mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	backedge-taken count in profiliing data. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230619 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1423 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1423 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // The InductiveRangeCheckElimination pass splits a loop's iteration space into
 | |
| // three disjoint ranges.  It does that in a way such that the loop running in
 | |
| // the middle loop provably does not need range checks. As an example, it will
 | |
| // convert
 | |
| //
 | |
| //   len = < known positive >
 | |
| //   for (i = 0; i < n; i++) {
 | |
| //     if (0 <= i && i < len) {
 | |
| //       do_something();
 | |
| //     } else {
 | |
| //       throw_out_of_bounds();
 | |
| //     }
 | |
| //   }
 | |
| //
 | |
| // to
 | |
| //
 | |
| //   len = < known positive >
 | |
| //   limit = smin(n, len)
 | |
| //   // no first segment
 | |
| //   for (i = 0; i < limit; i++) {
 | |
| //     if (0 <= i && i < len) { // this check is fully redundant
 | |
| //       do_something();
 | |
| //     } else {
 | |
| //       throw_out_of_bounds();
 | |
| //     }
 | |
| //   }
 | |
| //   for (i = limit; i < n; i++) {
 | |
| //     if (0 <= i && i < len) {
 | |
| //       do_something();
 | |
| //     } else {
 | |
| //       throw_out_of_bounds();
 | |
| //     }
 | |
| //   }
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Optional.h"
 | |
| 
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| 
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| 
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| 
 | |
| #include <array>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
 | |
|                                         cl::init(64));
 | |
| 
 | |
| static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
 | |
|                                        cl::init(false));
 | |
| 
 | |
| static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
 | |
|                                           cl::Hidden, cl::init(10));
 | |
| 
 | |
| #define DEBUG_TYPE "irce"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// An inductive range check is conditional branch in a loop with
 | |
| ///
 | |
| ///  1. a very cold successor (i.e. the branch jumps to that successor very
 | |
| ///     rarely)
 | |
| ///
 | |
| ///  and
 | |
| ///
 | |
| ///  2. a condition that is provably true for some range of values taken by the
 | |
| ///     containing loop's induction variable.
 | |
| ///
 | |
| /// Currently all inductive range checks are branches conditional on an
 | |
| /// expression of the form
 | |
| ///
 | |
| ///   0 <= (Offset + Scale * I) < Length
 | |
| ///
 | |
| /// where `I' is the canonical induction variable of a loop to which Offset and
 | |
| /// Scale are loop invariant, and Length is >= 0.  Currently the 'false' branch
 | |
| /// is considered cold, looking at profiling data to verify that is a TODO.
 | |
| 
 | |
| class InductiveRangeCheck {
 | |
|   const SCEV *Offset;
 | |
|   const SCEV *Scale;
 | |
|   Value *Length;
 | |
|   BranchInst *Branch;
 | |
| 
 | |
|   InductiveRangeCheck() :
 | |
|     Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
 | |
| 
 | |
| public:
 | |
|   const SCEV *getOffset() const { return Offset; }
 | |
|   const SCEV *getScale() const { return Scale; }
 | |
|   Value *getLength() const { return Length; }
 | |
| 
 | |
|   void print(raw_ostream &OS) const {
 | |
|     OS << "InductiveRangeCheck:\n";
 | |
|     OS << "  Offset: ";
 | |
|     Offset->print(OS);
 | |
|     OS << "  Scale: ";
 | |
|     Scale->print(OS);
 | |
|     OS << "  Length: ";
 | |
|     Length->print(OS);
 | |
|     OS << "  Branch: ";
 | |
|     getBranch()->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   void dump() {
 | |
|     print(dbgs());
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   BranchInst *getBranch() const { return Branch; }
 | |
| 
 | |
|   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
 | |
|   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
 | |
| 
 | |
|   class Range {
 | |
|     const SCEV *Begin;
 | |
|     const SCEV *End;
 | |
| 
 | |
|   public:
 | |
|     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
 | |
|       assert(Begin->getType() == End->getType() && "ill-typed range!");
 | |
|     }
 | |
| 
 | |
|     Type *getType() const { return Begin->getType(); }
 | |
|     const SCEV *getBegin() const { return Begin; }
 | |
|     const SCEV *getEnd() const { return End; }
 | |
|   };
 | |
| 
 | |
|   typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
 | |
| 
 | |
|   /// This is the value the condition of the branch needs to evaluate to for the
 | |
|   /// branch to take the hot successor (see (1) above).
 | |
|   bool getPassingDirection() { return true; }
 | |
| 
 | |
|   /// Computes a range for the induction variable (IndVar) in which the range
 | |
|   /// check is redundant and can be constant-folded away.  The induction
 | |
|   /// variable is not required to be the canonical {0,+,1} induction variable.
 | |
|   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
 | |
|                                             const SCEVAddRecExpr *IndVar,
 | |
|                                             IRBuilder<> &B) const;
 | |
| 
 | |
|   /// Create an inductive range check out of BI if possible, else return
 | |
|   /// nullptr.
 | |
|   static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
 | |
|                                      Loop *L, ScalarEvolution &SE,
 | |
|                                      BranchProbabilityInfo &BPI);
 | |
| };
 | |
| 
 | |
| class InductiveRangeCheckElimination : public LoopPass {
 | |
|   InductiveRangeCheck::AllocatorTy Allocator;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   InductiveRangeCheckElimination() : LoopPass(ID) {
 | |
|     initializeInductiveRangeCheckEliminationPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequiredID(LCSSAID);
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<BranchProbabilityInfo>();
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| };
 | |
| 
 | |
| char InductiveRangeCheckElimination::ID = 0;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
 | |
|                 "Inductive range check elimination", false, false)
 | |
| 
 | |
| static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   Value *LHS = nullptr, *RHS = nullptr;
 | |
| 
 | |
|   if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
 | |
|     return false;
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     std::swap(LHS, RHS);
 | |
|   // fallthrough
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     if (!match(RHS, m_ConstantInt<0>()))
 | |
|       return false;
 | |
|     IndexV = LHS;
 | |
|     return true;
 | |
| 
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     std::swap(LHS, RHS);
 | |
|   // fallthrough
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     if (!match(RHS, m_ConstantInt<-1>()))
 | |
|       return false;
 | |
|     IndexV = LHS;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   Value *LHS = nullptr, *RHS = nullptr;
 | |
| 
 | |
|   if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
 | |
|     return false;
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     std::swap(LHS, RHS);
 | |
|   // fallthrough
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     if (LHS != Index)
 | |
|       return false;
 | |
|     UpperLimit = RHS;
 | |
|     return true;
 | |
| 
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     std::swap(LHS, RHS);
 | |
|   // fallthrough
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     if (LHS != Index)
 | |
|       return false;
 | |
|     UpperLimit = RHS;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Split a condition into something semantically equivalent to (0 <= I <
 | |
| /// Limit), both comparisons signed and Len loop invariant on L and positive.
