mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	of value info (sign/zero ext info) from one MBB to another. This doesn't handle much right now because of two limitations: 1) only handles zext/sext, not random bit propagation (no assert exists for this) 2) doesn't handle phis. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52383 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5730 lines
		
	
	
		
			219 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5730 lines
		
	
	
		
			219 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the SelectionDAGISel class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/ParameterAttributes.h"
 | 
						|
#include "llvm/CodeGen/Collector.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableValueProp("enable-value-prop", cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
ViewISelDAGs("view-isel-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show isel dags as they are selected"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show sched dags as they are processed"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
 | 
						|
      cl::desc("Pop up a window to show SUnit dags after they are processed"));
 | 
						|
#else
 | 
						|
static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// RegisterScheduler class - Track the registration of instruction schedulers.
 | 
						|
///
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
MachinePassRegistry RegisterScheduler::Registry;
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// ISHeuristic command line option for instruction schedulers.
 | 
						|
///
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | 
						|
               RegisterPassParser<RegisterScheduler> >
 | 
						|
ISHeuristic("pre-RA-sched",
 | 
						|
            cl::init(&createDefaultScheduler),
 | 
						|
            cl::desc("Instruction schedulers available (before register"
 | 
						|
                     " allocation):"));
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
defaultListDAGScheduler("default", "  Best scheduler for the target",
 | 
						|
                        createDefaultScheduler);
 | 
						|
 | 
						|
namespace { struct SDISelAsmOperandInfo; }
 | 
						|
 | 
						|
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | 
						|
/// insertvalue or extractvalue indices that identify a member, return
 | 
						|
/// the linearized index of the start of the member.
 | 
						|
///
 | 
						|
static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
 | 
						|
                                   const unsigned *Indices,
 | 
						|
                                   const unsigned *IndicesEnd,
 | 
						|
                                   unsigned CurIndex = 0) {
 | 
						|
  // Base case: We're done.
 | 
						|
  if (Indices == IndicesEnd)
 | 
						|
    return CurIndex;
 | 
						|
 | 
						|
  // Otherwise we need to recurse. A non-negative value is used to
 | 
						|
  // indicate the final result value; a negative value carries the
 | 
						|
  // complemented position to continue the search.
 | 
						|
  CurIndex = ~CurIndex;
 | 
						|
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (StructType::element_iterator EI = STy->element_begin(),
 | 
						|
                                      EE = STy->element_end();
 | 
						|
        EI != EE; ++EI) {
 | 
						|
      CurIndex = ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd,
 | 
						|
                                    ~CurIndex);
 | 
						|
      if ((int)CurIndex >= 0)
 | 
						|
        return CurIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    const Type *EltTy = ATy->getElementType();
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | 
						|
      CurIndex = ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd,
 | 
						|
                                    ~CurIndex);
 | 
						|
      if ((int)CurIndex >= 0)
 | 
						|
        return CurIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // We haven't found the type we're looking for, so keep searching.
 | 
						|
  return CurIndex;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | 
						|
/// MVTs that represent all the individual underlying
 | 
						|
/// non-aggregate types that comprise it.
 | 
						|
///
 | 
						|
/// If Offsets is non-null, it points to a vector to be filled in
 | 
						|
/// with the in-memory offsets of each of the individual values.
 | 
						|
///
 | 
						|
static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
 | 
						|
                            SmallVectorImpl<MVT> &ValueVTs,
 | 
						|
                            SmallVectorImpl<uint64_t> *Offsets = 0,
 | 
						|
                            uint64_t StartingOffset = 0) {
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
 | 
						|
    for (StructType::element_iterator EB = STy->element_begin(),
 | 
						|
                                      EI = EB,
 | 
						|
                                      EE = STy->element_end();
 | 
						|
         EI != EE; ++EI)
 | 
						|
      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + SL->getElementOffset(EI - EB));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    const Type *EltTy = ATy->getElementType();
 | 
						|
    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + i * EltSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Base case: we can get an MVT for this LLVM IR type.
 | 
						|
  ValueVTs.push_back(TLI.getValueType(Ty));
 | 
						|
  if (Offsets)
 | 
						|
    Offsets->push_back(StartingOffset);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// RegsForValue - This struct represents the registers (physical or virtual)
 | 
						|
  /// that a particular set of values is assigned, and the type information about
 | 
						|
  /// the value. The most common situation is to represent one value at a time,
 | 
						|
  /// but struct or array values are handled element-wise as multiple values.
 | 
						|
  /// The splitting of aggregates is performed recursively, so that we never
 | 
						|
  /// have aggregate-typed registers. The values at this point do not necessarily
 | 
						|
  /// have legal types, so each value may require one or more registers of some
 | 
						|
  /// legal type.
 | 
						|
  /// 
 | 
						|
  struct VISIBILITY_HIDDEN RegsForValue {
 | 
						|
    /// TLI - The TargetLowering object.
 | 
						|
    ///
 | 
						|
    const TargetLowering *TLI;
 | 
						|
 | 
						|
    /// ValueVTs - The value types of the values, which may not be legal, and
 | 
						|
    /// may need be promoted or synthesized from one or more registers.
 | 
						|
    ///
 | 
						|
    SmallVector<MVT, 4> ValueVTs;
 | 
						|
    
 | 
						|
    /// RegVTs - The value types of the registers. This is the same size as
 | 
						|
    /// ValueVTs and it records, for each value, what the type of the assigned
 | 
						|
    /// register or registers are. (Individual values are never synthesized
 | 
						|
    /// from more than one type of register.)
 | 
						|
    ///
 | 
						|
    /// With virtual registers, the contents of RegVTs is redundant with TLI's
 | 
						|
    /// getRegisterType member function, however when with physical registers
 | 
						|
    /// it is necessary to have a separate record of the types.
 | 
						|
    ///
 | 
						|
    SmallVector<MVT, 4> RegVTs;
 | 
						|
    
 | 
						|
    /// Regs - This list holds the registers assigned to the values.
 | 
						|
    /// Each legal or promoted value requires one register, and each
 | 
						|
    /// expanded value requires multiple registers.
 | 
						|
    ///
 | 
						|
    SmallVector<unsigned, 4> Regs;
 | 
						|
    
 | 
						|
    RegsForValue() : TLI(0) {}
 | 
						|
    
 | 
						|
    RegsForValue(const TargetLowering &tli,
 | 
						|
                 const SmallVector<unsigned, 4> ®s, 
 | 
						|
                 MVT regvt, MVT valuevt)
 | 
						|
      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
 | 
						|
    RegsForValue(const TargetLowering &tli,
 | 
						|
                 const SmallVector<unsigned, 4> ®s, 
 | 
						|
                 const SmallVector<MVT, 4> ®vts,
 | 
						|
                 const SmallVector<MVT, 4> &valuevts)
 | 
						|
      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
 | 
						|
    RegsForValue(const TargetLowering &tli,
 | 
						|
                 unsigned Reg, const Type *Ty) : TLI(&tli) {
 | 
						|
      ComputeValueVTs(tli, Ty, ValueVTs);
 | 
						|
 | 
						|
      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
        MVT ValueVT = ValueVTs[Value];
 | 
						|
        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
 | 
						|
        MVT RegisterVT = TLI->getRegisterType(ValueVT);
 | 
						|
        for (unsigned i = 0; i != NumRegs; ++i)
 | 
						|
          Regs.push_back(Reg + i);
 | 
						|
        RegVTs.push_back(RegisterVT);
 | 
						|
        Reg += NumRegs;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// append - Add the specified values to this one.
 | 
						|
    void append(const RegsForValue &RHS) {
 | 
						|
      TLI = RHS.TLI;
 | 
						|
      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
 | 
						|
      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
 | 
						|
      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | 
						|
    /// this value and returns the result as a ValueVTs value.  This uses 
 | 
						|
    /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
    /// If the Flag pointer is NULL, no flag is used.
 | 
						|
    SDOperand getCopyFromRegs(SelectionDAG &DAG,
 | 
						|
                              SDOperand &Chain, SDOperand *Flag) const;
 | 
						|
 | 
						|
    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | 
						|
    /// specified value into the registers specified by this object.  This uses 
 | 
						|
    /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
    /// If the Flag pointer is NULL, no flag is used.
 | 
						|
    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | 
						|
                       SDOperand &Chain, SDOperand *Flag) const;
 | 
						|
    
 | 
						|
    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | 
						|
    /// operand list.  This adds the code marker and includes the number of 
 | 
						|
    /// values added into it.
 | 
						|
    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | 
						|
                              std::vector<SDOperand> &Ops) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | 
						|
  /// for the target.
 | 
						|
  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
 | 
						|
                                      SelectionDAG *DAG,
 | 
						|
                                      MachineBasicBlock *BB) {
 | 
						|
    TargetLowering &TLI = IS->getTargetLowering();
 | 
						|
    
 | 
						|
    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
 | 
						|
      return createTDListDAGScheduler(IS, DAG, BB);
 | 
						|
    } else {
 | 
						|
      assert(TLI.getSchedulingPreference() ==
 | 
						|
           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
 | 
						|
      return createBURRListDAGScheduler(IS, DAG, BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// FunctionLoweringInfo - This contains information that is global to a
 | 
						|
  /// function that is used when lowering a region of the function.
 | 
						|
  class FunctionLoweringInfo {
 | 
						|
  public:
 | 
						|
    TargetLowering &TLI;
 | 
						|
    Function &Fn;
 | 
						|
    MachineFunction &MF;
 | 
						|
    MachineRegisterInfo &RegInfo;
 | 
						|
 | 
						|
    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | 
						|
 | 
						|
    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | 
						|
 | 
						|
    /// ValueMap - Since we emit code for the function a basic block at a time,
 | 
						|
    /// we must remember which virtual registers hold the values for
 | 
						|
    /// cross-basic-block values.
 | 
						|
    DenseMap<const Value*, unsigned> ValueMap;
 | 
						|
 | 
						|
    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | 
						|
    /// the entry block.  This allows the allocas to be efficiently referenced
 | 
						|
    /// anywhere in the function.
 | 
						|
    std::map<const AllocaInst*, int> StaticAllocaMap;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    SmallSet<Instruction*, 8> CatchInfoLost;
 | 
						|
    SmallSet<Instruction*, 8> CatchInfoFound;
 | 
						|
#endif
 | 
						|
 | 
						|
    unsigned MakeReg(MVT VT) {
 | 
						|
      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// isExportedInst - Return true if the specified value is an instruction
 | 
						|
    /// exported from its block.
 | 
						|
    bool isExportedInst(const Value *V) {
 | 
						|
      return ValueMap.count(V);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned CreateRegForValue(const Value *V);
 | 
						|
    
 | 
						|
    unsigned InitializeRegForValue(const Value *V) {
 | 
						|
      unsigned &R = ValueMap[V];
 | 
						|
      assert(R == 0 && "Already initialized this value register!");
 | 
						|
      return R = CreateRegForValue(V);
 | 
						|
    }
 | 
						|
    
 | 
						|
    struct LiveOutInfo {
 | 
						|
      unsigned NumSignBits;
 | 
						|
      APInt KnownOne, KnownZero;
 | 
						|
      LiveOutInfo() : NumSignBits(0) {}
 | 
						|
    };
 | 
						|
    
 | 
						|
    /// LiveOutRegInfo - Information about live out vregs, indexed by their
 | 
						|
    /// register number offset by 'FirstVirtualRegister'.
 | 
						|
    std::vector<LiveOutInfo> LiveOutRegInfo;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// isSelector - Return true if this instruction is a call to the
 | 
						|
/// eh.selector intrinsic.
 | 
						|
static bool isSelector(Instruction *I) {
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | 
						|
    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
 | 
						|
            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it, or used by a 
 | 
						|
/// switch or atomic instruction, which may expand to multiple basic blocks.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
 | 
						|
        // FIXME: Remove switchinst special case.
 | 
						|
        isa<SwitchInst>(*UI))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | 
						|
/// entry block, return true.  This includes arguments used by switches, since
 | 
						|
/// the switch may expand into multiple basic blocks.
 | 
						|
static bool isOnlyUsedInEntryBlock(Argument *A) {
 | 
						|
  BasicBlock *Entry = A->getParent()->begin();
 | 
						|
  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | 
						|
      return false;  // Use not in entry block.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | 
						|
                                           Function &fn, MachineFunction &mf)
 | 
						|
    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
 | 
						|
 | 
						|
  // Create a vreg for each argument register that is not dead and is used
 | 
						|
  // outside of the entry block for the function.
 | 
						|
  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
 | 
						|
       AI != E; ++AI)
 | 
						|
    if (!isOnlyUsedInEntryBlock(AI))
 | 
						|
      InitializeRegForValue(AI);
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  Function::iterator BB = Fn.begin(), EB = Fn.end();
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | 
						|
      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | 
						|
        const Type *Ty = AI->getAllocatedType();
 | 
						|
        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
 | 
						|
        unsigned Align = 
 | 
						|
          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | 
						|
                   AI->getAlignment());
 | 
						|
 | 
						|
        TySize *= CUI->getZExtValue();   // Get total allocated size.
 | 
						|
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | 
						|
        StaticAllocaMap[AI] =
 | 
						|
          MF.getFrameInfo()->CreateStackObject(TySize, Align);
 | 
						|
      }
 | 
						|
 | 
						|
  for (; BB != EB; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | 
						|
        if (!isa<AllocaInst>(I) ||
 | 
						|
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
          InitializeRegForValue(I);
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
 | 
						|
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | 
						|
    MBBMap[BB] = MBB;
 | 
						|
    MF.getBasicBlockList().push_back(MBB);
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    PHINode *PN;
 | 
						|
    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
 | 
						|
      if (PN->use_empty()) continue;
 | 
						|
      
 | 
						|
      MVT VT = TLI.getValueType(PN->getType());
 | 
						|
      unsigned NumRegisters = TLI.getNumRegisters(VT);
 | 
						|
      unsigned PHIReg = ValueMap[PN];
 | 
						|
      assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | 
						|
      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
 | 
						|
      for (unsigned i = 0; i != NumRegisters; ++i)
 | 
						|
        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | 
						|
/// the correctly promoted or expanded types.  Assign these registers
 | 
						|
/// consecutive vreg numbers and return the first assigned number.
 | 
						|
///
 | 
						|
/// In the case that the given value has struct or array type, this function
 | 
						|
/// will assign registers for each member or element.
 | 
						|
///
 | 
						|
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | 
						|
  SmallVector<MVT, 4> ValueVTs;
 | 
						|
  ComputeValueVTs(TLI, V->getType(), ValueVTs);
 | 
						|
 | 
						|
  unsigned FirstReg = 0;
 | 
						|
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    MVT ValueVT = ValueVTs[Value];
 | 
						|
    MVT RegisterVT = TLI.getRegisterType(ValueVT);
 | 
						|
 | 
						|
    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      unsigned R = MakeReg(RegisterVT);
 | 
						|
      if (!FirstReg) FirstReg = R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FirstReg;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SelectionDAGLowering - This is the common target-independent lowering
 | 
						|
/// implementation that is parameterized by a TargetLowering object.
 | 
						|
/// Also, targets can overload any lowering method.
 | 
						|
///
 | 
						|
namespace llvm {
 | 
						|
class SelectionDAGLowering {
 | 
						|
  MachineBasicBlock *CurMBB;
 | 
						|
 | 
						|
  DenseMap<const Value*, SDOperand> NodeMap;
 | 
						|
 | 
						|
  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | 
						|
  /// them up and then emit token factor nodes when possible.  This allows us to
 | 
						|
  /// get simple disambiguation between loads without worrying about alias
 | 
						|
  /// analysis.
 | 
						|
  std::vector<SDOperand> PendingLoads;
 | 
						|
 | 
						|
  /// PendingExports - CopyToReg nodes that copy values to virtual registers
 | 
						|
  /// for export to other blocks need to be emitted before any terminator
 | 
						|
  /// instruction, but they have no other ordering requirements. We bunch them
 | 
						|
  /// up and the emit a single tokenfactor for them just before terminator
 | 
						|
  /// instructions.
 | 
						|
  std::vector<SDOperand> PendingExports;
 | 
						|
 | 
						|
  /// Case - A struct to record the Value for a switch case, and the
 | 
						|
  /// case's target basic block.
 | 
						|
  struct Case {
 | 
						|
    Constant* Low;
 | 
						|
    Constant* High;
 | 
						|
    MachineBasicBlock* BB;
 | 
						|
 | 
						|
    Case() : Low(0), High(0), BB(0) { }
 | 
						|
    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
 | 
						|
      Low(low), High(high), BB(bb) { }
 | 
						|
    uint64_t size() const {
 | 
						|
      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
 | 
						|
      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
 | 
						|
      return (rHigh - rLow + 1ULL);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct CaseBits {
 | 
						|
    uint64_t Mask;
 | 
						|
    MachineBasicBlock* BB;
 | 
						|
    unsigned Bits;
 | 
						|
 | 
						|
    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
 | 
						|
      Mask(mask), BB(bb), Bits(bits) { }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef std::vector<Case>           CaseVector;
 | 
						|
  typedef std::vector<CaseBits>       CaseBitsVector;
 | 
						|
  typedef CaseVector::iterator        CaseItr;
 | 
						|
  typedef std::pair<CaseItr, CaseItr> CaseRange;
 | 
						|
 | 
						|
  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
 | 
						|
  /// of conditional branches.
 | 
						|
  struct CaseRec {
 | 
						|
    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
 | 
						|
    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
 | 
						|
 | 
						|
    /// CaseBB - The MBB in which to emit the compare and branch
 | 
						|
    MachineBasicBlock *CaseBB;
 | 
						|
    /// LT, GE - If nonzero, we know the current case value must be less-than or
 | 
						|
    /// greater-than-or-equal-to these Constants.
 | 
						|
    Constant *LT;
 | 
						|
    Constant *GE;
 | 
						|
    /// Range - A pair of iterators representing the range of case values to be
 | 
						|
    /// processed at this point in the binary search tree.
 | 
						|
    CaseRange Range;
 | 
						|
  };
 | 
						|
 | 
						|
  typedef std::vector<CaseRec> CaseRecVector;
 | 
						|
 | 
						|
  /// The comparison function for sorting the switch case values in the vector.
 | 
						|
  /// WARNING: Case ranges should be disjoint!
 | 
						|
  struct CaseCmp {
 | 
						|
    bool operator () (const Case& C1, const Case& C2) {
 | 
						|
      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
 | 
						|
      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
 | 
						|
      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
 | 
						|
      return CI1->getValue().slt(CI2->getValue());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct CaseBitsCmp {
 | 
						|
    bool operator () (const CaseBits& C1, const CaseBits& C2) {
 | 
						|
      return C1.Bits > C2.Bits;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
 | 
						|
  
 | 
						|
public:
 | 
						|
  // TLI - This is information that describes the available target features we
 | 
						|
  // need for lowering.  This indicates when operations are unavailable,
 | 
						|
  // implemented with a libcall, etc.
 | 
						|
  TargetLowering &TLI;
 | 
						|
  SelectionDAG &DAG;
 | 
						|
  const TargetData *TD;
 | 
						|
  AliasAnalysis &AA;
 | 
						|
 | 
						|
  /// SwitchCases - Vector of CaseBlock structures used to communicate
 | 
						|
  /// SwitchInst code generation information.
 | 
						|
  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
 | 
						|
  /// JTCases - Vector of JumpTable structures used to communicate
 | 
						|
  /// SwitchInst code generation information.
 | 
						|
  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
 | 
						|
  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
 | 
						|
  
 | 
						|
  /// FuncInfo - Information about the function as a whole.
 | 
						|
  ///
 | 
						|
  FunctionLoweringInfo &FuncInfo;
 | 
						|
  
 | 
						|
  /// GCI - Garbage collection metadata for the function.
 | 
						|
  CollectorMetadata *GCI;
 | 
						|
 | 
						|
  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | 
						|
                       AliasAnalysis &aa,
 | 
						|
                       FunctionLoweringInfo &funcinfo,
 | 
						|
                       CollectorMetadata *gci)
 | 
						|
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
 | 
						|
      FuncInfo(funcinfo), GCI(gci) {
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRoot - Return the current virtual root of the Selection DAG,
 | 
						|
  /// flushing any PendingLoad items. This must be done before emitting
 | 
						|
  /// a store or any other node that may need to be ordered after any
 | 
						|
  /// prior load instructions.
 | 
						|
  ///
 | 
						|
  SDOperand getRoot() {
 | 
						|
    if (PendingLoads.empty())
 | 
						|
      return DAG.getRoot();
 | 
						|
 | 
						|
    if (PendingLoads.size() == 1) {
 | 
						|
      SDOperand Root = PendingLoads[0];
 | 
						|
      DAG.setRoot(Root);
 | 
						|
      PendingLoads.clear();
 | 
						|
      return Root;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have to make a token factor node.
 | 
						|
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                                 &PendingLoads[0], PendingLoads.size());
 | 
						|
    PendingLoads.clear();
 | 
						|
    DAG.setRoot(Root);
 | 
						|
    return Root;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getControlRoot - Similar to getRoot, but instead of flushing all the
 | 
						|
  /// PendingLoad items, flush all the PendingExports items. It is necessary
 | 
						|
  /// to do this before emitting a terminator instruction.
 | 
						|
  ///
 | 
						|
  SDOperand getControlRoot() {
 | 
						|
    SDOperand Root = DAG.getRoot();
 | 
						|
 | 
						|
    if (PendingExports.empty())
 | 
						|
      return Root;
 | 
						|
 | 
						|
    // Turn all of the CopyToReg chains into one factored node.
 | 
						|
    if (Root.getOpcode() != ISD::EntryToken) {
 | 
						|
      unsigned i = 0, e = PendingExports.size();
 | 
						|
      for (; i != e; ++i) {
 | 
						|
        assert(PendingExports[i].Val->getNumOperands() > 1);
 | 
						|
        if (PendingExports[i].Val->getOperand(0) == Root)
 | 
						|
          break;  // Don't add the root if we already indirectly depend on it.
 | 
						|
      }
 | 
						|
        
 | 
						|
      if (i == e)
 | 
						|
        PendingExports.push_back(Root);
 | 
						|
    }
 | 
						|
 | 
						|
    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                       &PendingExports[0],
 | 
						|
                       PendingExports.size());
 | 
						|
    PendingExports.clear();
 | 
						|
    DAG.setRoot(Root);
 | 
						|
    return Root;
 | 
						|
  }
 | 
						|
 | 
						|
  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
 | 
						|
 | 
						|
  void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | 
						|
 | 
						|
  void visit(unsigned Opcode, User &I) {
 | 
						|
    // Note: this doesn't use InstVisitor, because it has to work with
 | 
						|
    // ConstantExpr's in addition to instructions.
 | 
						|
    switch (Opcode) {
 | 
						|
    default: assert(0 && "Unknown instruction type encountered!");
 | 
						|
             abort();
 | 
						|
      // Build the switch statement using the Instruction.def file.
 | 
						|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
 | 
						|
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | 
						|
#include "llvm/Instruction.def"
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | 
						|
 | 
						|
  SDOperand getValue(const Value *V);
 | 
						|
 | 
						|
  void setValue(const Value *V, SDOperand NewN) {
 | 
						|
    SDOperand &N = NodeMap[V];
 | 
						|
    assert(N.Val == 0 && "Already set a value for this node!");
 | 
						|
    N = NewN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
 | 
						|
                            std::set<unsigned> &OutputRegs, 
 | 
						|
                            std::set<unsigned> &InputRegs);
 | 
						|
 | 
						|
  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
 | 
						|
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
 | 
						|
                            unsigned Opc);
 | 
						|
  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
 | 
						|
  void ExportFromCurrentBlock(Value *V);
 | 
						|
  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
 | 
						|
                   MachineBasicBlock *LandingPad = NULL);
 | 
						|
 | 
						|
  // Terminator instructions.
 | 
						|
  void visitRet(ReturnInst &I);
 | 
						|
  void visitBr(BranchInst &I);
 | 
						|
  void visitSwitch(SwitchInst &I);
 | 
						|
  void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | 
						|
 | 
						|
  // Helpers for visitSwitch
 | 
						|
  bool handleSmallSwitchRange(CaseRec& CR,
 | 
						|
                              CaseRecVector& WorkList,
 | 
						|
                              Value* SV,
 | 
						|
                              MachineBasicBlock* Default);
 | 
						|
  bool handleJTSwitchCase(CaseRec& CR,
 | 
						|
                          CaseRecVector& WorkList,
 | 
						|
                          Value* SV,
 | 
						|
                          MachineBasicBlock* Default);
 | 
						|
  bool handleBTSplitSwitchCase(CaseRec& CR,
 | 
						|
                               CaseRecVector& WorkList,
 | 
						|
                               Value* SV,
 | 
						|
                               MachineBasicBlock* Default);
 | 
						|
  bool handleBitTestsSwitchCase(CaseRec& CR,
 | 
						|
                                CaseRecVector& WorkList,
 | 
						|
                                Value* SV,
 | 
						|
                                MachineBasicBlock* Default);  
 | 
						|
  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
 | 
						|
  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
 | 
						|
  void visitBitTestCase(MachineBasicBlock* NextMBB,
 | 
						|
                        unsigned Reg,
 | 
						|
                        SelectionDAGISel::BitTestCase &B);
 | 
						|
  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
 | 
						|
  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
 | 
						|
                            SelectionDAGISel::JumpTableHeader &JTH);
 | 
						|
  
