mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	and better control the abstraction. Rename the type to MVT. To update out-of-tree patches, the main thing to do is to rename MVT::ValueType to MVT, and rewrite expressions like MVT::getSizeInBits(VT) in the form VT.getSizeInBits(). Use VT.getSimpleVT() to extract a MVT::SimpleValueType for use in switch statements (you will get an assert failure if VT is an extended value type - these shouldn't exist after type legalization). This results in a small speedup of codegen and no new testsuite failures (x86-64 linux). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1207 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1207 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a simple two pass scheduler.  The first pass attempts to push
 | 
						|
// backward any lengthy instructions and critical paths.  The second pass packs
 | 
						|
// instructions into semi-optimal time slots.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumCommutes,   "Number of instructions commuted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  static cl::opt<bool>
 | 
						|
  SchedLiveInCopies("schedule-livein-copies",
 | 
						|
                    cl::desc("Schedule copies of livein registers"),
 | 
						|
                    cl::init(false));
 | 
						|
}
 | 
						|
 | 
						|
ScheduleDAG::ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                         const TargetMachine &tm)
 | 
						|
  : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
 | 
						|
  TII = TM.getInstrInfo();
 | 
						|
  MF  = &DAG.getMachineFunction();
 | 
						|
  TRI = TM.getRegisterInfo();
 | 
						|
  TLI = &DAG.getTargetLoweringInfo();
 | 
						|
  ConstPool = BB->getParent()->getConstantPool();
 | 
						|
}
 | 
						|
 | 
						|
/// CheckForPhysRegDependency - Check if the dependency between def and use of
 | 
						|
/// a specified operand is a physical register dependency. If so, returns the
 | 
						|
/// register and the cost of copying the register.
 | 
						|
static void CheckForPhysRegDependency(SDNode *Def, SDNode *Use, unsigned Op,
 | 
						|
                                      const TargetRegisterInfo *TRI, 
 | 
						|
                                      const TargetInstrInfo *TII,
 | 
						|
                                      unsigned &PhysReg, int &Cost) {
 | 
						|
  if (Op != 2 || Use->getOpcode() != ISD::CopyToReg)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned ResNo = Use->getOperand(2).ResNo;
 | 
						|
  if (Def->isTargetOpcode()) {
 | 
						|
    const TargetInstrDesc &II = TII->get(Def->getTargetOpcode());
 | 
						|
    if (ResNo >= II.getNumDefs() &&
 | 
						|
        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
 | 
						|
      PhysReg = Reg;
 | 
						|
      const TargetRegisterClass *RC =
 | 
						|
        TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
 | 
						|
      Cost = RC->getCopyCost();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SUnit *ScheduleDAG::Clone(SUnit *Old) {
 | 
						|
  SUnit *SU = NewSUnit(Old->Node);
 | 
						|
  SU->FlaggedNodes = Old->FlaggedNodes;
 | 
						|
  SU->InstanceNo = SUnitMap[Old->Node].size();
 | 
						|
  SU->Latency = Old->Latency;
 | 
						|
  SU->isTwoAddress = Old->isTwoAddress;
 | 
						|
  SU->isCommutable = Old->isCommutable;
 | 
						|
  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
 | 
						|
  SUnitMap[Old->Node].push_back(SU);
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
 | 
						|
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
 | 
						|
/// together nodes with a single SUnit.
 | 
						|
void ScheduleDAG::BuildSchedUnits() {
 | 
						|
  // Reserve entries in the vector for each of the SUnits we are creating.  This
 | 
						|
  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | 
						|
  // invalidated.
 | 
						|
  SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
 | 
						|
  
 | 
						|
  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
 | 
						|
       E = DAG.allnodes_end(); NI != E; ++NI) {
 | 
						|
    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If this node has already been processed, stop now.
 | 
						|
    if (SUnitMap[NI].size()) continue;
 | 
						|
    
 | 
						|
    SUnit *NodeSUnit = NewSUnit(NI);
 | 
						|
    
 | 
						|
    // See if anything is flagged to this node, if so, add them to flagged
 | 
						|
    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | 
						|
    // are required the be the last operand and result of a node.
 | 
						|
    
 | 
						|
    // Scan up, adding flagged preds to FlaggedNodes.
 | 
						|
    SDNode *N = NI;
 | 
						|
    if (N->getNumOperands() &&
 | 
						|
        N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | 
						|
      do {
 | 
						|
        N = N->getOperand(N->getNumOperands()-1).Val;
 | 
						|
        NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
        SUnitMap[N].push_back(NodeSUnit);
 | 
						|
      } while (N->getNumOperands() &&
 | 
						|
               N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
 | 
						|
      std::reverse(NodeSUnit->FlaggedNodes.begin(),
 | 
						|
                   NodeSUnit->FlaggedNodes.end());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Scan down, adding this node and any flagged succs to FlaggedNodes if they
 | 
						|
    // have a user of the flag operand.
 | 
						|
    N = NI;
 | 
						|
    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | 
						|
      SDOperand FlagVal(N, N->getNumValues()-1);
 | 
						|
      
 | 
						|
      // There are either zero or one users of the Flag result.
 | 
						|
      bool HasFlagUse = false;
 | 
						|
      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (FlagVal.isOperandOf(UI->getUser())) {
 | 
						|
          HasFlagUse = true;
 | 
						|
          NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
          SUnitMap[N].push_back(NodeSUnit);
 | 
						|
          N = UI->getUser();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (!HasFlagUse) break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
 | 
						|
    // Update the SUnit
 | 
						|
    NodeSUnit->Node = N;
 | 
						|
    SUnitMap[N].push_back(NodeSUnit);
 | 
						|
 | 
						|
    ComputeLatency(NodeSUnit);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Pass 2: add the preds, succs, etc.
 | 
						|
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | 
						|
    SUnit *SU = &SUnits[su];
 | 
						|
    SDNode *MainNode = SU->Node;
 | 
						|
    
