mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	About pristine regsiters: Pristine registers "hold a value that is useless to the current function, but that must be preserved - they are callee saved registers that have not been saved." This concept saves compile time as it frees the prologue/epilogue inserter from adding every such register to every basic blocks live-in list. However the current code in getPristineRegs is formulated in a complicated way: Inside the function prologue and epilogue all callee saves are considered pristine, while in the rest of the code only the non-saved ones are considered pristine. This requires logic to differentiate between prologue/epilogue and the rest and in the presence of shrink-wrapping this even becomes complicated/expensive. It's also unnecessary because the prologue epilogue inserters already mark callee-save registers that are saved/restores properly in the respective blocks in the prologue/epilogue (see updateLiveness() in PrologueEpilogueInserter.cpp). So only declaring non-saved/restored callee saved registers as pristine just works. Differential Revision: http://reviews.llvm.org/D10101 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238524 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			682 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CriticalAntiDepBreaker class, which
 | |
| // implements register anti-dependence breaking along a blocks
 | |
| // critical path during post-RA scheduler.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CriticalAntiDepBreaker.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "post-RA-sched"
 | |
| 
 | |
| CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
 | |
|                                                const RegisterClassInfo &RCI)
 | |
|     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
 | |
|       TII(MF.getSubtarget().getInstrInfo()),
 | |
|       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
 | |
|       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
 | |
|       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
 | |
| 
 | |
| CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
 | |
| }
 | |
| 
 | |
| void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
 | |
|   const unsigned BBSize = BB->size();
 | |
|   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | |
|     // Clear out the register class data.
 | |
|     Classes[i] = nullptr;
 | |
| 
 | |
|     // Initialize the indices to indicate that no registers are live.
 | |
|     KillIndices[i] = ~0u;
 | |
|     DefIndices[i] = BBSize;
 | |
|   }
 | |
| 
 | |
|   // Clear "do not change" set.
 | |
|   KeepRegs.reset();
 | |
| 
 | |
|   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
 | |
| 
 | |
|   // Examine the live-in regs of all successors.
 | |
|   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|          SE = BB->succ_end(); SI != SE; ++SI)
 | |
|     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | |
|            E = (*SI)->livein_end(); I != E; ++I) {
 | |
|       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
 | |
|         unsigned Reg = *AI;
 | |
|         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         KillIndices[Reg] = BBSize;
 | |
|         DefIndices[Reg] = ~0u;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Mark live-out callee-saved registers. In a return block this is
 | |
|   // all callee-saved registers. In non-return this is any
 | |
|   // callee-saved register that is not saved in the prolog.
 | |
|   const MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   BitVector Pristine = MFI->getPristineRegs(MF);
 | |
|   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
 | |
|     if (!IsReturnBlock && !Pristine.test(*I)) continue;
 | |
|     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
 | |
|       unsigned Reg = *AI;
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       KillIndices[Reg] = BBSize;
 | |
|       DefIndices[Reg] = ~0u;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CriticalAntiDepBreaker::FinishBlock() {
 | |
|   RegRefs.clear();
 | |
|   KeepRegs.reset();
 | |
| }
 | |
| 
 | |
| void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
 | |
|                                      unsigned InsertPosIndex) {
 | |
|   // Kill instructions can define registers but are really nops, and there might
 | |
|   // be a real definition earlier that needs to be paired with uses dominated by
 | |
|   // this kill.
 | |
| 
 | |
|   // FIXME: It may be possible to remove the isKill() restriction once PR18663
 | |
|   // has been properly fixed. There can be value in processing kills as seen in
 | |
|   // the AggressiveAntiDepBreaker class.
 | |
|   if (MI->isDebugValue() || MI->isKill())
 | |
|     return;
 | |
|   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
 | |
| 
 | |
|   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
 | |
|     if (KillIndices[Reg] != ~0u) {
 | |
|       // If Reg is currently live, then mark that it can't be renamed as
 | |
|       // we don't know the extent of its live-range anymore (now that it
 | |
|       // has been scheduled).
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       KillIndices[Reg] = Count;
 | |
|     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
 | |
|       // Any register which was defined within the previous scheduling region
 | |
|       // may have been rescheduled and its lifetime may overlap with registers
 | |
|       // in ways not reflected in our current liveness state. For each such
 | |
|       // register, adjust the liveness state to be conservatively correct.