 | |
| /// On success, return true and set Index to I and UpperLimit to Limit.  Return
 | |
| /// false on failure (we may still write to UpperLimit and Index on failure).
 | |
| /// It does not try to interpret I as a loop index.
 | |
| ///
 | |
| static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
 | |
|                                      Value *Condition, const SCEV *&Index,
 | |
|                                      Value *&UpperLimit) {
 | |
| 
 | |
|   // TODO: currently this catches some silly cases like comparing "%idx slt 1".
 | |
|   // Our transformations are still correct, but less likely to be profitable in
 | |
|   // those cases.  We have to come up with some heuristics that pick out the
 | |
|   // range checks that are more profitable to clone a loop for.  This function
 | |
|   // in general can be made more robust.
 | |
| 
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   Value *A = nullptr;
 | |
|   Value *B = nullptr;
 | |
|   ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | |
| 
 | |
|   // In these early checks we assume that the matched UpperLimit is positive.
 | |
|   // We'll verify that fact later, before returning true.
 | |
| 
 | |
|   if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
 | |
|     Value *IndexV = nullptr;
 | |
|     Value *ExpectedUpperBoundCheck = nullptr;
 | |
| 
 | |
|     if (IsLowerBoundCheck(A, IndexV))
 | |
|       ExpectedUpperBoundCheck = B;
 | |
|     else if (IsLowerBoundCheck(B, IndexV))
 | |
|       ExpectedUpperBoundCheck = A;
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
 | |
|       return false;
 | |
| 
 | |
|     Index = SE.getSCEV(IndexV);
 | |
| 
 | |
|     if (isa<SCEVCouldNotCompute>(Index))
 | |
|       return false;
 | |
| 
 | |
|   } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       return false;
 | |
| 
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       std::swap(A, B);
 | |
|     // fall through
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       UpperLimit = B;
 | |
|       Index = SE.getSCEV(A);
 | |
|       if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
 | |
|         return false;
 | |
|       break;
 | |
| 
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       std::swap(A, B);
 | |
|     // fall through
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       UpperLimit = B;
 | |
|       Index = SE.getSCEV(A);
 | |
|       if (isa<SCEVCouldNotCompute>(Index))
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
 | |
|   if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
 | |
|       !SE.isKnownNonNegative(UpperLimitSCEV))
 | |
|     return false;
 | |
| 
 | |
|   if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
 | |
|       ScalarEvolution::LoopInvariant) {
 | |
|     DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
 | |
|                  << " ";
 | |
|           dbgs() << " UpperLimit is not loop invariant: "
 | |
|                  << UpperLimit->getName() << "\n";);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| InductiveRangeCheck *
 | |
| InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
 | |
|                             Loop *L, ScalarEvolution &SE,
 | |
|                             BranchProbabilityInfo &BPI) {
 | |
| 
 | |
|   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
 | |
|     return nullptr;
 | |
| 
 | |
|   BranchProbability LikelyTaken(15, 16);
 | |
| 
 | |
|   if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Length = nullptr;
 | |
|   const SCEV *IndexSCEV = nullptr;
 | |
| 
 | |
|   if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
 | |
| 
 | |
|   const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
 | |
|   bool IsAffineIndex =
 | |
|       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
 | |
| 
 | |
|   if (!IsAffineIndex)
 | |
|     return nullptr;
 | |
| 
 | |
|   InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
 | |
|   IRC->Length = Length;
 | |
|   IRC->Offset = IndexAddRec->getStart();
 | |
|   IRC->Scale = IndexAddRec->getStepRecurrence(SE);
 | |
|   IRC->Branch = BI;
 | |
|   return IRC;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
 | |
| // except that it is more lightweight and can track the state of a loop through
 | |
| // changing and potentially invalid IR.  This structure also formalizes the
 | |
| // kinds of loops we can deal with -- ones that have a single latch that is also
 | |
| // an exiting block *and* have a canonical induction variable.
 | |
| struct LoopStructure {
 | |
|   const char *Tag;
 | |
| 
 | |
|   BasicBlock *Header;
 | |
|   BasicBlock *Latch;
 | |
| 
 | |
|   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
 | |
|   // successor is `LatchExit', the exit block of the loop.
 | |
|   BranchInst *LatchBr;
 | |
|   BasicBlock *LatchExit;
 | |
|   unsigned LatchBrExitIdx;
 | |
| 
 | |
|   Value *IndVarNext;
 | |
|   Value *IndVarStart;
 | |
|   Value *LoopExitAt;
 | |
|   bool IndVarIncreasing;
 | |
| 
 | |
|   LoopStructure()
 | |
|       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
 | |
|         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
 | |
|         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
 | |
| 
 | |
|   template <typename M> LoopStructure map(M Map) const {
 | |
|     LoopStructure Result;
 | |
|     Result.Tag = Tag;
 | |
|     Result.Header = cast<BasicBlock>(Map(Header));
 | |
|     Result.Latch = cast<BasicBlock>(Map(Latch));
 | |
|     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
 | |
|     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
 | |
|     Result.LatchBrExitIdx = LatchBrExitIdx;
 | |
|     Result.IndVarNext = Map(IndVarNext);
 | |
|     Result.IndVarStart = Map(IndVarStart);
 | |
|     Result.LoopExitAt = Map(LoopExitAt);
 | |
|     Result.IndVarIncreasing = IndVarIncreasing;
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
 | |
|                                                     BranchProbabilityInfo &BPI,
 | |
|                                                     Loop &,
 | |
|                                                     const char *&);
 | |
| };
 | |
| 
 | |
| /// This class is used to constrain loops to run within a given iteration space.