 | 
						|
    if (MainNode->isTargetOpcode()) {
 | 
						|
      unsigned Opc = MainNode->getTargetOpcode();
 | 
						|
      const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | 
						|
        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | 
						|
          SU->isTwoAddress = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (TID.isCommutable())
 | 
						|
        SU->isCommutable = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Find all predecessors and successors of the group.
 | 
						|
    // Temporarily add N to make code simpler.
 | 
						|
    SU->FlaggedNodes.push_back(MainNode);
 | 
						|
    
 | 
						|
    for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
 | 
						|
      SDNode *N = SU->FlaggedNodes[n];
 | 
						|
      if (N->isTargetOpcode() &&
 | 
						|
          TII->get(N->getTargetOpcode()).getImplicitDefs() &&
 | 
						|
          CountResults(N) > TII->get(N->getTargetOpcode()).getNumDefs())
 | 
						|
        SU->hasPhysRegDefs = true;
 | 
						|
      
 | 
						|
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
        SDNode *OpN = N->getOperand(i).Val;
 | 
						|
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | 
						|
        SUnit *OpSU = SUnitMap[OpN].front();
 | 
						|
        assert(OpSU && "Node has no SUnit!");
 | 
						|
        if (OpSU == SU) continue;           // In the same group.
 | 
						|
 | 
						|
        MVT OpVT = N->getOperand(i).getValueType();
 | 
						|
        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | 
						|
        bool isChain = OpVT == MVT::Other;
 | 
						|
 | 
						|
        unsigned PhysReg = 0;
 | 
						|
        int Cost = 1;
 | 
						|
        // Determine if this is a physical register dependency.
 | 
						|
        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
 | 
						|
        SU->addPred(OpSU, isChain, false, PhysReg, Cost);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remove MainNode from FlaggedNodes again.
 | 
						|
    SU->FlaggedNodes.pop_back();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::ComputeLatency(SUnit *SU) {
 | 
						|
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | 
						|
  
 | 
						|
  // Compute the latency for the node.  We use the sum of the latencies for
 | 
						|
  // all nodes flagged together into this SUnit.
 | 
						|
  if (InstrItins.isEmpty()) {
 | 
						|
    // No latency information.
 | 
						|
    SU->Latency = 1;
 | 
						|
  } else {
 | 
						|
    SU->Latency = 0;
 | 
						|
    if (SU->Node->isTargetOpcode()) {
 | 
						|
      unsigned SchedClass =
 | 
						|
        TII->get(SU->Node->getTargetOpcode()).getSchedClass();
 | 
						|
      const InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
      const InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
      for (; S != E; ++S)
 | 
						|
        SU->Latency += S->Cycles;
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) {
 | 
						|
      SDNode *FNode = SU->FlaggedNodes[i];
 | 
						|
      if (FNode->isTargetOpcode()) {
 | 
						|
        unsigned SchedClass =TII->get(FNode->getTargetOpcode()).getSchedClass();
 | 
						|
        const InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
        const InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
        for (; S != E; ++S)
 | 
						|
          SU->Latency += S->Cycles;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateDepths - compute depths using algorithms for the longest
 | 
						|
/// paths in the DAG
 | 
						|
void ScheduleDAG::CalculateDepths() {
 | 
						|
  unsigned DAGSize = SUnits.size();
 | 
						|
  std::vector<unsigned> InDegree(DAGSize);
 | 
						|
  std::vector<SUnit*> WorkList;
 | 
						|
  WorkList.reserve(DAGSize);
 | 
						|
 | 
						|
  // Initialize the data structures
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[i];
 | 
						|
    int NodeNum = SU->NodeNum;
 | 
						|
    unsigned Degree = SU->Preds.size();
 | 
						|
    InDegree[NodeNum] = Degree;
 | 
						|
    SU->Depth = 0;
 | 
						|
 | 
						|
    // Is it a node without dependencies?
 | 
						|
    if (Degree == 0) {
 | 
						|
        assert(SU->Preds.empty() && "SUnit should have no predecessors");
 | 
						|
        // Collect leaf nodes
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process nodes in the topological order
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    unsigned &SUDepth  = SU->Depth;
 | 
						|
 | 
						|
    // Use dynamic programming:
 | 
						|
    // When current node is being processed, all of its dependencies
 | 
						|
    // are already processed.
 | 
						|
    // So, just iterate over all predecessors and take the longest path
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      unsigned PredDepth = I->Dep->Depth;
 | 
						|
      if (PredDepth+1 > SUDepth) {
 | 
						|
          SUDepth = PredDepth + 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Update InDegrees of all nodes depending on current SUnit
 | 
						|
    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      SUnit *SU = I->Dep;
 | 
						|
      if (!--InDegree[SU->NodeNum])
 | 
						|
        // If all dependencies of the node are processed already,
 | 
						|
        // then the longest path for the node can be computed now
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateHeights - compute heights using algorithms for the longest
 | 
						|
/// paths in the DAG
 | 
						|
void ScheduleDAG::CalculateHeights() {
 | 
						|
  unsigned DAGSize = SUnits.size();
 | 
						|
  std::vector<unsigned> InDegree(DAGSize);
 | 
						|
  std::vector<SUnit*> WorkList;
 | 
						|
  WorkList.reserve(DAGSize);
 | 
						|
 | 
						|
  // Initialize the data structures
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[i];
 | 
						|
    int NodeNum = SU->NodeNum;
 | 
						|
    unsigned Degree = SU->Succs.size();
 | 
						|
    InDegree[NodeNum] = Degree;
 | 
						|
    SU->Height = 0;
 | 
						|
 | 
						|
    // Is it a node without dependencies?
 | 
						|
    if (Degree == 0) {
 | 
						|
        assert(SU->Succs.empty() && "Something wrong");
 | 
						|
        assert(WorkList.empty() && "Should be empty");
 | 
						|
        // Collect leaf nodes
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process nodes in the topological order
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    unsigned &SUHeight  = SU->Height;
 | 
						|
 | 
						|
    // Use dynamic programming:
 | 
						|
    // When current node is being processed, all of its dependencies
 | 
						|
    // are already processed.
 | 
						|
    // So, just iterate over all successors and take the longest path
 | 
						|
    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      unsigned SuccHeight = I->Dep->Height;
 | 
						|
      if (SuccHeight+1 > SUHeight) {
 | 
						|
          SUHeight = SuccHeight + 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Update InDegrees of all nodes depending on current SUnit
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      SUnit *SU = I->Dep;
 | 
						|
      if (!--InDegree[SU->NodeNum])
 | 
						|
        // If all dependencies of the node are processed already,
 | 
						|
        // then the longest path for the node can be computed now
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CountResults - The results of target nodes have register or immediate
 | 
						|
/// operands first, then an optional chain, and optional flag operands (which do
 | 
						|
/// not go into the resulting MachineInstr).
 | 
						|
unsigned ScheduleDAG::CountResults(SDNode *Node) {
 | 
						|
  unsigned N = Node->getNumValues();
 | 
						|
  while (N && Node->getValueType(N - 1) == MVT::Flag)
 | 
						|
    --N;
 | 
						|
  if (N && Node->getValueType(N - 1) == MVT::Other)
 | 
						|
    --N;    // Skip over chain result.
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
/// CountOperands - The inputs to target nodes have any actual inputs first,
 | 
						|
/// followed by special operands that describe memory references, then an
 | 
						|
/// optional chain operand, then flag operands.  Compute the number of
 | 
						|
/// actual operands that will go into the resulting MachineInstr.
 | 
						|
unsigned ScheduleDAG::CountOperands(SDNode *Node) {
 | 
						|
  unsigned N = ComputeMemOperandsEnd(Node);
 | 
						|
  while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).Val))
 | 
						|
    --N; // Ignore MEMOPERAND nodes
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
 | 
						|
/// operand
 | 
						|
unsigned ScheduleDAG::ComputeMemOperandsEnd(SDNode *Node) {
 | 
						|
  unsigned N = Node->getNumOperands();
 | 
						|
  while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
 | 
						|
    --N;
 | 
						|
  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
 | 
						|
    --N; // Ignore chain if it exists.
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
static const TargetRegisterClass *getInstrOperandRegClass(
 | 
						|
        const TargetRegisterInfo *TRI, 
 | 
						|
        const TargetInstrInfo *TII,
 | 
						|
        const TargetInstrDesc &II,
 | 
						|
        unsigned Op) {
 | 
						|
  if (Op >= II.getNumOperands()) {
 | 
						|
    assert(II.isVariadic() && "Invalid operand # of instruction");
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  if (II.OpInfo[Op].isLookupPtrRegClass())
 | 
						|
    return TII->getPointerRegClass();
 | 
						|
  return TRI->getRegClass(II.OpInfo[Op].RegClass);
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo,
 | 
						|
                                  unsigned InstanceNo, unsigned SrcReg,
 | 
						|
                                  DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  unsigned VRBase = 0;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
    // Just use the input register directly!
 | 
						|
    if (InstanceNo > 0)
 | 
						|
      VRBaseMap.erase(SDOperand(Node, ResNo));
 | 
						|
    bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo),SrcReg));
 | 
						|
    isNew = isNew; // Silence compiler warning.
 | 
						|
    assert(isNew && "Node emitted out of order - early");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | 
						|
  // the CopyToReg'd destination register instead of creating a new vreg.
 | 
						|
  bool MatchReg = true;
 | 
						|
  for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    SDNode *Use = UI->getUser();
 | 
						|
    bool Match = true;
 | 
						|
    if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
        Use->getOperand(2).Val == Node &&
 | 
						|
        Use->getOperand(2).ResNo == ResNo) {
 | 
						|
      unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
 | 
						|
        VRBase = DestReg;
 | 
						|
        Match = false;
 | 
						|
      } else if (DestReg != SrcReg)
 | 
						|
        Match = false;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
 | 
						|
        SDOperand Op = Use->getOperand(i);
 | 
						|
        if (Op.Val != Node || Op.ResNo != ResNo)
 | 
						|
          continue;
 | 
						|
        MVT VT = Node->getValueType(Op.ResNo);
 | 
						|
        if (VT != MVT::Other && VT != MVT::Flag)
 | 
						|
          Match = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    MatchReg &= Match;
 | 
						|
    if (VRBase)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
 | 
						|
  SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, Node->getValueType(ResNo));
 | 
						|
  