 | 
						|
  // These all get lowered before this pass.
 | 
						|
  void visitInvoke(InvokeInst &I);
 | 
						|
  void visitUnwind(UnwindInst &I);
 | 
						|
 | 
						|
  void visitBinary(User &I, unsigned OpCode);
 | 
						|
  void visitShift(User &I, unsigned Opcode);
 | 
						|
  void visitAdd(User &I) { 
 | 
						|
    if (I.getType()->isFPOrFPVector())
 | 
						|
      visitBinary(I, ISD::FADD);
 | 
						|
    else
 | 
						|
      visitBinary(I, ISD::ADD);
 | 
						|
  }
 | 
						|
  void visitSub(User &I);
 | 
						|
  void visitMul(User &I) {
 | 
						|
    if (I.getType()->isFPOrFPVector())
 | 
						|
      visitBinary(I, ISD::FMUL);
 | 
						|
    else
 | 
						|
      visitBinary(I, ISD::MUL);
 | 
						|
  }
 | 
						|
  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
 | 
						|
  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
 | 
						|
  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
 | 
						|
  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
 | 
						|
  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
 | 
						|
  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
 | 
						|
  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
 | 
						|
  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
 | 
						|
  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
 | 
						|
  void visitShl (User &I) { visitShift(I, ISD::SHL); }
 | 
						|
  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
 | 
						|
  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
 | 
						|
  void visitICmp(User &I);
 | 
						|
  void visitFCmp(User &I);
 | 
						|
  void visitVICmp(User &I);
 | 
						|
  void visitVFCmp(User &I);
 | 
						|
  // Visit the conversion instructions
 | 
						|
  void visitTrunc(User &I);
 | 
						|
  void visitZExt(User &I);
 | 
						|
  void visitSExt(User &I);
 | 
						|
  void visitFPTrunc(User &I);
 | 
						|
  void visitFPExt(User &I);
 | 
						|
  void visitFPToUI(User &I);
 | 
						|
  void visitFPToSI(User &I);
 | 
						|
  void visitUIToFP(User &I);
 | 
						|
  void visitSIToFP(User &I);
 | 
						|
  void visitPtrToInt(User &I);
 | 
						|
  void visitIntToPtr(User &I);
 | 
						|
  void visitBitCast(User &I);
 | 
						|
 | 
						|
  void visitExtractElement(User &I);
 | 
						|
  void visitInsertElement(User &I);
 | 
						|
  void visitShuffleVector(User &I);
 | 
						|
 | 
						|
  void visitExtractValue(ExtractValueInst &I);
 | 
						|
  void visitInsertValue(InsertValueInst &I);
 | 
						|
 | 
						|
  void visitGetElementPtr(User &I);
 | 
						|
  void visitSelect(User &I);
 | 
						|
 | 
						|
  void visitMalloc(MallocInst &I);
 | 
						|
  void visitFree(FreeInst &I);
 | 
						|
  void visitAlloca(AllocaInst &I);
 | 
						|
  void visitLoad(LoadInst &I);
 | 
						|
  void visitStore(StoreInst &I);
 | 
						|
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | 
						|
  void visitCall(CallInst &I);
 | 
						|
  void visitInlineAsm(CallSite CS);
 | 
						|
  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
 | 
						|
  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
 | 
						|
 | 
						|
  void visitVAStart(CallInst &I);
 | 
						|
  void visitVAArg(VAArgInst &I);
 | 
						|
  void visitVAEnd(CallInst &I);
 | 
						|
  void visitVACopy(CallInst &I);
 | 
						|
 | 
						|
  void visitGetResult(GetResultInst &I);
 | 
						|
 | 
						|
  void visitUserOp1(Instruction &I) {
 | 
						|
    assert(0 && "UserOp1 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  void visitUserOp2(Instruction &I) {
 | 
						|
    assert(0 && "UserOp2 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
 | 
						|
 | 
						|
};
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
 | 
						|
/// getCopyFromParts - Create a value that contains the specified legal parts
 | 
						|
/// combined into the value they represent.  If the parts combine to a type
 | 
						|
/// larger then ValueVT then AssertOp can be used to specify whether the extra
 | 
						|
/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
 | 
						|
/// (ISD::AssertSext).
 | 
						|
static SDOperand getCopyFromParts(SelectionDAG &DAG,
 | 
						|
                                  const SDOperand *Parts,
 | 
						|
                                  unsigned NumParts,
 | 
						|
                                  MVT PartVT,
 | 
						|
                                  MVT ValueVT,
 | 
						|
                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
 | 
						|
  assert(NumParts > 0 && "No parts to assemble!");
 | 
						|
  TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  SDOperand Val = Parts[0];
 | 
						|
 | 
						|
  if (NumParts > 1) {
 | 
						|
    // Assemble the value from multiple parts.
 | 
						|
    if (!ValueVT.isVector()) {
 | 
						|
      unsigned PartBits = PartVT.getSizeInBits();
 | 
						|
      unsigned ValueBits = ValueVT.getSizeInBits();
 | 
						|
 | 
						|
      // Assemble the power of 2 part.
 | 
						|
      unsigned RoundParts = NumParts & (NumParts - 1) ?
 | 
						|
        1 << Log2_32(NumParts) : NumParts;
 | 
						|
      unsigned RoundBits = PartBits * RoundParts;
 | 
						|
      MVT RoundVT = RoundBits == ValueBits ?
 | 
						|
        ValueVT : MVT::getIntegerVT(RoundBits);
 | 
						|
      SDOperand Lo, Hi;
 | 
						|
 | 
						|
      if (RoundParts > 2) {
 | 
						|
        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
 | 
						|
        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
 | 
						|
        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
 | 
						|
                              PartVT, HalfVT);
 | 
						|
      } else {
 | 
						|
        Lo = Parts[0];
 | 
						|
        Hi = Parts[1];
 | 
						|
      }
 | 
						|
      if (TLI.isBigEndian())
 | 
						|
        std::swap(Lo, Hi);
 | 
						|
      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
 | 
						|
 | 
						|
      if (RoundParts < NumParts) {
 | 
						|
        // Assemble the trailing non-power-of-2 part.
 | 
						|
        unsigned OddParts = NumParts - RoundParts;
 | 
						|
        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
 | 
						|
        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
 | 
						|
 | 
						|
        // Combine the round and odd parts.
 | 
						|
        Lo = Val;
 | 
						|
        if (TLI.isBigEndian())
 | 
						|
          std::swap(Lo, Hi);
 | 
						|
        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
 | 
						|
        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
 | 
						|
        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
 | 
						|
                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
 | 
						|
                                         TLI.getShiftAmountTy()));
 | 
						|
        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
 | 
						|
        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Handle a multi-element vector.
 | 
						|
      MVT IntermediateVT, RegisterVT;
 | 
						|
      unsigned NumIntermediates;
 | 
						|
      unsigned NumRegs =
 | 
						|
        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
 | 
						|
                                   RegisterVT);
 | 
						|
      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | 
						|
      NumParts = NumRegs; // Silence a compiler warning.
 | 
						|
      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | 
						|
      assert(RegisterVT == Parts[0].getValueType() &&
 | 
						|
             "Part type doesn't match part!");
 | 
						|
 | 
						|
      // Assemble the parts into intermediate operands.
 | 
						|
      SmallVector<SDOperand, 8> Ops(NumIntermediates);
 | 
						|
      if (NumIntermediates == NumParts) {
 | 
						|
        // If the register was not expanded, truncate or copy the value,
 | 
						|
        // as appropriate.
 | 
						|
        for (unsigned i = 0; i != NumParts; ++i)
 | 
						|
          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
 | 
						|
                                    PartVT, IntermediateVT);
 | 
						|
      } else if (NumParts > 0) {
 | 
						|
        // If the intermediate type was expanded, build the intermediate operands
 | 
						|
        // from the parts.
 | 
						|
        assert(NumParts % NumIntermediates == 0 &&
 | 
						|
               "Must expand into a divisible number of parts!");
 | 
						|
        unsigned Factor = NumParts / NumIntermediates;
 | 
						|
        for (unsigned i = 0; i != NumIntermediates; ++i)
 | 
						|
          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
 | 
						|
                                    PartVT, IntermediateVT);
 | 
						|
      }
 | 
						|
 | 
						|
      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
 | 
						|
      // operands.
 | 
						|
      Val = DAG.getNode(IntermediateVT.isVector() ?
 | 
						|
                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
 | 
						|
                        ValueVT, &Ops[0], NumIntermediates);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // There is now one part, held in Val.  Correct it to match ValueVT.
 | 
						|
  PartVT = Val.getValueType();
 | 
						|
 | 
						|
  if (PartVT == ValueVT)
 | 
						|
    return Val;
 | 
						|
 | 
						|
  if (PartVT.isVector()) {
 | 
						|
    assert(ValueVT.isVector() && "Unknown vector conversion!");
 | 
						|
    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ValueVT.isVector()) {
 | 
						|
    assert(ValueVT.getVectorElementType() == PartVT &&
 | 
						|
           ValueVT.getVectorNumElements() == 1 &&
 | 
						|
           "Only trivial scalar-to-vector conversions should get here!");
 | 
						|
    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PartVT.isInteger() &&
 | 
						|
      ValueVT.isInteger()) {
 | 
						|
    if (ValueVT.bitsLT(PartVT)) {
 | 
						|
      // For a truncate, see if we have any information to
 | 
						|
      // indicate whether the truncated bits will always be
 | 
						|
      // zero or sign-extension.
 | 
						|
      if (AssertOp != ISD::DELETED_NODE)
 | 
						|
        Val = DAG.getNode(AssertOp, PartVT, Val,
 | 
						|
                          DAG.getValueType(ValueVT));
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | 
						|
    } else {
 | 
						|
      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | 
						|
    if (ValueVT.bitsLT(Val.getValueType()))
 | 
						|
      // FP_ROUND's are always exact here.
 | 
						|
      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
 | 
						|
                         DAG.getIntPtrConstant(1));
 | 
						|
    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
 | 
						|
    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
 | 
						|
 | 
						|
  assert(0 && "Unknown mismatch!");
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
/// getCopyToParts - Create a series of nodes that contain the specified value
 | 
						|
/// split into legal parts.  If the parts contain more bits than Val, then, for
 | 
						|
/// integers, ExtendKind can be used to specify how to generate the extra bits.
 | 
						|
static void getCopyToParts(SelectionDAG &DAG,
 | 
						|
                           SDOperand Val,
 | 
						|
                           SDOperand *Parts,
 | 
						|
                           unsigned NumParts,
 | 
						|
                           MVT PartVT,
 | 
						|
                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
 | 
						|
  TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  MVT PtrVT = TLI.getPointerTy();
 | 
						|
  MVT ValueVT = Val.getValueType();
 | 
						|
  unsigned PartBits = PartVT.getSizeInBits();
 | 
						|
  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
 | 
						|
 | 
						|
  if (!NumParts)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!ValueVT.isVector()) {
 | 
						|
    if (PartVT == ValueVT) {
 | 
						|
      assert(NumParts == 1 && "No-op copy with multiple parts!");
 | 
						|
      Parts[0] = Val;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
 | 
						|
      // If the parts cover more bits than the value has, promote the value.
 | 
						|
      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | 
						|
        assert(NumParts == 1 && "Do not know what to promote to!");
 | 
						|
        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
 | 
						|
      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
 | 
						|
        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
 | 
						|
        Val = DAG.getNode(ExtendKind, ValueVT, Val);
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown mismatch!");
 | 
						|
      }
 | 
						|
    } else if (PartBits == ValueVT.getSizeInBits()) {
 | 
						|
      // Different types of the same size.
 | 
						|
      assert(NumParts == 1 && PartVT != ValueVT);
 | 
						|
      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
 | 
						|
    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
 | 
						|
      // If the parts cover less bits than value has, truncate the value.
 | 
						|
      if (PartVT.isInteger() && ValueVT.isInteger()) {
 | 
						|
        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
 | 
						|
        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown mismatch!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The value may have changed - recompute ValueVT.
 | 
						|
    ValueVT = Val.getValueType();
 | 
						|
    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
 | 
						|
           "Failed to tile the value with PartVT!");
 | 
						|
 | 
						|
    if (NumParts == 1) {
 | 
						|
      assert(PartVT == ValueVT && "Type conversion failed!");
 | 
						|
      Parts[0] = Val;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Expand the value into multiple parts.
 | 
						|
    if (NumParts & (NumParts - 1)) {
 | 
						|
      // The number of parts is not a power of 2.  Split off and copy the tail.
 | 
						|
      assert(PartVT.isInteger() && ValueVT.isInteger() &&
 | 
						|
             "Do not know what to expand to!");
 | 
						|
      unsigned RoundParts = 1 << Log2_32(NumParts);
 | 
						|
      unsigned RoundBits = RoundParts * PartBits;
 | 
						|
      unsigned OddParts = NumParts - RoundParts;
 | 
						|
      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
 | 
						|
                                     DAG.getConstant(RoundBits,
 | 
						|
                                                     TLI.getShiftAmountTy()));
 | 
						|
      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
 | 
						|
      if (TLI.isBigEndian())
 | 
						|
        // The odd parts were reversed by getCopyToParts - unreverse them.
 | 
						|
        std::reverse(Parts + RoundParts, Parts + NumParts);
 | 
						|
      NumParts = RoundParts;
 | 
						|
      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | 
						|
    }
 | 
						|
 | 
						|
    // The number of parts is a power of 2.  Repeatedly bisect the value using
 | 
						|
    // EXTRACT_ELEMENT.
 | 
						|
    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
 | 
						|
                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
 | 
						|
                           Val);
 | 
						|
    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
 | 
						|
      for (unsigned i = 0; i < NumParts; i += StepSize) {
 | 
						|
        unsigned ThisBits = StepSize * PartBits / 2;
 | 
						|
        MVT ThisVT = MVT::getIntegerVT (ThisBits);
 | 
						|
        SDOperand &Part0 = Parts[i];
 | 
						|
        SDOperand &Part1 = Parts[i+StepSize/2];
 | 
						|
 | 
						|
        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
 | 
						|
                            DAG.getConstant(1, PtrVT));
 | 
						|
        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
 | 
						|
                            DAG.getConstant(0, PtrVT));
 | 
						|
 | 
						|
        if (ThisBits == PartBits && ThisVT != PartVT) {
 | 
						|
          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
 | 
						|
          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (TLI.isBigEndian())
 | 
						|
      std::reverse(Parts, Parts + NumParts);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector ValueVT.
 | 
						|
  if (NumParts == 1) {
 | 
						|
    if (PartVT != ValueVT) {
 | 
						|
      if (PartVT.isVector()) {
 | 
						|
        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
 | 
						|
      } else {
 | 
						|
        assert(ValueVT.getVectorElementType() == PartVT &&
 | 
						|
               ValueVT.getVectorNumElements() == 1 &&
 | 
						|
               "Only trivial vector-to-scalar conversions should get here!");
 | 
						|
        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
 | 
						|
                          DAG.getConstant(0, PtrVT));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Parts[0] = Val;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle a multi-element vector.
 | 
						|
  MVT IntermediateVT, RegisterVT;
 | 
						|
  unsigned NumIntermediates;
 | 
						|
  unsigned NumRegs =
 | 
						|
    DAG.getTargetLoweringInfo()
 | 
						|
      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
 | 
						|
                              RegisterVT);
 | 
						|
  unsigned NumElements = ValueVT.getVectorNumElements();
 | 
						|
 | 
						|
  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | 
						|
  NumParts = NumRegs; // Silence a compiler warning.
 | 
						|
  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | 
						|
 | 
						|
  // Split the vector into intermediate operands.
 | 
						|
  SmallVector<SDOperand, 8> Ops(NumIntermediates);
 | 
						|
  for (unsigned i = 0; i != NumIntermediates; ++i)
 | 
						|
    if (IntermediateVT.isVector())
 | 
						|
      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
 | 
						|
                           IntermediateVT, Val,
 | 
						|
                           DAG.getConstant(i * (NumElements / NumIntermediates),
 | 
						|
                                           PtrVT));
 | 
						|
    else
 | 
						|
      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
 | 
						|
                           IntermediateVT, Val, 
 | 
						|
                           DAG.getConstant(i, PtrVT));
 | 
						|
 | 
						|
  // Split the intermediate operands into legal parts.
 | 
						|
  if (NumParts == NumIntermediates) {
 | 
						|
    // If the register was not expanded, promote or copy the value,
 | 
						|
    // as appropriate.
 | 
						|
    for (unsigned i = 0; i != NumParts; ++i)
 | 
						|
      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
 | 
						|
  } else if (NumParts > 0) {
 | 
						|
    // If the intermediate type was expanded, split each the value into
 | 
						|
    // legal parts.
 | 
						|
    assert(NumParts % NumIntermediates == 0 &&
 | 
						|
           "Must expand into a divisible number of parts!");
 | 
						|
    unsigned Factor = NumParts / NumIntermediates;
 | 
						|
    for (unsigned i = 0; i != NumIntermediates; ++i)
 | 
						|
      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDOperand SelectionDAGLowering::getValue(const Value *V) {
 | 
						|
  SDOperand &N = NodeMap[V];
 | 
						|
  if (N.Val) return N;
 | 
						|
  
 | 
						|
  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
 | 
						|
    MVT VT = TLI.getValueType(V->getType(), true);
 | 
						|
    
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | 
						|
      return N = DAG.getConstant(CI->getValue(), VT);
 | 
						|
 | 
						|
    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | 
						|
      return N = DAG.getGlobalAddress(GV, VT);
 | 
						|
    
 | 
						|
    if (isa<ConstantPointerNull>(C))
 | 
						|
      return N = DAG.getConstant(0, TLI.getPointerTy());
 | 
						|
    
 | 
						|
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | 
						|
      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
 | 
						|
    
 | 
						|
    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
 | 
						|
        !V->getType()->isAggregateType())
 | 
						|
      return N = DAG.getNode(ISD::UNDEF, VT);
 | 
						|
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
      visit(CE->getOpcode(), *CE);
 | 
						|
      SDOperand N1 = NodeMap[V];
 | 
						|
      assert(N1.Val && "visit didn't populate the ValueMap!");
 | 
						|
      return N1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
 | 
						|
      SmallVector<SDOperand, 4> Constants;
 | 
						|
      SmallVector<MVT, 4> ValueVTs;
 | 
						|
      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
 | 
						|
           OI != OE; ++OI) {
 | 
						|
        SDNode *Val = getValue(*OI).Val;
 | 
						|
        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) {
 | 
						|
          Constants.push_back(SDOperand(Val, i));
 | 
						|
          ValueVTs.push_back(Val->getValueType(i));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
 | 
						|
                         &Constants[0], Constants.size());
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
 | 
						|
      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | 
						|
             "Unknown array constant!");
 | 
						|
      unsigned NumElts = ATy->getNumElements();
 | 
						|
      if (NumElts == 0)
 | 
						|
        return SDOperand(); // empty array
 | 
						|
      MVT EltVT = TLI.getValueType(ATy->getElementType());
 | 
						|
      SmallVector<SDOperand, 4> Constants(NumElts);
 | 
						|
      SmallVector<MVT, 4> ValueVTs(NumElts, EltVT);
 | 
						|
      for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | 
						|
        if (isa<UndefValue>(C))
 | 
						|
          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
 | 
						|
        else if (EltVT.isFloatingPoint())
 | 
						|
          Constants[i] = DAG.getConstantFP(0, EltVT);
 | 
						|
        else
 | 
						|
          Constants[i] = DAG.getConstant(0, EltVT);
 | 
						|
      }
 | 
						|
      return DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
 | 
						|
                         &Constants[0], Constants.size());
 | 
						|
    }
 | 
						|
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
 | 
						|
      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | 
						|
             "Unknown struct constant!");
 | 
						|
      unsigned NumElts = STy->getNumElements();
 | 
						|
      if (NumElts == 0)
 | 
						|
        return SDOperand(); // empty struct
 | 
						|
      SmallVector<SDOperand, 4> Constants(NumElts);
 | 
						|
      SmallVector<MVT, 4> ValueVTs(NumElts);
 | 
						|
      for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | 
						|
        MVT EltVT = TLI.getValueType(STy->getElementType(i));
 | 
						|
        ValueVTs[i] = EltVT;
 | 
						|
        if (isa<UndefValue>(C))
 | 
						|
          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
 | 
						|
        else if (EltVT.isFloatingPoint())
 | 
						|
          Constants[i] = DAG.getConstantFP(0, EltVT);
 | 
						|
        else
 | 
						|
          Constants[i] = DAG.getConstant(0, EltVT);
 | 
						|
      }
 | 
						|
      return DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
 | 
						|
                         &Constants[0], Constants.size());
 | 
						|
    }
 | 
						|
 | 
						|
    const VectorType *VecTy = cast<VectorType>(V->getType());
 | 
						|
    unsigned NumElements = VecTy->getNumElements();
 | 
						|
    
 | 
						|
    // Now that we know the number and type of the elements, get that number of
 | 
						|
    // elements into the Ops array based on what kind of constant it is.
 | 
						|
    SmallVector<SDOperand, 16> Ops;
 | 
						|
    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
 | 
						|
      for (unsigned i = 0; i != NumElements; ++i)
 | 
						|
        Ops.push_back(getValue(CP->getOperand(i)));
 | 
						|
    } else {
 | 
						|
      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | 
						|
             "Unknown vector constant!");
 | 
						|
      MVT EltVT = TLI.getValueType(VecTy->getElementType());
 | 
						|
 | 
						|
      SDOperand Op;
 | 
						|
      if (isa<UndefValue>(C))
 | 
						|
        Op = DAG.getNode(ISD::UNDEF, EltVT);
 | 
						|
      else if (EltVT.isFloatingPoint())
 | 
						|
        Op = DAG.getConstantFP(0, EltVT);
 | 
						|
      else
 | 
						|
        Op = DAG.getConstant(0, EltVT);
 | 
						|
      Ops.assign(NumElements, Op);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Create a BUILD_VECTOR node.
 | 
						|
    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | 
						|
  }
 | 
						|
      
 | 
						|
  // If this is a static alloca, generate it as the frameindex instead of
 | 
						|
  // computation.
 | 
						|
  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    std::map<const AllocaInst*, int>::iterator SI =
 | 
						|
      FuncInfo.StaticAllocaMap.find(AI);
 | 
						|
    if (SI != FuncInfo.StaticAllocaMap.end())
 | 
						|
      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | 
						|
  }
 | 
						|
      
 | 
						|
  unsigned InReg = FuncInfo.ValueMap[V];
 | 
						|
  assert(InReg && "Value not in map!");
 | 
						|
  
 | 
						|
  RegsForValue RFV(TLI, InReg, V->getType());
 | 
						|
  SDOperand Chain = DAG.getEntryNode();
 | 
						|
  return RFV.getCopyFromRegs(DAG, Chain, NULL);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | 
						|
  if (I.getNumOperands() == 0) {
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  SmallVector<SDOperand, 8> NewValues;
 | 
						|
  NewValues.push_back(getControlRoot());
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {  
 | 
						|
    SDOperand RetOp = getValue(I.getOperand(i));
 | 
						|
    MVT VT = RetOp.getValueType();
 | 
						|
 | 
						|
    // FIXME: C calling convention requires the return type to be promoted to
 | 
						|
    // at least 32-bit. But this is not necessary for non-C calling conventions.
 | 
						|
    if (VT.isInteger()) {
 | 
						|
      MVT MinVT = TLI.getRegisterType(MVT::i32);
 | 
						|
      if (VT.bitsLT(MinVT))
 | 
						|
        VT = MinVT;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NumParts = TLI.getNumRegisters(VT);
 | 
						|
    MVT PartVT = TLI.getRegisterType(VT);
 | 
						|
    SmallVector<SDOperand, 4> Parts(NumParts);
 | 
						|
    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | 
						|
 | 
						|
    const Function *F = I.getParent()->getParent();
 | 
						|
    if (F->paramHasAttr(0, ParamAttr::SExt))
 | 
						|
      ExtendKind = ISD::SIGN_EXTEND;
 | 
						|
    else if (F->paramHasAttr(0, ParamAttr::ZExt))
 | 
						|
      ExtendKind = ISD::ZERO_EXTEND;
 | 
						|
 | 
						|
    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < NumParts; ++i) {
 | 
						|
      NewValues.push_back(Parts[i]);
 | 
						|
      NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
 | 
						|
                          &NewValues[0], NewValues.size()));
 | 
						|
}
 | 
						|
 | 
						|
/// ExportFromCurrentBlock - If this condition isn't known to be exported from
 | 
						|
/// the current basic block, add it to ValueMap now so that we'll get a
 | 
						|
/// CopyTo/FromReg.
 | 
						|
void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
 | 
						|
  // No need to export constants.
 | 
						|
  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
 | 
						|
  
 | 
						|
  // Already exported?
 | 
						|
  if (FuncInfo.isExportedInst(V)) return;
 | 
						|
 | 
						|
  unsigned Reg = FuncInfo.InitializeRegForValue(V);
 | 
						|
  CopyValueToVirtualRegister(V, Reg);
 | 
						|
}
 | 
						|
 | 
						|
bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
 | 
						|
                                                    const BasicBlock *FromBB) {
 | 
						|
  // The operands of the setcc have to be in this block.  We don't know
 | 
						|
  // how to export them from some other block.
 | 
						|
  if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | 
						|
    // Can export from current BB.
 | 
						|
    if (VI->getParent() == FromBB)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // Is already exported, noop.
 | 
						|
    return FuncInfo.isExportedInst(V);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is an argument, we can export it if the BB is the entry block or
 | 
						|
  // if it is already exported.
 | 
						|
  if (isa<Argument>(V)) {
 | 
						|
    if (FromBB == &FromBB->getParent()->getEntryBlock())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, can only export this if it is already exported.
 | 
						|
    return FuncInfo.isExportedInst(V);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, constants can always be exported.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool InBlock(const Value *V, const BasicBlock *BB) {
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent() == BB;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindMergedConditions - If Cond is an expression like 
 | 
						|
void SelectionDAGLowering::FindMergedConditions(Value *Cond,
 | 
						|
                                                MachineBasicBlock *TBB,
 | 
						|
                                                MachineBasicBlock *FBB,
 | 
						|
                                                MachineBasicBlock *CurBB,
 | 
						|
                                                unsigned Opc) {
 | 
						|
  // If this node is not part of the or/and tree, emit it as a branch.
 | 
						|
  Instruction *BOp = dyn_cast<Instruction>(Cond);
 | 
						|
 | 
						|
  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 
 | 
						|
      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
 | 
						|
      BOp->getParent() != CurBB->getBasicBlock() ||
 | 
						|
      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
 | 
						|
      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
 | 
						|
    const BasicBlock *BB = CurBB->getBasicBlock();
 | 
						|
    