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
| 
 | |
|       // Move the def index to the end of the previous region, to reflect
 | |
|       // that the def could theoretically have been scheduled at the end.
 | |
|       DefIndices[Reg] = InsertPosIndex;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PrescanInstruction(MI);
 | |
|   ScanInstruction(MI, Count);
 | |
| }
 | |
| 
 | |
| /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
 | |
| /// critical path.
 | |
| static const SDep *CriticalPathStep(const SUnit *SU) {
 | |
|   const SDep *Next = nullptr;
 | |
|   unsigned NextDepth = 0;
 | |
|   // Find the predecessor edge with the greatest depth.
 | |
|   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
 | |
|        P != PE; ++P) {
 | |
|     const SUnit *PredSU = P->getSUnit();
 | |
|     unsigned PredLatency = P->getLatency();
 | |
|     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
 | |
|     // In the case of a latency tie, prefer an anti-dependency edge over
 | |
|     // other types of edges.
 | |
|     if (NextDepth < PredTotalLatency ||
 | |
|         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
 | |
|       NextDepth = PredTotalLatency;
 | |
|       Next = &*P;
 | |
|     }
 | |
|   }
 | |
|   return Next;
 | |
| }
 | |
| 
 | |
| void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
 | |
|   // It's not safe to change register allocation for source operands of
 | |
|   // instructions that have special allocation requirements. Also assume all
 | |
|   // registers used in a call must not be changed (ABI).
 | |
|   // FIXME: The issue with predicated instruction is more complex. We are being
 | |
|   // conservative here because the kill markers cannot be trusted after
 | |
|   // if-conversion:
 | |
|   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
 | |
|   // ...
 | |
|   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
 | |
|   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
 | |
|   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
 | |
|   //
 | |
|   // The first R6 kill is not really a kill since it's killed by a predicated
 | |
|   // instruction which may not be executed. The second R6 def may or may not
 | |
|   // re-define R6 so it's not safe to change it since the last R6 use cannot be
 | |
|   // changed.
 | |
|   bool Special = MI->isCall() ||
 | |
|     MI->hasExtraSrcRegAllocReq() ||
 | |
|     TII->isPredicated(MI);
 | |
| 
 | |
|   // Scan the register operands for this instruction and update
 | |
|   // Classes and RegRefs.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     const TargetRegisterClass *NewRC = nullptr;
 | |
| 
 | |
|     if (i < MI->getDesc().getNumOperands())
 | |
|       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
 | |
| 
 | |
|     // For now, only allow the register to be changed if its register
 | |
|     // class is consistent across all uses.
 | |
|     if (!Classes[Reg] && NewRC)
 | |
|       Classes[Reg] = NewRC;
 | |
|     else if (!NewRC || Classes[Reg] != NewRC)
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
| 
 | |
|     // Now check for aliases.
 | |
|     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
 | |
|       // If an alias of the reg is used during the live range, give up.
 | |
|       // Note that this allows us to skip checking if AntiDepReg
 | |
|       // overlaps with any of the aliases, among other things.
 | |
|       unsigned AliasReg = *AI;
 | |
|       if (Classes[AliasReg]) {
 | |
|         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we're still willing to consider this register, note the reference.
 | |
|     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
 | |
|       RegRefs.insert(std::make_pair(Reg, &MO));
 | |
| 
 | |
|     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
 | |
|     // it or any of its sub or super regs. We need to use KeepRegs to mark the
 | |
|     // reg because not all uses of the same reg within an instruction are
 | |
|     // necessarily tagged as tied.
 | |
|     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
 | |
|     // def register but not the second (see PR20020 for details).
 | |
|     // FIXME: can this check be relaxed to account for undef uses
 | |
|     // of a register? In the above 'xor' example, the uses of %eax are undef, so
 | |
|     // earlier instructions could still replace %eax even though the 'xor'
 | |
|     // itself can't be changed.
 | |
|     if (MI->isRegTiedToUseOperand(i) &&
 | |
|         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
 | |
|       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|            SubRegs.isValid(); ++SubRegs) {
 | |
|         KeepRegs.set(*SubRegs);
 | |
|       }
 | |
|       for (MCSuperRegIterator SuperRegs(Reg, TRI);
 | |
|            SuperRegs.isValid(); ++SuperRegs) {
 | |
|         KeepRegs.set(*SuperRegs);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (MO.isUse() && Special) {
 | |
|       if (!KeepRegs.test(Reg)) {
 | |
|         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|              SubRegs.isValid(); ++SubRegs)
 | |
|           KeepRegs.set(*SubRegs);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
 | |
|                                              unsigned Count) {
 | |
|   // Update liveness.