 | 
						|
  // Figure out the register class to create for the destreg.
 | 
						|
  if (VRBase) {
 | 
						|
    DstRC = MRI.getRegClass(VRBase);
 | 
						|
  } else {
 | 
						|
    DstRC = TLI->getRegClassFor(Node->getValueType(ResNo));
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If all uses are reading from the src physical register and copying the
 | 
						|
  // register is either impossible or very expensive, then don't create a copy.
 | 
						|
  if (MatchReg && SrcRC->getCopyCost() < 0) {
 | 
						|
    VRBase = SrcReg;
 | 
						|
  } else {
 | 
						|
    // Create the reg, emit the copy.
 | 
						|
    VRBase = MRI.createVirtualRegister(DstRC);
 | 
						|
    TII->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, DstRC, SrcRC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (InstanceNo > 0)
 | 
						|
    VRBaseMap.erase(SDOperand(Node, ResNo));
 | 
						|
  bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo), VRBase));
 | 
						|
  isNew = isNew; // Silence compiler warning.
 | 
						|
  assert(isNew && "Node emitted out of order - early");
 | 
						|
}
 | 
						|
 | 
						|
/// getDstOfCopyToRegUse - If the only use of the specified result number of
 | 
						|
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
 | 
						|
unsigned ScheduleDAG::getDstOfOnlyCopyToRegUse(SDNode *Node,
 | 
						|
                                               unsigned ResNo) const {
 | 
						|
  if (!Node->hasOneUse())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  SDNode *Use = Node->use_begin()->getUser();
 | 
						|
  if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
      Use->getOperand(2).Val == Node &&
 | 
						|
      Use->getOperand(2).ResNo == ResNo) {
 | 
						|
    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      return Reg;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
 | 
						|
                                 const TargetInstrDesc &II,
 | 
						|
                                 DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  assert(Node->getTargetOpcode() != TargetInstrInfo::IMPLICIT_DEF &&
 | 
						|
         "IMPLICIT_DEF should have been handled as a special case elsewhere!");
 | 
						|
 | 
						|
  for (unsigned i = 0; i < II.getNumDefs(); ++i) {
 | 
						|
    // If the specific node value is only used by a CopyToReg and the dest reg
 | 
						|
    // is a vreg, use the CopyToReg'd destination register instead of creating
 | 
						|
    // a new vreg.
 | 
						|
    unsigned VRBase = 0;
 | 
						|
    for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      SDNode *Use = UI->getUser();
 | 
						|
      if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
          Use->getOperand(2).Val == Node &&
 | 
						|
          Use->getOperand(2).ResNo == i) {
 | 
						|
        unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
          VRBase = Reg;
 | 
						|
          MI->addOperand(MachineOperand::CreateReg(Reg, true));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the result registers for this node and add the result regs to
 | 
						|
    // the machine instruction.
 | 
						|
    if (VRBase == 0) {
 | 
						|
      const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, II, i);
 | 
						|
      assert(RC && "Isn't a register operand!");
 | 
						|
      VRBase = MRI.createVirtualRegister(RC);
 | 
						|
      MI->addOperand(MachineOperand::CreateReg(VRBase, true));
 | 
						|
    }
 | 
						|
 | 
						|
    bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase));
 | 
						|
    isNew = isNew; // Silence compiler warning.
 | 
						|
    assert(isNew && "Node emitted out of order - early");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getVR - Return the virtual register corresponding to the specified result
 | 
						|
/// of the specified node.
 | 
						|
unsigned ScheduleDAG::getVR(SDOperand Op,
 | 
						|
                            DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  if (Op.isTargetOpcode() &&
 | 
						|
      Op.getTargetOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
 | 
						|
    // Add an IMPLICIT_DEF instruction before every use.
 | 
						|
    unsigned VReg = getDstOfOnlyCopyToRegUse(Op.Val, Op.ResNo);
 | 
						|
    // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
 | 
						|
    // does not include operand register class info.
 | 
						|
    if (!VReg) {
 | 
						|
      const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
 | 
						|
      VReg = MRI.createVirtualRegister(RC);
 | 
						|
    }
 | 
						|
    BuildMI(BB, TII->get(TargetInstrInfo::IMPLICIT_DEF), VReg);
 | 
						|
    return VReg;
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap<SDOperand, unsigned>::iterator I = VRBaseMap.find(Op);
 | 
						|
  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
 | 
						|
  return I->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddOperand - Add the specified operand to the specified machine instr.  II
 | 
						|
/// specifies the instruction information for the node, and IIOpNum is the
 | 
						|
/// operand number (in the II) that we are adding. IIOpNum and II are used for 
 | 
						|
/// assertions only.
 | 
						|
void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
 | 
						|
                             unsigned IIOpNum,
 | 
						|
                             const TargetInstrDesc *II,
 | 
						|
                             DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  if (Op.isTargetOpcode()) {
 | 
						|
    // Note that this case is redundant with the final else block, but we
 | 
						|
    // include it because it is the most common and it makes the logic
 | 
						|
    // simpler here.
 | 
						|
    assert(Op.getValueType() != MVT::Other &&
 | 
						|
           Op.getValueType() != MVT::Flag &&
 | 
						|
           "Chain and flag operands should occur at end of operand list!");
 | 
						|
    // Get/emit the operand.
 | 
						|
    unsigned VReg = getVR(Op, VRBaseMap);
 | 
						|
    const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
    bool isOptDef = IIOpNum < TID.getNumOperands() &&
 | 
						|
      TID.OpInfo[IIOpNum].isOptionalDef();
 | 
						|
    MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
 | 
						|
    
