mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128249 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1803 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1803 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is part of the ARM Disassembler.
 | 
						|
// It contains the tablegen backend that emits the decoder functions for ARM and
 | 
						|
// Thumb.  The disassembler core includes the auto-generated file, invokes the
 | 
						|
// decoder functions, and builds up the MCInst based on the decoded Opcode.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-decoder-emitter"
 | 
						|
 | 
						|
#include "ARMDecoderEmitter.h"
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "Record.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <map>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/////////////////////////////////////////////////////
 | 
						|
//                                                 //
 | 
						|
//  Enums and Utilities for ARM Instruction Format //
 | 
						|
//                                                 //
 | 
						|
/////////////////////////////////////////////////////
 | 
						|
 | 
						|
#define ARM_FORMATS                   \
 | 
						|
  ENTRY(ARM_FORMAT_PSEUDO,         0) \
 | 
						|
  ENTRY(ARM_FORMAT_MULFRM,         1) \
 | 
						|
  ENTRY(ARM_FORMAT_BRFRM,          2) \
 | 
						|
  ENTRY(ARM_FORMAT_BRMISCFRM,      3) \
 | 
						|
  ENTRY(ARM_FORMAT_DPFRM,          4) \
 | 
						|
  ENTRY(ARM_FORMAT_DPSOREGFRM,     5) \
 | 
						|
  ENTRY(ARM_FORMAT_LDFRM,          6) \
 | 
						|
  ENTRY(ARM_FORMAT_STFRM,          7) \
 | 
						|
  ENTRY(ARM_FORMAT_LDMISCFRM,      8) \
 | 
						|
  ENTRY(ARM_FORMAT_STMISCFRM,      9) \
 | 
						|
  ENTRY(ARM_FORMAT_LDSTMULFRM,    10) \
 | 
						|
  ENTRY(ARM_FORMAT_LDSTEXFRM,     11) \
 | 
						|
  ENTRY(ARM_FORMAT_ARITHMISCFRM,  12) \
 | 
						|
  ENTRY(ARM_FORMAT_SATFRM,        13) \
 | 
						|
  ENTRY(ARM_FORMAT_EXTFRM,        14) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPUNARYFRM,   15) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPBINARYFRM,  16) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPCONV1FRM,   17) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPCONV2FRM,   18) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPCONV3FRM,   19) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPCONV4FRM,   20) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPCONV5FRM,   21) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPLDSTFRM,    22) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \
 | 
						|
  ENTRY(ARM_FORMAT_VFPMISCFRM,    24) \
 | 
						|
  ENTRY(ARM_FORMAT_THUMBFRM,      25) \
 | 
						|
  ENTRY(ARM_FORMAT_MISCFRM,       26) \
 | 
						|
  ENTRY(ARM_FORMAT_NEONGETLNFRM,  27) \
 | 
						|
  ENTRY(ARM_FORMAT_NEONSETLNFRM,  28) \
 | 
						|
  ENTRY(ARM_FORMAT_NEONDUPFRM,    29) \
 | 
						|
  ENTRY(ARM_FORMAT_NLdSt,         30) \
 | 
						|
  ENTRY(ARM_FORMAT_N1RegModImm,   31) \
 | 
						|
  ENTRY(ARM_FORMAT_N2Reg,         32) \
 | 
						|
  ENTRY(ARM_FORMAT_NVCVT,         33) \
 | 
						|
  ENTRY(ARM_FORMAT_NVecDupLn,     34) \
 | 
						|
  ENTRY(ARM_FORMAT_N2RegVecShL,   35) \
 | 
						|
  ENTRY(ARM_FORMAT_N2RegVecShR,   36) \
 | 
						|
  ENTRY(ARM_FORMAT_N3Reg,         37) \
 | 
						|
  ENTRY(ARM_FORMAT_N3RegVecSh,    38) \
 | 
						|
  ENTRY(ARM_FORMAT_NVecExtract,   39) \
 | 
						|
  ENTRY(ARM_FORMAT_NVecMulScalar, 40) \
 | 
						|
  ENTRY(ARM_FORMAT_NVTBL,         41)
 | 
						|
 | 
						|
// ARM instruction format specifies the encoding used by the instruction.
 | 
						|
#define ENTRY(n, v) n = v,
 | 
						|
typedef enum {
 | 
						|
  ARM_FORMATS
 | 
						|
  ARM_FORMAT_NA
 | 
						|
} ARMFormat;
 | 
						|
#undef ENTRY
 | 
						|
 | 
						|
// Converts enum to const char*.