 | 
						|
    // If the leaf of the tree is a comparison, merge the condition into 
 | 
						|
    // the caseblock.
 | 
						|
    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
 | 
						|
        // The operands of the cmp have to be in this block.  We don't know
 | 
						|
        // how to export them from some other block.  If this is the first block
 | 
						|
        // of the sequence, no exporting is needed.
 | 
						|
        (CurBB == CurMBB ||
 | 
						|
         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
 | 
						|
          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
 | 
						|
      BOp = cast<Instruction>(Cond);
 | 
						|
      ISD::CondCode Condition;
 | 
						|
      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
 | 
						|
        switch (IC->getPredicate()) {
 | 
						|
        default: assert(0 && "Unknown icmp predicate opcode!");
 | 
						|
        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
 | 
						|
        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
 | 
						|
        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
 | 
						|
        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
 | 
						|
        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
 | 
						|
        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
 | 
						|
        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
 | 
						|
        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
 | 
						|
        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
 | 
						|
        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
 | 
						|
        }
 | 
						|
      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
 | 
						|
        ISD::CondCode FPC, FOC;
 | 
						|
        switch (FC->getPredicate()) {
 | 
						|
        default: assert(0 && "Unknown fcmp predicate opcode!");
 | 
						|
        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | 
						|
        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | 
						|
        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | 
						|
        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | 
						|
        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | 
						|
        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | 
						|
        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | 
						|
        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
 | 
						|
        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
 | 
						|
        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | 
						|
        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | 
						|
        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | 
						|
        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | 
						|
        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | 
						|
        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | 
						|
        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | 
						|
        }
 | 
						|
        if (FiniteOnlyFPMath())
 | 
						|
          Condition = FOC;
 | 
						|
        else 
 | 
						|
          Condition = FPC;
 | 
						|
      } else {
 | 
						|
        Condition = ISD::SETEQ; // silence warning.
 | 
						|
        assert(0 && "Unknown compare instruction");
 | 
						|
      }
 | 
						|
      
 | 
						|
      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0), 
 | 
						|
                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
 | 
						|
      SwitchCases.push_back(CB);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Create a CaseBlock record representing this branch.
 | 
						|
    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
 | 
						|
                                   NULL, TBB, FBB, CurBB);
 | 
						|
    SwitchCases.push_back(CB);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  //  Create TmpBB after CurBB.
 | 
						|
  MachineFunction::iterator BBI = CurBB;
 | 
						|
  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
 | 
						|
  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
 | 
						|
  
 | 
						|
  if (Opc == Instruction::Or) {
 | 
						|
    // Codegen X | Y as:
 | 
						|
    //   jmp_if_X TBB
 | 
						|
    //   jmp TmpBB
 | 
						|
    // TmpBB:
 | 
						|
    //   jmp_if_Y TBB
 | 
						|
    //   jmp FBB
 | 
						|
    //
 | 
						|
  
 | 
						|
    // Emit the LHS condition.
 | 
						|
    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
 | 
						|
  
 | 
						|
    // Emit the RHS condition into TmpBB.
 | 
						|
    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | 
						|
  } else {
 | 
						|
    assert(Opc == Instruction::And && "Unknown merge op!");
 | 
						|
    // Codegen X & Y as:
 | 
						|
    //   jmp_if_X TmpBB
 | 
						|
    //   jmp FBB
 | 
						|
    // TmpBB:
 | 
						|
    //   jmp_if_Y TBB
 | 
						|
    //   jmp FBB
 | 
						|
    //
 | 
						|
    //  This requires creation of TmpBB after CurBB.
 | 
						|
    
 | 
						|
    // Emit the LHS condition.
 | 
						|
    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
 | 
						|
    
 | 
						|
    // Emit the RHS condition into TmpBB.
 | 
						|
    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If the set of cases should be emitted as a series of branches, return true.
 | 
						|
/// If we should emit this as a bunch of and/or'd together conditions, return
 | 
						|
/// false.
 | 
						|
static bool 
 | 
						|
ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
 | 
						|
  if (Cases.size() != 2) return true;
 | 
						|
  
 | 
						|
  // If this is two comparisons of the same values or'd or and'd together, they
 | 
						|
  // will get folded into a single comparison, so don't emit two blocks.
 | 
						|
  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
 | 
						|
       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
 | 
						|
      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
 | 
						|
       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBr(BranchInst &I) {
 | 
						|
  // Update machine-CFG edges.
 | 
						|
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  if (I.isUnconditional()) {
 | 
						|
    // Update machine-CFG edges.
 | 
						|
    CurMBB->addSuccessor(Succ0MBB);
 | 
						|
    
 | 
						|
    // If this is not a fall-through branch, emit the branch.
 | 
						|
    if (Succ0MBB != NextBlock)
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
 | 
						|
                              DAG.getBasicBlock(Succ0MBB)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this condition is one of the special cases we handle, do special stuff
 | 
						|
  // now.
 | 
						|
  Value *CondVal = I.getCondition();
 | 
						|
  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | 
						|
 | 
						|
  // If this is a series of conditions that are or'd or and'd together, emit
 | 
						|
  // this as a sequence of branches instead of setcc's with and/or operations.
 | 
						|
  // For example, instead of something like:
 | 
						|
  //     cmp A, B
 | 
						|
  //     C = seteq 
 | 
						|
  //     cmp D, E
 | 
						|
  //     F = setle 
 | 
						|
  //     or C, F
 | 
						|
  //     jnz foo
 | 
						|
  // Emit:
 | 
						|
  //     cmp A, B
 | 
						|
  //     je foo
 | 
						|
  //     cmp D, E
 | 
						|
  //     jle foo
 | 
						|
  //
 | 
						|
  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
 | 
						|
    if (BOp->hasOneUse() && 
 | 
						|
        (BOp->getOpcode() == Instruction::And ||
 | 
						|
         BOp->getOpcode() == Instruction::Or)) {
 | 
						|
      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
 | 
						|
      // If the compares in later blocks need to use values not currently
 | 
						|
      // exported from this block, export them now.  This block should always
 | 
						|
      // be the first entry.
 | 
						|
      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
 | 
						|
      
 | 
						|
      // Allow some cases to be rejected.
 | 
						|
      if (ShouldEmitAsBranches(SwitchCases)) {
 | 
						|
        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
 | 
						|
          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
 | 
						|
          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Emit the branch for this block.
 | 
						|
        visitSwitchCase(SwitchCases[0]);
 | 
						|
        SwitchCases.erase(SwitchCases.begin());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Okay, we decided not to do this, remove any inserted MBB's and clear
 | 
						|
      // SwitchCases.
 | 
						|
      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
 | 
						|
        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
 | 
						|
      
 | 
						|
      SwitchCases.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create a CaseBlock record representing this branch.
 | 
						|
  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
 | 
						|
                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
 | 
						|
  // Use visitSwitchCase to actually insert the fast branch sequence for this
 | 
						|
  // cond branch.
 | 
						|
  visitSwitchCase(CB);
 | 
						|
}
 | 
						|
 | 
						|
/// visitSwitchCase - Emits the necessary code to represent a single node in
 | 
						|
/// the binary search tree resulting from lowering a switch instruction.
 | 
						|
void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
 | 
						|
  SDOperand Cond;
 | 
						|
  SDOperand CondLHS = getValue(CB.CmpLHS);
 | 
						|
  
 | 
						|
  // Build the setcc now. 
 | 
						|
  if (CB.CmpMHS == NULL) {
 | 
						|
    // Fold "(X == true)" to X and "(X == false)" to !X to
 | 
						|
    // handle common cases produced by branch lowering.
 | 
						|
    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
 | 
						|
      Cond = CondLHS;
 | 
						|
    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
 | 
						|
      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
 | 
						|
      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
 | 
						|
    } else
 | 
						|
      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
 | 
						|
  } else {
 | 
						|
    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
 | 
						|
 | 
						|
    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
 | 
						|
    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
 | 
						|
 | 
						|
    SDOperand CmpOp = getValue(CB.CmpMHS);
 | 
						|
    MVT VT = CmpOp.getValueType();
 | 
						|
 | 
						|
    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | 
						|
      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
 | 
						|
    } else {
 | 
						|
      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
 | 
						|
      Cond = DAG.getSetCC(MVT::i1, SUB,
 | 
						|
                          DAG.getConstant(High-Low, VT), ISD::SETULE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update successor info
 | 
						|
  CurMBB->addSuccessor(CB.TrueBB);
 | 
						|
  CurMBB->addSuccessor(CB.FalseBB);
 | 
						|
  
 | 
						|
  // Set NextBlock to be the MBB immediately after the current one, if any.
 | 
						|
  // This is used to avoid emitting unnecessary branches to the next block.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
  
 | 
						|
  // If the lhs block is the next block, invert the condition so that we can
 | 
						|
  // fall through to the lhs instead of the rhs block.
 | 
						|
  if (CB.TrueBB == NextBlock) {
 | 
						|
    std::swap(CB.TrueBB, CB.FalseBB);
 | 
						|
    SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | 
						|
    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | 
						|
  }
 | 
						|
  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
 | 
						|
                                 DAG.getBasicBlock(CB.TrueBB));
 | 
						|
  if (CB.FalseBB == NextBlock)
 | 
						|
    DAG.setRoot(BrCond);
 | 
						|
  else
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 
 | 
						|
                            DAG.getBasicBlock(CB.FalseBB)));
 | 
						|
}
 | 
						|
 | 
						|
/// visitJumpTable - Emit JumpTable node in the current MBB
 | 
						|
void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
 | 
						|
  // Emit the code for the jump table
 | 
						|
  assert(JT.Reg != -1U && "Should lower JT Header first!");
 | 
						|
  MVT PTy = TLI.getPointerTy();
 | 
						|
  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
 | 
						|
  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
 | 
						|
                          Table, Index));
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// visitJumpTableHeader - This function emits necessary code to produce index
 | 
						|
/// in the JumpTable from switch case.
 | 
						|
void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
 | 
						|
                                         SelectionDAGISel::JumpTableHeader &JTH) {
 | 
						|
  // Subtract the lowest switch case value from the value being switched on
 | 
						|
  // and conditional branch to default mbb if the result is greater than the
 | 
						|
  // difference between smallest and largest cases.
 | 
						|
  SDOperand SwitchOp = getValue(JTH.SValue);
 | 
						|
  MVT VT = SwitchOp.getValueType();
 | 
						|
  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
 | 
						|
                              DAG.getConstant(JTH.First, VT));
 | 
						|
  
 | 
						|
  // The SDNode we just created, which holds the value being switched on
 | 
						|
  // minus the the smallest case value, needs to be copied to a virtual
 | 
						|
  // register so it can be used as an index into the jump table in a 
 | 
						|
  // subsequent basic block.  This value may be smaller or larger than the
 | 
						|
  // target's pointer type, and therefore require extension or truncating.
 | 
						|
  if (VT.bitsGT(TLI.getPointerTy()))
 | 
						|
    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
 | 
						|
  else
 | 
						|
    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
 | 
						|
  
 | 
						|
  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | 
						|
  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
 | 
						|
  JT.Reg = JumpTableReg;
 | 
						|
 | 
						|
  // Emit the range check for the jump table, and branch to the default
 | 
						|
  // block for the switch statement if the value being switched on exceeds
 | 
						|
  // the largest case in the switch.
 | 
						|
  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
 | 
						|
                               DAG.getConstant(JTH.Last-JTH.First,VT),
 | 
						|
                               ISD::SETUGT);
 | 
						|
 | 
						|
  // Set NextBlock to be the MBB immediately after the current one, if any.
 | 
						|
  // This is used to avoid emitting unnecessary branches to the next block.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
 | 
						|
                                 DAG.getBasicBlock(JT.Default));
 | 
						|
 | 
						|
  if (JT.MBB == NextBlock)
 | 
						|
    DAG.setRoot(BrCond);
 | 
						|
  else
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 
 | 
						|
                            DAG.getBasicBlock(JT.MBB)));
 | 
						|
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// visitBitTestHeader - This function emits necessary code to produce value
 | 
						|
/// suitable for "bit tests"
 | 
						|
void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
 | 
						|
  // Subtract the minimum value
 | 
						|
  SDOperand SwitchOp = getValue(B.SValue);
 | 
						|
  MVT VT = SwitchOp.getValueType();
 | 
						|
  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
 | 
						|
                              DAG.getConstant(B.First, VT));
 | 
						|
 | 
						|
  // Check range
 | 
						|
  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
 | 
						|
                                    DAG.getConstant(B.Range, VT),
 | 
						|
                                    ISD::SETUGT);
 | 
						|
 | 
						|
  SDOperand ShiftOp;
 | 
						|
  if (VT.bitsGT(TLI.getShiftAmountTy()))
 | 
						|
    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
 | 
						|
  else
 | 
						|
    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
 | 
						|
 | 
						|
  // Make desired shift
 | 
						|
  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
 | 
						|
                                    DAG.getConstant(1, TLI.getPointerTy()),
 | 
						|
                                    ShiftOp);
 | 
						|
 | 
						|
  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | 
						|
  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
 | 
						|
  B.Reg = SwitchReg;
 | 
						|
 | 
						|
  // Set NextBlock to be the MBB immediately after the current one, if any.
 | 
						|
  // This is used to avoid emitting unnecessary branches to the next block.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
 | 
						|
 | 
						|
  CurMBB->addSuccessor(B.Default);
 | 
						|
  CurMBB->addSuccessor(MBB);
 | 
						|
 | 
						|
  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
 | 
						|
                                  DAG.getBasicBlock(B.Default));
 | 
						|
  
 | 
						|
  if (MBB == NextBlock)
 | 
						|
    DAG.setRoot(BrRange);
 | 
						|
  else
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
 | 
						|
                            DAG.getBasicBlock(MBB)));
 | 
						|
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// visitBitTestCase - this function produces one "bit test"
 | 
						|
void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
 | 
						|
                                            unsigned Reg,
 | 
						|
                                            SelectionDAGISel::BitTestCase &B) {
 | 
						|
  // Emit bit tests and jumps
 | 
						|
  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, 
 | 
						|
                                           TLI.getPointerTy());
 | 
						|
  
 | 
						|
  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
 | 
						|
                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
 | 
						|
  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
 | 
						|
                                  DAG.getConstant(0, TLI.getPointerTy()),
 | 
						|
                                  ISD::SETNE);
 | 
						|
 | 
						|
  CurMBB->addSuccessor(B.TargetBB);
 | 
						|
  CurMBB->addSuccessor(NextMBB);
 | 
						|
  
 | 
						|
  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
 | 
						|
                                AndCmp, DAG.getBasicBlock(B.TargetBB));
 | 
						|
 | 
						|
  // Set NextBlock to be the MBB immediately after the current one, if any.
 | 
						|
  // This is used to avoid emitting unnecessary branches to the next block.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  if (NextMBB == NextBlock)
 | 
						|
    DAG.setRoot(BrAnd);
 | 
						|
  else
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
 | 
						|
                            DAG.getBasicBlock(NextMBB)));
 | 
						|
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
 | 
						|
  // Retrieve successors.
 | 
						|
  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
 | 
						|
  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
 | 
						|
 | 
						|
  if (isa<InlineAsm>(I.getCalledValue()))
 | 
						|
    visitInlineAsm(&I);
 | 
						|
  else
 | 
						|
    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
 | 
						|
 | 
						|
  // If the value of the invoke is used outside of its defining block, make it
 | 
						|
  // available as a virtual register.
 | 
						|
  if (!I.use_empty()) {
 | 
						|
    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
 | 
						|
    if (VMI != FuncInfo.ValueMap.end())
 | 
						|
      CopyValueToVirtualRegister(&I, VMI->second);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update successor info
 | 
						|
  CurMBB->addSuccessor(Return);
 | 
						|
  CurMBB->addSuccessor(LandingPad);
 | 
						|
 | 
						|
  // Drop into normal successor.
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
 | 
						|
                          DAG.getBasicBlock(Return)));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
 | 
						|
}
 | 
						|
 | 
						|
/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
 | 
						|
/// small case ranges).
 | 
						|
bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
 | 
						|
                                                  CaseRecVector& WorkList,
 | 
						|
                                                  Value* SV,
 | 
						|
                                                  MachineBasicBlock* Default) {
 | 
						|
  Case& BackCase  = *(CR.Range.second-1);
 | 
						|
  
 | 
						|
  // Size is the number of Cases represented by this range.
 | 
						|
  unsigned Size = CR.Range.second - CR.Range.first;
 | 
						|
  if (Size > 3)
 | 
						|
    return false;  
 | 
						|
  
 | 
						|
  // Get the MachineFunction which holds the current MBB.  This is used when
 | 
						|
  // inserting any additional MBBs necessary to represent the switch.
 | 
						|
  MachineFunction *CurMF = CurMBB->getParent();  
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CR.CaseBB;
 | 
						|
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  // TODO: If any two of the cases has the same destination, and if one value
 | 
						|
  // is the same as the other, but has one bit unset that the other has set,
 | 
						|
  // use bit manipulation to do two compares at once.  For example:
 | 
						|
  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
 | 
						|
    
 | 
						|
  // Rearrange the case blocks so that the last one falls through if possible.
 | 
						|
  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
 | 
						|
    // The last case block won't fall through into 'NextBlock' if we emit the
 | 
						|
    // branches in this order.  See if rearranging a case value would help.
 | 
						|
    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
 | 
						|
      if (I->BB == NextBlock) {
 | 
						|
        std::swap(*I, BackCase);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create a CaseBlock record representing a conditional branch to
 | 
						|
  // the Case's target mbb if the value being switched on SV is equal
 | 
						|
  // to C.
 | 
						|
  MachineBasicBlock *CurBlock = CR.CaseBB;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
 | 
						|
    MachineBasicBlock *FallThrough;
 | 
						|
    if (I != E-1) {
 | 
						|
      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
 | 
						|
      CurMF->getBasicBlockList().insert(BBI, FallThrough);
 | 
						|
    } else {
 | 
						|
      // If the last case doesn't match, go to the default block.
 | 
						|
      FallThrough = Default;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *RHS, *LHS, *MHS;
 | 
						|
    ISD::CondCode CC;
 | 
						|
    if (I->High == I->Low) {
 | 
						|
      // This is just small small case range :) containing exactly 1 case
 | 
						|
      CC = ISD::SETEQ;
 | 
						|
      LHS = SV; RHS = I->High; MHS = NULL;
 | 
						|
    } else {
 | 
						|
      CC = ISD::SETLE;
 | 
						|
      LHS = I->Low; MHS = SV; RHS = I->High;
 | 
						|
    }
 | 
						|
    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
 | 
						|
                                   I->BB, FallThrough, CurBlock);
 | 
						|
    
 | 
						|
    // If emitting the first comparison, just call visitSwitchCase to emit the
 | 
						|
    // code into the current block.  Otherwise, push the CaseBlock onto the
 | 
						|
    // vector to be later processed by SDISel, and insert the node's MBB
 | 
						|
    // before the next MBB.
 | 
						|
    if (CurBlock == CurMBB)
 | 
						|
      visitSwitchCase(CB);
 | 
						|
    else
 | 
						|
      SwitchCases.push_back(CB);
 | 
						|
    
 | 
						|
    CurBlock = FallThrough;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool areJTsAllowed(const TargetLowering &TLI) {
 | 
						|
  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
 | 
						|
          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
 | 
						|
}
 | 
						|
  
 | 
						|
/// handleJTSwitchCase - Emit jumptable for current switch case range
 | 
						|
bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
 | 
						|
                                              CaseRecVector& WorkList,
 | 
						|
                                              Value* SV,
 | 
						|
                                              MachineBasicBlock* Default) {
 | 
						|
  Case& FrontCase = *CR.Range.first;
 | 
						|
  Case& BackCase  = *(CR.Range.second-1);
 | 
						|
 | 
						|
  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
 | 
						|
  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
 | 
						|
 | 
						|
  uint64_t TSize = 0;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | 
						|
       I!=E; ++I)
 | 
						|
    TSize += I->size();
 | 
						|
 | 
						|
  if (!areJTsAllowed(TLI) || TSize <= 3)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  double Density = (double)TSize / (double)((Last - First) + 1ULL);  
 | 
						|
  if (Density < 0.4)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DOUT << "Lowering jump table\n"
 | 
						|
       << "First entry: " << First << ". Last entry: " << Last << "\n"
 | 
						|
       << "Size: " << TSize << ". Density: " << Density << "\n\n";
 | 
						|
 | 
						|
  // Get the MachineFunction which holds the current MBB.  This is used when
 | 
						|
  // inserting any additional MBBs necessary to represent the switch.
 | 
						|
  MachineFunction *CurMF = CurMBB->getParent();
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CR.CaseBB;
 | 
						|
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | 
						|
 | 
						|
  // Create a new basic block to hold the code for loading the address
 | 
						|
  // of the jump table, and jumping to it.  Update successor information;
 | 
						|
  // we will either branch to the default case for the switch, or the jump
 | 
						|
  // table.
 | 
						|
  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
 | 
						|
  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
 | 
						|
  CR.CaseBB->addSuccessor(Default);
 | 
						|
  CR.CaseBB->addSuccessor(JumpTableBB);
 | 
						|
                
 | 
						|
  // Build a vector of destination BBs, corresponding to each target
 | 
						|
  // of the jump table. If the value of the jump table slot corresponds to
 | 
						|
  // a case statement, push the case's BB onto the vector, otherwise, push
 | 
						|
  // the default BB.
 | 
						|
  std::vector<MachineBasicBlock*> DestBBs;
 | 
						|
  int64_t TEI = First;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
 | 
						|
    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
 | 
						|
    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
 | 
						|
    
 | 
						|
    if ((Low <= TEI) && (TEI <= High)) {
 | 
						|
      DestBBs.push_back(I->BB);
 | 
						|
      if (TEI==High)
 | 
						|
        ++I;
 | 
						|
    } else {
 | 
						|
      DestBBs.push_back(Default);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update successor info. Add one edge to each unique successor.
 | 
						|
  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());  
 | 
						|
  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 
 | 
						|
         E = DestBBs.end(); I != E; ++I) {
 | 
						|
    if (!SuccsHandled[(*I)->getNumber()]) {
 | 
						|
      SuccsHandled[(*I)->getNumber()] = true;
 | 
						|
      JumpTableBB->addSuccessor(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  // Create a jump table index for this jump table, or return an existing
 | 
						|
  // one.
 | 
						|
  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
 | 
						|
  
 | 
						|
  // Set the jump table information so that we can codegen it as a second
 | 
						|
  // MachineBasicBlock
 | 
						|
  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
 | 
						|
  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
 | 
						|
                                        (CR.CaseBB == CurMBB));
 | 
						|
  if (CR.CaseBB == CurMBB)
 | 
						|
    visitJumpTableHeader(JT, JTH);
 | 
						|
        
 | 
						|
  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
 | 
						|
/// 2 subtrees.
 | 
						|
bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
 | 
						|
                                                   CaseRecVector& WorkList,
 | 
						|
                                                   Value* SV,
 | 
						|
                                                   MachineBasicBlock* Default) {
 | 
						|
  // Get the MachineFunction which holds the current MBB.  This is used when
 | 
						|
  // inserting any additional MBBs necessary to represent the switch.
 | 
						|
  MachineFunction *CurMF = CurMBB->getParent();  
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CR.CaseBB;
 | 
						|
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  Case& FrontCase = *CR.Range.first;
 | 
						|
  Case& BackCase  = *(CR.Range.second-1);
 | 
						|
  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | 
						|
 | 
						|
  // Size is the number of Cases represented by this range.
 | 
						|
  unsigned Size = CR.Range.second - CR.Range.first;
 | 
						|
 | 
						|
  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
 | 
						|
  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
 | 
						|
  double FMetric = 0;
 | 
						|
  CaseItr Pivot = CR.Range.first + Size/2;
 | 
						|
 | 
						|
  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
 | 
						|
  // (heuristically) allow us to emit JumpTable's later.
 | 
						|
  uint64_t TSize = 0;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | 
						|
       I!=E; ++I)
 | 
						|
    TSize += I->size();
 | 
						|
 | 
						|
  uint64_t LSize = FrontCase.size();
 | 
						|
  uint64_t RSize = TSize-LSize;
 | 
						|
  DOUT << "Selecting best pivot: \n"
 | 
						|
       << "First: " << First << ", Last: " << Last <<"\n"
 | 
						|
       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
 | 
						|
  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
 | 
						|
       J!=E; ++I, ++J) {
 | 
						|
    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
 | 
						|
    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
 | 
						|
    assert((RBegin-LEnd>=1) && "Invalid case distance");
 | 
						|
    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
 | 
						|
    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
 | 
						|
    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
 | 
						|
    // Should always split in some non-trivial place
 | 
						|
    DOUT <<"=>Step\n"
 | 
						|
         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
 | 
						|
         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
 | 
						|
         << "Metric: " << Metric << "\n"; 
 | 
						|
    if (FMetric < Metric) {
 | 
						|
      Pivot = J;
 | 
						|
      FMetric = Metric;
 | 
						|
      DOUT << "Current metric set to: " << FMetric << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
    LSize += J->size();
 | 
						|
    RSize -= J->size();
 | 
						|
  }
 | 
						|
  if (areJTsAllowed(TLI)) {
 | 
						|
    // If our case is dense we *really* should handle it earlier!
 | 
						|
    assert((FMetric > 0) && "Should handle dense range earlier!");
 | 
						|
  } else {
 | 
						|
    Pivot = CR.Range.first + Size/2;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CaseRange LHSR(CR.Range.first, Pivot);
 | 
						|
  CaseRange RHSR(Pivot, CR.Range.second);
 | 
						|
  Constant *C = Pivot->Low;
 | 
						|
  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
 | 
						|
      