 | 
						|
    // Verify that it is right.
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (II) {
 | 
						|
      // There may be no register class for this operand if it is a variadic
 | 
						|
      // argument (RC will be NULL in this case).  In this case, we just assume
 | 
						|
      // the regclass is ok.
 | 
						|
      const TargetRegisterClass *RC =
 | 
						|
                          getInstrOperandRegClass(TRI, TII, *II, IIOpNum);
 | 
						|
      assert((RC || II->isVariadic()) && "Expected reg class info!");
 | 
						|
      const TargetRegisterClass *VRC = MRI.getRegClass(VReg);
 | 
						|
      if (RC && VRC != RC) {
 | 
						|
        cerr << "Register class of operand and regclass of use don't agree!\n";
 | 
						|
        cerr << "Operand = " << IIOpNum << "\n";
 | 
						|
        cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n";
 | 
						|
        cerr << "MI = "; MI->print(cerr);
 | 
						|
        cerr << "VReg = " << VReg << "\n";
 | 
						|
        cerr << "VReg RegClass     size = " << VRC->getSize()
 | 
						|
             << ", align = " << VRC->getAlignment() << "\n";
 | 
						|
        cerr << "Expected RegClass size = " << RC->getSize()
 | 
						|
             << ", align = " << RC->getAlignment() << "\n";
 | 
						|
        cerr << "Fatal error, aborting.\n";
 | 
						|
        abort();
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateImm(C->getValue()));
 | 
						|
  } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
 | 
						|
    ConstantFP *CFP = ConstantFP::get(F->getValueAPF());
 | 
						|
    MI->addOperand(MachineOperand::CreateFPImm(CFP));
 | 
						|
  } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
 | 
						|
  } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset()));
 | 
						|
  } else if (BasicBlockSDNode *BB = dyn_cast<BasicBlockSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock()));
 | 
						|
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
 | 
						|
  } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateJTI(JT->getIndex()));
 | 
						|
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
 | 
						|
    int Offset = CP->getOffset();
 | 
						|
    unsigned Align = CP->getAlignment();
 | 
						|
    const Type *Type = CP->getType();
 | 
						|
    // MachineConstantPool wants an explicit alignment.
 | 
						|
    if (Align == 0) {
 | 
						|
      Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
 | 
						|
      if (Align == 0) {
 | 
						|
        // Alignment of vector types.  FIXME!
 | 
						|
        Align = TM.getTargetData()->getABITypeSize(Type);
 | 
						|
        Align = Log2_64(Align);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned Idx;
 | 
						|
    if (CP->isMachineConstantPoolEntry())
 | 
						|
      Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
 | 
						|
    else
 | 
						|
      Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
 | 
						|
    MI->addOperand(MachineOperand::CreateCPI(Idx, Offset));
 | 
						|
  } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
 | 
						|
    MI->addOperand(MachineOperand::CreateES(ES->getSymbol()));
 | 
						|
  } else {
 | 
						|
    assert(Op.getValueType() != MVT::Other &&
 | 
						|
           Op.getValueType() != MVT::Flag &&
 | 
						|
           "Chain and flag operands should occur at end of operand list!");
 | 
						|
    unsigned VReg = getVR(Op, VRBaseMap);
 | 
						|
    MI->addOperand(MachineOperand::CreateReg(VReg, false));
 | 
						|
    