 | 
						|
static const char *stringForARMFormat(ARMFormat form) {
 | 
						|
#define ENTRY(n, v) case n: return #n;
 | 
						|
  switch(form) {
 | 
						|
    ARM_FORMATS
 | 
						|
  case ARM_FORMAT_NA:
 | 
						|
  default:
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
#undef ENTRY
 | 
						|
}
 | 
						|
 | 
						|
enum {
 | 
						|
  IndexModeNone = 0,
 | 
						|
  IndexModePre  = 1,
 | 
						|
  IndexModePost = 2,
 | 
						|
  IndexModeUpd  = 3
 | 
						|
};
 | 
						|
 | 
						|
/////////////////////////
 | 
						|
//                     //
 | 
						|
//  Utility functions  //
 | 
						|
//                     //
 | 
						|
/////////////////////////
 | 
						|
 | 
						|
/// byteFromBitsInit - Return the byte value from a BitsInit.
 | 
						|
/// Called from getByteField().
 | 
						|
static uint8_t byteFromBitsInit(BitsInit &init) {
 | 
						|
  int width = init.getNumBits();
 | 
						|
 | 
						|
  assert(width <= 8 && "Field is too large for uint8_t!");
 | 
						|
 | 
						|
  int index;
 | 
						|
  uint8_t mask = 0x01;
 | 
						|
 | 
						|
  uint8_t ret = 0;
 | 
						|
 | 
						|
  for (index = 0; index < width; index++) {
 | 
						|
    if (static_cast<BitInit*>(init.getBit(index))->getValue())
 | 
						|
      ret |= mask;
 | 
						|
 | 
						|
    mask <<= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t getByteField(const Record &def, const char *str) {
 | 
						|
  BitsInit *bits = def.getValueAsBitsInit(str);
 | 
						|
  return byteFromBitsInit(*bits);
 | 
						|
}
 | 
						|
 | 
						|
static BitsInit &getBitsField(const Record &def, const char *str) {
 | 
						|
  BitsInit *bits = def.getValueAsBitsInit(str);
 | 
						|
  return *bits;
 | 
						|
}
 | 
						|
 | 
						|
/// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
 | 
						|
/// suffix.  ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
 | 
						|
static
 | 
						|
bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
 | 
						|
                            const StringRef Suffix) {
 | 
						|
 | 
						|
  if (RHS.startswith(LHS) && RHS.endswith(Suffix))
 | 
						|
    return RHS.size() == LHS.size() + Suffix.size();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// thumbInstruction - Determine whether we have a Thumb instruction.
 | 
						|
/// See also ARMInstrFormats.td.
 | 
						|
static bool thumbInstruction(uint8_t Form) {
 | 
						|
  return Form == ARM_FORMAT_THUMBFRM;
 | 
						|
}
 | 
						|
 | 
						|
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
 | 
						|
// for a bit value.
 | 
						|
//
 | 
						|
// BIT_UNFILTERED is used as the init value for a filter position.  It is used
 | 
						|
// only for filter processings.
 | 
						|
typedef enum {
 | 
						|
  BIT_TRUE,      // '1'
 | 
						|
  BIT_FALSE,     // '0'
 | 
						|
  BIT_UNSET,     // '?'
 | 
						|
  BIT_UNFILTERED // unfiltered
 | 
						|
} bit_value_t;
 | 
						|
 | 
						|
static bool ValueSet(bit_value_t V) {
 | 
						|
  return (V == BIT_TRUE || V == BIT_FALSE);
 | 
						|
}
 | 
						|
static bool ValueNotSet(bit_value_t V) {
 | 
						|
  return (V == BIT_UNSET);
 | 
						|
}
 | 
						|
static int Value(bit_value_t V) {
 | 
						|
  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
 | 
						|
}
 | 
						|
static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
 | 
						|
  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
 | 
						|
    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
 | 
						|
 | 
						|
  // The bit is uninitialized.
 | 
						|
  return BIT_UNSET;
 | 
						|
}
 | 
						|
// Prints the bit value for each position.
 | 
						|
static void dumpBits(raw_ostream &o, BitsInit &bits) {
 | 
						|
  unsigned index;
 | 
						|
 | 
						|
  for (index = bits.getNumBits(); index > 0; index--) {
 | 
						|
    switch (bitFromBits(bits, index - 1)) {
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "unexpected return value from bitFromBits");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Enums for the available target names.