 | |
| /// The algorithm this class implements is given a Loop and a range [Begin,
 | |
| /// End).  The algorithm then tries to break out a "main loop" out of the loop
 | |
| /// it is given in a way that the "main loop" runs with the induction variable
 | |
| /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
 | |
| /// loops to run any remaining iterations.  The pre loop runs any iterations in
 | |
| /// which the induction variable is < Begin, and the post loop runs any
 | |
| /// iterations in which the induction variable is >= End.
 | |
| ///
 | |
| class LoopConstrainer {
 | |
|   // The representation of a clone of the original loop we started out with.
 | |
|   struct ClonedLoop {
 | |
|     // The cloned blocks
 | |
|     std::vector<BasicBlock *> Blocks;
 | |
| 
 | |
|     // `Map` maps values in the clonee into values in the cloned version
 | |
|     ValueToValueMapTy Map;
 | |
| 
 | |
|     // An instance of `LoopStructure` for the cloned loop
 | |
|     LoopStructure Structure;
 | |
|   };
 | |
| 
 | |
|   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
 | |
|   // more details on what these fields mean.
 | |
|   struct RewrittenRangeInfo {
 | |
|     BasicBlock *PseudoExit;
 | |
|     BasicBlock *ExitSelector;
 | |
|     std::vector<PHINode *> PHIValuesAtPseudoExit;
 | |
|     PHINode *IndVarEnd;
 | |
| 
 | |
|     RewrittenRangeInfo()
 | |
|         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
 | |
|   };
 | |
| 
 | |
|   // Calculated subranges we restrict the iteration space of the main loop to.
 | |
|   // See the implementation of `calculateSubRanges' for more details on how
 | |
|   // these fields are computed.  `LowLimit` is None if there is no restriction
 | |
|   // on low end of the restricted iteration space of the main loop.  `HighLimit`
 | |
|   // is None if there is no restriction on high end of the restricted iteration
 | |
|   // space of the main loop.
 | |
| 
 | |
|   struct SubRanges {
 | |
|     Optional<const SCEV *> LowLimit;
 | |
|     Optional<const SCEV *> HighLimit;
 | |
|   };
 | |
| 
 | |
|   // A utility function that does a `replaceUsesOfWith' on the incoming block
 | |
|   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
 | |
|   // incoming block list with `ReplaceBy'.
 | |
|   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | |
|                               BasicBlock *ReplaceBy);
 | |
| 
 | |
|   // Compute a safe set of limits for the main loop to run in -- effectively the
 | |
|   // intersection of `Range' and the iteration space of the original loop.
 | |
|   // Return None if unable to compute the set of subranges.
 | |
|   //
 | |
|   Optional<SubRanges> calculateSubRanges() const;
 | |
| 
 | |
|   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
 | |
|   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
 | |
|   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
 | |
|   // but there is no such edge.
 | |
|   //
 | |
|   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
 | |
| 
 | |
|   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
 | |
|   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
 | |
|   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
 | |
|   // `OriginalHeaderCount'.
 | |
|   //
 | |
|   // If there are iterations left to execute, control is made to jump to
 | |
|   // `ContinuationBlock', otherwise they take the normal loop exit.  The
 | |
|   // returned `RewrittenRangeInfo' object is populated as follows:
 | |
|   //
 | |
|   //  .PseudoExit is a basic block that unconditionally branches to
 | |
|   //      `ContinuationBlock'.
 | |
|   //
 | |
|   //  .ExitSelector is a basic block that decides, on exit from the loop,
 | |
|   //      whether to branch to the "true" exit or to `PseudoExit'.
 | |
|   //
 | |
|   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
 | |
|   //      for each PHINode in the loop header on taking the pseudo exit.
 | |
|   //
 | |
|   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
 | |
|   // preheader because it is made to branch to the loop header only
 | |
|   // conditionally.
 | |
|   //
 | |
|   RewrittenRangeInfo
 | |
|   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
 | |
|                           Value *ExitLoopAt,
 | |
|                           BasicBlock *ContinuationBlock) const;
 | |
| 
 | |
|   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
 | |
|   // function creates a new preheader for `LS' and returns it.
 | |
|   //
 | |
|   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
 | |
|                               const char *Tag) const;
 | |
| 
 | |
|   // `ContinuationBlockAndPreheader' was the continuation block for some call to
 | |
|   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
 | |
|   // This function rewrites the PHI nodes in `LS.Header' to start with the
 | |
|   // correct value.
 | |
|   void rewriteIncomingValuesForPHIs(
 | |
|       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
 | |
|       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
 | |
| 
 | |
|   // Even though we do not preserve any passes at this time, we at least need to
 | |
|   // keep the parent loop structure consistent.  The `LPPassManager' seems to
 | |
|   // verify this after running a loop pass.  This function adds the list of
 | |
|   // blocks denoted by BBs to this loops parent loop if required.
 | |
|   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
 | |
| 
 | |
|   // Some global state.
 | |
|   Function &F;
 | |
|   LLVMContext &Ctx;
 | |
|   ScalarEvolution &SE;
 | |
| 
 | |
|   // Information about the original loop we started out with.
 | |
|   Loop &OriginalLoop;
 | |
|   LoopInfo &OriginalLoopInfo;
 | |
|   const SCEV *LatchTakenCount;
 | |
|   BasicBlock *OriginalPreheader;
 | |
| 
 | |
|   // The preheader of the main loop.  This may or may not be different from
 | |
|   // `OriginalPreheader'.