 | 
						|
    // Verify that it is right.  Note that the reg class of the physreg and the
 | 
						|
    // vreg don't necessarily need to match, but the target copy insertion has
 | 
						|
    // to be able to handle it.  This handles things like copies from ST(0) to
 | 
						|
    // an FP vreg on x86.
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | 
						|
    if (II && !II->isVariadic()) {
 | 
						|
      assert(getInstrOperandRegClass(TRI, TII, *II, IIOpNum) &&
 | 
						|
             "Don't have operand info for this instruction!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO) {
 | 
						|
  MI->addMemOperand(MO);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the Register Class of a subregister
 | 
						|
static const TargetRegisterClass *getSubRegisterRegClass(
 | 
						|
        const TargetRegisterClass *TRC,
 | 
						|
        unsigned SubIdx) {
 | 
						|
  // Pick the register class of the subregister
 | 
						|
  TargetRegisterInfo::regclass_iterator I =
 | 
						|
    TRC->subregclasses_begin() + SubIdx-1;
 | 
						|
  assert(I < TRC->subregclasses_end() && 
 | 
						|
         "Invalid subregister index for register class");
 | 
						|
  return *I;
 | 
						|
}
 | 
						|
 | 
						|
static const TargetRegisterClass *getSuperregRegisterClass(
 | 
						|
        const TargetRegisterClass *TRC,
 | 
						|
        unsigned SubIdx,
 | 
						|
        MVT VT) {
 | 
						|
  // Pick the register class of the superegister for this type
 | 
						|
  for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
 | 
						|
         E = TRC->superregclasses_end(); I != E; ++I)
 | 
						|
    if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC)
 | 
						|
      return *I;
 | 
						|
  assert(false && "Couldn't find the register class");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSubregNode - Generate machine code for subreg nodes.
 | 
						|
///
 | 
						|
void ScheduleDAG::EmitSubregNode(SDNode *Node, 
 | 
						|
                           DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  unsigned VRBase = 0;
 | 
						|
  unsigned Opc = Node->getTargetOpcode();
 | 
						|
  
 | 
						|
  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | 
						|
  // the CopyToReg'd destination register instead of creating a new vreg.
 | 
						|
  for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    SDNode *Use = UI->getUser();
 | 
						|
    if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
        Use->getOperand(2).Val == Node) {
 | 
						|
      unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
 | 
						|
        VRBase = DestReg;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
 | 
						|
    unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue();
 | 
						|
 | 
						|
    // Create the extract_subreg machine instruction.
 | 
						|
    MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::EXTRACT_SUBREG));
 | 
						|
 | 
						|
    // Figure out the register class to create for the destreg.
 | 
						|
    unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
 | 
						|
    const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
 | 
						|
    const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx);
 | 
						|
 | 
						|
    if (VRBase) {
 | 
						|
      // Grab the destination register
 | 
						|
#ifndef NDEBUG
 | 
						|
      const TargetRegisterClass *DRC = MRI.getRegClass(VRBase);
 | 
						|
      assert(SRC && DRC && SRC == DRC && 
 | 
						|
             "Source subregister and destination must have the same class");
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
      // Create the reg
 | 
						|
      assert(SRC && "Couldn't find source register class");
 | 
						|
      VRBase = MRI.createVirtualRegister(SRC);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add def, source, and subreg index
 | 
						|
    MI->addOperand(MachineOperand::CreateReg(VRBase, true));
 | 
						|
    AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
 | 
						|
    MI->addOperand(MachineOperand::CreateImm(SubIdx));
 | 
						|
    BB->push_back(MI);    
 | 
						|
  } else if (Opc == TargetInstrInfo::INSERT_SUBREG ||
 | 
						|
             Opc == TargetInstrInfo::SUBREG_TO_REG) {
 | 
						|
    SDOperand N0 = Node->getOperand(0);
 | 
						|
    SDOperand N1 = Node->getOperand(1);
 | 
						|
    SDOperand N2 = Node->getOperand(2);
 | 
						|
    unsigned SubReg = getVR(N1, VRBaseMap);
 | 
						|
    unsigned SubIdx = cast<ConstantSDNode>(N2)->getValue();
 | 
						|
    
 | 
						|
      
 | 
						|
    // Figure out the register class to create for the destreg.
 | 
						|
    const TargetRegisterClass *TRC = 0;
 | 
						|
    if (VRBase) {
 | 
						|
      TRC = MRI.getRegClass(VRBase);
 | 
						|
    } else {
 | 
						|
      TRC = getSuperregRegisterClass(MRI.getRegClass(SubReg), SubIdx, 
 | 
						|
                                     Node->getValueType(0));
 | 
						|
      assert(TRC && "Couldn't determine register class for insert_subreg");
 | 
						|
      VRBase = MRI.createVirtualRegister(TRC); // Create the reg
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Create the insert_subreg or subreg_to_reg machine instruction.
 | 
						|
    MachineInstr *MI = BuildMI(TII->get(Opc));
 | 
						|
    MI->addOperand(MachineOperand::CreateReg(VRBase, true));
 | 
						|
    
