcode: {
 | |
|       unsigned CurNodeOpcode = N.getOpcode();
 | |
|       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | |
|       unsigned CaseSize;
 | |
|       while (1) {
 | |
|         // Get the size of this case.
 | |
|         CaseSize = MatcherTable[MatcherIndex++];
 | |
|         if (CaseSize & 128)
 | |
|           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | |
|         if (CaseSize == 0) break;
 | |
| 
 | |
|         uint16_t Opc = MatcherTable[MatcherIndex++];
 | |
|         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
| 
 | |
|         // If the opcode matches, then we will execute this case.
 | |
|         if (CurNodeOpcode == Opc)
 | |
|           break;
 | |
| 
 | |
|         // Otherwise, skip over this case.
 | |
|         MatcherIndex += CaseSize;
 | |
|       }
 | |
| 
 | |
|       // If no cases matched, bail out.
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Otherwise, execute the case we found.
 | |
|       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
 | |
|                    << " to " << MatcherIndex << "\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_SwitchType: {
 | |
|       MVT CurNodeVT = N.getValueType().getSimpleVT();
 | |
|       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | |
|       unsigned CaseSize;
 | |
|       while (1) {
 | |
|         // Get the size of this case.
 | |
|         CaseSize = MatcherTable[MatcherIndex++];
 | |
|         if (CaseSize & 128)
 | |
|           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | |
|         if (CaseSize == 0) break;
 | |
| 
 | |
|         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|         if (CaseVT == MVT::iPTR)
 | |
|           CaseVT = TLI.getPointerTy();
 | |
| 
 | |
|         // If the VT matches, then we will execute this case.
 | |
|         if (CurNodeVT == CaseVT)
 | |
|           break;
 | |
| 
 | |
|         // Otherwise, skip over this case.
 | |
|         MatcherIndex += CaseSize;
 | |
|       }
 | |
| 
 | |
|       // If no cases matched, bail out.
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Otherwise, execute the case we found.
 | |
|       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
 | |
|                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
 | |
|     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
 | |
|     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
 | |
|     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
 | |
|       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
 | |
|                             Opcode-OPC_CheckChild0Type))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckCondCode:
 | |
|       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
 | |
|       continue;
 | |
|     case OPC_CheckValueType:
 | |
|       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
 | |
|       continue;
 | |
|     case OPC_CheckInteger:
 | |
|       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
 | |
|       continue;
 | |
|     case OPC_CheckAndImm:
 | |
|       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
 | |
|       continue;
 | |
|     case OPC_CheckOrImm:
 | |
|       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckFoldableChainNode: {
 | |
|       assert(NodeStack.size() != 1 && "No parent node");
 | |
|       // Verify that all intermediate nodes between the root and this one have
 | |
|       // a single use.
 | |
|       bool HasMultipleUses = false;
 | |
|       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
 | |
|         if (!NodeStack[i].hasOneUse()) {
 | |
|           HasMultipleUses = true;
 | |
|           break;
 | |
|         }
 | |
|       if (HasMultipleUses) break;
 | |
| 
 | |
|       // Check to see that the target thinks this is profitable to fold and that
 | |
|       // we can fold it without inducing cycles in the graph.
 | |
|       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | |
|                               NodeToMatch) ||
 | |
|           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | |
|                          NodeToMatch, OptLevel,
 | |
|                          true/*We validate our own chains*/))
 | |
|         break;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_EmitInteger: {
 | |
|       MVT::SimpleValueType VT =
 | |
|         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|       int64_t Val = MatcherTable[MatcherIndex++];
 | |
|       if (Val & 128)
 | |
|         Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
|       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | |
|                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_EmitRegister: {
 | |
|       MVT::SimpleValueType VT =
 | |
|         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|       unsigned RegNo = MatcherTable[MatcherIndex++];
 | |
|       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | |
|                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitConvertToTarget:  {
 | |
|       // Convert from IMM/FPIMM to target version.