 | 
						|
  // We know that we branch to the LHS if the Value being switched on is
 | 
						|
  // less than the Pivot value, C.  We use this to optimize our binary 
 | 
						|
  // tree a bit, by recognizing that if SV is greater than or equal to the
 | 
						|
  // LHS's Case Value, and that Case Value is exactly one less than the 
 | 
						|
  // Pivot's Value, then we can branch directly to the LHS's Target,
 | 
						|
  // rather than creating a leaf node for it.
 | 
						|
  if ((LHSR.second - LHSR.first) == 1 &&
 | 
						|
      LHSR.first->High == CR.GE &&
 | 
						|
      cast<ConstantInt>(C)->getSExtValue() ==
 | 
						|
      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
 | 
						|
    TrueBB = LHSR.first->BB;
 | 
						|
  } else {
 | 
						|
    TrueBB = new MachineBasicBlock(LLVMBB);
 | 
						|
    CurMF->getBasicBlockList().insert(BBI, TrueBB);
 | 
						|
    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Similar to the optimization above, if the Value being switched on is
 | 
						|
  // known to be less than the Constant CR.LT, and the current Case Value
 | 
						|
  // is CR.LT - 1, then we can branch directly to the target block for
 | 
						|
  // the current Case Value, rather than emitting a RHS leaf node for it.
 | 
						|
  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
 | 
						|
      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
 | 
						|
      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
 | 
						|
    FalseBB = RHSR.first->BB;
 | 
						|
  } else {
 | 
						|
    FalseBB = new MachineBasicBlock(LLVMBB);
 | 
						|
    CurMF->getBasicBlockList().insert(BBI, FalseBB);
 | 
						|
    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a CaseBlock record representing a conditional branch to
 | 
						|
  // the LHS node if the value being switched on SV is less than C. 
 | 
						|
  // Otherwise, branch to LHS.
 | 
						|
  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
 | 
						|
                                 TrueBB, FalseBB, CR.CaseBB);
 | 
						|
 | 
						|
  if (CR.CaseBB == CurMBB)
 | 
						|
    visitSwitchCase(CB);
 | 
						|
  else
 | 
						|
    SwitchCases.push_back(CB);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// handleBitTestsSwitchCase - if current case range has few destination and
 | 
						|
/// range span less, than machine word bitwidth, encode case range into series
 | 
						|
/// of masks and emit bit tests with these masks.
 | 
						|
bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
 | 
						|
                                                    CaseRecVector& WorkList,
 | 
						|
                                                    Value* SV,
 | 
						|
                                                    MachineBasicBlock* Default){
 | 
						|
  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
 | 
						|
 | 
						|
  Case& FrontCase = *CR.Range.first;
 | 
						|
  Case& BackCase  = *(CR.Range.second-1);
 | 
						|
 | 
						|
  // Get the MachineFunction which holds the current MBB.  This is used when
 | 
						|
  // inserting any additional MBBs necessary to represent the switch.
 | 
						|
  MachineFunction *CurMF = CurMBB->getParent();  
 | 
						|
 | 
						|
  unsigned numCmps = 0;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | 
						|
       I!=E; ++I) {
 | 
						|
    // Single case counts one, case range - two.
 | 
						|
    if (I->Low == I->High)
 | 
						|
      numCmps +=1;
 | 
						|
    else
 | 
						|
      numCmps +=2;
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Count unique destinations
 | 
						|
  SmallSet<MachineBasicBlock*, 4> Dests;
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | 
						|
    Dests.insert(I->BB);
 | 
						|
    if (Dests.size() > 3)
 | 
						|
      // Don't bother the code below, if there are too much unique destinations
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
 | 
						|
       << "Total number of comparisons: " << numCmps << "\n";
 | 
						|
  
 | 
						|
  // Compute span of values.
 | 
						|
  Constant* minValue = FrontCase.Low;
 | 
						|
  Constant* maxValue = BackCase.High;
 | 
						|
  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
 | 
						|
                   cast<ConstantInt>(minValue)->getSExtValue();
 | 
						|
  DOUT << "Compare range: " << range << "\n"
 | 
						|
       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
 | 
						|
       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
 | 
						|
  
 | 
						|
  if (range>=IntPtrBits ||
 | 
						|
      (!(Dests.size() == 1 && numCmps >= 3) &&
 | 
						|
       !(Dests.size() == 2 && numCmps >= 5) &&
 | 
						|
       !(Dests.size() >= 3 && numCmps >= 6)))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  DOUT << "Emitting bit tests\n";
 | 
						|
  int64_t lowBound = 0;
 | 
						|
    
 | 
						|
  // Optimize the case where all the case values fit in a
 | 
						|
  // word without having to subtract minValue. In this case,
 | 
						|
  // we can optimize away the subtraction.
 | 
						|
  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
 | 
						|
      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
 | 
						|
    range = cast<ConstantInt>(maxValue)->getSExtValue();
 | 
						|
  } else {
 | 
						|
    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
 | 
						|
  }
 | 
						|
    
 | 
						|
  CaseBitsVector CasesBits;
 | 
						|
  unsigned i, count = 0;
 | 
						|
 | 
						|
  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | 
						|
    MachineBasicBlock* Dest = I->BB;
 | 
						|
    for (i = 0; i < count; ++i)
 | 
						|
      if (Dest == CasesBits[i].BB)
 | 
						|
        break;
 | 
						|
    
 | 
						|
    if (i == count) {
 | 
						|
      assert((count < 3) && "Too much destinations to test!");
 | 
						|
      CasesBits.push_back(CaseBits(0, Dest, 0));
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
    
 | 
						|
    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
 | 
						|
    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
 | 
						|
    
 | 
						|
    for (uint64_t j = lo; j <= hi; j++) {
 | 
						|
      CasesBits[i].Mask |=  1ULL << j;
 | 
						|
      CasesBits[i].Bits++;
 | 
						|
    }
 | 
						|
      
 | 
						|
  }
 | 
						|
  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
 | 
						|
  
 | 
						|
  SelectionDAGISel::BitTestInfo BTC;
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineFunction::iterator BBI = CR.CaseBB;
 | 
						|
  ++BBI;
 | 
						|
 | 
						|
  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | 
						|
 | 
						|
  DOUT << "Cases:\n";
 | 
						|
  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
 | 
						|
    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
 | 
						|
         << ", BB: " << CasesBits[i].BB << "\n";
 | 
						|
 | 
						|
    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
 | 
						|
    CurMF->getBasicBlockList().insert(BBI, CaseBB);
 | 
						|
    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
 | 
						|
                                                CaseBB,
 | 
						|
                                                CasesBits[i].BB));
 | 
						|
  }
 | 
						|
  
 | 
						|
  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
 | 
						|
                                     -1U, (CR.CaseBB == CurMBB),
 | 
						|
                                     CR.CaseBB, Default, BTC);
 | 
						|
 | 
						|
  if (CR.CaseBB == CurMBB)
 | 
						|
    visitBitTestHeader(BTB);
 | 
						|
  
 | 
						|
  BitTestCases.push_back(BTB);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Clusterify - Transform simple list of Cases into list of CaseRange's
 | 
						|
unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
 | 
						|
                                          const SwitchInst& SI) {
 | 
						|
  unsigned numCmps = 0;
 | 
						|
 | 
						|
  // Start with "simple" cases
 | 
						|
  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
 | 
						|
    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
 | 
						|
    Cases.push_back(Case(SI.getSuccessorValue(i),
 | 
						|
                         SI.getSuccessorValue(i),
 | 
						|
                         SMBB));
 | 
						|
  }
 | 
						|
  std::sort(Cases.begin(), Cases.end(), CaseCmp());
 | 
						|
 | 
						|
  // Merge case into clusters
 | 
						|
  if (Cases.size()>=2)
 | 
						|
    // Must recompute end() each iteration because it may be
 | 
						|
    // invalidated by erase if we hold on to it
 | 
						|
    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
 | 
						|
      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
 | 
						|
      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
 | 
						|
      MachineBasicBlock* nextBB = J->BB;
 | 
						|
      MachineBasicBlock* currentBB = I->BB;
 | 
						|
 | 
						|
      // If the two neighboring cases go to the same destination, merge them
 | 
						|
      // into a single case.
 | 
						|
      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
 | 
						|
        I->High = J->High;
 | 
						|
        J = Cases.erase(J);
 | 
						|
      } else {
 | 
						|
        I = J++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
 | 
						|
    if (I->Low != I->High)
 | 
						|
      // A range counts double, since it requires two compares.
 | 
						|
      ++numCmps;
 | 
						|
  }
 | 
						|
 | 
						|
  return numCmps;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {  
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
 | 
						|
  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
 | 
						|
 | 
						|
  // If there is only the default destination, branch to it if it is not the
 | 
						|
  // next basic block.  Otherwise, just fall through.
 | 
						|
  if (SI.getNumOperands() == 2) {
 | 
						|
    // Update machine-CFG edges.
 | 
						|
 | 
						|
    // If this is not a fall-through branch, emit the branch.
 | 
						|
    CurMBB->addSuccessor(Default);
 | 
						|
    if (Default != NextBlock)
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
 | 
						|
                              DAG.getBasicBlock(Default)));
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there are any non-default case statements, create a vector of Cases
 | 
						|
  // representing each one, and sort the vector so that we can efficiently
 | 
						|
  // create a binary search tree from them.
 | 
						|
  CaseVector Cases;
 | 
						|
  unsigned numCmps = Clusterify(Cases, SI);
 | 
						|
  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
 | 
						|
       << ". Total compares: " << numCmps << "\n";
 | 
						|
 | 
						|
  // Get the Value to be switched on and default basic blocks, which will be
 | 
						|
  // inserted into CaseBlock records, representing basic blocks in the binary
 | 
						|
  // search tree.
 | 
						|
  Value *SV = SI.getOperand(0);
 | 
						|
 | 
						|
  // Push the initial CaseRec onto the worklist
 | 
						|
  CaseRecVector WorkList;
 | 
						|
  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    // Grab a record representing a case range to process off the worklist
 | 
						|
    CaseRec CR = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the range has few cases (two or less) emit a series of specific
 | 
						|
    // tests.
 | 
						|
    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the switch has more than 5 blocks, and at least 40% dense, and the 
 | 
						|
    // target supports indirect branches, then emit a jump table rather than 
 | 
						|
    // lowering the switch to a binary tree of conditional branches.
 | 
						|
    if (handleJTSwitchCase(CR, WorkList, SV, Default))
 | 
						|
      continue;
 | 
						|
          
 | 
						|
    // Emit binary tree. We need to pick a pivot, and push left and right ranges
 | 
						|
    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
 | 
						|
    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSub(User &I) {
 | 
						|
  // -0.0 - X --> fneg
 | 
						|
  const Type *Ty = I.getType();
 | 
						|
  if (isa<VectorType>(Ty)) {
 | 
						|
    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
 | 
						|
      const VectorType *DestTy = cast<VectorType>(I.getType());
 | 
						|
      const Type *ElTy = DestTy->getElementType();
 | 
						|
      if (ElTy->isFloatingPoint()) {
 | 
						|
        unsigned VL = DestTy->getNumElements();
 | 
						|
        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
 | 
						|
        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
 | 
						|
        if (CV == CNZ) {
 | 
						|
          SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Ty->isFloatingPoint()) {
 | 
						|
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | 
						|
      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
 | 
						|
        SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  
 | 
						|
  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  
 | 
						|
  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
 | 
						|
    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
 | 
						|
  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
 | 
						|
    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
 | 
						|
  
 | 
						|
  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitICmp(User &I) {
 | 
						|
  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
 | 
						|
    predicate = IC->getPredicate();
 | 
						|
  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | 
						|
    predicate = ICmpInst::Predicate(IC->getPredicate());
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Opcode;
 | 
						|
  switch (predicate) {
 | 
						|
    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
 | 
						|
    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
 | 
						|
    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
 | 
						|
    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
 | 
						|
    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
 | 
						|
    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
 | 
						|
    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
 | 
						|
    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
 | 
						|
    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
 | 
						|
    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
 | 
						|
    default:
 | 
						|
      assert(!"Invalid ICmp predicate value");
 | 
						|
      Opcode = ISD::SETEQ;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFCmp(User &I) {
 | 
						|
  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | 
						|
  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
 | 
						|
    predicate = FC->getPredicate();
 | 
						|
  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | 
						|
    predicate = FCmpInst::Predicate(FC->getPredicate());
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Condition, FOC, FPC;
 | 
						|
  switch (predicate) {
 | 
						|
    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | 
						|
    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | 
						|
    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | 
						|
    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | 
						|
    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | 
						|
    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | 
						|
    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | 
						|
    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
 | 
						|
    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
 | 
						|
    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | 
						|
    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | 
						|
    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | 
						|
    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | 
						|
    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | 
						|
    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | 
						|
    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | 
						|
    default:
 | 
						|
      assert(!"Invalid FCmp predicate value");
 | 
						|
      FOC = FPC = ISD::SETFALSE;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (FiniteOnlyFPMath())
 | 
						|
    Condition = FOC;
 | 
						|
  else 
 | 
						|
    Condition = FPC;
 | 
						|
  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVICmp(User &I) {
 | 
						|
  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
 | 
						|
    predicate = IC->getPredicate();
 | 
						|
  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | 
						|
    predicate = ICmpInst::Predicate(IC->getPredicate());
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Opcode;
 | 
						|
  switch (predicate) {
 | 
						|
    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
 | 
						|
    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
 | 
						|
    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
 | 
						|
    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
 | 
						|
    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
 | 
						|
    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
 | 
						|
    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
 | 
						|
    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
 | 
						|
    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
 | 
						|
    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
 | 
						|
    default:
 | 
						|
      assert(!"Invalid ICmp predicate value");
 | 
						|
      Opcode = ISD::SETEQ;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVFCmp(User &I) {
 | 
						|
  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | 
						|
  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
 | 
						|
    predicate = FC->getPredicate();
 | 
						|
  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | 
						|
    predicate = FCmpInst::Predicate(FC->getPredicate());
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Condition, FOC, FPC;
 | 
						|
  switch (predicate) {
 | 
						|
    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | 
						|
    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | 
						|
    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | 
						|
    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | 
						|
    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | 
						|
    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | 
						|
    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | 
						|
    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
 | 
						|
    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
 | 
						|
    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | 
						|
    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | 
						|
    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | 
						|
    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | 
						|
    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | 
						|
    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | 
						|
    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | 
						|
    default:
 | 
						|
      assert(!"Invalid VFCmp predicate value");
 | 
						|
      FOC = FPC = ISD::SETFALSE;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (FiniteOnlyFPMath())
 | 
						|
    Condition = FOC;
 | 
						|
  else 
 | 
						|
    Condition = FPC;
 | 
						|
    
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
    
 | 
						|
  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSelect(User &I) {
 | 
						|
  SDOperand Cond     = getValue(I.getOperand(0));
 | 
						|
  SDOperand TrueVal  = getValue(I.getOperand(1));
 | 
						|
  SDOperand FalseVal = getValue(I.getOperand(2));
 | 
						|
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | 
						|
                           TrueVal, FalseVal));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitTrunc(User &I) {
 | 
						|
  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitZExt(User &I) {
 | 
						|
  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | 
						|
  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSExt(User &I) {
 | 
						|
  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | 
						|
  // SExt also can't be a cast to bool for same reason. So, nothing much to do
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFPTrunc(User &I) {
 | 
						|
  // FPTrunc is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFPExt(User &I){ 
 | 
						|
  // FPTrunc is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFPToUI(User &I) { 
 | 
						|
  // FPToUI is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFPToSI(User &I) {
 | 
						|
  // FPToSI is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitUIToFP(User &I) { 
 | 
						|
  // UIToFP is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSIToFP(User &I){ 
 | 
						|
  // UIToFP is never a no-op cast, no need to check
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitPtrToInt(User &I) {
 | 
						|
  // What to do depends on the size of the integer and the size of the pointer.
 | 
						|
  // We can either truncate, zero extend, or no-op, accordingly.
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT SrcVT = N.getValueType();
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  SDOperand Result;
 | 
						|
  if (DestVT.bitsLT(SrcVT))
 | 
						|
    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
 | 
						|
  else 
 | 
						|
    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
 | 
						|
    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
 | 
						|
  setValue(&I, Result);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitIntToPtr(User &I) {
 | 
						|
  // What to do depends on the size of the integer and the size of the pointer.
 | 
						|
  // We can either truncate, zero extend, or no-op, accordingly.
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT SrcVT = N.getValueType();
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
  if (DestVT.bitsLT(SrcVT))
 | 
						|
    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
 | 
						|
  else 
 | 
						|
    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
 | 
						|
    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBitCast(User &I) { 
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT DestVT = TLI.getValueType(I.getType());
 | 
						|
 | 
						|
  // BitCast assures us that source and destination are the same size so this 
 | 
						|
  // is either a BIT_CONVERT or a no-op.
 | 
						|
  if (DestVT != N.getValueType())
 | 
						|
    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
 | 
						|
  else
 | 
						|
    setValue(&I, N); // noop cast.
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitInsertElement(User &I) {
 | 
						|
  SDOperand InVec = getValue(I.getOperand(0));
 | 
						|
  SDOperand InVal = getValue(I.getOperand(1));
 | 
						|
  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | 
						|
                                getValue(I.getOperand(2)));
 | 
						|
 | 
						|
  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
 | 
						|
                           TLI.getValueType(I.getType()),
 | 
						|
                           InVec, InVal, InIdx));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitExtractElement(User &I) {
 | 
						|
  SDOperand InVec = getValue(I.getOperand(0));
 | 
						|
  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | 
						|
                                getValue(I.getOperand(1)));
 | 
						|
  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
 | 
						|
                           TLI.getValueType(I.getType()), InVec, InIdx));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitShuffleVector(User &I) {
 | 
						|
  SDOperand V1   = getValue(I.getOperand(0));
 | 
						|
  SDOperand V2   = getValue(I.getOperand(1));
 | 
						|
  SDOperand Mask = getValue(I.getOperand(2));
 | 
						|
 | 
						|
  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
 | 
						|
                           TLI.getValueType(I.getType()),
 | 
						|
                           V1, V2, Mask));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
 | 
						|
  const Value *Op0 = I.getOperand(0);
 | 
						|
  const Value *Op1 = I.getOperand(1);
 | 
						|
  const Type *AggTy = I.getType();
 | 
						|
  const Type *ValTy = Op1->getType();
 | 
						|
  bool IntoUndef = isa<UndefValue>(Op0);
 | 
						|
  bool FromUndef = isa<UndefValue>(Op1);
 | 
						|
 | 
						|
  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
 | 
						|
                                            I.idx_begin(), I.idx_end());
 | 
						|
 | 
						|
  SmallVector<MVT, 4> AggValueVTs;
 | 
						|
  ComputeValueVTs(TLI, AggTy, AggValueVTs);
 | 
						|
  SmallVector<MVT, 4> ValValueVTs;
 | 
						|
  ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | 
						|
 | 
						|
  unsigned NumAggValues = AggValueVTs.size();
 | 
						|
  unsigned NumValValues = ValValueVTs.size();
 | 
						|
  SmallVector<SDOperand, 4> Values(NumAggValues);
 | 
						|
 | 
						|
  SDOperand Agg = getValue(Op0);
 | 
						|
  SDOperand Val = getValue(Op1);
 | 
						|
  unsigned i = 0;
 | 
						|
  // Copy the beginning value(s) from the original aggregate.
 | 
						|
  for (; i != LinearIndex; ++i)
 | 
						|
    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
 | 
						|
                SDOperand(Agg.Val, Agg.ResNo + i);
 | 
						|
  // Copy values from the inserted value(s).
 | 
						|
  for (; i != LinearIndex + NumValValues; ++i)
 | 
						|
    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
 | 
						|
                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
 | 
						|
  // Copy remaining value(s) from the original aggregate.
 | 
						|
  for (; i != NumAggValues; ++i)
 | 
						|
    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
 | 
						|
                SDOperand(Agg.Val, Agg.ResNo + i);
 | 
						|
 | 
						|
  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
 | 
						|
                           &Values[0], NumAggValues));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
 | 
						|
  const Value *Op0 = I.getOperand(0);
 | 
						|
  const Type *AggTy = Op0->getType();
 | 
						|
  const Type *ValTy = I.getType();
 | 
						|
  bool OutOfUndef = isa<UndefValue>(Op0);
 | 
						|
 | 
						|
  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
 | 
						|
                                            I.idx_begin(), I.idx_end());
 | 
						|
 | 
						|
  SmallVector<MVT, 4> ValValueVTs;
 | 
						|
  ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | 
						|
 | 
						|
  unsigned NumValValues = ValValueVTs.size();
 | 
						|
  SmallVector<SDOperand, 4> Values(NumValValues);
 | 
						|
 | 
						|
  SDOperand Agg = getValue(Op0);
 | 
						|
  // Copy out the selected value(s).
 | 
						|
  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
 | 
						|
    Values[i - LinearIndex] =
 | 
						|
      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(i)) :
 | 
						|
                   SDOperand(Agg.Val, Agg.ResNo + i - LinearIndex);
 | 
						|
 | 
						|
  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                           DAG.getVTList(&ValValueVTs[0], NumValValues),
 | 
						|
                           &Values[0], NumValValues));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  const Type *Ty = I.getOperand(0)->getType();
 | 
						|
 | 
						|
  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | 
						|
       OI != E; ++OI) {
 | 
						|
    Value *Idx = *OI;
 | 
						|
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | 
						|
      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | 
						|
      if (Field) {
 | 
						|
        // N = N + Offset
 | 
						|
        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | 
						|
                        DAG.getIntPtrConstant(Offset));
 | 
						|
      }
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
 | 
						|
      // If this is a constant subscript, handle it quickly.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
        if (CI->getZExtValue() == 0) continue;
 | 
						|
        uint64_t Offs = 
 | 
						|
            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | 
						|
                        DAG.getIntPtrConstant(Offs));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // N = N + Idx * ElementSize;
 | 
						|
      uint64_t ElementSize = TD->getABITypeSize(Ty);
 | 
						|
      SDOperand IdxN = getValue(Idx);
 | 
						|
 | 
						|
      // If the index is smaller or larger than intptr_t, truncate or extend
 | 
						|
      // it.
 | 
						|
      if (IdxN.getValueType().bitsLT(N.getValueType())) {
 | 
						|
        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
 | 
						|
      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
 | 
						|
        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
 | 
						|
 | 
						|
      // If this is a multiply by a power of two, turn it into a shl
 | 
						|
      // immediately.  This is a very common case.
 | 
						|
      if (isPowerOf2_64(ElementSize)) {
 | 
						|
        unsigned Amt = Log2_64(ElementSize);
 | 
						|
        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
 | 
						|
                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
 | 
						|
      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | 
						|
      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  setValue(&I, N);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | 
						|
  // If this is a fixed sized alloca in the entry block of the function,
 | 
						|
  // allocate it statically on the stack.
 | 
						|
  if (FuncInfo.StaticAllocaMap.count(&I))
 | 
						|
    return;   // getValue will auto-populate this.
 | 
						|
 | 
						|
  const Type *Ty = I.getAllocatedType();
 | 
						|
  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
 | 
						|
  unsigned Align =
 | 
						|
    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | 
						|
             I.getAlignment());
 | 
						|
 | 
						|
  SDOperand AllocSize = getValue(I.getArraySize());
 | 
						|
  MVT IntPtr = TLI.getPointerTy();
 | 
						|
  if (IntPtr.bitsLT(AllocSize.getValueType()))
 | 
						|
    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
 | 
						|
  else if (IntPtr.bitsGT(AllocSize.getValueType()))
 | 
						|
    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
 | 
						|
 | 
						|
  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
 | 
						|
                          DAG.getIntPtrConstant(TySize));
 | 
						|
 | 
						|
  // Handle alignment.  If the requested alignment is less than or equal to
 | 
						|
  // the stack alignment, ignore it.  If the size is greater than or equal to
 | 
						|
  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
 | 
						|
  unsigned StackAlign =
 | 
						|
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | 
						|
  if (Align <= StackAlign)
 | 
						|
    Align = 0;
 | 
						|
 | 
						|
  // Round the size of the allocation up to the stack alignment size
 | 
						|
  // by add SA-1 to the size.
 | 
						|
  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | 
						|
                          DAG.getIntPtrConstant(StackAlign-1));
 | 
						|
  // Mask out the low bits for alignment purposes.
 | 
						|
  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | 
						|
                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | 
						|
 | 
						|
  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
 | 
						|
  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
 | 
						|
                                                    MVT::Other);
 | 
						|
  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
 | 
						|
  setValue(&I, DSA);
 | 
						|
  DAG.setRoot(DSA.getValue(1));
 | 
						|
 | 
						|
  // Inform the Frame Information that we have just allocated a variable-sized
 | 
						|
  // object.
 | 
						|
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | 
						|
  const Value *SV = I.getOperand(0);
 | 
						|
  SDOperand Ptr = getValue(SV);
 | 
						|
 | 
						|
  const Type *Ty = I.getType();
 | 
						|
  bool isVolatile = I.isVolatile();
 | 
						|
  unsigned Alignment = I.getAlignment();
 | 
						|
 | 
						|
  SmallVector<MVT, 4> ValueVTs;
 | 
						|
  SmallVector<uint64_t, 4> Offsets;
 | 
						|
  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
 | 
						|
  unsigned NumValues = ValueVTs.size();
 | 
						|
  if (NumValues == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  SDOperand Root;
 | 
						|
  if (I.isVolatile())
 | 
						|
    Root = getRoot();
 | 
						|
  else {
 | 
						|
    // Do not serialize non-volatile loads against each other.
 | 
						|
    Root = DAG.getRoot();
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SDOperand, 4> Values(NumValues);
 | 
						|
  SmallVector<SDOperand, 4> Chains(NumValues);
 | 
						|
  MVT PtrVT = Ptr.getValueType();
 | 
						|
  for (unsigned i = 0; i != NumValues; ++i) {
 | 
						|
    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
 | 
						|
                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
 | 
						|
                                          DAG.getConstant(Offsets[i], PtrVT)),
 | 
						|
                              SV, Offsets[i],
 | 
						|
                              isVolatile, Alignment);
 | 
						|
    Values[i] = L;
 | 
						|
    Chains[i] = L.getValue(1);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                                &Chains[0], NumValues);
 | 
						|
  if (isVolatile)
 | 
						|
    DAG.setRoot(Chain);
 | 
						|
  else
 | 
						|
    PendingLoads.push_back(Chain);
 | 
						|
 | 
						|
  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                           DAG.getVTList(&ValueVTs[0], NumValues),
 | 
						|
                           &Values[0], NumValues));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitStore(StoreInst &I) {
 | 
						|
  Value *SrcV = I.getOperand(0);
 | 
						|
  SDOperand Src = getValue(SrcV);
 | 
						|
  Value *PtrV = I.getOperand(1);
 | 
						|
  SDOperand Ptr = getValue(PtrV);
 | 
						|
 | 
						|
  SmallVector<MVT, 4> ValueVTs;
 | 
						|
  SmallVector<uint64_t, 4> Offsets;
 | 
						|
  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
 | 
						|
  unsigned NumValues = ValueVTs.size();
 | 
						|
  if (NumValues == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  SDOperand Root = getRoot();
 | 
						|
  SmallVector<SDOperand, 4> Chains(NumValues);
 | 
						|
  MVT PtrVT = Ptr.getValueType();
 | 
						|
  bool isVolatile = I.isVolatile();
 | 
						|
  unsigned Alignment = I.getAlignment();
 | 
						|
  for (unsigned i = 0; i != NumValues; ++i)
 | 
						|
    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
 | 
						|
                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
 | 
						|
                                         DAG.getConstant(Offsets[i], PtrVT)),
 | 
						|
                             PtrV, Offsets[i],
 | 
						|
                             isVolatile, Alignment);
 | 
						|
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
 | 
						|
}
 | 
						|
 | 
						|
/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | 
						|
/// node.
 | 
						|
void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, 
 | 
						|
                                                unsigned Intrinsic) {
 | 
						|
  bool HasChain = !I.doesNotAccessMemory();
 | 
						|
  bool OnlyLoad = HasChain && I.onlyReadsMemory();
 | 
						|
 | 
						|
  // Build the operand list.
 | 
						|
  SmallVector<SDOperand, 8> Ops;
 | 
						|
  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | 
						|
    if (OnlyLoad) {
 | 
						|
      // We don't need to serialize loads against other loads.
 | 
						|
      Ops.push_back(DAG.getRoot());
 | 
						|
    } else { 
 | 
						|
      Ops.push_back(getRoot());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add the intrinsic ID as an integer operand.
 | 
						|
  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
 | 
						|
 | 
						|
  // Add all operands of the call to the operand list.
 | 
						|
  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    SDOperand Op = getValue(I.getOperand(i));
 | 
						|
    assert(TLI.isTypeLegal(Op.getValueType()) &&
 | 
						|
           "Intrinsic uses a non-legal type?");
 | 
						|
    Ops.push_back(Op);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<MVT> VTs;
 | 
						|
  if (I.getType() != Type::VoidTy) {
 | 
						|
    MVT VT = TLI.getValueType(I.getType());
 | 
						|
    if (VT.isVector()) {
 | 
						|
      const VectorType *DestTy = cast<VectorType>(I.getType());
 | 
						|
      MVT EltVT = TLI.getValueType(DestTy->getElementType());
 | 
						|
      