 | 
						|
typedef enum {
 | 
						|
  TARGET_ARM = 0,
 | 
						|
  TARGET_THUMB
 | 
						|
} TARGET_NAME_t;
 | 
						|
 | 
						|
// FIXME: Possibly auto-detected?
 | 
						|
#define BIT_WIDTH 32
 | 
						|
 | 
						|
// Forward declaration.
 | 
						|
class ARMFilterChooser;
 | 
						|
 | 
						|
// Representation of the instruction to work on.
 | 
						|
typedef bit_value_t insn_t[BIT_WIDTH];
 | 
						|
 | 
						|
/// Filter - Filter works with FilterChooser to produce the decoding tree for
 | 
						|
/// the ISA.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree in a certain level.  Each case stmt delegates to an inferior
 | 
						|
/// FilterChooser to decide what further decoding logic to employ, or in another
 | 
						|
/// words, what other remaining bits to look at.  The FilterChooser eventually
 | 
						|
/// chooses a best Filter to do its job.
 | 
						|
///
 | 
						|
/// This recursive scheme ends when the number of Opcodes assigned to the
 | 
						|
/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
 | 
						|
/// the Filter/FilterChooser combo does not know how to distinguish among the
 | 
						|
/// Opcodes assigned.
 | 
						|
///
 | 
						|
/// An example of a conflict is 
 | 
						|
///
 | 
						|
/// Conflict:
 | 
						|
///                     111101000.00........00010000....
 | 
						|
///                     111101000.00........0001........
 | 
						|
///                     1111010...00........0001........
 | 
						|
///                     1111010...00....................
 | 
						|
///                     1111010.........................
 | 
						|
///                     1111............................
 | 
						|
///                     ................................
 | 
						|
///     VST4q8a         111101000_00________00010000____
 | 
						|
///     VST4q8b         111101000_00________00010000____
 | 
						|
///
 | 
						|
/// The Debug output shows the path that the decoding tree follows to reach the
 | 
						|
/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
 | 
						|
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
 | 
						|
///
 | 
						|
/// The encoding info in the .td files does not specify this meta information,
 | 
						|
/// which could have been used by the decoder to resolve the conflict.  The
 | 
						|
/// decoder could try to decode the even/odd register numbering and assign to
 | 
						|
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
 | 
						|
/// version and return the Opcode since the two have the same Asm format string.
 | 
						|
class ARMFilter {
 | 
						|
protected:
 | 
						|
  ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter
 | 
						|
  unsigned StartBit; // the starting bit position
 | 
						|
  unsigned NumBits; // number of bits to filter
 | 
						|
  bool Mixed; // a mixed region contains both set and unset bits
 | 
						|
 | 
						|
  // Map of well-known segment value to the set of uid's with that value. 
 | 
						|
  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
 | 
						|
 | 
						|
  // Set of uid's with non-constant segment values.
 | 
						|
  std::vector<unsigned> VariableInstructions;
 | 
						|
 | 
						|
  // Map of well-known segment value to its delegate.
 | 
						|
  std::map<unsigned, ARMFilterChooser*> FilterChooserMap;
 | 
						|
 | 
						|
  // Number of instructions which fall under FilteredInstructions category.
 | 
						|
  unsigned NumFiltered;
 | 
						|
 | 
						|
  // Keeps track of the last opcode in the filtered bucket.
 | 
						|
  unsigned LastOpcFiltered;
 | 
						|
 | 
						|
  // Number of instructions which fall under VariableInstructions category.
 | 
						|
  unsigned NumVariable;
 | 
						|
 | 
						|
public:
 | 
						|
  unsigned getNumFiltered() { return NumFiltered; }
 | 
						|
  unsigned getNumVariable() { return NumVariable; }
 | 
						|
  unsigned getSingletonOpc() {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    return LastOpcFiltered;
 | 
						|
  }
 | 
						|
  // Return the filter chooser for the group of instructions without constant
 | 
						|
  // segment values.
 | 
						|
  ARMFilterChooser &getVariableFC() {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return *(FilterChooserMap.find((unsigned)-1)->second);
 | 
						|
  }
 | 
						|
 | 
						|
  ARMFilter(const ARMFilter &f);
 | 
						|
  ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
 | 
						|
            bool mixed);
 | 
						|
 | 
						|
  ~ARMFilter();
 | 
						|
 | 
						|
  // Divides the decoding task into sub tasks and delegates them to the
 | 
						|
  // inferior FilterChooser's.