 | |
|   BasicBlock *MainLoopPreheader;
 | |
| 
 | |
|   // The range we need to run the main loop in.
 | |
|   InductiveRangeCheck::Range Range;
 | |
| 
 | |
|   // The structure of the main loop (see comment at the beginning of this class
 | |
|   // for a definition)
 | |
|   LoopStructure MainLoopStructure;
 | |
| 
 | |
| public:
 | |
|   LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
 | |
|                   ScalarEvolution &SE, InductiveRangeCheck::Range R)
 | |
|       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
 | |
|         SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
 | |
|         OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
 | |
|         MainLoopStructure(LS) {}
 | |
| 
 | |
|   // Entry point for the algorithm.  Returns true on success.
 | |
|   bool run();
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | |
|                                       BasicBlock *ReplaceBy) {
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingBlock(i) == Block)
 | |
|       PN->setIncomingBlock(i, ReplaceBy);
 | |
| }
 | |
| 
 | |
| static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
 | |
|   APInt SMax =
 | |
|       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
 | |
|   return SE.getSignedRange(S).contains(SMax) &&
 | |
|          SE.getUnsignedRange(S).contains(SMax);
 | |
| }
 | |
| 
 | |
| static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
 | |
|   APInt SMin =
 | |
|       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
 | |
|   return SE.getSignedRange(S).contains(SMin) &&
 | |
|          SE.getUnsignedRange(S).contains(SMin);
 | |
| }
 | |
| 
 | |
| Optional<LoopStructure>
 | |
| LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
 | |
|                                   Loop &L, const char *&FailureReason) {
 | |
|   assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
 | |
| 
 | |
|   BasicBlock *Latch = L.getLoopLatch();
 | |
|   if (!L.isLoopExiting(Latch)) {
 | |
|     FailureReason = "no loop latch";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *Header = L.getHeader();
 | |
|   BasicBlock *Preheader = L.getLoopPreheader();
 | |
|   if (!Preheader) {
 | |
|     FailureReason = "no preheader";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
 | |
|   if (!LatchBr || LatchBr->isUnconditional()) {
 | |
|     FailureReason = "latch terminator not conditional branch";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
 | |
| 
 | |
|   BranchProbability ExitProbability =
 | |
|     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
 | |
| 
 | |
|   if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
 | |
|     FailureReason = "short running loop, not profitable";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
 | |
|   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
 | |
|     FailureReason = "latch terminator branch not conditional on integral icmp";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
 | |
|   if (isa<SCEVCouldNotCompute>(LatchCount)) {
 | |
|     FailureReason = "could not compute latch count";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *LeftValue = ICI->getOperand(0);
 | |
|   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
 | |
|   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
 | |
| 
 | |
|   Value *RightValue = ICI->getOperand(1);
 | |
|   const SCEV *RightSCEV = SE.getSCEV(RightValue);
 | |
| 
 | |
|   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
 | |
|   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
 | |
|     if (isa<SCEVAddRecExpr>(RightSCEV)) {
 | |
|       std::swap(LeftSCEV, RightSCEV);
 | |
|       std::swap(LeftValue, RightValue);
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     } else {
 | |
|       FailureReason = "no add recurrences in the icmp";
 | |
|       return None;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto IsInductionVar = [&SE](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
 | |
|     if (!AR->isAffine())
 | |
|       return false;
 | |
| 
 | |
|     IntegerType *Ty = cast<IntegerType>(AR->getType());
 | |
|     IntegerType *WideTy =
 | |
|         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
 | |
| 
 | |
|     // Currently we only work with induction variables that have been proved to
 | |
|     // not wrap.  This restriction can potentially be lifted in the future.
 | |
| 
 | |
|     const SCEVAddRecExpr *ExtendAfterOp =
 | |
|         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
 | |
|     if (!ExtendAfterOp)
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
 | |
|     const SCEV *ExtendedStep =
 | |
|         SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
 | |
| 
 | |
|     bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
 | |
|                         ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
 | |
| 
 | |
|     if (!NoSignedWrap)
 | |
|       return false;
 | |
| 
 | |
|     if (const SCEVConstant *StepExpr =
 | |
|             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
 | |
|       ConstantInt *StepCI = StepExpr->getValue();
 | |
|       if (StepCI->isOne() || StepCI->isMinusOne()) {
 | |
|         IsIncreasing = StepCI->isOne();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // `ICI` is interpreted as taking the backedge if the *next* value of the
 | |
|   // induction variable satisfies some constraint.
 | |
| 
 | |
|   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
 | |
|   bool IsIncreasing = false;
 | |
|   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
 | |
|     FailureReason = "LHS in icmp not induction variable";
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
 | |
|   // TODO: generalize the predicates here to also match their unsigned variants.
 | |
|   if (IsIncreasing) {
 | |
|     bool FoundExpectedPred =
 | |
|         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
 | |
|         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
 | |
| 
 | |
|     if (!FoundExpectedPred) {
 | |
|       FailureReason = "expected icmp slt semantically, found something else";
 | |
|       return None;
 | |
|     }
 | |
| 
 | |
|     if (LatchBrExitIdx == 0) {
 | |
|       if (CanBeSMax(SE, RightSCEV)) {
 | |
|         // TODO: this restriction is easily removable -- we just have to
 | |
|         // remember that the icmp was an slt and not an sle.
 | |
|         FailureReason = "limit may overflow when coercing sle to slt";
 | |
|         return None;
 | |
|       }
 | |
| 
 | |
|       IRBuilder<> B(&*Preheader->rbegin());
 | |
|       RightValue = B.CreateAdd(RightValue, One);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     bool FoundExpectedPred =
 | |
|         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
 | |
|         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
 | |
| 
 | |
|     if (!FoundExpectedPred) {
 | |
|       FailureReason = "expected icmp sgt semantically, found something else";
 | |
|       return None;
 | |
|     }
 | |
| 
 | |
|     if (LatchBrExitIdx == 0) {
 | |
|       if (CanBeSMin(SE, RightSCEV)) {
 | |
|         // TODO: this restriction is easily removable -- we just have to
 | |
|         // remember that the icmp was an sgt and not an sge.