 | 
						|
    // If creating a subreg_to_reg, then the first input operand
 | 
						|
    // is an implicit value immediate, otherwise it's a register
 | 
						|
    if (Opc == TargetInstrInfo::SUBREG_TO_REG) {
 | 
						|
      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
 | 
						|
      MI->addOperand(MachineOperand::CreateImm(SD->getValue()));
 | 
						|
    } else
 | 
						|
      AddOperand(MI, N0, 0, 0, VRBaseMap);
 | 
						|
    // Add the subregster being inserted
 | 
						|
    AddOperand(MI, N1, 0, 0, VRBaseMap);
 | 
						|
    MI->addOperand(MachineOperand::CreateImm(SubIdx));
 | 
						|
    BB->push_back(MI);
 | 
						|
  } else
 | 
						|
    assert(0 && "Node is not insert_subreg, extract_subreg, or subreg_to_reg");
 | 
						|
     
 | 
						|
  bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase));
 | 
						|
  isNew = isNew; // Silence compiler warning.
 | 
						|
  assert(isNew && "Node emitted out of order - early");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitNode - Generate machine code for an node and needed dependencies.
 | 
						|
///
 | 
						|
void ScheduleDAG::EmitNode(SDNode *Node, unsigned InstanceNo,
 | 
						|
                           DenseMap<SDOperand, unsigned> &VRBaseMap) {
 | 
						|
  // If machine instruction
 | 
						|
  if (Node->isTargetOpcode()) {
 | 
						|
    unsigned Opc = Node->getTargetOpcode();
 | 
						|
    
 | 
						|
    // Handle subreg insert/extract specially
 | 
						|
    if (Opc == TargetInstrInfo::EXTRACT_SUBREG || 
 | 
						|
        Opc == TargetInstrInfo::INSERT_SUBREG ||
 | 
						|
        Opc == TargetInstrInfo::SUBREG_TO_REG) {
 | 
						|
      EmitSubregNode(Node, VRBaseMap);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opc == TargetInstrInfo::IMPLICIT_DEF)
 | 
						|
      // We want a unique VR for each IMPLICIT_DEF use.
 | 
						|
      return;
 | 
						|
    
 | 
						|
    const TargetInstrDesc &II = TII->get(Opc);
 | 
						|
    unsigned NumResults = CountResults(Node);
 | 
						|
    unsigned NodeOperands = CountOperands(Node);
 | 
						|
    unsigned MemOperandsEnd = ComputeMemOperandsEnd(Node);
 | 
						|
    bool HasPhysRegOuts = (NumResults > II.getNumDefs()) &&
 | 
						|
                          II.getImplicitDefs() != 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
    unsigned NumMIOperands = NodeOperands + NumResults;
 | 
						|
    assert((II.getNumOperands() == NumMIOperands ||
 | 
						|
            HasPhysRegOuts || II.isVariadic()) &&
 | 
						|
           "#operands for dag node doesn't match .td file!"); 
 | 
						|
#endif
 | 
						|
 | 
						|
    // Create the new machine instruction.
 | 
						|
    MachineInstr *MI = BuildMI(II);
 | 
						|
    
 | 
						|
    // Add result register values for things that are defined by this
 | 
						|
    // instruction.
 | 
						|
    if (NumResults)
 | 
						|
      CreateVirtualRegisters(Node, MI, II, VRBaseMap);
 | 
						|
    
 | 
						|
    // Emit all of the actual operands of this instruction, adding them to the
 | 
						|
    // instruction as appropriate.
 | 
						|
    for (unsigned i = 0; i != NodeOperands; ++i)
 | 
						|
      AddOperand(MI, Node->getOperand(i), i+II.getNumDefs(), &II, VRBaseMap);
 | 
						|
 | 
						|
    // Emit all of the memory operands of this instruction
 | 
						|
    for (unsigned i = NodeOperands; i != MemOperandsEnd; ++i)
 | 
						|
      AddMemOperand(MI, cast<MemOperandSDNode>(Node->getOperand(i))->MO);
 | 
						|
 | 
						|
    // Commute node if it has been determined to be profitable.
 | 
						|
    if (CommuteSet.count(Node)) {
 | 
						|
      MachineInstr *NewMI = TII->commuteInstruction(MI);
 | 
						|
      if (NewMI == 0)
 | 
						|
        DOUT << "Sched: COMMUTING FAILED!\n";
 | 
						|
      else {
 | 
						|
        DOUT << "Sched: COMMUTED TO: " << *NewMI;
 | 
						|
        if (MI != NewMI) {
 | 
						|
          delete MI;
 | 
						|
          MI = NewMI;
 | 
						|
        }
 | 
						|
        ++NumCommutes;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (II.usesCustomDAGSchedInsertionHook())
 | 
						|
      // Insert this instruction into the basic block using a target
 | 
						|
      // specific inserter which may returns a new basic block.
 | 
						|
      BB = TLI->EmitInstrWithCustomInserter(MI, BB);
 | 
						|
    else
 | 
						|
      BB->push_back(MI);
 | 
						|
 | 
						|
    // Additional results must be an physical register def.
 | 
						|
    if (HasPhysRegOuts) {
 | 
						|
      for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
 | 
						|
        unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
 | 
						|
        if (Node->hasAnyUseOfValue(i))
 | 
						|
          EmitCopyFromReg(Node, i, InstanceNo, Reg, VRBaseMap);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (Node->getOpcode()) {
 | 
						|
    default:
 | 
						|
#ifndef NDEBUG
 | 
						|
      Node->dump(&DAG);
 | 
						|
#endif
 | 
						|
      assert(0 && "This target-independent node should have been selected!");
 | 
						|
      break;
 | 
						|
    case ISD::EntryToken:
 | 
						|
      assert(0 && "EntryToken should have been excluded from the schedule!");
 | 
						|
      break;
 | 
						|
    case ISD::TokenFactor: // fall thru
 | 
						|
    case ISD::LABEL:
 | 
						|
    case ISD::DECLARE:
 | 
						|
    case ISD::SRCVALUE:
 | 
						|
      break;
 | 
						|
    case ISD::CopyToReg: {
 | 
						|
      unsigned SrcReg;
 | 
						|
      SDOperand SrcVal = Node->getOperand(2);
 | 
						|
      if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
 | 
						|
        SrcReg = R->getReg();
 | 
						|
      else
 | 
						|
        SrcReg = getVR(SrcVal, VRBaseMap);
 | 
						|
      