 | |
|   // Proceeding upwards, registers that are defed but not used in this
 | |
|   // instruction are now dead.
 | |
|   assert(!MI->isKill() && "Attempting to scan a kill instruction");
 | |
| 
 | |
|   if (!TII->isPredicated(MI)) {
 | |
|     // Predicated defs are modeled as read + write, i.e. similar to two
 | |
|     // address updates.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|       if (MO.isRegMask())
 | |
|         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
 | |
|           if (MO.clobbersPhysReg(i)) {
 | |
|             DefIndices[i] = Count;
 | |
|             KillIndices[i] = ~0u;
 | |
|             KeepRegs.reset(i);
 | |
|             Classes[i] = nullptr;
 | |
|             RegRefs.erase(i);
 | |
|           }
 | |
| 
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
|       if (!MO.isDef()) continue;
 | |
| 
 | |
|       // If we've already marked this reg as unchangeable, carry on.
 | |
|       if (KeepRegs.test(Reg)) continue;
 | |
|       
 | |
|       // Ignore two-addr defs.
 | |
|       if (MI->isRegTiedToUseOperand(i)) continue;
 | |
| 
 | |
|       // For the reg itself and all subregs: update the def to current;
 | |
|       // reset the kill state, any restrictions, and references.
 | |
|       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
 | |
|         unsigned SubregReg = *SRI;
 | |
|         DefIndices[SubregReg] = Count;
 | |
|         KillIndices[SubregReg] = ~0u;
 | |
|         KeepRegs.reset(SubregReg);
 | |
|         Classes[SubregReg] = nullptr;
 | |
|         RegRefs.erase(SubregReg);
 | |
|       }
 | |
|       // Conservatively mark super-registers as unusable.
 | |
|       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
 | |
|         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     if (!MO.isUse()) continue;
 | |
| 
 | |
|     const TargetRegisterClass *NewRC = nullptr;
 | |
|     if (i < MI->getDesc().getNumOperands())
 | |
|       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
 | |
| 
 | |
|     // For now, only allow the register to be changed if its register
 | |
|     // class is consistent across all uses.
 | |
|     if (!Classes[Reg] && NewRC)
 | |
|       Classes[Reg] = NewRC;
 | |
|     else if (!NewRC || Classes[Reg] != NewRC)
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
| 
 | |
|     RegRefs.insert(std::make_pair(Reg, &MO));
 | |
| 
 | |
|     // It wasn't previously live but now it is, this is a kill.
 | |
|     // Repeat for all aliases.
 | |
|     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
 | |
|       unsigned AliasReg = *AI;
 | |
|       if (KillIndices[AliasReg] == ~0u) {
 | |
|         KillIndices[AliasReg] = Count;
 | |
|         DefIndices[AliasReg] = ~0u;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check all machine operands that reference the antidependent register and must
 | |
| // be replaced by NewReg. Return true if any of their parent instructions may
 | |
| // clobber the new register.
 | |
| //
 | |
| // Note: AntiDepReg may be referenced by a two-address instruction such that
 | |
| // it's use operand is tied to a def operand. We guard against the case in which
 | |
| // the two-address instruction also defines NewReg, as may happen with
 | |
| // pre/postincrement loads. In this case, both the use and def operands are in
 | |
| // RegRefs because the def is inserted by PrescanInstruction and not erased
 | |
| // during ScanInstruction. So checking for an instruction with definitions of
 | |
| // both NewReg and AntiDepReg covers it.
 | |
| bool
 | |
| CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
 | |
|                                                 RegRefIter RegRefEnd,
 | |
|                                                 unsigned NewReg)
 | |
| {
 | |
|   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
 | |
|     MachineOperand *RefOper = I->second;
 | |
| 
 | |
|     // Don't allow the instruction defining AntiDepReg to earlyclobber its
 | |
|     // operands, in case they may be assigned to NewReg. In this case antidep
 | |
|     // breaking must fail, but it's too rare to bother optimizing.
 | |
|     if (RefOper->isDef() && RefOper->isEarlyClobber())
 | |
|       return true;
 | |
| 
 | |
|     // Handle cases in which this instruction defines NewReg.
 | |
|     MachineInstr *MI = RefOper->getParent();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &CheckOper = MI->getOperand(i);
 | |
| 
 | |
|       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
 | |
|         return true;
 | |
| 
 | |
|       if (!CheckOper.isReg() || !CheckOper.isDef() ||
 | |
|           CheckOper.getReg() != NewReg)
 | |
|         continue;
 | |
| 
 | |
|       // Don't allow the instruction to define NewReg and AntiDepReg.