 | 
						|
  //
 | 
						|
  // A special case arises when there's only one entry in the filtered
 | 
						|
  // instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
  // match the remaining undecoded encoding bits against the singleton.
 | 
						|
  void recurse();
 | 
						|
 | 
						|
  // Emit code to decode instructions given a segment or segments of bits.
 | 
						|
  void emit(raw_ostream &o, unsigned &Indentation);
 | 
						|
 | 
						|
  // Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
  // the filter distinguishes more categories of instructions.
 | 
						|
  unsigned usefulness() const;
 | 
						|
}; // End of class Filter
 | 
						|
 | 
						|
// These are states of our finite state machines used in FilterChooser's
 | 
						|
// filterProcessor() which produces the filter candidates to use.
 | 
						|
typedef enum {
 | 
						|
  ATTR_NONE,
 | 
						|
  ATTR_FILTERED,
 | 
						|
  ATTR_ALL_SET,
 | 
						|
  ATTR_ALL_UNSET,
 | 
						|
  ATTR_MIXED
 | 
						|
} bitAttr_t;
 | 
						|
 | 
						|
/// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters
 | 
						|
/// in order to perform the decoding of instructions at the current level.
 | 
						|
///
 | 
						|
/// Decoding proceeds from the top down.  Based on the well-known encoding bits
 | 
						|
/// of instructions available, FilterChooser builds up the possible Filters that
 | 
						|
/// can further the task of decoding by distinguishing among the remaining
 | 
						|
/// candidate instructions.
 | 
						|
///
 | 
						|
/// Once a filter has been chosen, it is called upon to divide the decoding task
 | 
						|
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
 | 
						|
/// processings.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree.  And each case is delegated to an inferior FilterChooser to
 | 
						|
/// decide what further remaining bits to look at.
 | 
						|
class ARMFilterChooser {
 | 
						|
  static TARGET_NAME_t TargetName;
 | 
						|
 | 
						|
protected:
 | 
						|
  friend class ARMFilter;
 | 
						|
 | 
						|
  // Vector of codegen instructions to choose our filter.
 | 
						|
  const std::vector<const CodeGenInstruction*> &AllInstructions;
 | 
						|
 | 
						|
  // Vector of uid's for this filter chooser to work on.
 | 
						|
  const std::vector<unsigned> Opcodes;
 | 
						|
 | 
						|
  // Vector of candidate filters.
 | 
						|
  std::vector<ARMFilter> Filters;
 | 
						|
 | 
						|
  // Array of bit values passed down from our parent.
 | 
						|
  // Set to all BIT_UNFILTERED's for Parent == NULL.
 | 
						|
  bit_value_t FilterBitValues[BIT_WIDTH];
 | 
						|
 | 
						|
  // Links to the FilterChooser above us in the decoding tree.
 | 
						|
  ARMFilterChooser *Parent;
 | 
						|
  
 | 
						|
  // Index of the best filter from Filters.
 | 
						|
  int BestIndex;
 | 
						|
 | 
						|
public:
 | 
						|
  static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
 | 
						|
 | 
						|
  ARMFilterChooser(const ARMFilterChooser &FC) :
 | 
						|
      AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
 | 
						|
      Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
 | 
						|
    memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
 | 
						|
  }
 | 
						|
 | 
						|
  ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                const std::vector<unsigned> &IDs) :
 | 
						|
      AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
 | 
						|
      BestIndex(-1) {
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      FilterBitValues[i] = BIT_UNFILTERED;
 | 
						|
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                   const std::vector<unsigned> &IDs,
 | 
						|
                   bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
 | 
						|
                   ARMFilterChooser &parent) :
 | 
						|
      AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
 | 
						|
      BestIndex(-1) {
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      FilterBitValues[i] = ParentFilterBitValues[i];
 | 
						|
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  // The top level filter chooser has NULL as its parent.
 | 
						|
  bool isTopLevel() { return Parent == NULL; }
 | 
						|
 | 
						|
  // This provides an opportunity for target specific code emission.
 | 
						|
  void emitTopHook(raw_ostream &o);
 | 
						|
 | 
						|
  // Emit the top level typedef and decodeInstruction() function.
 | 
						|
  void emitTop(raw_ostream &o, unsigned &Indentation);
 | 
						|
 | 
						|
  // This provides an opportunity for target specific code emission after
 | 
						|
  // emitTop().
 | 
						|
  void emitBot(raw_ostream &o, unsigned &Indentation);
 | 
						|
 | 
						|
protected:
 | 
						|
  // Populates the insn given the uid.