 | 
						|
      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
 | 
						|
      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
 | 
						|
    VTs.push_back(VT);
 | 
						|
  }
 | 
						|
  if (HasChain)
 | 
						|
    VTs.push_back(MVT::Other);
 | 
						|
 | 
						|
  const MVT *VTList = DAG.getNodeValueTypes(VTs);
 | 
						|
 | 
						|
  // Create the node.
 | 
						|
  SDOperand Result;
 | 
						|
  if (!HasChain)
 | 
						|
    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
 | 
						|
                         &Ops[0], Ops.size());
 | 
						|
  else if (I.getType() != Type::VoidTy)
 | 
						|
    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
 | 
						|
                         &Ops[0], Ops.size());
 | 
						|
  else
 | 
						|
    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
 | 
						|
                         &Ops[0], Ops.size());
 | 
						|
 | 
						|
  if (HasChain) {
 | 
						|
    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
 | 
						|
    if (OnlyLoad)
 | 
						|
      PendingLoads.push_back(Chain);
 | 
						|
    else
 | 
						|
      DAG.setRoot(Chain);
 | 
						|
  }
 | 
						|
  if (I.getType() != Type::VoidTy) {
 | 
						|
    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
 | 
						|
      MVT VT = TLI.getValueType(PTy);
 | 
						|
      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
 | 
						|
    } 
 | 
						|
    setValue(&I, Result);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | 
						|
static GlobalVariable *ExtractTypeInfo (Value *V) {
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | 
						|
  assert ((GV || isa<ConstantPointerNull>(V)) &&
 | 
						|
          "TypeInfo must be a global variable or NULL");
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// addCatchInfo - Extract the personality and type infos from an eh.selector
 | 
						|
/// call, and add them to the specified machine basic block.
 | 
						|
static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
 | 
						|
                         MachineBasicBlock *MBB) {
 | 
						|
  // Inform the MachineModuleInfo of the personality for this landing pad.
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
 | 
						|
  assert(CE->getOpcode() == Instruction::BitCast &&
 | 
						|
         isa<Function>(CE->getOperand(0)) &&
 | 
						|
         "Personality should be a function");
 | 
						|
  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
 | 
						|
 | 
						|
  // Gather all the type infos for this landing pad and pass them along to
 | 
						|
  // MachineModuleInfo.
 | 
						|
  std::vector<GlobalVariable *> TyInfo;
 | 
						|
  unsigned N = I.getNumOperands();
 | 
						|
 | 
						|
  for (unsigned i = N - 1; i > 2; --i) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
 | 
						|
      unsigned FilterLength = CI->getZExtValue();
 | 
						|
      unsigned FirstCatch = i + FilterLength + !FilterLength;
 | 
						|
      assert (FirstCatch <= N && "Invalid filter length");
 | 
						|
 | 
						|
      if (FirstCatch < N) {
 | 
						|
        TyInfo.reserve(N - FirstCatch);
 | 
						|
        for (unsigned j = FirstCatch; j < N; ++j)
 | 
						|
          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
        MMI->addCatchTypeInfo(MBB, TyInfo);
 | 
						|
        TyInfo.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      if (!FilterLength) {
 | 
						|
        // Cleanup.
 | 
						|
        MMI->addCleanup(MBB);
 | 
						|
      } else {
 | 
						|
        // Filter.
 | 
						|
        TyInfo.reserve(FilterLength - 1);
 | 
						|
        for (unsigned j = i + 1; j < FirstCatch; ++j)
 | 
						|
          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
        MMI->addFilterTypeInfo(MBB, TyInfo);
 | 
						|
        TyInfo.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      N = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N > 3) {
 | 
						|
    TyInfo.reserve(N - 3);
 | 
						|
    for (unsigned j = 3; j < N; ++j)
 | 
						|
      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
    MMI->addCatchTypeInfo(MBB, TyInfo);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Inlined utility function to implement binary input atomic intrinsics for 
 | 
						|
// visitIntrinsicCall: I is a call instruction
 | 
						|
//                     Op is the associated NodeType for I
 | 
						|
const char *
 | 
						|
SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
 | 
						|
  SDOperand Root = getRoot();   
 | 
						|
  SDOperand O2 = getValue(I.getOperand(2));
 | 
						|
  SDOperand L = DAG.getAtomic(Op, Root, 
 | 
						|
                              getValue(I.getOperand(1)), 
 | 
						|
                              O2, O2.getValueType());
 | 
						|
  setValue(&I, L);
 | 
						|
  DAG.setRoot(L.getValue(1));
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | 
						|
/// we want to emit this as a call to a named external function, return the name
 | 
						|
/// otherwise lower it and return null.
 | 
						|
const char *
 | 
						|
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  default:
 | 
						|
    // By default, turn this into a target intrinsic node.
 | 
						|
    visitTargetIntrinsic(I, Intrinsic);
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::vastart:  visitVAStart(I); return 0;
 | 
						|
  case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | 
						|
  case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | 
						|
  case Intrinsic::returnaddress:
 | 
						|
    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::frameaddress:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::setjmp:
 | 
						|
    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
 | 
						|
    break;
 | 
						|
  case Intrinsic::longjmp:
 | 
						|
    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
 | 
						|
    break;
 | 
						|
  case Intrinsic::memcpy_i32:
 | 
						|
  case Intrinsic::memcpy_i64: {
 | 
						|
    SDOperand Op1 = getValue(I.getOperand(1));
 | 
						|
    SDOperand Op2 = getValue(I.getOperand(2));
 | 
						|
    SDOperand Op3 = getValue(I.getOperand(3));
 | 
						|
    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | 
						|
    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
 | 
						|
                              I.getOperand(1), 0, I.getOperand(2), 0));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::memset_i32:
 | 
						|
  case Intrinsic::memset_i64: {
 | 
						|
    SDOperand Op1 = getValue(I.getOperand(1));
 | 
						|
    SDOperand Op2 = getValue(I.getOperand(2));
 | 
						|
    SDOperand Op3 = getValue(I.getOperand(3));
 | 
						|
    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | 
						|
    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
 | 
						|
                              I.getOperand(1), 0));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::memmove_i32:
 | 
						|
  case Intrinsic::memmove_i64: {
 | 
						|
    SDOperand Op1 = getValue(I.getOperand(1));
 | 
						|
    SDOperand Op2 = getValue(I.getOperand(2));
 | 
						|
    SDOperand Op3 = getValue(I.getOperand(3));
 | 
						|
    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
 | 
						|
 | 
						|
    // If the source and destination are known to not be aliases, we can
 | 
						|
    // lower memmove as memcpy.
 | 
						|
    uint64_t Size = -1ULL;
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
 | 
						|
      Size = C->getValue();
 | 
						|
    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
 | 
						|
        AliasAnalysis::NoAlias) {
 | 
						|
      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
 | 
						|
                                I.getOperand(1), 0, I.getOperand(2), 0));
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
 | 
						|
                               I.getOperand(1), 0, I.getOperand(2), 0));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_stoppoint: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
 | 
						|
    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
 | 
						|
      SDOperand Ops[5];
 | 
						|
 | 
						|
      Ops[0] = getRoot();
 | 
						|
      Ops[1] = getValue(SPI.getLineValue());
 | 
						|
      Ops[2] = getValue(SPI.getColumnValue());
 | 
						|
 | 
						|
      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
 | 
						|
      assert(DD && "Not a debug information descriptor");
 | 
						|
      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
 | 
						|
      
 | 
						|
      Ops[3] = DAG.getString(CompileUnit->getFileName());
 | 
						|
      Ops[4] = DAG.getString(CompileUnit->getDirectory());
 | 
						|
      
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_region_start: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
 | 
						|
    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
 | 
						|
      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | 
						|
                              DAG.getConstant(LabelID, MVT::i32),
 | 
						|
                              DAG.getConstant(0, MVT::i32)));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_region_end: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
 | 
						|
    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
 | 
						|
      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | 
						|
                              DAG.getConstant(LabelID, MVT::i32),
 | 
						|
                              DAG.getConstant(0, MVT::i32)));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_func_start: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    if (!MMI) return 0;
 | 
						|
    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
 | 
						|
    Value *SP = FSI.getSubprogram();
 | 
						|
    if (SP && MMI->Verify(SP)) {
 | 
						|
      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
 | 
						|
      // what (most?) gdb expects.
 | 
						|
      DebugInfoDesc *DD = MMI->getDescFor(SP);
 | 
						|
      assert(DD && "Not a debug information descriptor");
 | 
						|
      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
 | 
						|
      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
 | 
						|
      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
 | 
						|
                                           CompileUnit->getFileName());
 | 
						|
      // Record the source line but does create a label. It will be emitted
 | 
						|
      // at asm emission time.
 | 
						|
      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_declare: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
 | 
						|
    Value *Variable = DI.getVariable();
 | 
						|
    if (MMI && Variable && MMI->Verify(Variable))
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
 | 
						|
                              getValue(DI.getAddress()), getValue(Variable)));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case Intrinsic::eh_exception: {
 | 
						|
    if (!CurMBB->isLandingPad()) {
 | 
						|
      // FIXME: Mark exception register as live in.  Hack for PR1508.
 | 
						|
      unsigned Reg = TLI.getExceptionAddressRegister();
 | 
						|
      if (Reg) CurMBB->addLiveIn(Reg);
 | 
						|
    }
 | 
						|
    // Insert the EXCEPTIONADDR instruction.
 | 
						|
    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
 | 
						|
    SDOperand Ops[1];
 | 
						|
    Ops[0] = DAG.getRoot();
 | 
						|
    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
 | 
						|
    setValue(&I, Op);
 | 
						|
    DAG.setRoot(Op.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::eh_selector_i32:
 | 
						|
  case Intrinsic::eh_selector_i64: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
 | 
						|
                         MVT::i32 : MVT::i64);
 | 
						|
    
 | 
						|
    if (MMI) {
 | 
						|
      if (CurMBB->isLandingPad())
 | 
						|
        addCatchInfo(I, MMI, CurMBB);
 | 
						|
      else {
 | 
						|
#ifndef NDEBUG
 | 
						|
        FuncInfo.CatchInfoLost.insert(&I);
 | 
						|
#endif
 | 
						|
        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
 | 
						|
        unsigned Reg = TLI.getExceptionSelectorRegister();
 | 
						|
        if (Reg) CurMBB->addLiveIn(Reg);
 | 
						|
      }
 | 
						|
 | 
						|
      // Insert the EHSELECTION instruction.
 | 
						|
      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
 | 
						|
      SDOperand Ops[2];
 | 
						|
      Ops[0] = getValue(I.getOperand(1));
 | 
						|
      Ops[1] = getRoot();
 | 
						|
      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
 | 
						|
      setValue(&I, Op);
 | 
						|
      DAG.setRoot(Op.getValue(1));
 | 
						|
    } else {
 | 
						|
      setValue(&I, DAG.getConstant(0, VT));
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::eh_typeid_for_i32:
 | 
						|
  case Intrinsic::eh_typeid_for_i64: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
 | 
						|
                         MVT::i32 : MVT::i64);
 | 
						|
    
 | 
						|
    if (MMI) {
 | 
						|
      // Find the type id for the given typeinfo.
 | 
						|
      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
 | 
						|
 | 
						|
      unsigned TypeID = MMI->getTypeIDFor(GV);
 | 
						|
      setValue(&I, DAG.getConstant(TypeID, VT));
 | 
						|
    } else {
 | 
						|
      // Return something different to eh_selector.
 | 
						|
      setValue(&I, DAG.getConstant(1, VT));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::eh_return: {
 | 
						|
    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
 | 
						|
    if (MMI) {
 | 
						|
      MMI->setCallsEHReturn(true);
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
 | 
						|
                              MVT::Other,
 | 
						|
                              getControlRoot(),
 | 
						|
                              getValue(I.getOperand(1)),
 | 
						|
                              getValue(I.getOperand(2))));
 | 
						|
    } else {
 | 
						|
      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
   case Intrinsic::eh_unwind_init: {    
 | 
						|
     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
 | 
						|
       MMI->setCallsUnwindInit(true);
 | 
						|
     }
 | 
						|
 | 
						|
     return 0;
 | 
						|
   }
 | 
						|
 | 
						|
   case Intrinsic::eh_dwarf_cfa: {
 | 
						|
     MVT VT = getValue(I.getOperand(1)).getValueType();
 | 
						|
     SDOperand CfaArg;
 | 
						|
     if (VT.bitsGT(TLI.getPointerTy()))
 | 
						|
       CfaArg = DAG.getNode(ISD::TRUNCATE,
 | 
						|
                            TLI.getPointerTy(), getValue(I.getOperand(1)));
 | 
						|
     else
 | 
						|
       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
 | 
						|
                            TLI.getPointerTy(), getValue(I.getOperand(1)));
 | 
						|
 | 
						|
     SDOperand Offset = DAG.getNode(ISD::ADD,
 | 
						|
                                    TLI.getPointerTy(),
 | 
						|
                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
 | 
						|
                                                TLI.getPointerTy()),
 | 
						|
                                    CfaArg);
 | 
						|
     setValue(&I, DAG.getNode(ISD::ADD,
 | 
						|
                              TLI.getPointerTy(),
 | 
						|
                              DAG.getNode(ISD::FRAMEADDR,
 | 
						|
                                          TLI.getPointerTy(),
 | 
						|
                                          DAG.getConstant(0,
 | 
						|
                                                          TLI.getPointerTy())),
 | 
						|
                              Offset));
 | 
						|
     return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FSQRT,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::powi:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FPOWI,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1)),
 | 
						|
                             getValue(I.getOperand(2))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::sin:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FSIN,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::cos:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FCOS,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::pow:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FPOW,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1)),
 | 
						|
                             getValue(I.getOperand(2))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::pcmarker: {
 | 
						|
    SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::readcyclecounter: {
 | 
						|
    SDOperand Op = getRoot();
 | 
						|
    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
 | 
						|
                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
 | 
						|
                                &Op, 1);
 | 
						|
    setValue(&I, Tmp);
 | 
						|
    DAG.setRoot(Tmp.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::part_select: {
 | 
						|
    // Currently not implemented: just abort
 | 
						|
    assert(0 && "part_select intrinsic not implemented");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  case Intrinsic::part_set: {
 | 
						|
    // Currently not implemented: just abort
 | 
						|
    assert(0 && "part_set intrinsic not implemented");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  case Intrinsic::bswap:
 | 
						|
    setValue(&I, DAG.getNode(ISD::BSWAP,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::cttz: {
 | 
						|
    SDOperand Arg = getValue(I.getOperand(1));
 | 
						|
    MVT Ty = Arg.getValueType();
 | 
						|
    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
 | 
						|
    setValue(&I, result);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::ctlz: {
 | 
						|
    SDOperand Arg = getValue(I.getOperand(1));
 | 
						|
    MVT Ty = Arg.getValueType();
 | 
						|
    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
 | 
						|
    setValue(&I, result);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::ctpop: {
 | 
						|
    SDOperand Arg = getValue(I.getOperand(1));
 | 
						|
    MVT Ty = Arg.getValueType();
 | 
						|
    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
 | 
						|
    setValue(&I, result);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::stacksave: {
 | 
						|
    SDOperand Op = getRoot();
 | 
						|
    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
 | 
						|
              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
 | 
						|
    setValue(&I, Tmp);
 | 
						|
    DAG.setRoot(Tmp.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::stackrestore: {
 | 
						|
    SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::var_annotation:
 | 
						|
    // Discard annotate attributes
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Intrinsic::init_trampoline: {
 | 
						|
    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
 | 
						|
 | 
						|
    SDOperand Ops[6];
 | 
						|
    Ops[0] = getRoot();
 | 
						|
    Ops[1] = getValue(I.getOperand(1));
 | 
						|
    Ops[2] = getValue(I.getOperand(2));
 | 
						|
    Ops[3] = getValue(I.getOperand(3));
 | 
						|
    Ops[4] = DAG.getSrcValue(I.getOperand(1));
 | 
						|
    Ops[5] = DAG.getSrcValue(F);
 | 
						|
 | 
						|
    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
 | 
						|
                                DAG.getNodeValueTypes(TLI.getPointerTy(),
 | 
						|
                                                      MVT::Other), 2,
 | 
						|
                                Ops, 6);
 | 
						|
 | 
						|
    setValue(&I, Tmp);
 | 
						|
    DAG.setRoot(Tmp.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::gcroot:
 | 
						|
    if (GCI) {
 | 
						|
      Value *Alloca = I.getOperand(1);
 | 
						|
      Constant *TypeMap = cast<Constant>(I.getOperand(2));
 | 
						|
      
 | 
						|
      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
 | 
						|
      GCI->addStackRoot(FI->getIndex(), TypeMap);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Intrinsic::gcread:
 | 
						|
  case Intrinsic::gcwrite:
 | 
						|
    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Intrinsic::flt_rounds: {
 | 
						|
    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::trap: {
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::prefetch: {
 | 
						|
    SDOperand Ops[4];
 | 
						|
    Ops[0] = getRoot();
 | 
						|
    Ops[1] = getValue(I.getOperand(1));
 | 
						|
    Ops[2] = getValue(I.getOperand(2));
 | 
						|
    Ops[3] = getValue(I.getOperand(3));
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  case Intrinsic::memory_barrier: {
 | 
						|
    SDOperand Ops[6];
 | 
						|
    Ops[0] = getRoot();
 | 
						|
    for (int x = 1; x < 6; ++x)
 | 
						|
      Ops[x] = getValue(I.getOperand(x));
 | 
						|
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::atomic_lcs: {
 | 
						|
    SDOperand Root = getRoot();   
 | 
						|
    SDOperand O3 = getValue(I.getOperand(3));
 | 
						|
    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root, 
 | 
						|
                                getValue(I.getOperand(1)), 
 | 
						|
                                getValue(I.getOperand(2)),
 | 
						|
                                O3, O3.getValueType());
 | 
						|
    setValue(&I, L);
 | 
						|
    DAG.setRoot(L.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::atomic_las:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LAS);
 | 
						|
  case Intrinsic::atomic_lss:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LSS);
 | 
						|
  case Intrinsic::atomic_load_and:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
 | 
						|
  case Intrinsic::atomic_load_or:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
 | 
						|
  case Intrinsic::atomic_load_xor:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
 | 
						|
  case Intrinsic::atomic_load_nand:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
 | 
						|
  case Intrinsic::atomic_load_min:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
 | 
						|
  case Intrinsic::atomic_load_max:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
 | 
						|
  case Intrinsic::atomic_load_umin:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
 | 
						|
  case Intrinsic::atomic_load_umax:
 | 
						|
      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);                                              
 | 
						|
  case Intrinsic::atomic_swap:
 | 
						|
    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
 | 
						|
                                       bool IsTailCall,
 | 
						|
                                       MachineBasicBlock *LandingPad) {
 | 
						|
  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | 
						|
  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
  unsigned BeginLabel = 0, EndLabel = 0;
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
  Args.reserve(CS.arg_size());
 | 
						|
  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    SDOperand ArgNode = getValue(*i);
 | 
						|
    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
 | 
						|
 | 
						|
    unsigned attrInd = i - CS.arg_begin() + 1;
 | 
						|
    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
 | 
						|
    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
 | 
						|
    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
 | 
						|
    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
 | 
						|
    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
 | 
						|
    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
 | 
						|
    Entry.Alignment = CS.getParamAlignment(attrInd);
 | 
						|
    Args.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LandingPad && MMI) {
 | 
						|
    // Insert a label before the invoke call to mark the try range.  This can be
 | 
						|
    // used to detect deletion of the invoke via the MachineModuleInfo.
 | 
						|
    BeginLabel = MMI->NextLabelID();
 | 
						|
    // Both PendingLoads and PendingExports must be flushed here;
 | 
						|
    // this call might not return.
 | 
						|
    (void)getRoot();
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
 | 
						|
                            DAG.getConstant(BeginLabel, MVT::i32),
 | 
						|
                            DAG.getConstant(1, MVT::i32)));
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), CS.getType(),
 | 
						|
                    CS.paramHasAttr(0, ParamAttr::SExt),
 | 
						|
                    CS.paramHasAttr(0, ParamAttr::ZExt),
 | 
						|
                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
 | 
						|
                    Callee, Args, DAG);
 | 
						|
  if (CS.getType() != Type::VoidTy)
 | 
						|
    setValue(CS.getInstruction(), Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
 | 
						|
  if (LandingPad && MMI) {
 | 
						|
    // Insert a label at the end of the invoke call to mark the try range.  This
 | 
						|
    // can be used to detect deletion of the invoke via the MachineModuleInfo.
 | 
						|
    EndLabel = MMI->NextLabelID();
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | 
						|
                            DAG.getConstant(EndLabel, MVT::i32),
 | 
						|
                            DAG.getConstant(1, MVT::i32)));
 | 
						|
 | 
						|
    // Inform MachineModuleInfo of range.
 | 
						|
    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitCall(CallInst &I) {
 | 
						|
  const char *RenameFn = 0;
 | 
						|
  if (Function *F = I.getCalledFunction()) {
 | 
						|
    if (F->isDeclaration()) {
 | 
						|
      if (unsigned IID = F->getIntrinsicID()) {
 | 
						|
        RenameFn = visitIntrinsicCall(I, IID);
 | 
						|
        if (!RenameFn)
 | 
						|
          return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for well-known libc/libm calls.  If the function is internal, it
 | 
						|
    // can't be a library call.
 | 
						|
    unsigned NameLen = F->getNameLen();
 | 
						|
    if (!F->hasInternalLinkage() && NameLen) {
 | 
						|
      const char *NameStr = F->getNameStart();
 | 
						|
      if (NameStr[0] == 'c' &&
 | 
						|
          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
 | 
						|
           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
 | 
						|
        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
 | 
						|
            I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
            I.getType() == I.getOperand(1)->getType() &&
 | 
						|
            I.getType() == I.getOperand(2)->getType()) {
 | 
						|
          SDOperand LHS = getValue(I.getOperand(1));
 | 
						|
          SDOperand RHS = getValue(I.getOperand(2));
 | 
						|
          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
 | 
						|
                                   LHS, RHS));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else if (NameStr[0] == 'f' &&
 | 
						|
                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
 | 
						|
                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
 | 
						|
                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
 | 
						|
        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
            I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
            I.getType() == I.getOperand(1)->getType()) {
 | 
						|
          SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else if (NameStr[0] == 's' && 
 | 
						|
                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
 | 
						|
                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
 | 
						|
                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
 | 
						|
        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
            I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
            I.getType() == I.getOperand(1)->getType()) {
 | 
						|
          SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else if (NameStr[0] == 'c' &&
 | 
						|
                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
 | 
						|
                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
 | 
						|
                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
 | 
						|
        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
            I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
            I.getType() == I.getOperand(1)->getType()) {
 | 
						|
          SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<InlineAsm>(I.getOperand(0))) {
 | 
						|
    visitInlineAsm(&I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand Callee;
 | 
						|
  if (!RenameFn)
 | 
						|
    Callee = getValue(I.getOperand(0));
 | 
						|
  else
 | 
						|
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | 
						|
 | 
						|
  LowerCallTo(&I, Callee, I.isTailCall());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
 | 
						|
  if (isa<UndefValue>(I.getOperand(0))) {
 | 
						|
    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
 | 
						|
    setValue(&I, Undef);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // To add support for individual return values with aggregate types,
 | 
						|
  // we'd need a way to take a getresult index and determine which
 | 
						|
  // values of the Call SDNode are associated with it.
 | 
						|
  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
 | 
						|
         "Individual return values must not be aggregates!");
 | 
						|
 | 
						|
  SDOperand Call = getValue(I.getOperand(0));
 | 
						|
  setValue(&I, SDOperand(Call.Val, I.getIndex()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | 
						|
/// this value and returns the result as a ValueVT value.  This uses 
 | 
						|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
/// If the Flag pointer is NULL, no flag is used.
 | 
						|
SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 
 | 
						|
                                        SDOperand &Chain,
 | 
						|
                                        SDOperand *Flag) const {
 | 
						|
  // Assemble the legal parts into the final values.
 | 
						|
  SmallVector<SDOperand, 4> Values(ValueVTs.size());
 | 
						|
  SmallVector<SDOperand, 8> Parts;
 | 
						|
  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    // Copy the legal parts from the registers.
 | 
						|
    MVT ValueVT = ValueVTs[Value];
 | 
						|
    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
 | 
						|
    MVT RegisterVT = RegVTs[Value];
 | 
						|
 | 
						|
    Parts.resize(NumRegs);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      SDOperand P;
 | 
						|
      if (Flag == 0)
 | 
						|
        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
 | 
						|
      else {
 | 
						|
        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
 | 
						|
        *Flag = P.getValue(2);
 | 
						|
      }
 | 
						|
      Chain = P.getValue(1);
 | 
						|
      