 | |
|       // When AntiDepReg is renamed it will be an illegal op.
 | |
|       if (RefOper->isDef())
 | |
|         return true;
 | |
| 
 | |
|       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
 | |
|       // NewReg.
 | |
|       if (CheckOper.isEarlyClobber())
 | |
|         return true;
 | |
| 
 | |
|       // Don't allow inline asm to define NewReg at all. Who knows what it's
 | |
|       // doing with it.
 | |
|       if (MI->isInlineAsm())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned CriticalAntiDepBreaker::
 | |
| findSuitableFreeRegister(RegRefIter RegRefBegin,
 | |
|                          RegRefIter RegRefEnd,
 | |
|                          unsigned AntiDepReg,
 | |
|                          unsigned LastNewReg,
 | |
|                          const TargetRegisterClass *RC,
 | |
|                          SmallVectorImpl<unsigned> &Forbid)
 | |
| {
 | |
|   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
 | |
|   for (unsigned i = 0; i != Order.size(); ++i) {
 | |
|     unsigned NewReg = Order[i];
 | |
|     // Don't replace a register with itself.
 | |
|     if (NewReg == AntiDepReg) continue;
 | |
|     // Don't replace a register with one that was recently used to repair
 | |
|     // an anti-dependence with this AntiDepReg, because that would
 | |
|     // re-introduce that anti-dependence.
 | |
|     if (NewReg == LastNewReg) continue;
 | |
|     // If any instructions that define AntiDepReg also define the NewReg, it's
 | |
|     // not suitable.  For example, Instruction with multiple definitions can
 | |
|     // result in this condition.
 | |
|     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
 | |
|     // If NewReg is dead and NewReg's most recent def is not before
 | |
|     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
 | |
|     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
 | |
|            && "Kill and Def maps aren't consistent for AntiDepReg!");
 | |
|     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
 | |
|            && "Kill and Def maps aren't consistent for NewReg!");
 | |
|     if (KillIndices[NewReg] != ~0u ||
 | |
|         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
 | |
|         KillIndices[AntiDepReg] > DefIndices[NewReg])
 | |
|       continue;
 | |
|     // If NewReg overlaps any of the forbidden registers, we can't use it.
 | |
|     bool Forbidden = false;
 | |
|     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
 | |
|            ite = Forbid.end(); it != ite; ++it)
 | |
|       if (TRI->regsOverlap(NewReg, *it)) {
 | |
|         Forbidden = true;
 | |
|         break;
 | |
|       }
 | |
|     if (Forbidden) continue;
 | |
|     return NewReg;
 | |
|   }
 | |
| 
 | |
|   // No registers are free and available!
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned CriticalAntiDepBreaker::
 | |
| BreakAntiDependencies(const std::vector<SUnit>& SUnits,
 | |
|                       MachineBasicBlock::iterator Begin,
 | |
|                       MachineBasicBlock::iterator End,
 | |
|                       unsigned InsertPosIndex,
 | |
|                       DbgValueVector &DbgValues) {
 | |
|   // The code below assumes that there is at least one instruction,
 | |
|   // so just duck out immediately if the block is empty.
 | |
|   if (SUnits.empty()) return 0;
 | |
| 
 | |
|   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
 | |
|   // This is used for updating debug information.
 | |
|   //
 | |
|   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
 | |
|   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
 | |
| 
 | |
|   // Find the node at the bottom of the critical path.
 | |
|   const SUnit *Max = nullptr;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     const SUnit *SU = &SUnits[i];
 | |
|     MISUnitMap[SU->getInstr()] = SU;
 | |
|     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
 | |
|       Max = SU;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   {
 | |
|     DEBUG(dbgs() << "Critical path has total latency "
 | |
|           << (Max->getDepth() + Max->Latency) << "\n");
 | |
|     DEBUG(dbgs() << "Available regs:");
 | |
|     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
 | |
|       if (KillIndices[Reg] == ~0u)
 | |
|         DEBUG(dbgs() << " " << TRI->getName(Reg));
 | |
|     }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Track progress along the critical path through the SUnit graph as we walk
 | |
|   // the instructions.