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|       SDValue Imm = RecordedNodes[RecNo].first;
 | |
| 
 | |
|       if (Imm->getOpcode() == ISD::Constant) {
 | |
|         int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
 | |
|         Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
 | |
|       } else if (Imm->getOpcode() == ISD::ConstantFP) {
 | |
|         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
 | |
|         Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
 | |
|       }
 | |
| 
 | |
|       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
 | |
|     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
 | |
|       // These are space-optimized forms of OPC_EmitMergeInputChains.
 | |
|       assert(InputChain.getNode() == 0 &&
 | |
|              "EmitMergeInputChains should be the first chain producing node");
 | |
|       assert(ChainNodesMatched.empty() &&
 | |
|              "Should only have one EmitMergeInputChains per match");
 | |
| 
 | |
|       // Read all of the chained nodes.
 | |
|       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | |
| 
 | |
|       // FIXME: What if other value results of the node have uses not matched
 | |
|       // by this pattern?
 | |
|       if (ChainNodesMatched.back() != NodeToMatch &&
 | |
|           !RecordedNodes[RecNo].first.hasOneUse()) {
 | |
|         ChainNodesMatched.clear();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Merge the input chains if they are not intra-pattern references.
 | |
|       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | |
| 
 | |
|       if (InputChain.getNode() == 0)
 | |
|         break;  // Failed to merge.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitMergeInputChains: {
 | |
|       assert(InputChain.getNode() == 0 &&
 | |
|              "EmitMergeInputChains should be the first chain producing node");
 | |
|       // This node gets a list of nodes we matched in the input that have
 | |
|       // chains.  We want to token factor all of the input chains to these nodes
 | |
|       // together.  However, if any of the input chains is actually one of the
 | |
|       // nodes matched in this pattern, then we have an intra-match reference.
 | |
|       // Ignore these because the newly token factored chain should not refer to
 | |
|       // the old nodes.
 | |
|       unsigned NumChains = MatcherTable[MatcherIndex++];
 | |
|       assert(NumChains != 0 && "Can't TF zero chains");
 | |
| 
 | |
|       assert(ChainNodesMatched.empty() &&
 | |
|              "Should only have one EmitMergeInputChains per match");
 | |
| 
 | |
|       // Read all of the chained nodes.
 | |
|       for (unsigned i = 0; i != NumChains; ++i) {
 | |
|         unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | |
| 
 | |
|         // FIXME: What if other value results of the node have uses not matched
 | |
|         // by this pattern?
 | |
|         if (ChainNodesMatched.back() != NodeToMatch &&
 | |
|             !RecordedNodes[RecNo].first.hasOneUse()) {
 | |
|           ChainNodesMatched.clear();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the inner loop broke out, the match fails.
 | |
|       if (ChainNodesMatched.empty())
 | |
|         break;
 | |
| 
 | |
|       // Merge the input chains if they are not intra-pattern references.
 | |
|       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | |
| 
 | |
|       if (InputChain.getNode() == 0)
 | |
|         break;  // Failed to merge.
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitCopyToReg: {
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
 | |
| 
 | |
|       if (InputChain.getNode() == 0)
 | |
|         InputChain = CurDAG->getEntryNode();
 | |
| 
 | |
|       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
 | |
|                                         DestPhysReg, RecordedNodes[RecNo].first,
 | |
|                                         InputGlue);
 | |
| 
 | |
|       InputGlue = InputChain.getValue(1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitNodeXForm: {
 | |
|       unsigned XFormNo = MatcherTable[MatcherIndex++];
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
 | |
|       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitNode:
 | |
|     case OPC_MorphNodeTo: {
 | |
|       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
 | |
|       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
|       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
 | |
|       // Get the result VT list.
 | |
|       unsigned NumVTs = MatcherTable[MatcherIndex++];
 | |
|       SmallVector<EVT, 4> VTs;
 | |
|       for (unsigned i = 0; i != NumVTs; ++i) {
 | |
|         MVT::SimpleValueType VT =
 | |
|           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
 | |
|         VTs.push_back(VT);
 | |
|       }
 | |
| 
 | |
|       if (EmitNodeInfo & OPFL_Chain)
 | |
|         VTs.push_back(MVT::Other);
 | |
|       if (EmitNodeInfo & OPFL_GlueOutput)
 | |
|         VTs.push_back(MVT::Glue);
 | |
| 
 | |
|       // This is hot code, so optimize the two most common cases of 1 and 2
 | |
|       // results.
 | |
|       SDVTList VTList;
 | |
|       if (VTs.size() == 1)
 | |
|         VTList = CurDAG->getVTList(VTs[0]);
 | |
|       else if (VTs.size() == 2)
 | |
|         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
 | |
|       else
 | |
|         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
 | |
| 
 | |
|       // Get the operand list.