 | 
						|
  void insnWithID(insn_t &Insn, unsigned Opcode) const {
 | 
						|
    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
 | 
						|
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      Insn[i] = bitFromBits(Bits, i);
 | 
						|
 | 
						|
    // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
 | 
						|
    Record *R = AllInstructions[Opcode]->TheDef;
 | 
						|
    if (R->getValue("IndexModeBits") &&
 | 
						|
        getByteField(*R, "IndexModeBits") == IndexModeUpd)
 | 
						|
      Insn[21] = BIT_TRUE;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the record name.
 | 
						|
  const std::string &nameWithID(unsigned Opcode) const {
 | 
						|
    return AllInstructions[Opcode]->TheDef->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  // Populates the field of the insn given the start position and the number of
 | 
						|
  // consecutive bits to scan for.
 | 
						|
  //
 | 
						|
  // Returns false if there exists any uninitialized bit value in the range.
 | 
						|
  // Returns true, otherwise.
 | 
						|
  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
 | 
						|
      unsigned NumBits) const;
 | 
						|
 | 
						|
  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
  /// filter array as a series of chars.
 | 
						|
  void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
 | 
						|
 | 
						|
  /// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
  /// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
  void dumpStack(raw_ostream &o, const char *prefix);
 | 
						|
 | 
						|
  ARMFilter &bestFilter() {
 | 
						|
    assert(BestIndex != -1 && "BestIndex not set");
 | 
						|
    return Filters[BestIndex];
 | 
						|
  }
 | 
						|
 | 
						|
  // Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
  void SingletonExists(unsigned Opc);
 | 
						|
 | 
						|
  bool PositionFiltered(unsigned i) {
 | 
						|
    return ValueSet(FilterBitValues[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculates the island(s) needed to decode the instruction.
 | 
						|
  // This returns a lit of undecoded bits of an instructions, for example,
 | 
						|
  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
  // decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
  unsigned getIslands(std::vector<unsigned> &StartBits,
 | 
						|
      std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
 | 
						|
      insn_t &Insn);
 | 
						|
 | 
						|
  // The purpose of this function is for the API client to detect possible
 | 
						|
  // Load/Store Coprocessor instructions.  If the coprocessor number is of
 | 
						|
  // the instruction is either 10 or 11, the decoder should not report the
 | 
						|
  // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
 | 
						|
  // VFP instructions.
 | 
						|
  bool LdStCopEncoding1(unsigned Opc) {
 | 
						|
    const std::string &Name = nameWithID(Opc);
 | 
						|
    if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
 | 
						|
        Name == "LDC_POST" || Name == "LDC_PRE" ||
 | 
						|
        Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
 | 
						|
        Name == "LDCL_POST" || Name == "LDCL_PRE" ||
 | 
						|
        Name == "STC_OFFSET" || Name == "STC_OPTION" ||
 | 
						|
        Name == "STC_POST" || Name == "STC_PRE" ||
 | 
						|
        Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
 | 
						|
        Name == "STCL_POST" || Name == "STCL_PRE")
 | 
						|
      return true;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emits code to decode the singleton.  Return true if we have matched all the
 | 
						|
  // well-known bits.
 | 
						|
  bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
 | 
						|
 | 
						|
  // Emits code to decode the singleton, and then to decode the rest.
 | 
						|
  void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
 | 
						|
                            ARMFilter &Best);
 | 
						|
 | 
						|
  // Assign a single filter and run with it.
 | 
						|
  void runSingleFilter(ARMFilterChooser &owner, unsigned startBit,
 | 
						|
                       unsigned numBit, bool mixed);
 | 
						|
 | 
						|
  // reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
  // eligible for use as a filter region.
 | 
						|
  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
 | 
						|
      bool AllowMixed);
 | 
						|
 | 
						|
  // FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
  // builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
  // recursively descends down the decoding tree.
 | 
						|
  bool filterProcessor(bool AllowMixed, bool Greedy = true);
 | 
						|
 | 
						|
  // Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
  // the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
  // dump the conflict set to the standard error.
 | 
						|
  void doFilter();
 | 
						|
 | 
						|
  // Emits code to decode our share of instructions.  Returns true if the
 | 
						|
  // emitted code causes a return, which occurs if we know how to decode
 | 
						|
  // the instruction at this level or the instruction is not decodeable.