 | 
						|
      // If the source register was virtual and if we know something about it,
 | 
						|
      // add an assert node.
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
 | 
						|
          RegisterVT.isInteger() && !RegisterVT.isVector()) {
 | 
						|
        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
 | 
						|
        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
 | 
						|
        if (FLI.LiveOutRegInfo.size() > SlotNo) {
 | 
						|
          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
 | 
						|
          
 | 
						|
          unsigned RegSize = RegisterVT.getSizeInBits();
 | 
						|
          unsigned NumSignBits = LOI.NumSignBits;
 | 
						|
          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
 | 
						|
          
 | 
						|
          // FIXME: We capture more information than the dag can represent.  For
 | 
						|
          // now, just use the tightest assertzext/assertsext possible.
 | 
						|
          bool isSExt = true;
 | 
						|
          MVT FromVT(MVT::Other);
 | 
						|
          if (NumSignBits == RegSize)
 | 
						|
            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
 | 
						|
          else if (NumZeroBits >= RegSize-1)
 | 
						|
            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
 | 
						|
          else if (NumSignBits > RegSize-8)
 | 
						|
            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
 | 
						|
          else if (NumZeroBits >= RegSize-9)
 | 
						|
            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
 | 
						|
          else if (NumSignBits > RegSize-16)
 | 
						|
            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
 | 
						|
          else if (NumZeroBits >= RegSize-17)
 | 
						|
            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
 | 
						|
          else if (NumSignBits > RegSize-32)
 | 
						|
            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
 | 
						|
          else if (NumZeroBits >= RegSize-33)
 | 
						|
            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
 | 
						|
          
 | 
						|
          if (FromVT != MVT::Other) {
 | 
						|
            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
 | 
						|
                            RegisterVT, P, DAG.getValueType(FromVT));
 | 
						|
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      Parts[Part+i] = P;
 | 
						|
    }
 | 
						|
  
 | 
						|
    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
 | 
						|
                                     ValueVT);
 | 
						|
    Part += NumRegs;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ValueVTs.size() == 1)
 | 
						|
    return Values[0];
 | 
						|
    
 | 
						|
  return DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
 | 
						|
                     &Values[0], ValueVTs.size());
 | 
						|
}
 | 
						|
 | 
						|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | 
						|
/// specified value into the registers specified by this object.  This uses 
 | 
						|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
/// If the Flag pointer is NULL, no flag is used.
 | 
						|
void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | 
						|
                                 SDOperand &Chain, SDOperand *Flag) const {
 | 
						|
  // Get the list of the values's legal parts.
 | 
						|
  unsigned NumRegs = Regs.size();
 | 
						|
  SmallVector<SDOperand, 8> Parts(NumRegs);
 | 
						|
  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    MVT ValueVT = ValueVTs[Value];
 | 
						|
    unsigned NumParts = TLI->getNumRegisters(ValueVT);
 | 
						|
    MVT RegisterVT = RegVTs[Value];
 | 
						|
 | 
						|
    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
 | 
						|
                   &Parts[Part], NumParts, RegisterVT);
 | 
						|
    Part += NumParts;
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the parts into the registers.
 | 
						|
  SmallVector<SDOperand, 8> Chains(NumRegs);
 | 
						|
  for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
    SDOperand Part;
 | 
						|
    if (Flag == 0)
 | 
						|
      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
 | 
						|
    else {
 | 
						|
      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
 | 
						|
      *Flag = Part.getValue(1);
 | 
						|
    }
 | 
						|
    Chains[i] = Part.getValue(0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (NumRegs == 1 || Flag)
 | 
						|
    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 
 | 
						|
    // flagged to it. That is the CopyToReg nodes and the user are considered
 | 
						|
    // a single scheduling unit. If we create a TokenFactor and return it as
 | 
						|
    // chain, then the TokenFactor is both a predecessor (operand) of the
 | 
						|
    // user as well as a successor (the TF operands are flagged to the user).
 | 
						|
    // c1, f1 = CopyToReg
 | 
						|
    // c2, f2 = CopyToReg
 | 
						|
    // c3     = TokenFactor c1, c2
 | 
						|
    // ...
 | 
						|
    //        = op c3, ..., f2
 | 
						|
    Chain = Chains[NumRegs-1];
 | 
						|
  else
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
 | 
						|
}
 | 
						|
 | 
						|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | 
						|
/// operand list.  This adds the code marker and includes the number of 
 | 
						|
/// values added into it.
 | 
						|
void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | 
						|
                                        std::vector<SDOperand> &Ops) const {
 | 
						|
  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
 | 
						|
  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
 | 
						|
    MVT RegisterVT = RegVTs[Value];
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i)
 | 
						|
      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isAllocatableRegister - If the specified register is safe to allocate, 
 | 
						|
/// i.e. it isn't a stack pointer or some other special register, return the
 | 
						|
/// register class for the register.  Otherwise, return null.
 | 
						|
static const TargetRegisterClass *
 | 
						|
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
 | 
						|
                      const TargetLowering &TLI,
 | 
						|
                      const TargetRegisterInfo *TRI) {
 | 
						|
  MVT FoundVT = MVT::Other;
 | 
						|
  const TargetRegisterClass *FoundRC = 0;
 | 
						|
  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
 | 
						|
       E = TRI->regclass_end(); RCI != E; ++RCI) {
 | 
						|
    MVT ThisVT = MVT::Other;
 | 
						|
 | 
						|
    const TargetRegisterClass *RC = *RCI;
 | 
						|
    // If none of the the value types for this register class are valid, we 
 | 
						|
    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | 
						|
    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (TLI.isTypeLegal(*I)) {
 | 
						|
        // If we have already found this register in a different register class,
 | 
						|
        // choose the one with the largest VT specified.  For example, on
 | 
						|
        // PowerPC, we favor f64 register classes over f32.
 | 
						|
        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
 | 
						|
          ThisVT = *I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ThisVT == MVT::Other) continue;
 | 
						|
    
 | 
						|
    // NOTE: This isn't ideal.  In particular, this might allocate the
 | 
						|
    // frame pointer in functions that need it (due to them not being taken
 | 
						|
    // out of allocation, because a variable sized allocation hasn't been seen
 | 
						|
    // yet).  This is a slight code pessimization, but should still work.
 | 
						|
    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
 | 
						|
         E = RC->allocation_order_end(MF); I != E; ++I)
 | 
						|
      if (*I == Reg) {
 | 
						|
        // We found a matching register class.  Keep looking at others in case
 | 
						|
        // we find one with larger registers that this physreg is also in.
 | 
						|
        FoundRC = RC;
 | 
						|
        FoundVT = ThisVT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return FoundRC;
 | 
						|
}    
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
/// AsmOperandInfo - This contains information for each constraint that we are
 | 
						|
/// lowering.
 | 
						|
struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
 | 
						|
  /// CallOperand - If this is the result output operand or a clobber
 | 
						|
  /// this is null, otherwise it is the incoming operand to the CallInst.
 | 
						|
  /// This gets modified as the asm is processed.
 | 
						|
  SDOperand CallOperand;
 | 
						|
 | 
						|
  /// AssignedRegs - If this is a register or register class operand, this
 | 
						|
  /// contains the set of register corresponding to the operand.
 | 
						|
  RegsForValue AssignedRegs;
 | 
						|
  
 | 
						|
  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
 | 
						|
    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
 | 
						|
  /// busy in OutputRegs/InputRegs.
 | 
						|
  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
 | 
						|
                         std::set<unsigned> &OutputRegs, 
 | 
						|
                         std::set<unsigned> &InputRegs,
 | 
						|
                         const TargetRegisterInfo &TRI) const {
 | 
						|
    if (isOutReg) {
 | 
						|
      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
 | 
						|
        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
 | 
						|
    }
 | 
						|
    if (isInReg) {
 | 
						|
      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
 | 
						|
        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  /// MarkRegAndAliases - Mark the specified register and all aliases in the
 | 
						|
  /// specified set.
 | 
						|
  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 
 | 
						|
                                const TargetRegisterInfo &TRI) {
 | 
						|
    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
 | 
						|
    Regs.insert(Reg);
 | 
						|
    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
 | 
						|
      for (; *Aliases; ++Aliases)
 | 
						|
        Regs.insert(*Aliases);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anon namespace.
 | 
						|
 | 
						|
 | 
						|
/// GetRegistersForValue - Assign registers (virtual or physical) for the
 | 
						|
/// specified operand.  We prefer to assign virtual registers, to allow the
 | 
						|
/// register allocator handle the assignment process.  However, if the asm uses
 | 
						|
/// features that we can't model on machineinstrs, we have SDISel do the
 | 
						|
/// allocation.  This produces generally horrible, but correct, code.
 | 
						|
///
 | 
						|
///   OpInfo describes the operand.
 | 
						|
///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
 | 
						|
///     or any explicitly clobbered registers.
 | 
						|
///   Input and OutputRegs are the set of already allocated physical registers.
 | 
						|
///
 | 
						|
void SelectionDAGLowering::
 | 
						|
GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
 | 
						|
                     std::set<unsigned> &OutputRegs, 
 | 
						|
                     std::set<unsigned> &InputRegs) {
 | 
						|
  // Compute whether this value requires an input register, an output register,
 | 
						|
  // or both.
 | 
						|
  bool isOutReg = false;
 | 
						|
  bool isInReg = false;
 | 
						|
  switch (OpInfo.Type) {
 | 
						|
  case InlineAsm::isOutput:
 | 
						|
    isOutReg = true;
 | 
						|
    
 | 
						|
    // If this is an early-clobber output, or if there is an input
 | 
						|
    // constraint that matches this, we need to reserve the input register
 | 
						|
    // so no other inputs allocate to it.
 | 
						|
    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
 | 
						|
    break;
 | 
						|
  case InlineAsm::isInput:
 | 
						|
    isInReg = true;
 | 
						|
    isOutReg = false;
 | 
						|
    break;
 | 
						|
  case InlineAsm::isClobber:
 | 
						|
    isOutReg = true;
 | 
						|
    isInReg = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SmallVector<unsigned, 4> Regs;
 | 
						|
  
 | 
						|
  // If this is a constraint for a single physreg, or a constraint for a
 | 
						|
  // register class, find it.
 | 
						|
  std::pair<unsigned, const TargetRegisterClass*> PhysReg = 
 | 
						|
    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
 | 
						|
                                     OpInfo.ConstraintVT);
 | 
						|
 | 
						|
  unsigned NumRegs = 1;
 | 
						|
  if (OpInfo.ConstraintVT != MVT::Other)
 | 
						|
    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
 | 
						|
  MVT RegVT;
 | 
						|
  MVT ValueVT = OpInfo.ConstraintVT;
 | 
						|
  
 | 
						|
 | 
						|
  // If this is a constraint for a specific physical register, like {r17},
 | 
						|
  // assign it now.
 | 
						|
  if (PhysReg.first) {
 | 
						|
    if (OpInfo.ConstraintVT == MVT::Other)
 | 
						|
      ValueVT = *PhysReg.second->vt_begin();
 | 
						|
    
 | 
						|
    // Get the actual register value type.  This is important, because the user
 | 
						|
    // may have asked for (e.g.) the AX register in i32 type.  We need to
 | 
						|
    // remember that AX is actually i16 to get the right extension.
 | 
						|
    RegVT = *PhysReg.second->vt_begin();
 | 
						|
    
 | 
						|
    // This is a explicit reference to a physical register.
 | 
						|
    Regs.push_back(PhysReg.first);
 | 
						|
 | 
						|
    // If this is an expanded reference, add the rest of the regs to Regs.
 | 
						|
    if (NumRegs != 1) {
 | 
						|
      TargetRegisterClass::iterator I = PhysReg.second->begin();
 | 
						|
      for (; *I != PhysReg.first; ++I)
 | 
						|
        assert(I != PhysReg.second->end() && "Didn't find reg!"); 
 | 
						|
      
 | 
						|
      // Already added the first reg.
 | 
						|
      --NumRegs; ++I;
 | 
						|
      for (; NumRegs; --NumRegs, ++I) {
 | 
						|
        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
 | 
						|
        Regs.push_back(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
 | 
						|
    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
 | 
						|
    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, if this was a reference to an LLVM register class, create vregs
 | 
						|
  // for this reference.
 | 
						|
  std::vector<unsigned> RegClassRegs;
 | 
						|
  const TargetRegisterClass *RC = PhysReg.second;
 | 
						|
  if (RC) {
 | 
						|
    // If this is an early clobber or tied register, our regalloc doesn't know
 | 
						|
    // how to maintain the constraint.  If it isn't, go ahead and create vreg
 | 
						|
    // and let the regalloc do the right thing.
 | 
						|
    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
 | 
						|
        // If there is some other early clobber and this is an input register,
 | 
						|
        // then we are forced to pre-allocate the input reg so it doesn't
 | 
						|
        // conflict with the earlyclobber.
 | 
						|
        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
 | 
						|
      RegVT = *PhysReg.second->vt_begin();
 | 
						|
      
 | 
						|
      if (OpInfo.ConstraintVT == MVT::Other)
 | 
						|
        ValueVT = RegVT;
 | 
						|
 | 
						|
      // Create the appropriate number of virtual registers.
 | 
						|
      MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | 
						|
      for (; NumRegs; --NumRegs)
 | 
						|
        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
 | 
						|
      
 | 
						|
      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we can't allocate it.  Let the code below figure out how to
 | 
						|
    // maintain these constraints.
 | 
						|
    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // This is a reference to a register class that doesn't directly correspond
 | 
						|
    // to an LLVM register class.  Allocate NumRegs consecutive, available,
 | 
						|
    // registers from the class.
 | 
						|
    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
 | 
						|
                                                         OpInfo.ConstraintVT);
 | 
						|
  }
 | 
						|
  
 | 
						|
  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
 | 
						|
  unsigned NumAllocated = 0;
 | 
						|
  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegClassRegs[i];
 | 
						|
    // See if this register is available.
 | 
						|
    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
 | 
						|
        (isInReg  && InputRegs.count(Reg))) {    // Already used.
 | 
						|
      // Make sure we find consecutive registers.
 | 
						|
      NumAllocated = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check to see if this register is allocatable (i.e. don't give out the
 | 
						|
    // stack pointer).
 | 
						|
    if (RC == 0) {
 | 
						|
      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
 | 
						|
      if (!RC) {        // Couldn't allocate this register.
 | 
						|
        // Reset NumAllocated to make sure we return consecutive registers.
 | 
						|
        NumAllocated = 0;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, this register is good, we can use it.
 | 
						|
    ++NumAllocated;
 | 
						|
 | 
						|
    // If we allocated enough consecutive registers, succeed.
 | 
						|
    if (NumAllocated == NumRegs) {
 | 
						|
      unsigned RegStart = (i-NumAllocated)+1;
 | 
						|
      unsigned RegEnd   = i+1;
 | 
						|
      // Mark all of the allocated registers used.
 | 
						|
      for (unsigned i = RegStart; i != RegEnd; ++i)
 | 
						|
        Regs.push_back(RegClassRegs[i]);
 | 
						|
      
 | 
						|
      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 
 | 
						|
                                         OpInfo.ConstraintVT);
 | 
						|
      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we couldn't allocate enough registers for this.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitInlineAsm - Handle a call to an InlineAsm object.
 | 
						|
///
 | 
						|
void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
 | 
						|
  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | 
						|
 | 
						|
  /// ConstraintOperands - Information about all of the constraints.
 | 
						|
  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
 | 
						|
  
 | 
						|
  SDOperand Chain = getRoot();
 | 
						|
  SDOperand Flag;
 | 
						|
  
 | 
						|
  std::set<unsigned> OutputRegs, InputRegs;
 | 
						|
 | 
						|
  // Do a prepass over the constraints, canonicalizing them, and building up the
 | 
						|
  // ConstraintOperands list.
 | 
						|
  std::vector<InlineAsm::ConstraintInfo>
 | 
						|
    ConstraintInfos = IA->ParseConstraints();
 | 
						|
 | 
						|
  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
 | 
						|
  // constraint.  If so, we can't let the register allocator allocate any input
 | 
						|
  // registers, because it will not know to avoid the earlyclobbered output reg.
 | 
						|
  bool SawEarlyClobber = false;
 | 
						|
  
 | 
						|
  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | 
						|
  unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | 
						|
  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
 | 
						|
    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
 | 
						|
    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
 | 
						|
    
 | 
						|
    MVT OpVT = MVT::Other;
 | 
						|
 | 
						|
    // Compute the value type for each operand.
 | 
						|
    switch (OpInfo.Type) {
 | 
						|
    case InlineAsm::isOutput:
 | 
						|
      // Indirect outputs just consume an argument.
 | 
						|
      if (OpInfo.isIndirect) {
 | 
						|
        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // The return value of the call is this value.  As such, there is no
 | 
						|
      // corresponding argument.
 | 
						|
      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
 | 
						|
        OpVT = TLI.getValueType(STy->getElementType(ResNo));
 | 
						|
      } else {
 | 
						|
        assert(ResNo == 0 && "Asm only has one result!");
 | 
						|
        OpVT = TLI.getValueType(CS.getType());
 | 
						|
      }
 | 
						|
      ++ResNo;
 | 
						|
      break;
 | 
						|
    case InlineAsm::isInput:
 | 
						|
      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | 
						|
      break;
 | 
						|
    case InlineAsm::isClobber:
 | 
						|
      // Nothing to do.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an input or an indirect output, process the call argument.
 | 
						|
    // BasicBlocks are labels, currently appearing only in asm's.
 | 
						|
    if (OpInfo.CallOperandVal) {
 | 
						|
      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
 | 
						|
        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
 | 
						|
      else {
 | 
						|
        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
 | 
						|
        const Type *OpTy = OpInfo.CallOperandVal->getType();
 | 
						|
        // If this is an indirect operand, the operand is a pointer to the
 | 
						|
        // accessed type.
 | 
						|
        if (OpInfo.isIndirect)
 | 
						|
          OpTy = cast<PointerType>(OpTy)->getElementType();
 | 
						|
 | 
						|
        // If OpTy is not a single value, it may be a struct/union that we
 | 
						|
        // can tile with integers.
 | 
						|
        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | 
						|
          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
 | 
						|
          switch (BitSize) {
 | 
						|
          default: break;
 | 
						|
          case 1:
 | 
						|
          case 8:
 | 
						|
          case 16:
 | 
						|
          case 32:
 | 
						|
          case 64:
 | 
						|
            OpTy = IntegerType::get(BitSize);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        OpVT = TLI.getValueType(OpTy, true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    OpInfo.ConstraintVT = OpVT;
 | 
						|
    
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
 | 
						|
 | 
						|
    // Keep track of whether we see an earlyclobber.
 | 
						|
    SawEarlyClobber |= OpInfo.isEarlyClobber;
 | 
						|
    
 | 
						|
    // If we see a clobber of a register, it is an early clobber.
 | 
						|
    if (!SawEarlyClobber &&
 | 
						|
        OpInfo.Type == InlineAsm::isClobber &&
 | 
						|
        OpInfo.ConstraintType == TargetLowering::C_Register) {
 | 
						|
      // Note that we want to ignore things that we don't trick here, like
 | 
						|
      // dirflag, fpsr, flags, etc.
 | 
						|
      std::pair<unsigned, const TargetRegisterClass*> PhysReg = 
 | 
						|
        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
 | 
						|
                                         OpInfo.ConstraintVT);
 | 
						|
      if (PhysReg.first || PhysReg.second) {
 | 
						|
        // This is a register we know of.
 | 
						|
        SawEarlyClobber = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a memory input, and if the operand is not indirect, do what we
 | 
						|
    // need to to provide an address for the memory input.
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | 
						|
        !OpInfo.isIndirect) {
 | 
						|
      assert(OpInfo.Type == InlineAsm::isInput &&
 | 
						|
             "Can only indirectify direct input operands!");
 | 
						|
      
 | 
						|
      // Memory operands really want the address of the value.  If we don't have
 | 
						|
      // an indirect input, put it in the constpool if we can, otherwise spill
 | 
						|
      // it to a stack slot.
 | 
						|
      
 | 
						|
      // If the operand is a float, integer, or vector constant, spill to a
 | 
						|
      // constant pool entry to get its address.
 | 
						|
      Value *OpVal = OpInfo.CallOperandVal;
 | 
						|
      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
 | 
						|
          isa<ConstantVector>(OpVal)) {
 | 
						|
        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
 | 
						|
                                                 TLI.getPointerTy());
 | 
						|
      } else {
 | 
						|
        // Otherwise, create a stack slot and emit a store to it before the
 | 
						|
        // asm.
 | 
						|
        const Type *Ty = OpVal->getType();
 | 
						|
        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
 | 
						|
        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
 | 
						|
        MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
 | 
						|
        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
 | 
						|
        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
 | 
						|
        OpInfo.CallOperand = StackSlot;
 | 
						|
      }
 | 
						|
     
 | 
						|
      // There is no longer a Value* corresponding to this operand.
 | 
						|
      OpInfo.CallOperandVal = 0;
 | 
						|
      // It is now an indirect operand.
 | 
						|
      OpInfo.isIndirect = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this constraint is for a specific register, allocate it before
 | 
						|
    // anything else.
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_Register)
 | 
						|
      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
 | 
						|
  }
 | 
						|
  ConstraintInfos.clear();
 | 
						|
  
 | 
						|
  
 | 
						|
  // Second pass - Loop over all of the operands, assigning virtual or physregs
 | 
						|
  // to registerclass operands.
 | 
						|
  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | 
						|
    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | 
						|
    
 | 
						|
    // C_Register operands have already been allocated, Other/Memory don't need
 | 
						|
    // to be.
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
 | 
						|
      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
 | 
						|
  }    
 | 
						|
  
 | 
						|
  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
 | 
						|
  std::vector<SDOperand> AsmNodeOperands;
 | 
						|
  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
 | 
						|
  AsmNodeOperands.push_back(
 | 
						|
          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
 | 
						|
  
 | 
						|
  
 | 
						|
  // Loop over all of the inputs, copying the operand values into the
 | 
						|
  // appropriate registers and processing the output regs.
 | 
						|
  RegsForValue RetValRegs;
 | 
						|
 
 | 
						|
  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
 | 
						|
  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | 
						|
    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | 
						|
 | 
						|
    switch (OpInfo.Type) {
 | 
						|
    case InlineAsm::isOutput: {
 | 
						|
      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
 | 
						|
          OpInfo.ConstraintType != TargetLowering::C_Register) {
 | 
						|
        // Memory output, or 'other' output (e.g. 'X' constraint).
 | 
						|
        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
 | 
						|
 | 
						|
        // Add information to the INLINEASM node to know about this output.
 | 
						|
        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 
 | 
						|
                                                        TLI.getPointerTy()));
 | 
						|
        AsmNodeOperands.push_back(OpInfo.CallOperand);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this is a register or register class output.
 | 
						|
 | 
						|
      // Copy the output from the appropriate register.  Find a register that
 | 
						|
      // we can use.
 | 
						|
      if (OpInfo.AssignedRegs.Regs.empty()) {
 | 
						|
        cerr << "Couldn't allocate output reg for constraint '"
 | 
						|
             << OpInfo.ConstraintCode << "'!\n";
 | 
						|
        exit(1);
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is an indirect operand, store through the pointer after the
 | 
						|
      // asm.
 | 
						|
      if (OpInfo.isIndirect) {
 | 
						|
        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
 | 
						|
                                                      OpInfo.CallOperandVal));
 | 
						|
      } else {
 | 
						|
        // This is the result value of the call.
 | 
						|
        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
 | 
						|
        // Concatenate this output onto the outputs list.
 | 
						|
        RetValRegs.append(OpInfo.AssignedRegs);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Add information to the INLINEASM node to know that this register is
 | 
						|
      // set.
 | 
						|
      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
 | 
						|
                                               AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isInput: {
 | 
						|
      SDOperand InOperandVal = OpInfo.CallOperand;
 | 
						|
      
 | 
						|
      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
 | 
						|
        // If this is required to match an output register we have already set,
 | 
						|
        // just use its register.
 | 
						|
        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
 | 
						|
        