 | |
|       unsigned NumOps = MatcherTable[MatcherIndex++];
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       for (unsigned i = 0; i != NumOps; ++i) {
 | |
|         unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|         if (RecNo & 128)
 | |
|           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
 | |
| 
 | |
|         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
 | |
|         Ops.push_back(RecordedNodes[RecNo].first);
 | |
|       }
 | |
| 
 | |
|       // If there are variadic operands to add, handle them now.
 | |
|       if (EmitNodeInfo & OPFL_VariadicInfo) {
 | |
|         // Determine the start index to copy from.
 | |
|         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
 | |
|         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
 | |
|         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
 | |
|                "Invalid variadic node");
 | |
|         // Copy all of the variadic operands, not including a potential glue
 | |
|         // input.
 | |
|         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
 | |
|              i != e; ++i) {
 | |
|           SDValue V = NodeToMatch->getOperand(i);
 | |
|           if (V.getValueType() == MVT::Glue) break;
 | |
|           Ops.push_back(V);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this has chain/glue inputs, add them.
 | |
|       if (EmitNodeInfo & OPFL_Chain)
 | |
|         Ops.push_back(InputChain);
 | |
|       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
 | |
|         Ops.push_back(InputGlue);
 | |
| 
 | |
|       // Create the node.
 | |
|       SDNode *Res = 0;
 | |
|       if (Opcode != OPC_MorphNodeTo) {
 | |
|         // If this is a normal EmitNode command, just create the new node and
 | |
|         // add the results to the RecordedNodes list.
 | |
|         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
 | |
|                                      VTList, Ops.data(), Ops.size());
 | |
| 
 | |
|         // Add all the non-glue/non-chain results to the RecordedNodes list.
 | |
|         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
 | |
|           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
 | |
|           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
 | |
|                                                              (SDNode*) 0));
 | |
|         }
 | |
| 
 | |
|       } else {
 | |
|         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
 | |
|                         EmitNodeInfo);
 | |
|       }
 | |
| 
 | |
|       // If the node had chain/glue results, update our notion of the current
 | |
|       // chain and glue.
 | |
|       if (EmitNodeInfo & OPFL_GlueOutput) {
 | |
|         InputGlue = SDValue(Res, VTs.size()-1);
 | |
|         if (EmitNodeInfo & OPFL_Chain)
 | |
|           InputChain = SDValue(Res, VTs.size()-2);
 | |
|       } else if (EmitNodeInfo & OPFL_Chain)
 | |
|         InputChain = SDValue(Res, VTs.size()-1);
 | |
| 
 | |
|       // If the OPFL_MemRefs glue is set on this node, slap all of the
 | |
|       // accumulated memrefs onto it.
 | |
|       //
 | |
|       // FIXME: This is vastly incorrect for patterns with multiple outputs
 | |
|       // instructions that access memory and for ComplexPatterns that match
 | |
|       // loads.
 | |
|       if (EmitNodeInfo & OPFL_MemRefs) {
 | |
|         MachineSDNode::mmo_iterator MemRefs =
 | |
|           MF->allocateMemRefsArray(MatchedMemRefs.size());
 | |
|         std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
 | |
|         cast<MachineSDNode>(Res)
 | |
|           ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
 | |
|       }
 | |
| 
 | |
|       DEBUG(errs() << "  "
 | |
|                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
 | |
|                    << " node: "; Res->dump(CurDAG); errs() << "\n");
 | |
| 
 | |
|       // If this was a MorphNodeTo then we're completely done!
 | |
|       if (Opcode == OPC_MorphNodeTo) {
 | |
|         // Update chain and glue uses.
 | |
|         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
 | |
|                             InputGlue, GlueResultNodesMatched, true);
 | |
|         return Res;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_MarkGlueResults: {
 | |
|       unsigned NumNodes = MatcherTable[MatcherIndex++];
 | |
| 
 | |
|       // Read and remember all the glue-result nodes.
 | |
|       for (unsigned i = 0; i != NumNodes; ++i) {
 | |
|         unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|         if (RecNo & 128)
 | |
|           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
 | |
| 
 | |
|         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_CompleteMatch: {
 | |
|       // The match has been completed, and any new nodes (if any) have been
 | |
|       // created.  Patch up references to the matched dag to use the newly
 | |
|       // created nodes.