 | 
						|
  bool emit(raw_ostream &o, unsigned &Indentation);
 | 
						|
};
 | 
						|
 | 
						|
///////////////////////////
 | 
						|
//                       //
 | 
						|
// Filter Implmenetation //
 | 
						|
//                       //
 | 
						|
///////////////////////////
 | 
						|
 | 
						|
ARMFilter::ARMFilter(const ARMFilter &f) :
 | 
						|
  Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
 | 
						|
  FilteredInstructions(f.FilteredInstructions),
 | 
						|
  VariableInstructions(f.VariableInstructions),
 | 
						|
  FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
 | 
						|
  LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
 | 
						|
}
 | 
						|
 | 
						|
ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
 | 
						|
    bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
 | 
						|
                  Mixed(mixed) {
 | 
						|
  assert(StartBit + NumBits - 1 < BIT_WIDTH);
 | 
						|
 | 
						|
  NumFiltered = 0;
 | 
						|
  LastOpcFiltered = 0;
 | 
						|
  NumVariable = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
 | 
						|
    insn_t Insn;
 | 
						|
 | 
						|
    // Populates the insn given the uid.
 | 
						|
    Owner->insnWithID(Insn, Owner->Opcodes[i]);
 | 
						|
 | 
						|
    uint64_t Field;
 | 
						|
    // Scans the segment for possibly well-specified encoding bits.
 | 
						|
    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
 | 
						|
 | 
						|
    if (ok) {
 | 
						|
      // The encoding bits are well-known.  Lets add the uid of the
 | 
						|
      // instruction into the bucket keyed off the constant field value.
 | 
						|
      LastOpcFiltered = Owner->Opcodes[i];
 | 
						|
      FilteredInstructions[Field].push_back(LastOpcFiltered);
 | 
						|
      ++NumFiltered;
 | 
						|
    } else {
 | 
						|
      // Some of the encoding bit(s) are unspecfied.  This contributes to
 | 
						|
      // one additional member of "Variable" instructions.
 | 
						|
      VariableInstructions.push_back(Owner->Opcodes[i]);
 | 
						|
      ++NumVariable;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
 | 
						|
         && "Filter returns no instruction categories");
 | 
						|
}
 | 
						|
 | 
						|
ARMFilter::~ARMFilter() {
 | 
						|
  std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
    delete filterIterator->second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Divides the decoding task into sub tasks and delegates them to the
 | 
						|
// inferior FilterChooser's.
 | 
						|
//
 | 
						|
// A special case arises when there's only one entry in the filtered
 | 
						|
// instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
// match the remaining undecoded encoding bits against the singleton.
 | 
						|
void ARMFilter::recurse() {
 | 
						|
  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
 | 
						|
 | 
						|
  bit_value_t BitValueArray[BIT_WIDTH];
 | 
						|
  // Starts by inheriting our parent filter chooser's filter bit values.
 | 
						|
  memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
 | 
						|
 | 
						|
  unsigned bitIndex;
 | 
						|
 | 
						|
  if (VariableInstructions.size()) {
 | 
						|
    // Conservatively marks each segment position as BIT_UNSET.
 | 
						|
    for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
 | 
						|
      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for futher processing on this
 | 
						|
    // group of instructions whose segment values are variable.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
 | 
						|
                              (unsigned)-1,
 | 
						|
                              new ARMFilterChooser(Owner->AllInstructions,
 | 
						|
                                                   VariableInstructions,
 | 
						|
                                                   BitValueArray,
 | 
						|
                                                   *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to recurse for a singleton filtered instruction.
 | 
						|
  // See also Filter::emit().
 | 
						|
  if (getNumFiltered() == 1) {
 | 
						|
    //Owner->SingletonExists(LastOpcFiltered);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, create sub choosers.
 | 
						|
  for (mapIterator = FilteredInstructions.begin();
 | 
						|
       mapIterator != FilteredInstructions.end();
 | 
						|
       mapIterator++) {
 | 
						|
 | 
						|
    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
 | 
						|
    for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
 | 
						|
      if (mapIterator->first & (1ULL << bitIndex))
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
 | 
						|
      else
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for futher processing on this
 | 
						|
    // category of instructions.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
 | 
						|
                              mapIterator->first,
 | 
						|
                              new ARMFilterChooser(Owner->AllInstructions,
 | 
						|
                                                   mapIterator->second,
 | 
						|
                                                   BitValueArray,
 | 
						|
                                                   *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emit code to decode instructions given a segment or segments of bits.