 | 
						|
      unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | 
						|
      if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
 | 
						|
        break;
 | 
						|
      
 | 
						|
      const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0;
 | 
						|
      // Get the register classes of the src/dst.
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(SrcReg))
 | 
						|
        SrcTRC = MRI.getRegClass(SrcReg);
 | 
						|
      else
 | 
						|
        SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType());
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(DestReg))
 | 
						|
        DstTRC = MRI.getRegClass(DestReg);
 | 
						|
      else
 | 
						|
        DstTRC = TRI->getPhysicalRegisterRegClass(DestReg,
 | 
						|
                                            Node->getOperand(1).getValueType());
 | 
						|
      TII->copyRegToReg(*BB, BB->end(), DestReg, SrcReg, DstTRC, SrcTRC);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::CopyFromReg: {
 | 
						|
      unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | 
						|
      EmitCopyFromReg(Node, 0, InstanceNo, SrcReg, VRBaseMap);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::INLINEASM: {
 | 
						|
      unsigned NumOps = Node->getNumOperands();
 | 
						|
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
 | 
						|
        --NumOps;  // Ignore the flag operand.
 | 
						|
      
 | 
						|
      // Create the inline asm machine instruction.
 | 
						|
      MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::INLINEASM));
 | 
						|
 | 
						|
      // Add the asm string as an external symbol operand.
 | 
						|
      const char *AsmStr =
 | 
						|
        cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
 | 
						|
      MI->addOperand(MachineOperand::CreateES(AsmStr));
 | 
						|
      
 | 
						|
      // Add all of the operand registers to the instruction.
 | 
						|
      for (unsigned i = 2; i != NumOps;) {
 | 
						|
        unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
 | 
						|
        unsigned NumVals = Flags >> 3;
 | 
						|
        
 | 
						|
        MI->addOperand(MachineOperand::CreateImm(Flags));
 | 
						|
        ++i;  // Skip the ID value.
 | 
						|
        