 | |
|         FailureReason = "limit may overflow when coercing sge to sgt";
 | |
|         return None;
 | |
|       }
 | |
| 
 | |
|       IRBuilder<> B(&*Preheader->rbegin());
 | |
|       RightValue = B.CreateSub(RightValue, One);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const SCEV *StartNext = IndVarNext->getStart();
 | |
|   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
 | |
|   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
 | |
| 
 | |
|   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
 | |
| 
 | |
|   assert(SE.getLoopDisposition(LatchCount, &L) ==
 | |
|              ScalarEvolution::LoopInvariant &&
 | |
|          "loop variant exit count doesn't make sense!");
 | |
| 
 | |
|   assert(!L.contains(LatchExit) && "expected an exit block!");
 | |
| 
 | |
|   Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
 | |
|       IndVarStart, IndVarTy, &*Preheader->rbegin());
 | |
|   IndVarStartV->setName("indvar.start");
 | |
| 
 | |
|   LoopStructure Result;
 | |
| 
 | |
|   Result.Tag = "main";
 | |
|   Result.Header = Header;
 | |
|   Result.Latch = Latch;
 | |
|   Result.LatchBr = LatchBr;
 | |
|   Result.LatchExit = LatchExit;
 | |
|   Result.LatchBrExitIdx = LatchBrExitIdx;
 | |
|   Result.IndVarStart = IndVarStartV;
 | |
|   Result.IndVarNext = LeftValue;
 | |
|   Result.IndVarIncreasing = IsIncreasing;
 | |
|   Result.LoopExitAt = RightValue;
 | |
| 
 | |
|   FailureReason = nullptr;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Optional<LoopConstrainer::SubRanges>
 | |
| LoopConstrainer::calculateSubRanges() const {
 | |
|   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
 | |
| 
 | |
|   if (Range.getType() != Ty)
 | |
|     return None;
 | |
| 
 | |
|   LoopConstrainer::SubRanges Result;
 | |
| 
 | |
|   // I think we can be more aggressive here and make this nuw / nsw if the
 | |
|   // addition that feeds into the icmp for the latch's terminating branch is nuw
 | |
|   // / nsw.  In any case, a wrapping 2's complement addition is safe.
 | |
|   ConstantInt *One = ConstantInt::get(Ty, 1);
 | |
|   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
 | |
|   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
 | |
| 
 | |
|   bool Increasing = MainLoopStructure.IndVarIncreasing;
 | |
|   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
 | |
|   // range of values the induction variable takes.
 | |
|   const SCEV *Smallest =
 | |
|       Increasing ? Start : SE.getAddExpr(End, SE.getSCEV(One));
 | |
|   const SCEV *Greatest =
 | |
|       Increasing ? End : SE.getAddExpr(Start, SE.getSCEV(One));
 | |
| 
 | |
|   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
 | |
|     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
 | |
|   };
 | |
| 
 | |
|   // In some cases we can prove that we don't need a pre or post loop
 | |
| 
 | |
|   bool ProvablyNoPreloop =
 | |
|       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
 | |
|   if (!ProvablyNoPreloop)
 | |
|     Result.LowLimit = Clamp(Range.getBegin());
 | |
| 
 | |
|   bool ProvablyNoPostLoop =
 | |
|       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
 | |
|   if (!ProvablyNoPostLoop)
 | |
|     Result.HighLimit = Clamp(Range.getEnd());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
 | |
|                                 const char *Tag) const {
 | |
|   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
 | |
|     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
 | |
|     Result.Blocks.push_back(Clone);
 | |
|     Result.Map[BB] = Clone;
 | |
|   }
 | |
| 
 | |
|   auto GetClonedValue = [&Result](Value *V) {
 | |
|     assert(V && "null values not in domain!");
 | |
|     auto It = Result.Map.find(V);
 | |
|     if (It == Result.Map.end())
 | |
|       return V;
 | |
|     return static_cast<Value *>(It->second);
 | |
|   };
 | |
| 
 | |
|   Result.Structure = MainLoopStructure.map(GetClonedValue);
 | |
|   Result.Structure.Tag = Tag;
 | |
| 
 | |
|   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ClonedBB = Result.Blocks[i];
 | |
|     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
 | |
| 
 | |
|     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
 | |
| 
 | |
|     for (Instruction &I : *ClonedBB)
 | |
|       RemapInstruction(&I, Result.Map,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
 | |
| 
 | |
|     // Exit blocks will now have one more predecessor and their PHI nodes need
 | |
|     // to be edited to reflect that.  No phi nodes need to be introduced because
 | |
|     // the loop is in LCSSA.