 | 
						|
void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  o.indent(Indentation) << "// Check Inst{";
 | 
						|
 | 
						|
  if (NumBits > 1)
 | 
						|
    o << (StartBit + NumBits - 1) << '-';
 | 
						|
 | 
						|
  o << StartBit << "} ...\n";
 | 
						|
 | 
						|
  o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
 | 
						|
                        << StartBit << ", " << NumBits << ")) {\n";
 | 
						|
 | 
						|
  std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
 | 
						|
 | 
						|
  bool DefaultCase = false;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
 | 
						|
    // Field value -1 implies a non-empty set of variable instructions.
 | 
						|
    // See also recurse().
 | 
						|
    if (filterIterator->first == (unsigned)-1) {
 | 
						|
      DefaultCase = true;
 | 
						|
 | 
						|
      o.indent(Indentation) << "default:\n";
 | 
						|
      o.indent(Indentation) << "  break; // fallthrough\n";
 | 
						|
 | 
						|
      // Closing curly brace for the switch statement.
 | 
						|
      // This is unconventional because we want the default processing to be
 | 
						|
      // performed for the fallthrough cases as well, i.e., when the "cases"
 | 
						|
      // did not prove a decoded instruction.
 | 
						|
      o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
    } else
 | 
						|
      o.indent(Indentation) << "case " << filterIterator->first << ":\n";
 | 
						|
 | 
						|
    // We arrive at a category of instructions with the same segment value.
 | 
						|
    // Now delegate to the sub filter chooser for further decodings.
 | 
						|
    // The case may fallthrough, which happens if the remaining well-known
 | 
						|
    // encoding bits do not match exactly.
 | 
						|
    if (!DefaultCase) { ++Indentation; ++Indentation; }
 | 
						|
 | 
						|
    bool finished = filterIterator->second->emit(o, Indentation);
 | 
						|
    // For top level default case, there's no need for a break statement.
 | 
						|
    if (Owner->isTopLevel() && DefaultCase)
 | 
						|
      break;
 | 
						|
    if (!finished)
 | 
						|
      o.indent(Indentation) << "break;\n";
 | 
						|
 | 
						|
    if (!DefaultCase) { --Indentation; --Indentation; }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is no default case, we still need to supply a closing brace.
 | 
						|
  if (!DefaultCase) {
 | 
						|
    // Closing curly brace for the switch statement.
 | 
						|
    o.indent(Indentation) << "}\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
// the filter distinguishes more categories of instructions.
 | 
						|
unsigned ARMFilter::usefulness() const {
 | 
						|
  if (VariableInstructions.size())
 | 
						|
    return FilteredInstructions.size();
 | 
						|
  else
 | 
						|
    return FilteredInstructions.size() + 1;
 | 
						|
}
 | 
						|
 | 
						|
//////////////////////////////////
 | 
						|
//                              //
 | 
						|
// Filterchooser Implementation //
 | 
						|
//                              //
 | 
						|
//////////////////////////////////
 | 
						|
 | 
						|
// Define the symbol here.
 | 
						|
TARGET_NAME_t ARMFilterChooser::TargetName;
 | 
						|
 | 
						|
// This provides an opportunity for target specific code emission.
 | 
						|
void ARMFilterChooser::emitTopHook(raw_ostream &o) {
 | 
						|
  if (TargetName == TARGET_ARM) {
 | 
						|
    // Emit code that references the ARMFormat data type.
 | 
						|
    o << "static const ARMFormat ARMFormats[] = {\n";
 | 
						|
    for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
 | 
						|
      const Record &Def = *(AllInstructions[i]->TheDef);
 | 
						|
      const std::string &Name = Def.getName();
 | 
						|
      if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
 | 
						|
        o.indent(2) << 
 | 
						|
          stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
 | 
						|
      else
 | 
						|
        o << "  ARM_FORMAT_NA";
 | 
						|
 | 
						|
      o << ",\t// Inst #" << i << " = " << Name << '\n';
 | 
						|
    }
 | 
						|
    o << "  ARM_FORMAT_NA\t// Unreachable.\n";
 | 
						|
    o << "};\n\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emit the top level typedef and decodeInstruction() function.
 | 
						|
void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  // Run the target specific emit hook.