 | 
						|
        switch (Flags & 7) {
 | 
						|
        default: assert(0 && "Bad flags!");
 | 
						|
        case 1:  // Use of register.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
            MI->addOperand(MachineOperand::CreateReg(Reg, false));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case 2:   // Def of register.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
            MI->addOperand(MachineOperand::CreateReg(Reg, true));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case 3: { // Immediate.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            if (ConstantSDNode *CS =
 | 
						|
                   dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
 | 
						|
              MI->addOperand(MachineOperand::CreateImm(CS->getValue()));
 | 
						|
            } else if (GlobalAddressSDNode *GA = 
 | 
						|
                  dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) {
 | 
						|
              MI->addOperand(MachineOperand::CreateGA(GA->getGlobal(),
 | 
						|
                                                      GA->getOffset()));
 | 
						|
            } else {
 | 
						|
              BasicBlockSDNode *BB =cast<BasicBlockSDNode>(Node->getOperand(i));
 | 
						|
              MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        case 4:  // Addressing mode.
 | 
						|
          // The addressing mode has been selected, just add all of the
 | 
						|
          // operands to the machine instruction.
 | 
						|
          for (; NumVals; --NumVals, ++i)
 | 
						|
            AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      BB->push_back(MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::EmitNoop() {
 | 
						|
  TII->insertNoop(*BB, BB->end());
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::EmitCrossRCCopy(SUnit *SU,
 | 
						|
                                  DenseMap<SUnit*, unsigned> &VRBaseMap) {
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl) continue;  // ignore chain preds
 | 
						|
    if (!I->Dep->Node) {
 | 
						|
      // Copy to physical register.
 | 
						|
      DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->Dep);
 | 
						|
      assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
 | 
						|
      // Find the destination physical register.
 | 
						|
      unsigned Reg = 0;
 | 
						|
      for (SUnit::const_succ_iterator II = SU->Succs.begin(),
 | 
						|
             EE = SU->Succs.end(); II != EE; ++II) {
 | 
						|
        if (I->Reg) {
 | 
						|
          Reg = I->Reg;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert(I->Reg && "Unknown physical register!");
 | 
						|
      TII->copyRegToReg(*BB, BB->end(), Reg, VRI->second,
 | 
						|
                        SU->CopyDstRC, SU->CopySrcRC);
 | 
						|
    } else {
 | 
						|
      // Copy from physical register.
 | 
						|
      assert(I->Reg && "Unknown physical register!");
 | 
						|
      unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
 | 
						|
      bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase));
 | 
						|
      isNew = isNew; // Silence compiler warning.
 | 
						|
      assert(isNew && "Node emitted out of order - early");
 | 
						|
      TII->copyRegToReg(*BB, BB->end(), VRBase, I->Reg,
 | 
						|
                        SU->CopyDstRC, SU->CopySrcRC);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
 | 
						|
/// physical register has only a single copy use, then coalesced the copy
 | 
						|
/// if possible.
 | 
						|
void ScheduleDAG::EmitLiveInCopy(MachineBasicBlock *MBB,
 | 
						|
                                 MachineBasicBlock::iterator &InsertPos,
 | 
						|
                                 unsigned VirtReg, unsigned PhysReg,
 | 
						|
                                 const TargetRegisterClass *RC,
 | 
						|
                                 DenseMap<MachineInstr*, unsigned> &CopyRegMap){
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  MachineInstr *UseMI = NULL;
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
 | 
						|
         UE = MRI.use_end(); UI != UE; ++UI) {
 | 
						|
    UseMI = &*UI;
 | 
						|
    if (++NumUses > 1)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the number of uses is not one, or the use is not a move instruction,
 | 
						|
  // don't coalesce. Also, only coalesce away a virtual register to virtual
 | 
						|
  // register copy.
 | 
						|
  bool Coalesced = false;
 | 
						|
  unsigned SrcReg, DstReg;
 | 
						|
  if (NumUses == 1 &&
 | 
						|
      TII->isMoveInstr(*UseMI, SrcReg, DstReg) &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | 
						|
    VirtReg = DstReg;
 | 
						|
    Coalesced = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now find an ideal location to insert the copy.
 | 
						|
  MachineBasicBlock::iterator Pos = InsertPos;
 | 
						|
  while (Pos != MBB->begin()) {
 | 
						|
    MachineInstr *PrevMI = prior(Pos);
 | 
						|
    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
 | 
						|
    // copyRegToReg might emit multiple instructions to do a copy.
 | 
						|
    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
 | 
						|
    if (CopyDstReg && !TRI->regsOverlap(CopyDstReg, PhysReg))
 | 
						|
      // This is what the BB looks like right now:
 | 
						|
      // r1024 = mov r0
 | 
						|
      // ...
 | 
						|
      // r1    = mov r1024
 | 
						|
      //
 | 
						|
      // We want to insert "r1025 = mov r1". Inserting this copy below the
 | 
						|
      // move to r1024 makes it impossible for that move to be coalesced.
 | 
						|
      //
 | 
						|
      // r1025 = mov r1
 | 
						|
      // r1024 = mov r0
 | 
						|
      // ...
 | 
						|
      // r1    = mov 1024
 | 
						|
      // r2    = mov 1025
 | 
						|
      break; // Woot! Found a good location.
 | 
						|
    --Pos;
 | 
						|
  }
 | 
						|
 | 
						|
  TII->copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
 | 
						|
  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
 | 
						|
  if (Coalesced) {
 | 
						|
    if (&*InsertPos == UseMI) ++InsertPos;
 | 
						|
    MBB->erase(UseMI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLiveInCopies - If this is the first basic block in the function,
 | 
						|
/// and if it has live ins that need to be copied into vregs, emit the
 | 
						|
/// copies into the top of the block.
 | 
						|
void ScheduleDAG::EmitLiveInCopies(MachineBasicBlock *MBB) {
 | 
						|
  DenseMap<MachineInstr*, unsigned> CopyRegMap;
 | 
						|
  MachineBasicBlock::iterator InsertPos = MBB->begin();
 | 
						|
  for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
 | 
						|
         E = MRI.livein_end(); LI != E; ++LI)
 | 
						|
    if (LI->second) {
 | 
						|
      const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
 | 
						|
      EmitLiveInCopy(MBB, InsertPos, LI->second, LI->first, RC, CopyRegMap);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSchedule - Emit the machine code in scheduled order.
 | 
						|
void ScheduleDAG::EmitSchedule() {
 | 
						|
  bool isEntryBB = &MF->front() == BB;
 | 
						|
 | 
						|
  if (isEntryBB && !SchedLiveInCopies) {
 | 
						|
    // If this is the first basic block in the function, and if it has live ins
 | 
						|
    // that need to be copied into vregs, emit the copies into the top of the
 | 
						|
    // block before emitting the code for the block.
 | 
						|
    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
 | 
						|
           E = MRI.livein_end(); LI != E; ++LI)
 | 
						|
      if (LI->second) {
 | 
						|
        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
 | 
						|
        TII->copyRegToReg(*MF->begin(), MF->begin()->end(), LI->second,
 | 
						|
                          LI->first, RC, RC);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, emit the code for all of the scheduled instructions.
 | 
						|
  DenseMap<SDOperand, unsigned> VRBaseMap;
 | 
						|
  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    SUnit *SU = Sequence[i];
 | 
						|
    if (!SU) {
 | 
						|
      // Null SUnit* is a noop.
 | 
						|
      EmitNoop();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; ++j)
 | 
						|
      EmitNode(SU->FlaggedNodes[j], SU->InstanceNo, VRBaseMap);
 | 
						|
    if (!SU->Node)
 | 
						|
      EmitCrossRCCopy(SU, CopyVRBaseMap);
 | 
						|
    else
 | 
						|
      EmitNode(SU->Node, SU->InstanceNo, VRBaseMap);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isEntryBB && SchedLiveInCopies)
 | 
						|
    EmitLiveInCopies(MF->begin());
 | 
						|
}
 | 
						|
 | 
						|
/// dump - dump the schedule.
 | 
						|
void ScheduleDAG::dumpSchedule() const {
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      SU->dump(&DAG);
 | 
						|
    else
 | 
						|
      cerr << "**** NOOP ****\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Run - perform scheduling.
 | 
						|
///
 | 
						|
MachineBasicBlock *ScheduleDAG::Run() {
 | 
						|
  Schedule();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | 
						|
/// a group of nodes flagged together.
 | 
						|
void SUnit::dump(const SelectionDAG *G) const {
 | 
						|
  cerr << "SU(" << NodeNum << "): ";
 | 
						|
  if (Node)
 | 
						|
    Node->dump(G);
 | 
						|
  else
 | 
						|
    cerr << "CROSS RC COPY ";
 | 
						|
  cerr << "\n";
 | 
						|
  if (FlaggedNodes.size() != 0) {
 | 
						|
    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
 | 
						|
      cerr << "    ";
 | 
						|
      FlaggedNodes[i]->dump(G);
 | 
						|
      cerr << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::dumpAll(const SelectionDAG *G) const {
 | 
						|
  dump(G);
 | 
						|
 | 
						|
  cerr << "  # preds left       : " << NumPredsLeft << "\n";
 | 
						|
  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
 | 
						|
  cerr << "  Latency            : " << Latency << "\n";
 | 
						|
  cerr << "  Depth              : " << Depth << "\n";
 | 
						|
  cerr << "  Height             : " << Height << "\n";
 | 
						|
 | 
						|
  if (Preds.size() != 0) {
 | 
						|
    cerr << "  Predecessors:\n";
 | 
						|
    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl)
 | 
						|
        cerr << "   ch  #";
 | 
						|
      else
 | 
						|
        cerr << "   val #";
 | 
						|
      cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
 | 
						|
      if (I->isSpecial)
 | 
						|
        cerr << " *";
 | 
						|
      cerr << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Succs.size() != 0) {
 | 
						|
    cerr << "  Successors:\n";
 | 
						|
    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl)
 | 
						|
        cerr << "   ch  #";
 | 
						|
      else
 | 
						|
        cerr << "   val #";
 | 
						|
      cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
 | 
						|
      if (I->isSpecial)
 | 
						|
        cerr << " *";
 | 
						|
      cerr << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  cerr << "\n";
 | 
						|
}
 |