 | |
| 
 | |
|     for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
 | |
|          SBBI != SBBE; ++SBBI) {
 | |
| 
 | |
|       if (OriginalLoop.contains(*SBBI))
 | |
|         continue; // not an exit block
 | |
| 
 | |
|       for (Instruction &I : **SBBI) {
 | |
|         if (!isa<PHINode>(&I))
 | |
|           break;
 | |
| 
 | |
|         PHINode *PN = cast<PHINode>(&I);
 | |
|         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
 | |
|         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
 | |
|     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
 | |
|     BasicBlock *ContinuationBlock) const {
 | |
| 
 | |
|   // We start with a loop with a single latch:
 | |
|   //
 | |
|   //    +--------------------+
 | |
|   //    |                    |
 | |
|   //    |     preheader      |
 | |
|   //    |                    |
 | |
|   //    +--------+-----------+
 | |
|   //             |      ----------------\
 | |
|   //             |     /                |
 | |
|   //    +--------v----v------+          |
 | |
|   //    |                    |          |
 | |
|   //    |      header        |          |
 | |
|   //    |                    |          |
 | |
|   //    +--------------------+          |
 | |
|   //                                    |
 | |
|   //            .....                   |
 | |
|   //                                    |
 | |
|   //    +--------------------+          |
 | |
|   //    |                    |          |
 | |
|   //    |       latch        >----------/
 | |
|   //    |                    |
 | |
|   //    +-------v------------+
 | |
|   //            |
 | |
|   //            |
 | |
|   //            |   +--------------------+
 | |
|   //            |   |                    |
 | |
|   //            +--->   original exit    |
 | |
|   //                |                    |
 | |
|   //                +--------------------+
 | |
|   //
 | |
|   // We change the control flow to look like
 | |
|   //
 | |
|   //
 | |
|   //    +--------------------+
 | |
|   //    |                    |
 | |
|   //    |     preheader      >-------------------------+
 | |
|   //    |                    |                         |
 | |
|   //    +--------v-----------+                         |
 | |
|   //             |    /-------------+                  |
 | |
|   //             |   /              |                  |
 | |
|   //    +--------v--v--------+      |                  |
 | |
|   //    |                    |      |                  |
 | |
|   //    |      header        |      |   +--------+     |
 | |
|   //    |                    |      |   |        |     |
 | |
|   //    +--------------------+      |   |  +-----v-----v-----------+
 | |
|   //                                |   |  |                       |
 | |
|   //                                |   |  |     .pseudo.exit      |
 | |
|   //                                |   |  |                       |
 | |
|   //                                |   |  +-----------v-----------+
 | |
|   //                                |   |              |
 | |
|   //            .....               |   |              |
 | |
|   //                                |   |     +--------v-------------+
 | |
|   //    +--------------------+      |   |     |                      |
 | |
|   //    |                    |      |   |     |   ContinuationBlock  |
 | |
|   //    |       latch        >------+   |     |                      |
 | |
|   //    |                    |          |     +----------------------+
 | |
|   //    +---------v----------+          |
 | |
|   //              |                     |
 | |
|   //              |                     |
 | |
|   //              |     +---------------^-----+
 | |
|   //              |     |                     |
 | |
|   //              +----->    .exit.selector   |
 | |
|   //                    |                     |
 | |
|   //                    +----------v----------+
 | |
|   //                               |
 | |
|   //     +--------------------+    |
 | |
|   //     |                    |    |
 | |
|   //     |   original exit    <----+
 | |
|   //     |                    |
 | |
|   //     +--------------------+
 | |
|   //
 | |
| 
 | |
|   RewrittenRangeInfo RRI;
 | |
| 
 | |
|   auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
 | |
|   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
 | |
|                                         &F, BBInsertLocation);
 | |
|   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
 | |
|                                       BBInsertLocation);
 | |
| 
 | |
|   BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
 | |
|   bool Increasing = LS.IndVarIncreasing;
 | |
| 
 | |
|   IRBuilder<> B(PreheaderJump);
 | |
| 
 | |
|   // EnterLoopCond - is it okay to start executing this `LS'?
 | |
|   Value *EnterLoopCond = Increasing
 | |
|                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
 | |
|                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
 | |
| 
 | |
|   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
 | |
|   PreheaderJump->eraseFromParent();
 | |
| 
 | |
|   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
 | |
|   B.SetInsertPoint(LS.LatchBr);
 | |
|   Value *TakeBackedgeLoopCond =
 | |
|       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
 | |
|                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
 | |
|   Value *CondForBranch = LS.LatchBrExitIdx == 1
 | |
|                              ? TakeBackedgeLoopCond
 | |
|                              : B.CreateNot(TakeBackedgeLoopCond);
 | |
| 
 | |
|   LS.LatchBr->setCondition(CondForBranch);
 | |
| 
 | |
|   B.SetInsertPoint(RRI.ExitSelector);
 | |
| 
 | |
|   // IterationsLeft - are there any more iterations left, given the original
 | |
|   // upper bound on the induction variable?  If not, we branch to the "real"
 | |
|   // exit.
 | |
|   Value *IterationsLeft = Increasing
 | |
|                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
 | |
|                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
 | |
|   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
 | |
| 
 | |
|   BranchInst *BranchToContinuation =
 | |
|       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
 | |
| 
 | |
|   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
 | |
|   // each of the PHI nodes in the loop header.  This feeds into the initial
 | |
|   // value of the same PHI nodes if/when we continue execution.
 | |
|   for (Instruction &I : *LS.Header) {
 | |
|     if (!isa<PHINode>(&I))
 | |
|       break;
 | |
| 
 | |
|     PHINode *PN = cast<PHINode>(&I);
 | |
| 
 | |
|     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
 | |
|                                       BranchToContinuation);
 | |
| 
 | |
|     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
 | |
|     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
 | |
|                         RRI.ExitSelector);
 | |
|     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
 | |
|   }
 | |
| 
 | |
|   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
 | |
|                                   BranchToContinuation);
 | |
|   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
 | |
|   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
 | |
| 
 | |
|   // The latch exit now has a branch from `RRI.ExitSelector' instead of
 | |
|   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
 | |
|   for (Instruction &I : *LS.LatchExit) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(&I))