 | |
|   const SUnit *CriticalPathSU = Max;
 | |
|   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
 | |
| 
 | |
|   // Consider this pattern:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   // There are three anti-dependencies here, and without special care,
 | |
|   // we'd break all of them using the same register:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   // because at each anti-dependence, B is the first register that
 | |
|   // isn't A which is free.  This re-introduces anti-dependencies
 | |
|   // at all but one of the original anti-dependencies that we were
 | |
|   // trying to break.  To avoid this, keep track of the most recent
 | |
|   // register that each register was replaced with, avoid
 | |
|   // using it to repair an anti-dependence on the same register.
 | |
|   // This lets us produce this:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   C = ...
 | |
|   //   ... = C
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   // This still has an anti-dependence on B, but at least it isn't on the
 | |
|   // original critical path.
 | |
|   //
 | |
|   // TODO: If we tracked more than one register here, we could potentially
 | |
|   // fix that remaining critical edge too. This is a little more involved,
 | |
|   // because unlike the most recent register, less recent registers should
 | |
|   // still be considered, though only if no other registers are available.
 | |
|   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
 | |
| 
 | |
|   // Attempt to break anti-dependence edges on the critical path. Walk the
 | |
|   // instructions from the bottom up, tracking information about liveness
 | |
|   // as we go to help determine which registers are available.
 | |
|   unsigned Broken = 0;
 | |
|   unsigned Count = InsertPosIndex - 1;
 | |
|   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
 | |
|     MachineInstr *MI = --I;
 | |
|     // Kill instructions can define registers but are really nops, and there
 | |
|     // might be a real definition earlier that needs to be paired with uses
 | |
|     // dominated by this kill.
 | |
|     
 | |
|     // FIXME: It may be possible to remove the isKill() restriction once PR18663
 | |
|     // has been properly fixed. There can be value in processing kills as seen
 | |
|     // in the AggressiveAntiDepBreaker class.
 | |
|     if (MI->isDebugValue() || MI->isKill())
 | |
|       continue;
 | |
| 
 | |
|     // Check if this instruction has a dependence on the critical path that
 | |
|     // is an anti-dependence that we may be able to break. If it is, set
 | |
|     // AntiDepReg to the non-zero register associated with the anti-dependence.
 | |
|     //
 | |
|     // We limit our attention to the critical path as a heuristic to avoid
 | |
|     // breaking anti-dependence edges that aren't going to significantly
 | |
|     // impact the overall schedule. There are a limited number of registers
 | |
|     // and we want to save them for the important edges.
 | |
|     //
 | |
|     // TODO: Instructions with multiple defs could have multiple
 | |
|     // anti-dependencies. The current code here only knows how to break one
 | |
|     // edge per instruction. Note that we'd have to be able to break all of
 | |
|     // the anti-dependencies in an instruction in order to be effective.
 | |
|     unsigned AntiDepReg = 0;
 | |
|     if (MI == CriticalPathMI) {
 | |
|       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
 | |
|         const SUnit *NextSU = Edge->getSUnit();
 | |
| 
 | |
|         // Only consider anti-dependence edges.
 | |
|         if (Edge->getKind() == SDep::Anti) {
 | |
|           AntiDepReg = Edge->getReg();
 | |
|           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
 | |
|           if (!MRI.isAllocatable(AntiDepReg))
 | |
|             // Don't break anti-dependencies on non-allocatable registers.
 | |
|             AntiDepReg = 0;
 | |
|           else if (KeepRegs.test(AntiDepReg))
 | |
|             // Don't break anti-dependencies if a use down below requires
 | |
|             // this exact register.
 | |
|             AntiDepReg = 0;
 | |
|           else {
 | |
|             // If the SUnit has other dependencies on the SUnit that it
 | |
|             // anti-depends on, don't bother breaking the anti-dependency
 | |
|             // since those edges would prevent such units from being
 | |
|             // scheduled past each other regardless.
 | |
|             //
 | |
|             // Also, if there are dependencies on other SUnits with the
 | |
|             // same register as the anti-dependency, don't attempt to
 | |
|             // break it.
 | |
|             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
 | |
|                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
 | |
|               if (P->getSUnit() == NextSU ?
 | |
|                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
 | |
|                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
 | |
|                 AntiDepReg = 0;
 | |
|                 break;
 | |
|               }
 | |
|           }
 | |
|         }
 | |
|         CriticalPathSU = NextSU;
 | |
|         CriticalPathMI = CriticalPathSU->getInstr();
 | |
|       } else {
 | |
|         // We've reached the end of the critical path.