 | |
|       unsigned NumResults = MatcherTable[MatcherIndex++];
 | |
| 
 | |
|       for (unsigned i = 0; i != NumResults; ++i) {
 | |
|         unsigned ResSlot = MatcherTable[MatcherIndex++];
 | |
|         if (ResSlot & 128)
 | |
|           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
 | |
| 
 | |
|         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
 | |
|         SDValue Res = RecordedNodes[ResSlot].first;
 | |
| 
 | |
|         assert(i < NodeToMatch->getNumValues() &&
 | |
|                NodeToMatch->getValueType(i) != MVT::Other &&
 | |
|                NodeToMatch->getValueType(i) != MVT::Glue &&
 | |
|                "Invalid number of results to complete!");
 | |
|         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
 | |
|                 NodeToMatch->getValueType(i) == MVT::iPTR ||
 | |
|                 Res.getValueType() == MVT::iPTR ||
 | |
|                 NodeToMatch->getValueType(i).getSizeInBits() ==
 | |
|                     Res.getValueType().getSizeInBits()) &&
 | |
|                "invalid replacement");
 | |
|         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
 | |
|       }
 | |
| 
 | |
|       // If the root node defines glue, add it to the glue nodes to update list.
 | |
|       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
 | |
|         GlueResultNodesMatched.push_back(NodeToMatch);
 | |
| 
 | |
|       // Update chain and glue uses.
 | |
|       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
 | |
|                           InputGlue, GlueResultNodesMatched, false);
 | |
| 
 | |
|       assert(NodeToMatch->use_empty() &&
 | |
|              "Didn't replace all uses of the node?");
 | |
| 
 | |
|       // FIXME: We just return here, which interacts correctly with SelectRoot
 | |
|       // above.  We should fix this to not return an SDNode* anymore.
 | |
|       return 0;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // If the code reached this point, then the match failed.  See if there is
 | |
|     // another child to try in the current 'Scope', otherwise pop it until we
 | |
|     // find a case to check.
 | |
|     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
 | |
|     ++NumDAGIselRetries;
 | |
|     while (1) {
 | |
|       if (MatchScopes.empty()) {
 | |
|         CannotYetSelect(NodeToMatch);
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       // Restore the interpreter state back to the point where the scope was
 | |
|       // formed.
 | |
|       MatchScope &LastScope = MatchScopes.back();
 | |
|       RecordedNodes.resize(LastScope.NumRecordedNodes);
 | |
|       NodeStack.clear();
 | |
|       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
 | |
|       N = NodeStack.back();
 | |
| 
 | |
|       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
 | |
|         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
 | |
|       MatcherIndex = LastScope.FailIndex;
 | |
| 
 | |
|       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
 | |
| 
 | |
|       InputChain = LastScope.InputChain;
 | |
|       InputGlue = LastScope.InputGlue;
 | |
|       if (!LastScope.HasChainNodesMatched)
 | |
|         ChainNodesMatched.clear();
 | |
|       if (!LastScope.HasGlueResultNodesMatched)
 | |
|         GlueResultNodesMatched.clear();
 | |
| 
 | |
|       // Check to see what the offset is at the new MatcherIndex.  If it is zero
 | |
|       // we have reached the end of this scope, otherwise we have another child
 | |
|       // in the current scope to try.
 | |
|       unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | |
|       if (NumToSkip & 128)
 | |
|         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | |
| 
 | |
|       // If we have another child in this scope to match, update FailIndex and
 | |
|       // try it.
 | |
|       if (NumToSkip != 0) {
 | |
|         LastScope.FailIndex = MatcherIndex+NumToSkip;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // End of this scope, pop it and try the next child in the containing
 | |
|       // scope.
 | |
|       MatchScopes.pop_back();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) {
 | |
|   std::string msg;
 | |
|   raw_string_ostream Msg(msg);
 | |
|   Msg << "Cannot select: ";
 | |
| 
 | |
|   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
 | |
|       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
 | |
|       N->getOpcode() != ISD::INTRINSIC_VOID) {
 | |
|     N->printrFull(Msg, CurDAG);
 | |
|   } else {
 | |
|     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
 | |
|     unsigned iid =
 | |
|       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
 | |
|     if (iid < Intrinsic::num_intrinsics)
 | |
|       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
 | |
|     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
 | |
|       Msg << "target intrinsic %" << TII->getName(iid);
 | |
|     else
 | |
|       Msg << "unknown intrinsic #" << iid;
 | |
|   }
 | |
|   report_fatal_error(Msg.str());
 | |
| }
 | |
| 
 | |
| char SelectionDAGISel::ID = 0;
 |