 | |
|       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return RRI;
 | |
| }
 | |
| 
 | |
| void LoopConstrainer::rewriteIncomingValuesForPHIs(
 | |
|     LoopStructure &LS, BasicBlock *ContinuationBlock,
 | |
|     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
 | |
| 
 | |
|   unsigned PHIIndex = 0;
 | |
|   for (Instruction &I : *LS.Header) {
 | |
|     if (!isa<PHINode>(&I))
 | |
|       break;
 | |
| 
 | |
|     PHINode *PN = cast<PHINode>(&I);
 | |
| 
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | |
|       if (PN->getIncomingBlock(i) == ContinuationBlock)
 | |
|         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
 | |
|   }
 | |
| 
 | |
|   LS.IndVarStart = RRI.IndVarEnd;
 | |
| }
 | |
| 
 | |
| BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
 | |
|                                              BasicBlock *OldPreheader,
 | |
|                                              const char *Tag) const {
 | |
| 
 | |
|   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
 | |
|   BranchInst::Create(LS.Header, Preheader);
 | |
| 
 | |
|   for (Instruction &I : *LS.Header) {
 | |
|     if (!isa<PHINode>(&I))
 | |
|       break;
 | |
| 
 | |
|     PHINode *PN = cast<PHINode>(&I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | |
|       replacePHIBlock(PN, OldPreheader, Preheader);
 | |
|   }
 | |
| 
 | |
|   return Preheader;
 | |
| }
 | |
| 
 | |
| void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
 | |
|   Loop *ParentLoop = OriginalLoop.getParentLoop();
 | |
|   if (!ParentLoop)
 | |
|     return;
 | |
| 
 | |
|   for (BasicBlock *BB : BBs)
 | |
|     ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
 | |
| }
 | |
| 
 | |
| bool LoopConstrainer::run() {
 | |
|   BasicBlock *Preheader = nullptr;
 | |
|   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
 | |
|   Preheader = OriginalLoop.getLoopPreheader();
 | |
|   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
 | |
|          "preconditions!");
 | |
| 
 | |
|   OriginalPreheader = Preheader;
 | |
|   MainLoopPreheader = Preheader;
 | |
| 
 | |
|   Optional<SubRanges> MaybeSR = calculateSubRanges();
 | |
|   if (!MaybeSR.hasValue()) {
 | |
|     DEBUG(dbgs() << "irce: could not compute subranges\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   SubRanges SR = MaybeSR.getValue();
 | |
|   bool Increasing = MainLoopStructure.IndVarIncreasing;
 | |
|   IntegerType *IVTy =
 | |
|       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
 | |
| 
 | |
|   SCEVExpander Expander(SE, "irce");
 | |
|   Instruction *InsertPt = OriginalPreheader->getTerminator();
 | |
| 
 | |
|   // It would have been better to make `PreLoop' and `PostLoop'
 | |
|   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
 | |
|   // constructor.
 | |
|   ClonedLoop PreLoop, PostLoop;
 | |
|   bool NeedsPreLoop =
 | |
|       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
 | |
|   bool NeedsPostLoop =
 | |
|       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
 | |
| 
 | |
|   Value *ExitPreLoopAt = nullptr;
 | |
|   Value *ExitMainLoopAt = nullptr;
 | |
|   const SCEVConstant *MinusOneS =
 | |
|       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
 | |
| 
 | |
|   if (NeedsPreLoop) {
 | |
|     const SCEV *ExitPreLoopAtSCEV = nullptr;
 | |
| 
 | |
|     if (Increasing)
 | |
|       ExitPreLoopAtSCEV = *SR.LowLimit;
 | |
|     else {
 | |
|       if (CanBeSMin(SE, *SR.HighLimit)) {
 | |
|         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | |
|                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
 | |
|                      << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
 | |
|     }
 | |
| 
 | |
|     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
 | |
|     ExitPreLoopAt->setName("exit.preloop.at");
 | |
|   }
 | |
| 
 | |
|   if (NeedsPostLoop) {
 | |
|     const SCEV *ExitMainLoopAtSCEV = nullptr;
 | |
| 
 | |
|     if (Increasing)
 | |
|       ExitMainLoopAtSCEV = *SR.HighLimit;
 | |
|     else {
 | |
|       if (CanBeSMin(SE, *SR.LowLimit)) {
 | |
|         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | |
|                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
 | |
|                      << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
 | |
|     }
 | |
| 
 | |
|     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
 | |
|     ExitMainLoopAt->setName("exit.mainloop.at");
 | |
|   }
 | |
| 
 | |
|   // We clone these ahead of time so that we don't have to deal with changing
 | |
|   // and temporarily invalid IR as we transform the loops.
 | |
|   if (NeedsPreLoop)
 | |
|     cloneLoop(PreLoop, "preloop");
 | |
|   if (NeedsPostLoop)
 | |
|     cloneLoop(PostLoop, "postloop");
 | |
| 
 | |
|   RewrittenRangeInfo PreLoopRRI;
 | |
| 
 | |
|   if (NeedsPreLoop) {
 | |
|     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
 | |
|                                                   PreLoop.Structure.Header);
 | |
| 
 | |
|     MainLoopPreheader =
 | |
|         createPreheader(MainLoopStructure, Preheader, "mainloop");
 | |
|     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
 | |
|                                          ExitPreLoopAt, MainLoopPreheader);
 | |
|     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
 | |
|                                  PreLoopRRI);
 | |
|   }
 | |
| 
 | |
|   BasicBlock *PostLoopPreheader = nullptr;
 | |
|   RewrittenRangeInfo PostLoopRRI;
 | |
| 
 | |
|   if (NeedsPostLoop) {
 | |
|     PostLoopPreheader =
 | |
|         createPreheader(PostLoop.Structure, Preheader, "postloop");
 | |
|     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
 | |
|                                           ExitMainLoopAt, PostLoopPreheader);
 | |
|     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
 | |
|                                  PostLoopRRI);
 | |
|   }
 | |
| 
 | |
|   BasicBlock *NewMainLoopPreheader =
 | |
|       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
 | |
|   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
 | |
|                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
 | |
|                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
 | |
| 
 | |
|   // Some of the above may be nullptr, filter them out before passing to
 | |
|   // addToParentLoopIfNeeded.
 | |
|   auto NewBlocksEnd =
 | |
|       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
 | |
| 
 | |
|   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
 | |
|   addToParentLoopIfNeeded(PreLoop.Blocks);
 | |
|   addToParentLoopIfNeeded(PostLoop.Blocks);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Computes and returns a range of values for the induction variable (IndVar)
 | |
| /// in which the range check can be safely elided.  If it cannot compute such a
 | |
| /// range, returns None.
 | |
| Optional<InductiveRangeCheck::Range>
 | |
| InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
 | |
|                                                const SCEVAddRecExpr *IndVar,
 | |
|                                                IRBuilder<> &) const {
 | |
|   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
 | |
|   // variable, that may or may not exist as a real llvm::Value in the loop) and
 | |
|   // this inductive range check is a range check on the "C + D * I" ("C" is
 | |
|   // getOffset() and "D" is getScale()).  We rewrite the value being range
 | |
|   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
 | |
|   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
 | |
|   // can be generalized as needed.