 | 
						|
        // Scan until we find the definition we already emitted of this operand.
 | 
						|
        // When we find it, create a RegsForValue operand.
 | 
						|
        unsigned CurOp = 2;  // The first operand.
 | 
						|
        for (; OperandNo; --OperandNo) {
 | 
						|
          // Advance to the next operand.
 | 
						|
          unsigned NumOps = 
 | 
						|
            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | 
						|
          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
 | 
						|
                  (NumOps & 7) == 4 /*MEM*/) &&
 | 
						|
                 "Skipped past definitions?");
 | 
						|
          CurOp += (NumOps>>3)+1;
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned NumOps = 
 | 
						|
          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | 
						|
        if ((NumOps & 7) == 2 /*REGDEF*/) {
 | 
						|
          // Add NumOps>>3 registers to MatchedRegs.
 | 
						|
          RegsForValue MatchedRegs;
 | 
						|
          MatchedRegs.TLI = &TLI;
 | 
						|
          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
 | 
						|
          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
 | 
						|
          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
 | 
						|
            unsigned Reg =
 | 
						|
              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
 | 
						|
            MatchedRegs.Regs.push_back(Reg);
 | 
						|
          }
 | 
						|
        
 | 
						|
          // Use the produced MatchedRegs object to 
 | 
						|
          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
 | 
						|
          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
 | 
						|
          assert((NumOps >> 3) == 1 && "Unexpected number of operands"); 
 | 
						|
          // Add information to the INLINEASM node to know about this input.
 | 
						|
          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | 
						|
          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | 
						|
                                                          TLI.getPointerTy()));
 | 
						|
          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
 | 
						|
        assert(!OpInfo.isIndirect && 
 | 
						|
               "Don't know how to handle indirect other inputs yet!");
 | 
						|
        
 | 
						|
        std::vector<SDOperand> Ops;
 | 
						|
        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
 | 
						|
                                         Ops, DAG);
 | 
						|
        if (Ops.empty()) {
 | 
						|
          cerr << "Invalid operand for inline asm constraint '"
 | 
						|
               << OpInfo.ConstraintCode << "'!\n";
 | 
						|
          exit(1);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Add information to the INLINEASM node to know about this input.
 | 
						|
        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 
 | 
						|
                                                        TLI.getPointerTy()));
 | 
						|
        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
 | 
						|
        break;
 | 
						|
      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
 | 
						|
        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
 | 
						|
        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
 | 
						|
               "Memory operands expect pointer values");
 | 
						|
               
 | 
						|
        // Add information to the INLINEASM node to know about this input.
 | 
						|
        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | 
						|
                                                        TLI.getPointerTy()));
 | 
						|
        AsmNodeOperands.push_back(InOperandVal);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
 | 
						|
              OpInfo.ConstraintType == TargetLowering::C_Register) &&
 | 
						|
             "Unknown constraint type!");
 | 
						|
      assert(!OpInfo.isIndirect && 
 | 
						|
             "Don't know how to handle indirect register inputs yet!");
 | 
						|
 | 
						|
      // Copy the input into the appropriate registers.
 | 
						|
      assert(!OpInfo.AssignedRegs.Regs.empty() &&
 | 
						|
             "Couldn't allocate input reg!");
 | 
						|
 | 
						|
      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
 | 
						|
      
 | 
						|
      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
 | 
						|
                                               AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isClobber: {
 | 
						|
      // Add the clobbered value to the operand list, so that the register
 | 
						|
      // allocator is aware that the physreg got clobbered.
 | 
						|
      if (!OpInfo.AssignedRegs.Regs.empty())
 | 
						|
        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
 | 
						|
                                                 AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finish up input operands.
 | 
						|
  AsmNodeOperands[0] = Chain;
 | 
						|
  if (Flag.Val) AsmNodeOperands.push_back(Flag);
 | 
						|
  
 | 
						|
  Chain = DAG.getNode(ISD::INLINEASM, 
 | 
						|
                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
 | 
						|
                      &AsmNodeOperands[0], AsmNodeOperands.size());
 | 
						|
  Flag = Chain.getValue(1);
 | 
						|
 | 
						|
  // If this asm returns a register value, copy the result from that register
 | 
						|
  // and set it as the value of the call.
 | 
						|
  if (!RetValRegs.Regs.empty()) {
 | 
						|
    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
 | 
						|
 | 
						|
    // If any of the results of the inline asm is a vector, it may have the
 | 
						|
    // wrong width/num elts.  This can happen for register classes that can
 | 
						|
    // contain multiple different value types.  The preg or vreg allocated may
 | 
						|
    // not have the same VT as was expected.  Convert it to the right type with
 | 
						|
    // bit_convert.
 | 
						|
    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
 | 
						|
      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
 | 
						|
        if (Val.Val->getValueType(i).isVector())
 | 
						|
          Val = DAG.getNode(ISD::BIT_CONVERT,
 | 
						|
                            TLI.getValueType(ResSTy->getElementType(i)), Val);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (Val.getValueType().isVector())
 | 
						|
        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
 | 
						|
                          Val);
 | 
						|
    }
 | 
						|
 | 
						|
    setValue(CS.getInstruction(), Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
 | 
						|
  
 | 
						|
  // Process indirect outputs, first output all of the flagged copies out of
 | 
						|
  // physregs.
 | 
						|
  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | 
						|
    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | 
						|
    Value *Ptr = IndirectStoresToEmit[i].second;
 | 
						|
    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
 | 
						|
    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the non-flagged stores from the physregs.
 | 
						|
  SmallVector<SDOperand, 8> OutChains;
 | 
						|
  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
 | 
						|
    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
 | 
						|
                                    getValue(StoresToEmit[i].second),
 | 
						|
                                    StoresToEmit[i].second, 0));
 | 
						|
  if (!OutChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                        &OutChains[0], OutChains.size());
 | 
						|
  DAG.setRoot(Chain);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | 
						|
  SDOperand Src = getValue(I.getOperand(0));
 | 
						|
 | 
						|
  MVT IntPtr = TLI.getPointerTy();
 | 
						|
 | 
						|
  if (IntPtr.bitsLT(Src.getValueType()))
 | 
						|
    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
 | 
						|
  else if (IntPtr.bitsGT(Src.getValueType()))
 | 
						|
    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
 | 
						|
 | 
						|
  // Scale the source by the type size.
 | 
						|
  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
 | 
						|
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | 
						|
                    Src, DAG.getIntPtrConstant(ElementSize));
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
  Entry.Node = Src;
 | 
						|
  Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | 
						|
  Args.push_back(Entry);
 | 
						|
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
 | 
						|
                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
 | 
						|
  setValue(&I, Result.first);  // Pointers always fit in registers
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFree(FreeInst &I) {
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
  Entry.Node = getValue(I.getOperand(0));
 | 
						|
  Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | 
						|
  Args.push_back(Entry);
 | 
						|
  MVT IntPtr = TLI.getPointerTy();
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
 | 
						|
                    CallingConv::C, true,
 | 
						|
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
// EmitInstrWithCustomInserter - This method should be implemented by targets
 | 
						|
// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | 
						|
// instructions are special in various ways, which require special support to
 | 
						|
// insert.  The specified MachineInstr is created but not inserted into any
 | 
						|
// basic blocks, and the scheduler passes ownership of it to this method.
 | 
						|
MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | 
						|
                                                       MachineBasicBlock *MBB) {
 | 
						|
  cerr << "If a target marks an instruction with "
 | 
						|
       << "'usesCustomDAGSchedInserter', it must implement "
 | 
						|
       << "TargetLowering::EmitInstrWithCustomInserter!\n";
 | 
						|
  abort();
 | 
						|
  return 0;  
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), 
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          DAG.getSrcValue(I.getOperand(1))));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | 
						|
  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
 | 
						|
                             getValue(I.getOperand(0)),
 | 
						|
                             DAG.getSrcValue(I.getOperand(0)));
 | 
						|
  setValue(&I, V);
 | 
						|
  DAG.setRoot(V.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          DAG.getSrcValue(I.getOperand(1))));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), 
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          getValue(I.getOperand(2)),
 | 
						|
                          DAG.getSrcValue(I.getOperand(1)),
 | 
						|
                          DAG.getSrcValue(I.getOperand(2))));
 | 
						|
}
 | 
						|
 | 
						|
/// TargetLowering::LowerArguments - This is the default LowerArguments
 | 
						|
/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
 | 
						|
/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be 
 | 
						|
/// integrated into SDISel.
 | 
						|
std::vector<SDOperand> 
 | 
						|
TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | 
						|
  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  Ops.push_back(DAG.getRoot());
 | 
						|
  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
 | 
						|
  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
 | 
						|
 | 
						|
  // Add one result value for each formal argument.
 | 
						|
  std::vector<MVT> RetVals;
 | 
						|
  unsigned j = 1;
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | 
						|
       I != E; ++I, ++j) {
 | 
						|
    SmallVector<MVT, 4> ValueVTs;
 | 
						|
    ComputeValueVTs(*this, I->getType(), ValueVTs);
 | 
						|
    for (unsigned Value = 0, NumValues = ValueVTs.size();
 | 
						|
         Value != NumValues; ++Value) {
 | 
						|
      MVT VT = ValueVTs[Value];
 | 
						|
      const Type *ArgTy = VT.getTypeForMVT();
 | 
						|
      ISD::ArgFlagsTy Flags;
 | 
						|
      unsigned OriginalAlignment =
 | 
						|
        getTargetData()->getABITypeAlignment(ArgTy);
 | 
						|
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::ZExt))
 | 
						|
        Flags.setZExt();
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::SExt))
 | 
						|
        Flags.setSExt();
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::InReg))
 | 
						|
        Flags.setInReg();
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::StructRet))
 | 
						|
        Flags.setSRet();
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
 | 
						|
        Flags.setByVal();
 | 
						|
        const PointerType *Ty = cast<PointerType>(I->getType());
 | 
						|
        const Type *ElementTy = Ty->getElementType();
 | 
						|
        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
 | 
						|
        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
 | 
						|
        // For ByVal, alignment should be passed from FE.  BE will guess if
 | 
						|
        // this info is not there but there are cases it cannot get right.
 | 
						|
        if (F.getParamAlignment(j))
 | 
						|
          FrameAlign = F.getParamAlignment(j);
 | 
						|
        Flags.setByValAlign(FrameAlign);
 | 
						|
        Flags.setByValSize(FrameSize);
 | 
						|
      }
 | 
						|
      if (F.paramHasAttr(j, ParamAttr::Nest))
 | 
						|
        Flags.setNest();
 | 
						|
      Flags.setOrigAlign(OriginalAlignment);
 | 
						|
 | 
						|
      MVT RegisterVT = getRegisterType(VT);
 | 
						|
      unsigned NumRegs = getNumRegisters(VT);
 | 
						|
      for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
        RetVals.push_back(RegisterVT);
 | 
						|
        ISD::ArgFlagsTy MyFlags = Flags;
 | 
						|
        if (NumRegs > 1 && i == 0)
 | 
						|
          MyFlags.setSplit();
 | 
						|
        // if it isn't first piece, alignment must be 1
 | 
						|
        else if (i > 0)
 | 
						|
          MyFlags.setOrigAlign(1);
 | 
						|
        Ops.push_back(DAG.getArgFlags(MyFlags));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RetVals.push_back(MVT::Other);
 | 
						|
  
 | 
						|
  // Create the node.
 | 
						|
  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
 | 
						|
                               DAG.getVTList(&RetVals[0], RetVals.size()),
 | 
						|
                               &Ops[0], Ops.size()).Val;
 | 
						|
  
 | 
						|
  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
 | 
						|
  // allows exposing the loads that may be part of the argument access to the
 | 
						|
  // first DAGCombiner pass.
 | 
						|
  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
 | 
						|
  
 | 
						|
  // The number of results should match up, except that the lowered one may have
 | 
						|
  // an extra flag result.
 | 
						|
  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
 | 
						|
          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
 | 
						|
           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
 | 
						|
         && "Lowering produced unexpected number of results!");
 | 
						|
  Result = TmpRes.Val;
 | 
						|
  
 | 
						|
  unsigned NumArgRegs = Result->getNumValues() - 1;
 | 
						|
  DAG.setRoot(SDOperand(Result, NumArgRegs));
 | 
						|
 | 
						|
  // Set up the return result vector.
 | 
						|
  Ops.clear();
 | 
						|
  unsigned i = 0;
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 
 | 
						|
      ++I, ++Idx) {
 | 
						|
    SmallVector<MVT, 4> ValueVTs;
 | 
						|
    ComputeValueVTs(*this, I->getType(), ValueVTs);
 | 
						|
    for (unsigned Value = 0, NumValues = ValueVTs.size();
 | 
						|
         Value != NumValues; ++Value) {
 | 
						|
      MVT VT = ValueVTs[Value];
 | 
						|
      MVT PartVT = getRegisterType(VT);
 | 
						|
 | 
						|
      unsigned NumParts = getNumRegisters(VT);
 | 
						|
      SmallVector<SDOperand, 4> Parts(NumParts);
 | 
						|
      for (unsigned j = 0; j != NumParts; ++j)
 | 
						|
        Parts[j] = SDOperand(Result, i++);
 | 
						|
 | 
						|
      ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | 
						|
      if (F.paramHasAttr(Idx, ParamAttr::SExt))
 | 
						|
        AssertOp = ISD::AssertSext;
 | 
						|
      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
 | 
						|
        AssertOp = ISD::AssertZext;
 | 
						|
 | 
						|
      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
 | 
						|
                                     AssertOp));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(i == NumArgRegs && "Argument register count mismatch!");
 | 
						|
  return Ops;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
 | 
						|
/// implementation, which just inserts an ISD::CALL node, which is later custom
 | 
						|
/// lowered by the target to something concrete.  FIXME: When all targets are
 | 
						|
/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
 | 
						|
                            bool RetSExt, bool RetZExt, bool isVarArg,
 | 
						|
                            unsigned CallingConv, bool isTailCall,
 | 
						|
                            SDOperand Callee,
 | 
						|
                            ArgListTy &Args, SelectionDAG &DAG) {
 | 
						|
  SmallVector<SDOperand, 32> Ops;
 | 
						|
  Ops.push_back(Chain);   // Op#0 - Chain
 | 
						|
  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
 | 
						|
  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
 | 
						|
  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
 | 
						|
  Ops.push_back(Callee);
 | 
						|
  
 | 
						|
  // Handle all of the outgoing arguments.
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    SmallVector<MVT, 4> ValueVTs;
 | 
						|
    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
 | 
						|
    for (unsigned Value = 0, NumValues = ValueVTs.size();
 | 
						|
         Value != NumValues; ++Value) {
 | 
						|
      MVT VT = ValueVTs[Value];
 | 
						|
      const Type *ArgTy = VT.getTypeForMVT();
 | 
						|
      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
 | 
						|
      ISD::ArgFlagsTy Flags;
 | 
						|
      unsigned OriginalAlignment =
 | 
						|
        getTargetData()->getABITypeAlignment(ArgTy);
 | 
						|
 | 
						|
      if (Args[i].isZExt)
 | 
						|
        Flags.setZExt();
 | 
						|
      if (Args[i].isSExt)
 | 
						|
        Flags.setSExt();
 | 
						|
      if (Args[i].isInReg)
 | 
						|
        Flags.setInReg();
 | 
						|
      if (Args[i].isSRet)
 | 
						|
        Flags.setSRet();
 | 
						|
      if (Args[i].isByVal) {
 | 
						|
        Flags.setByVal();
 | 
						|
        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
 | 
						|
        const Type *ElementTy = Ty->getElementType();
 | 
						|
        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
 | 
						|
        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
 | 
						|
        // For ByVal, alignment should come from FE.  BE will guess if this
 | 
						|
        // info is not there but there are cases it cannot get right.
 | 
						|
        if (Args[i].Alignment)
 | 
						|
          FrameAlign = Args[i].Alignment;
 | 
						|
        Flags.setByValAlign(FrameAlign);
 | 
						|
        Flags.setByValSize(FrameSize);
 | 
						|
      }
 | 
						|
      if (Args[i].isNest)
 | 
						|
        Flags.setNest();
 | 
						|
      Flags.setOrigAlign(OriginalAlignment);
 | 
						|
 | 
						|
      MVT PartVT = getRegisterType(VT);
 | 
						|
      unsigned NumParts = getNumRegisters(VT);
 | 
						|
      SmallVector<SDOperand, 4> Parts(NumParts);
 | 
						|
      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | 
						|
 | 
						|
      if (Args[i].isSExt)
 | 
						|
        ExtendKind = ISD::SIGN_EXTEND;
 | 
						|
      else if (Args[i].isZExt)
 | 
						|
        ExtendKind = ISD::ZERO_EXTEND;
 | 
						|
 | 
						|
      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
 | 
						|
 | 
						|
      for (unsigned i = 0; i != NumParts; ++i) {
 | 
						|
        // if it isn't first piece, alignment must be 1
 | 
						|
        ISD::ArgFlagsTy MyFlags = Flags;
 | 
						|
        if (NumParts > 1 && i == 0)
 | 
						|
          MyFlags.setSplit();
 | 
						|
        else if (i != 0)
 | 
						|
          MyFlags.setOrigAlign(1);
 | 
						|
 | 
						|
        Ops.push_back(Parts[i]);
 | 
						|
        Ops.push_back(DAG.getArgFlags(MyFlags));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Figure out the result value types. We start by making a list of
 | 
						|
  // the potentially illegal return value types.
 | 
						|
  SmallVector<MVT, 4> LoweredRetTys;
 | 
						|
  SmallVector<MVT, 4> RetTys;
 | 
						|
  ComputeValueVTs(*this, RetTy, RetTys);
 | 
						|
 | 
						|
  // Then we translate that to a list of legal types.
 | 
						|
  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | 
						|
    MVT VT = RetTys[I];
 | 
						|
    MVT RegisterVT = getRegisterType(VT);
 | 
						|
    unsigned NumRegs = getNumRegisters(VT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i)
 | 
						|
      LoweredRetTys.push_back(RegisterVT);
 | 
						|
  }
 | 
						|
  
 | 
						|
  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
 | 
						|
  
 | 
						|
  // Create the CALL node.
 | 
						|
  SDOperand Res = DAG.getNode(ISD::CALL,
 | 
						|
                              DAG.getVTList(&LoweredRetTys[0],
 | 
						|
                                            LoweredRetTys.size()),
 | 
						|
                              &Ops[0], Ops.size());
 | 
						|
  Chain = Res.getValue(LoweredRetTys.size() - 1);
 | 
						|
 | 
						|
  // Gather up the call result into a single value.
 | 
						|
  if (RetTy != Type::VoidTy) {
 | 
						|
    ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | 
						|
 | 
						|
    if (RetSExt)
 | 
						|
      AssertOp = ISD::AssertSext;
 | 
						|
    else if (RetZExt)
 | 
						|
      AssertOp = ISD::AssertZext;
 | 
						|
 | 
						|
    SmallVector<SDOperand, 4> ReturnValues;
 | 
						|
    unsigned RegNo = 0;
 | 
						|
    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | 
						|
      MVT VT = RetTys[I];
 | 
						|
      MVT RegisterVT = getRegisterType(VT);
 | 
						|
      unsigned NumRegs = getNumRegisters(VT);
 | 
						|
      unsigned RegNoEnd = NumRegs + RegNo;
 | 
						|
      SmallVector<SDOperand, 4> Results;
 | 
						|
      for (; RegNo != RegNoEnd; ++RegNo)
 | 
						|
        Results.push_back(Res.getValue(RegNo));
 | 
						|
      SDOperand ReturnValue =
 | 
						|
        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
 | 
						|
                         AssertOp);
 | 
						|
      ReturnValues.push_back(ReturnValue);
 | 
						|
    }
 | 
						|
    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
 | 
						|
          DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                      DAG.getVTList(&RetTys[0], RetTys.size()),
 | 
						|
                      &ReturnValues[0], ReturnValues.size());
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_pair(Res, Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(0 && "LowerOperation not implemented for this target!");
 | 
						|
  abort();
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
 | 
						|
                                                 SelectionDAG &DAG) {
 | 
						|
  assert(0 && "CustomPromoteOperation not implemented for this target!");
 | 
						|
  abort();
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SelectionDAGISel code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned SelectionDAGISel::MakeReg(MVT VT) {
 | 
						|
  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<CollectorModuleMetadata>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | 
						|
  // Get alias analysis for load/store combining.
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | 
						|
  if (MF.getFunction()->hasCollector())
 | 
						|
    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
 | 
						|
  else
 | 
						|
    GCI = 0;
 | 
						|
  RegInfo = &MF.getRegInfo();
 | 
						|
  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
 | 
						|
 | 
						|
  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | 
						|
 | 
						|
  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
 | 
						|
      // Mark landing pad.
 | 
						|
      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
 | 
						|
 | 
						|
  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    SelectBasicBlock(I, MF, FuncInfo);
 | 
						|
 | 
						|
  // Add function live-ins to entry block live-in set.
 | 
						|
  BasicBlock *EntryBB = &Fn.getEntryBlock();
 | 
						|
  BB = FuncInfo.MBBMap[EntryBB];
 | 
						|
  if (!RegInfo->livein_empty())
 | 
						|
    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
 | 
						|
           E = RegInfo->livein_end(); I != E; ++I)
 | 
						|
      BB->addLiveIn(I->first);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
 | 
						|
         "Not all catch info was assigned to a landing pad!");
 | 
						|
#endif
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
 | 
						|
  SDOperand Op = getValue(V);
 | 
						|
  assert((Op.getOpcode() != ISD::CopyFromReg ||
 | 
						|
          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | 
						|
         "Copy from a reg to the same reg!");
 | 
						|
  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
 | 
						|
 | 
						|
  RegsForValue RFV(TLI, Reg, V->getType());
 | 
						|
  SDOperand Chain = DAG.getEntryNode();
 | 
						|
  RFV.getCopyToRegs(Op, DAG, Chain, 0);
 | 
						|
  PendingExports.push_back(Chain);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::
 | 
						|
LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
 | 
						|
  // If this is the entry block, emit arguments.
 | 
						|
  Function &F = *LLVMBB->getParent();
 | 
						|
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | 
						|
  SDOperand OldRoot = SDL.DAG.getRoot();
 | 
						|
  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | 
						|
 | 
						|
  unsigned a = 0;
 | 
						|
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
 | 
						|
       AI != E; ++AI) {
 | 
						|
    SmallVector<MVT, 4> ValueVTs;
 | 
						|
    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
 | 
						|
    unsigned NumValues = ValueVTs.size();
 | 
						|
    if (!AI->use_empty()) {
 | 
						|
      SmallVector<MVT, 4> LegalValueVTs(NumValues);
 | 
						|
      for (unsigned VI = 0; VI != NumValues; ++VI) 
 | 
						|
        LegalValueVTs[VI] = Args[a + VI].getValueType();
 | 
						|
      SDL.setValue(AI, SDL.DAG.getNode(ISD::MERGE_VALUES,
 | 
						|
                                       SDL.DAG.getVTList(&LegalValueVTs[0],
 | 
						|
                                                         NumValues),
 | 
						|
                                       &Args[a], NumValues));
 | 
						|
      // If this argument is live outside of the entry block, insert a copy from
 | 
						|
      // whereever we got it to the vreg that other BB's will reference it as.
 | 
						|
      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
 | 
						|
      if (VMI != FuncInfo.ValueMap.end()) {
 | 
						|
        SDL.CopyValueToVirtualRegister(AI, VMI->second);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    a += NumValues;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, if the target has anything special to do, allow it to do so.
 | 
						|
  // FIXME: this should insert code into the DAG!
 | 
						|
  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
 | 
						|
}
 | 
						|
 | 
						|
static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
 | 
						|
                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
 | 
						|
  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
 | 
						|
    if (isSelector(I)) {
 | 
						|
      // Apply the catch info to DestBB.
 | 
						|
      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
 | 
						|
#ifndef NDEBUG
 | 
						|
      if (!FLI.MBBMap[SrcBB]->isLandingPad())
 | 
						|
        FLI.CatchInfoFound.insert(I);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
 | 
						|
/// whether object offset >= 0.
 | 
						|
static bool
 | 
						|
IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
 | 
						|
  if (!isa<FrameIndexSDNode>(Op)) return false;
 | 
						|
 | 
						|
  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
 | 
						|
  int FrameIdx =  FrameIdxNode->getIndex();
 | 
						|
  return MFI->isFixedObjectIndex(FrameIdx) &&
 | 
						|
    MFI->getObjectOffset(FrameIdx) >= 0;
 | 
						|
}
 | 
						|
 | 
						|
/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
 | 
						|
/// possibly be overwritten when lowering the outgoing arguments in a tail
 | 
						|
/// call. Currently the implementation of this call is very conservative and
 | 
						|
/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
 | 
						|
/// virtual registers would be overwritten by direct lowering.
 | 
						|
static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
 | 
						|
                                                    MachineFrameInfo * MFI) {
 | 
						|
  RegisterSDNode * OpReg = NULL;
 | 
						|
  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
 | 
						|
      (Op.getOpcode()== ISD::CopyFromReg &&
 | 
						|
       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
 | 
						|
       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
 | 
						|
      (Op.getOpcode() == ISD::LOAD &&
 | 
						|
       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
 | 
						|
      (Op.getOpcode() == ISD::MERGE_VALUES &&
 | 
						|
       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
 | 
						|
       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
 | 
						|
                                       getOperand(1))))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
 | 
						|
/// DAG and fixes their tailcall attribute operand.
 | 
						|
static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG, 
 | 
						|
                                           TargetLowering& TLI) {
 | 
						|
  SDNode * Ret = NULL;
 | 
						|
  SDOperand Terminator = DAG.getRoot();
 | 
						|
 | 
						|
  // Find RET node.
 | 
						|
  if (Terminator.getOpcode() == ISD::RET) {
 | 
						|
    Ret = Terminator.Val;
 | 
						|
  }
 | 
						|
 