 | |
|         CriticalPathSU = nullptr;
 | |
|         CriticalPathMI = nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PrescanInstruction(MI);
 | |
| 
 | |
|     SmallVector<unsigned, 2> ForbidRegs;
 | |
| 
 | |
|     // If MI's defs have a special allocation requirement, don't allow
 | |
|     // any def registers to be changed. Also assume all registers
 | |
|     // defined in a call must not be changed (ABI).
 | |
|     if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
 | |
|       // If this instruction's defs have special allocation requirement, don't
 | |
|       // break this anti-dependency.
 | |
|       AntiDepReg = 0;
 | |
|     else if (AntiDepReg) {
 | |
|       // If this instruction has a use of AntiDepReg, breaking it
 | |
|       // is invalid.  If the instruction defines other registers,
 | |
|       // save a list of them so that we don't pick a new register
 | |
|       // that overlaps any of them.
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (!MO.isReg()) continue;
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (Reg == 0) continue;
 | |
|         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
 | |
|           AntiDepReg = 0;
 | |
|           break;
 | |
|         }
 | |
|         if (MO.isDef() && Reg != AntiDepReg)
 | |
|           ForbidRegs.push_back(Reg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Determine AntiDepReg's register class, if it is live and is
 | |
|     // consistently used within a single class.
 | |
|     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
 | |
|                                                     : nullptr;
 | |
|     assert((AntiDepReg == 0 || RC != nullptr) &&
 | |
|            "Register should be live if it's causing an anti-dependence!");
 | |
|     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
 | |
|       AntiDepReg = 0;
 | |
| 
 | |
|     // Look for a suitable register to use to break the anti-dependence.
 | |
|     //
 | |
|     // TODO: Instead of picking the first free register, consider which might
 | |
|     // be the best.
 | |
|     if (AntiDepReg != 0) {
 | |
|       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
 | |
|                 std::multimap<unsigned, MachineOperand *>::iterator>
 | |
|         Range = RegRefs.equal_range(AntiDepReg);
 | |
|       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
 | |
|                                                      AntiDepReg,
 | |
|                                                      LastNewReg[AntiDepReg],
 | |
|                                                      RC, ForbidRegs)) {
 | |
|         DEBUG(dbgs() << "Breaking anti-dependence edge on "
 | |
|               << TRI->getName(AntiDepReg)
 | |
|               << " with " << RegRefs.count(AntiDepReg) << " references"
 | |
|               << " using " << TRI->getName(NewReg) << "!\n");
 | |
| 
 | |
|         // Update the references to the old register to refer to the new
 | |
|         // register.
 | |
|         for (std::multimap<unsigned, MachineOperand *>::iterator
 | |
|              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
 | |
|           Q->second->setReg(NewReg);
 | |
|           // If the SU for the instruction being updated has debug information
 | |
|           // related to the anti-dependency register, make sure to update that
 | |
|           // as well.
 | |
|           const SUnit *SU = MISUnitMap[Q->second->getParent()];
 | |
|           if (!SU) continue;
 | |
|           for (DbgValueVector::iterator DVI = DbgValues.begin(),
 | |
|                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
 | |
|             if (DVI->second == Q->second->getParent())
 | |
|               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
 | |
|         }
 | |
| 
 | |
|         // We just went back in time and modified history; the
 | |
|         // liveness information for the anti-dependence reg is now
 | |
|         // inconsistent. Set the state as if it were dead.
 | |
|         Classes[NewReg] = Classes[AntiDepReg];
 | |
|         DefIndices[NewReg] = DefIndices[AntiDepReg];
 | |
|         KillIndices[NewReg] = KillIndices[AntiDepReg];
 | |
|         assert(((KillIndices[NewReg] == ~0u) !=
 | |
|                 (DefIndices[NewReg] == ~0u)) &&
 | |
|              "Kill and Def maps aren't consistent for NewReg!");
 | |
| 
 | |
|         Classes[AntiDepReg] = nullptr;
 | |
|         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
 | |
|         KillIndices[AntiDepReg] = ~0u;
 | |
|         assert(((KillIndices[AntiDepReg] == ~0u) !=
 | |
|                 (DefIndices[AntiDepReg] == ~0u)) &&
 | |
|              "Kill and Def maps aren't consistent for AntiDepReg!");
 | |
| 
 | |
|         RegRefs.erase(AntiDepReg);
 | |
|         LastNewReg[AntiDepReg] = NewReg;
 | |
|         ++Broken;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ScanInstruction(MI, Count);
 | |
|   }
 | |
| 
 | |
|   return Broken;
 | |
| }
 |