 | |
|   //
 | |
|   // The actual inequalities we solve are of the form
 | |
|   //
 | |
|   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
 | |
|   //
 | |
|   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
 | |
|   // and subtractions are twos-complement wrapping and comparisons are signed.
 | |
|   //
 | |
|   // Proof:
 | |
|   //
 | |
|   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
 | |
|   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
 | |
|   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
 | |
|   //   overflown.
 | |
|   //
 | |
|   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
 | |
|   //   Hence 0 <= (IndVar + M) < L
 | |
| 
 | |
|   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
 | |
|   // 127, IndVar = 126 and L = -2 in an i8 world.
 | |
| 
 | |
|   if (!IndVar->isAffine())
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *A = IndVar->getStart();
 | |
|   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
 | |
|   if (!B)
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *C = getOffset();
 | |
|   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
 | |
|   if (D != B)
 | |
|     return None;
 | |
| 
 | |
|   ConstantInt *ConstD = D->getValue();
 | |
|   if (!(ConstD->isMinusOne() || ConstD->isOne()))
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *M = SE.getMinusSCEV(C, A);
 | |
| 
 | |
|   const SCEV *Begin = SE.getNegativeSCEV(M);
 | |
|   const SCEV *End = SE.getMinusSCEV(SE.getSCEV(getLength()), M);
 | |
| 
 | |
|   return InductiveRangeCheck::Range(Begin, End);
 | |
| }
 | |
| 
 | |
| static Optional<InductiveRangeCheck::Range>
 | |
| IntersectRange(ScalarEvolution &SE,
 | |
|                const Optional<InductiveRangeCheck::Range> &R1,
 | |
|                const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
 | |
|   if (!R1.hasValue())
 | |
|     return R2;
 | |
|   auto &R1Value = R1.getValue();
 | |
| 
 | |
|   // TODO: we could widen the smaller range and have this work; but for now we
 | |
|   // bail out to keep things simple.
 | |
|   if (R1Value.getType() != R2.getType())
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
 | |
|   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
 | |
| 
 | |
|   return InductiveRangeCheck::Range(NewBegin, NewEnd);
 | |
| }
 | |
| 
 | |
| bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (L->getBlocks().size() >= LoopSizeCutoff) {
 | |
|     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) {
 | |
|     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LLVMContext &Context = Preheader->getContext();
 | |
|   InductiveRangeCheck::AllocatorTy IRCAlloc;
 | |
|   SmallVector<InductiveRangeCheck *, 16> RangeChecks;
 | |
|   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
 | |
|   BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
 | |
| 
 | |
|   for (auto BBI : L->getBlocks())
 | |
|     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
 | |
|       if (InductiveRangeCheck *IRC =
 | |
|           InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
 | |
|         RangeChecks.push_back(IRC);
 | |
| 
 | |
|   if (RangeChecks.empty())
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
 | |
|         dbgs() << "irce: loop has " << RangeChecks.size()
 | |
|                << " inductive range checks: \n";
 | |
|         for (InductiveRangeCheck *IRC : RangeChecks)
 | |
|           IRC->print(dbgs());
 | |
|     );
 | |
| 
 | |
|   const char *FailureReason = nullptr;
 | |
|   Optional<LoopStructure> MaybeLoopStructure =
 | |
|       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
 | |
|   if (!MaybeLoopStructure.hasValue()) {
 | |
|     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
 | |
|                  << "\n";);
 | |
|     return false;
 | |
|   }
 | |
|   LoopStructure LS = MaybeLoopStructure.getValue();
 | |
|   bool Increasing = LS.IndVarIncreasing;
 | |
|   const SCEV *MinusOne =
 | |
|       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
 | |
|   const SCEVAddRecExpr *IndVar =
 | |
|       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
 | |
| 
 | |
|   Optional<InductiveRangeCheck::Range> SafeIterRange;
 | |
|   Instruction *ExprInsertPt = Preheader->getTerminator();
 | |
| 
 | |
|   SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
 | |
| 
 | |
|   IRBuilder<> B(ExprInsertPt);
 | |
|   for (InductiveRangeCheck *IRC : RangeChecks) {
 | |
|     auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
 | |
|     if (Result.hasValue()) {
 | |
|       auto MaybeSafeIterRange =
 | |
|         IntersectRange(SE, SafeIterRange, Result.getValue(), B);
 | |
|       if (MaybeSafeIterRange.hasValue()) {
 | |
|         RangeChecksToEliminate.push_back(IRC);
 | |
|         SafeIterRange = MaybeSafeIterRange.getValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SafeIterRange.hasValue())
 | |
|     return false;
 | |
| 
 | |
|   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
 | |
|                      SE, SafeIterRange.getValue());
 | |
|   bool Changed = LC.run();
 | |
| 
 | |
|   if (Changed) {
 | |
|     auto PrintConstrainedLoopInfo = [L]() {
 | |
|       dbgs() << "irce: in function ";
 | |
|       dbgs() << L->getHeader()->getParent()->getName() << ": ";
 | |
|       dbgs() << "constrained ";
 | |
|       L->print(dbgs());
 | |
|     };
 | |
| 
 | |
|     DEBUG(PrintConstrainedLoopInfo());
 | |
| 
 | |
|     if (PrintChangedLoops)
 | |
|       PrintConstrainedLoopInfo();
 | |
| 
 | |
|     // Optimize away the now-redundant range checks.
 | |
| 
 | |
|     for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
 | |
|       ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
 | |
|                                           ? ConstantInt::getTrue(Context)
 | |
|                                           : ConstantInt::getFalse(Context);
 | |
|       IRC->getBranch()->setCondition(FoldedRangeCheck);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| Pass *llvm::createInductiveRangeCheckEliminationPass() {
 | |
|   return new InductiveRangeCheckElimination;
 | |
| }
 |