 | 
						|
  // Fix tail call attribute of CALL nodes.
 | 
						|
  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
 | 
						|
         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
 | 
						|
    if (BI->getOpcode() == ISD::CALL) {
 | 
						|
      SDOperand OpRet(Ret, 0);
 | 
						|
      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
 | 
						|
      bool isMarkedTailCall = 
 | 
						|
        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
 | 
						|
      // If CALL node has tail call attribute set to true and the call is not
 | 
						|
      // eligible (no RET or the target rejects) the attribute is fixed to
 | 
						|
      // false. The TargetLowering::IsEligibleForTailCallOptimization function
 | 
						|
      // must correctly identify tail call optimizable calls.
 | 
						|
      if (!isMarkedTailCall) continue;
 | 
						|
      if (Ret==NULL ||
 | 
						|
          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
 | 
						|
        // Not eligible. Mark CALL node as non tail call.
 | 
						|
        SmallVector<SDOperand, 32> Ops;
 | 
						|
        unsigned idx=0;
 | 
						|
        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
 | 
						|
              E = OpCall.Val->op_end(); I != E; I++, idx++) {
 | 
						|
          if (idx!=3)
 | 
						|
            Ops.push_back(*I);
 | 
						|
          else
 | 
						|
            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
 | 
						|
        }
 | 
						|
        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
 | 
						|
      } else {
 | 
						|
        // Look for tail call clobbered arguments. Emit a series of
 | 
						|
        // copyto/copyfrom virtual register nodes to protect them.
 | 
						|
        SmallVector<SDOperand, 32> Ops;
 | 
						|
        SDOperand Chain = OpCall.getOperand(0), InFlag;
 | 
						|
        unsigned idx=0;
 | 
						|
        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
 | 
						|
              E = OpCall.Val->op_end(); I != E; I++, idx++) {
 | 
						|
          SDOperand Arg = *I;
 | 
						|
          if (idx > 4 && (idx % 2)) {
 | 
						|
            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
 | 
						|
              getArgFlags().isByVal();
 | 
						|
            MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
            MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
            if (!isByVal &&
 | 
						|
                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
 | 
						|
              MVT VT = Arg.getValueType();
 | 
						|
              unsigned VReg = MF.getRegInfo().
 | 
						|
                createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
 | 
						|
              InFlag = Chain.getValue(1);
 | 
						|
              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
 | 
						|
              Chain = Arg.getValue(1);
 | 
						|
              InFlag = Arg.getValue(2);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          Ops.push_back(Arg);
 | 
						|
        }
 | 
						|
        // Link in chain of CopyTo/CopyFromReg.
 | 
						|
        Ops[0] = Chain;
 | 
						|
        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | 
						|
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | 
						|
                                         FunctionLoweringInfo &FuncInfo) {
 | 
						|
  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
 | 
						|
  // Lower any arguments needed in this block if this is the entry block.
 | 
						|
  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
 | 
						|
    LowerArguments(LLVMBB, SDL);
 | 
						|
 | 
						|
  BB = FuncInfo.MBBMap[LLVMBB];
 | 
						|
  SDL.setCurrentBasicBlock(BB);
 | 
						|
 | 
						|
  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | 
						|
 | 
						|
  if (MMI && BB->isLandingPad()) {
 | 
						|
    // Add a label to mark the beginning of the landing pad.  Deletion of the
 | 
						|
    // landing pad can thus be detected via the MachineModuleInfo.
 | 
						|
    unsigned LabelID = MMI->addLandingPad(BB);
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
 | 
						|
                            DAG.getConstant(LabelID, MVT::i32),
 | 
						|
                            DAG.getConstant(1, MVT::i32)));
 | 
						|
 | 
						|
    // Mark exception register as live in.
 | 
						|
    unsigned Reg = TLI.getExceptionAddressRegister();
 | 
						|
    if (Reg) BB->addLiveIn(Reg);
 | 
						|
 | 
						|
    // Mark exception selector register as live in.
 | 
						|
    Reg = TLI.getExceptionSelectorRegister();
 | 
						|
    if (Reg) BB->addLiveIn(Reg);
 | 
						|
 | 
						|
    // FIXME: Hack around an exception handling flaw (PR1508): the personality
 | 
						|
    // function and list of typeids logically belong to the invoke (or, if you
 | 
						|
    // like, the basic block containing the invoke), and need to be associated
 | 
						|
    // with it in the dwarf exception handling tables.  Currently however the
 | 
						|
    // information is provided by an intrinsic (eh.selector) that can be moved
 | 
						|
    // to unexpected places by the optimizers: if the unwind edge is critical,
 | 
						|
    // then breaking it can result in the intrinsics being in the successor of
 | 
						|
    // the landing pad, not the landing pad itself.  This results in exceptions
 | 
						|
    // not being caught because no typeids are associated with the invoke.
 | 
						|
    // This may not be the only way things can go wrong, but it is the only way
 | 
						|
    // we try to work around for the moment.
 | 
						|
    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
 | 
						|
 | 
						|
    if (Br && Br->isUnconditional()) { // Critical edge?
 | 
						|
      BasicBlock::iterator I, E;
 | 
						|
      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
 | 
						|
        if (isSelector(I))
 | 
						|
          break;
 | 
						|
 | 
						|
      if (I == E)
 | 
						|
        // No catch info found - try to extract some from the successor.
 | 
						|
        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower all of the non-terminator instructions.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | 
						|
       I != E; ++I)
 | 
						|
    SDL.visit(*I);
 | 
						|
 | 
						|
  // Ensure that all instructions which are used outside of their defining
 | 
						|
  // blocks are available as virtual registers.  Invoke is handled elsewhere.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | 
						|
    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
 | 
						|
      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | 
						|
      if (VMI != FuncInfo.ValueMap.end())
 | 
						|
        SDL.CopyValueToVirtualRegister(I, VMI->second);
 | 
						|
    }
 | 
						|
 | 
						|
  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | 
						|
  // ensure constants are generated when needed.  Remember the virtual registers
 | 
						|
  // that need to be added to the Machine PHI nodes as input.  We cannot just
 | 
						|
  // directly add them, because expansion might result in multiple MBB's for one
 | 
						|
  // BB.  As such, the start of the BB might correspond to a different MBB than
 | 
						|
  // the end.
 | 
						|
  //
 | 
						|
  TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
 | 
						|
  // Emit constants only once even if used by multiple PHI nodes.
 | 
						|
  std::map<Constant*, unsigned> ConstantsOut;
 | 
						|
  
 | 
						|
  // Vector bool would be better, but vector<bool> is really slow.
 | 
						|
  std::vector<unsigned char> SuccsHandled;
 | 
						|
  if (TI->getNumSuccessors())
 | 
						|
    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
 | 
						|
    
 | 
						|
  // Check successor nodes' PHI nodes that expect a constant to be available
 | 
						|
  // from this block.
 | 
						|
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | 
						|
    BasicBlock *SuccBB = TI->getSuccessor(succ);
 | 
						|
    if (!isa<PHINode>(SuccBB->begin())) continue;
 | 
						|
    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | 
						|
    
 | 
						|
    // If this terminator has multiple identical successors (common for
 | 
						|
    // switches), only handle each succ once.
 | 
						|
    unsigned SuccMBBNo = SuccMBB->getNumber();
 | 
						|
    if (SuccsHandled[SuccMBBNo]) continue;
 | 
						|
    SuccsHandled[SuccMBBNo] = true;
 | 
						|
    
 | 
						|
    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | 
						|
    PHINode *PN;
 | 
						|
 | 
						|
    // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | 
						|
    // nodes and Machine PHI nodes, but the incoming operands have not been
 | 
						|
    // emitted yet.
 | 
						|
    for (BasicBlock::iterator I = SuccBB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(I)); ++I) {
 | 
						|
      // Ignore dead phi's.
 | 
						|
      if (PN->use_empty()) continue;
 | 
						|
      
 | 
						|
      unsigned Reg;
 | 
						|
      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | 
						|
      
 | 
						|
      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | 
						|
        unsigned &RegOut = ConstantsOut[C];
 | 
						|
        if (RegOut == 0) {
 | 
						|
          RegOut = FuncInfo.CreateRegForValue(C);
 | 
						|
          SDL.CopyValueToVirtualRegister(C, RegOut);
 | 
						|
        }
 | 
						|
        Reg = RegOut;
 | 
						|
      } else {
 | 
						|
        Reg = FuncInfo.ValueMap[PHIOp];
 | 
						|
        if (Reg == 0) {
 | 
						|
          assert(isa<AllocaInst>(PHIOp) &&
 | 
						|
                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | 
						|
                 "Didn't codegen value into a register!??");
 | 
						|
          Reg = FuncInfo.CreateRegForValue(PHIOp);
 | 
						|
          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember that this register needs to added to the machine PHI node as
 | 
						|
      // the input for this MBB.
 | 
						|
      MVT VT = TLI.getValueType(PN->getType());
 | 
						|
      unsigned NumRegisters = TLI.getNumRegisters(VT);
 | 
						|
      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
 | 
						|
        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ConstantsOut.clear();
 | 
						|
 | 
						|
  // Lower the terminator after the copies are emitted.
 | 
						|
  SDL.visit(*LLVMBB->getTerminator());
 | 
						|
 | 
						|
  // Copy over any CaseBlock records that may now exist due to SwitchInst
 | 
						|
  // lowering, as well as any jump table information.
 | 
						|
  SwitchCases.clear();
 | 
						|
  SwitchCases = SDL.SwitchCases;
 | 
						|
  JTCases.clear();
 | 
						|
  JTCases = SDL.JTCases;
 | 
						|
  BitTestCases.clear();
 | 
						|
  BitTestCases = SDL.BitTestCases;
 | 
						|
    
 | 
						|
  // Make sure the root of the DAG is up-to-date.
 | 
						|
  DAG.setRoot(SDL.getControlRoot());
 | 
						|
 | 
						|
  // Check whether calls in this block are real tail calls. Fix up CALL nodes
 | 
						|
  // with correct tailcall attribute so that the target can rely on the tailcall
 | 
						|
  // attribute indicating whether the call is really eligible for tail call
 | 
						|
  // optimization.
 | 
						|
  CheckDAGForTailCallsAndFixThem(DAG, TLI);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
 | 
						|
  SmallPtrSet<SDNode*, 128> VisitedNodes;
 | 
						|
  SmallVector<SDNode*, 128> Worklist;
 | 
						|
  
 | 
						|
  Worklist.push_back(DAG.getRoot().Val);
 | 
						|
  
 | 
						|
  APInt Mask;
 | 
						|
  APInt KnownZero;
 | 
						|
  APInt KnownOne;
 | 
						|
  
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    SDNode *N = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
    
 | 
						|
    // If we've already seen this node, ignore it.
 | 
						|
    if (!VisitedNodes.insert(N))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Otherwise, add all chain operands to the worklist.
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | 
						|
      if (N->getOperand(i).getValueType() == MVT::Other)
 | 
						|
        Worklist.push_back(N->getOperand(i).Val);
 | 
						|
    
 | 
						|
    // If this is a CopyToReg with a vreg dest, process it.
 | 
						|
    if (N->getOpcode() != ISD::CopyToReg)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Ignore non-scalar or non-integer values.
 | 
						|
    SDOperand Src = N->getOperand(2);
 | 
						|
    MVT SrcVT = Src.getValueType();
 | 
						|
    if (!SrcVT.isInteger() || SrcVT.isVector())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
 | 
						|
    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
 | 
						|
    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
 | 
						|
    
 | 
						|
    // Only install this information if it tells us something.
 | 
						|
    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
 | 
						|
      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
 | 
						|
      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
 | 
						|
      if (DestReg >= FLI.LiveOutRegInfo.size())
 | 
						|
        FLI.LiveOutRegInfo.resize(DestReg+1);
 | 
						|
      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
 | 
						|
      LOI.NumSignBits = NumSignBits;
 | 
						|
      LOI.KnownOne = NumSignBits;
 | 
						|
      LOI.KnownZero = NumSignBits;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
 | 
						|
  DOUT << "Lowered selection DAG:\n";
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  // Run the DAG combiner in pre-legalize mode.
 | 
						|
  DAG.Combine(false, *AA);
 | 
						|
  
 | 
						|
  DOUT << "Optimized lowered selection DAG:\n";
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
  
 | 
						|
  // Second step, hack on the DAG until it only uses operations and types that
 | 
						|
  // the target supports.
 | 
						|
#if 0  // Enable this some day.
 | 
						|
  DAG.LegalizeTypes();
 | 
						|
  // Someday even later, enable a dag combine pass here.
 | 
						|
#endif
 | 
						|
  DAG.Legalize();
 | 
						|
  
 | 
						|
  DOUT << "Legalized selection DAG:\n";
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
  
 | 
						|
  // Run the DAG combiner in post-legalize mode.
 | 
						|
  DAG.Combine(true, *AA);
 | 
						|
  
 | 
						|
  DOUT << "Optimized legalized selection DAG:\n";
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  if (ViewISelDAGs) DAG.viewGraph();
 | 
						|
  
 | 
						|
  if (EnableValueProp)  // FIXME: Only do this if !fast.
 | 
						|
    ComputeLiveOutVRegInfo(DAG);
 | 
						|
 | 
						|
  // Third, instruction select all of the operations to machine code, adding the
 | 
						|
  // code to the MachineBasicBlock.
 | 
						|
  InstructionSelectBasicBlock(DAG);
 | 
						|
  
 | 
						|
  DOUT << "Selected machine code:\n";
 | 
						|
  DEBUG(BB->dump());
 | 
						|
}  
 | 
						|
 | 
						|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | 
						|
                                        FunctionLoweringInfo &FuncInfo) {
 | 
						|
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | 
						|
  {
 | 
						|
    SelectionDAG DAG(TLI, MF, FuncInfo, 
 | 
						|
                     getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
    CurDAG = &DAG;
 | 
						|
  
 | 
						|
    // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | 
						|
    // types that are not supported by the target.
 | 
						|
    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | 
						|
 | 
						|
    // Second step, emit the lowered DAG as machine code.
 | 
						|
    CodeGenAndEmitDAG(DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "Total amount of phi nodes to update: "
 | 
						|
       << PHINodesToUpdate.size() << "\n";
 | 
						|
  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
 | 
						|
          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
 | 
						|
               << ", " << PHINodesToUpdate[i].second << ")\n";);
 | 
						|
  
 | 
						|
  // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | 
						|
  // PHI nodes in successors.
 | 
						|
  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
 | 
						|
    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | 
						|
      MachineInstr *PHI = PHINodesToUpdate[i].first;
 | 
						|
      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
             "This is not a machine PHI node that we are updating!");
 | 
						|
      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
 | 
						|
                                                false));
 | 
						|
      PHI->addOperand(MachineOperand::CreateMBB(BB));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
 | 
						|
    // Lower header first, if it wasn't already lowered
 | 
						|
    if (!BitTestCases[i].Emitted) {
 | 
						|
      SelectionDAG HSDAG(TLI, MF, FuncInfo, 
 | 
						|
                         getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
      CurDAG = &HSDAG;
 | 
						|
      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      BB = BitTestCases[i].Parent;
 | 
						|
      HSDL.setCurrentBasicBlock(BB);
 | 
						|
      // Emit the code
 | 
						|
      HSDL.visitBitTestHeader(BitTestCases[i]);
 | 
						|
      HSDAG.setRoot(HSDL.getRoot());
 | 
						|
      CodeGenAndEmitDAG(HSDAG);
 | 
						|
    }    
 | 
						|
 | 
						|
    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
 | 
						|
      SelectionDAG BSDAG(TLI, MF, FuncInfo, 
 | 
						|
                         getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
      CurDAG = &BSDAG;
 | 
						|
      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      BB = BitTestCases[i].Cases[j].ThisBB;
 | 
						|
      BSDL.setCurrentBasicBlock(BB);
 | 
						|
      // Emit the code
 | 
						|
      if (j+1 != ej)
 | 
						|
        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
 | 
						|
                              BitTestCases[i].Reg,
 | 
						|
                              BitTestCases[i].Cases[j]);
 | 
						|
      else
 | 
						|
        BSDL.visitBitTestCase(BitTestCases[i].Default,
 | 
						|
                              BitTestCases[i].Reg,
 | 
						|
                              BitTestCases[i].Cases[j]);
 | 
						|
        
 | 
						|
        
 | 
						|
      BSDAG.setRoot(BSDL.getRoot());
 | 
						|
      CodeGenAndEmitDAG(BSDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update PHI Nodes
 | 
						|
    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | 
						|
      MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | 
						|
      MachineBasicBlock *PHIBB = PHI->getParent();
 | 
						|
      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
             "This is not a machine PHI node that we are updating!");
 | 
						|
      // This is "default" BB. We have two jumps to it. From "header" BB and
 | 
						|
      // from last "case" BB.
 | 
						|
      if (PHIBB == BitTestCases[i].Default) {
 | 
						|
        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
 | 
						|
                                                  false));
 | 
						|
        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
 | 
						|
        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
 | 
						|
                                                  false));
 | 
						|
        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
 | 
						|
                                                  back().ThisBB));
 | 
						|
      }
 | 
						|
      // One of "cases" BB.
 | 
						|
      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
 | 
						|
        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
 | 
						|
        if (cBB->succ_end() !=
 | 
						|
            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
 | 
						|
          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
 | 
						|
                                                    false));
 | 
						|
          PHI->addOperand(MachineOperand::CreateMBB(cBB));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the JumpTable record is filled in, then we need to emit a jump table.
 | 
						|
  // Updating the PHI nodes is tricky in this case, since we need to determine
 | 
						|
  // whether the PHI is a successor of the range check MBB or the jump table MBB
 | 
						|
  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
 | 
						|
    // Lower header first, if it wasn't already lowered
 | 
						|
    if (!JTCases[i].first.Emitted) {
 | 
						|
      SelectionDAG HSDAG(TLI, MF, FuncInfo, 
 | 
						|
                         getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
      CurDAG = &HSDAG;
 | 
						|
      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      BB = JTCases[i].first.HeaderBB;
 | 
						|
      HSDL.setCurrentBasicBlock(BB);
 | 
						|
      // Emit the code
 | 
						|
      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
 | 
						|
      HSDAG.setRoot(HSDL.getRoot());
 | 
						|
      CodeGenAndEmitDAG(HSDAG);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SelectionDAG JSDAG(TLI, MF, FuncInfo, 
 | 
						|
                       getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
    CurDAG = &JSDAG;
 | 
						|
    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
    // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
    BB = JTCases[i].second.MBB;
 | 
						|
    JSDL.setCurrentBasicBlock(BB);
 | 
						|
    // Emit the code
 | 
						|
    JSDL.visitJumpTable(JTCases[i].second);
 | 
						|
    JSDAG.setRoot(JSDL.getRoot());
 | 
						|
    CodeGenAndEmitDAG(JSDAG);
 | 
						|
    
 | 
						|
    // Update PHI Nodes
 | 
						|
    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | 
						|
      MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | 
						|
      MachineBasicBlock *PHIBB = PHI->getParent();
 | 
						|
      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
             "This is not a machine PHI node that we are updating!");
 | 
						|
      // "default" BB. We can go there only from header BB.
 | 
						|
      if (PHIBB == JTCases[i].second.Default) {
 | 
						|
        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
 | 
						|
                                                  false));
 | 
						|
        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
 | 
						|
      }
 | 
						|
      // JT BB. Just iterate over successors here
 | 
						|
      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
 | 
						|
        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
 | 
						|
                                                  false));
 | 
						|
        PHI->addOperand(MachineOperand::CreateMBB(BB));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the switch block involved a branch to one of the actual successors, we
 | 
						|
  // need to update PHI nodes in that block.
 | 
						|
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | 
						|
    MachineInstr *PHI = PHINodesToUpdate[i].first;
 | 
						|
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
           "This is not a machine PHI node that we are updating!");
 | 
						|
    if (BB->isSuccessor(PHI->getParent())) {
 | 
						|
      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
 | 
						|
                                                false));
 | 
						|
      PHI->addOperand(MachineOperand::CreateMBB(BB));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we generated any switch lowering information, build and codegen any
 | 
						|
  // additional DAGs necessary.
 | 
						|
  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
 | 
						|
    SelectionDAG SDAG(TLI, MF, FuncInfo, 
 | 
						|
                      getAnalysisToUpdate<MachineModuleInfo>());
 | 
						|
    CurDAG = &SDAG;
 | 
						|
    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
 | 
						|
    
 | 
						|
    // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
    BB = SwitchCases[i].ThisBB;
 | 
						|
    SDL.setCurrentBasicBlock(BB);
 | 
						|
    
 | 
						|
    // Emit the code
 | 
						|
    SDL.visitSwitchCase(SwitchCases[i]);
 | 
						|
    SDAG.setRoot(SDL.getRoot());
 | 
						|
    CodeGenAndEmitDAG(SDAG);
 | 
						|
    
 | 
						|
    // Handle any PHI nodes in successors of this chunk, as if we were coming
 | 
						|
    // from the original BB before switch expansion.  Note that PHI nodes can
 | 
						|
    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | 
						|
    // handle them the right number of times.
 | 
						|
    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
 | 
						|
      for (MachineBasicBlock::iterator Phi = BB->begin();
 | 
						|
           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
 | 
						|
        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
 | 
						|
        for (unsigned pn = 0; ; ++pn) {
 | 
						|
          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
 | 
						|
          if (PHINodesToUpdate[pn].first == Phi) {
 | 
						|
            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
 | 
						|
                                                      second, false));
 | 
						|
            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Don't process RHS if same block as LHS.
 | 
						|
      if (BB == SwitchCases[i].FalseBB)
 | 
						|
        SwitchCases[i].FalseBB = 0;
 | 
						|
      
 | 
						|
      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
 | 
						|
      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
 | 
						|
      SwitchCases[i].FalseBB = 0;
 | 
						|
    }
 | 
						|
    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
 | 
						|
/// target node in the graph.
 | 
						|
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
 | 
						|
  if (ViewSchedDAGs) DAG.viewGraph();
 | 
						|
 | 
						|
  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
 | 
						|
  
 | 
						|
  if (!Ctor) {
 | 
						|
    Ctor = ISHeuristic;
 | 
						|
    RegisterScheduler::setDefault(Ctor);
 | 
						|
  }
 | 
						|
  
 | 
						|
  ScheduleDAG *SL = Ctor(this, &DAG, BB);
 | 
						|
  BB = SL->Run();
 | 
						|
 | 
						|
  if (ViewSUnitDAGs) SL->viewGraph();
 | 
						|
 | 
						|
  delete SL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
 | 
						|
  return new HazardRecognizer();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper functions used by the generated instruction selector.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Calls to these methods are generated by tblgen.
 | 
						|
 | 
						|
/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | 
						|
/// the dag combiner simplified the 255, we still want to match.  RHS is the
 | 
						|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | 
						|
/// specified in the .td file (e.g. 255).
 | 
						|
bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS, 
 | 
						|
                                    int64_t DesiredMaskS) const {
 | 
						|
  const APInt &ActualMask = RHS->getAPIntValue();
 | 
						|
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | 
						|
  
 | 
						|
  // If the actual mask exactly matches, success!
 | 
						|
  if (ActualMask == DesiredMask)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | 
						|
  if (ActualMask.intersects(~DesiredMask))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Otherwise, the DAG Combiner may have proven that the value coming in is
 | 
						|
  // either already zero or is not demanded.  Check for known zero input bits.
 | 
						|
  APInt NeededMask = DesiredMask & ~ActualMask;
 | 
						|
  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // TODO: check to see if missing bits are just not demanded.
 | 
						|
 | 
						|
  // Otherwise, this pattern doesn't match.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | 
						|
/// the dag combiner simplified the 255, we still want to match.  RHS is the
 | 
						|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | 
						|
/// specified in the .td file (e.g. 255).
 | 
						|
bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS, 
 | 
						|
                                   int64_t DesiredMaskS) const {
 | 
						|
  const APInt &ActualMask = RHS->getAPIntValue();
 | 
						|
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | 
						|
  
 | 
						|
  // If the actual mask exactly matches, success!
 | 
						|
  if (ActualMask == DesiredMask)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | 
						|
  if (ActualMask.intersects(~DesiredMask))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Otherwise, the DAG Combiner may have proven that the value coming in is
 | 
						|
  // either already zero or is not demanded.  Check for known zero input bits.
 | 
						|
  APInt NeededMask = DesiredMask & ~ActualMask;
 | 
						|
  
 | 
						|
  APInt KnownZero, KnownOne;
 | 
						|
  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
 | 
						|
  
 | 
						|
  // If all the missing bits in the or are already known to be set, match!
 | 
						|
  if ((NeededMask & KnownOne) == NeededMask)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // TODO: check to see if missing bits are just not demanded.
 | 
						|
  
 | 
						|
  // Otherwise, this pattern doesn't match.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | 
						|
/// by tblgen.  Others should not call it.
 | 
						|
void SelectionDAGISel::
 | 
						|
SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
 | 
						|
  std::vector<SDOperand> InOps;
 | 
						|
  std::swap(InOps, Ops);
 | 
						|
 | 
						|
  Ops.push_back(InOps[0]);  // input chain.
 | 
						|
  Ops.push_back(InOps[1]);  // input asm string.
 | 
						|
 | 
						|
  unsigned i = 2, e = InOps.size();
 | 
						|
  if (InOps[e-1].getValueType() == MVT::Flag)
 | 
						|
    --e;  // Don't process a flag operand if it is here.
 | 
						|
  
 | 
						|
  while (i != e) {
 | 
						|
    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
 | 
						|
    if ((Flags & 7) != 4 /*MEM*/) {
 | 
						|
      // Just skip over this operand, copying the operands verbatim.
 | 
						|
      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
 | 
						|
      i += (Flags >> 3) + 1;
 | 
						|
    } else {
 | 
						|
      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
 | 
						|
      // Otherwise, this is a memory operand.  Ask the target to select it.
 | 
						|
      std::vector<SDOperand> SelOps;
 | 
						|
      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
 | 
						|
        cerr << "Could not match memory address.  Inline asm failure!\n";
 | 
						|
        exit(1);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Add this to the output node.
 | 
						|
      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
 | 
						|
                                          IntPtrTy));
 | 
						|
      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | 
						|
      i += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add the flag input back if present.
 | 
						|
  if (e != InOps.size())
 | 
						|
    Ops.push_back(InOps.back());
 | 
						|
}
 | 
						|
 | 
						|
char SelectionDAGISel::ID = 0;
 |