 | 
						|
  emitTopHook(o);
 | 
						|
 | 
						|
  switch (BIT_WIDTH) {
 | 
						|
  case 8:
 | 
						|
    o.indent(Indentation) << "typedef uint8_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
    o.indent(Indentation) << "typedef uint16_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    o.indent(Indentation) << "typedef uint32_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 64:
 | 
						|
    o.indent(Indentation) << "typedef uint64_t field_t;\n";
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unexpected instruction size!");
 | 
						|
  }
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
 | 
						|
  o.indent(Indentation) << "static field_t " <<
 | 
						|
    "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
 | 
						|
 | 
						|
  o.indent(Indentation) << "{\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
 | 
						|
                        << " && \"Instruction field out of bounds!\");\n";
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "field_t fieldMask;\n";
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "else\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
 | 
						|
  o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  // Emits code to decode the instructions.
 | 
						|
  emit(o, Indentation);
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "return 0;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
}
 | 
						|
 | 
						|
// This provides an opportunity for target specific code emission after
 | 
						|
// emitTop().
 | 
						|
void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  if (TargetName != TARGET_THUMB) return;
 | 
						|
 | 
						|
  // Emit code that decodes the Thumb ISA.
 | 
						|
  o.indent(Indentation)
 | 
						|
    << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
 | 
						|
  // Emits code to decode the instructions.
 | 
						|
  emit(o, Indentation);
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "return 0;\n";
 | 
						|
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
// Populates the field of the insn given the start position and the number of
 | 
						|
// consecutive bits to scan for.
 | 
						|
//
 | 
						|
// Returns false if and on the first uninitialized bit value encountered.
 | 
						|
// Returns true, otherwise.
 | 
						|
bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
 | 
						|
    unsigned StartBit, unsigned NumBits) const {
 | 
						|
  Field = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumBits; ++i) {
 | 
						|
    if (Insn[StartBit + i] == BIT_UNSET)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Insn[StartBit + i] == BIT_TRUE)
 | 
						|
      Field = Field | (1ULL << i);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
/// filter array as a series of chars.
 | 
						|
void ARMFilterChooser::dumpFilterArray(raw_ostream &o,
 | 
						|
    bit_value_t (&filter)[BIT_WIDTH]) {
 | 
						|
  unsigned bitIndex;
 | 
						|
 | 
						|
  for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
 | 
						|
    switch (filter[bitIndex - 1]) {
 | 
						|
    case BIT_UNFILTERED:
 | 
						|
      o << ".";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
/// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
 | 
						|
  ARMFilterChooser *current = this;
 | 
						|
 | 
						|
  while (current) {
 | 
						|
    o << prefix;
 | 
						|
    dumpFilterArray(o, current->FilterBitValues);
 | 
						|
    o << '\n';
 | 
						|
    current = current->Parent;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
void ARMFilterChooser::SingletonExists(unsigned Opc) {
 | 
						|
  insn_t Insn0;
 | 
						|
  insnWithID(Insn0, Opc);
 | 
						|
 | 
						|
  errs() << "Singleton exists: " << nameWithID(Opc)
 | 
						|
         << " with its decoding dominating ";
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
    if (Opcodes[i] == Opc) continue;
 | 
						|
    errs() << nameWithID(Opcodes[i]) << ' ';
 | 
						|
  }
 | 
						|
  errs() << '\n';
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); i++) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculates the island(s) needed to decode the instruction.
 | 
						|
// This returns a list of undecoded bits of an instructions, for example,
 | 
						|
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
// decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits,
 | 
						|
    std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
 | 
						|
    insn_t &Insn) {
 | 
						|
  unsigned Num, BitNo;
 | 
						|
  Num = BitNo = 0;
 | 
						|
 | 
						|
  uint64_t FieldVal = 0;
 | 
						|
 | 
						|
  // 0: Init
 | 
						|
  // 1: Water (the bit value does not affect decoding)
 | 
						|
  // 2: Island (well-known bit value needed for decoding)
 | 
						|
  int State = 0;
 | 
						|
  int Val = -1;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < BIT_WIDTH; ++i) {
 | 
						|
    Val = Value(Insn[i]);
 | 
						|
    bool Filtered = PositionFiltered(i);
 | 
						|
    switch (State) {
 | 
						|
    default:
 | 
						|
      assert(0 && "Unreachable code!");
 | 
						|
      break;
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      if (Filtered || Val == -1)
 | 
						|
        State = 1; // Still in Water
 | 
						|
      else {
 | 
						|
        State = 2; // Into the Island
 | 
						|
        BitNo = 0;
 | 
						|
        StartBits.push_back(i);
 | 
						|
        FieldVal = Val;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      if (Filtered || Val == -1) {
 | 
						|
        State = 1; // Into the Water
 | 
						|
        EndBits.push_back(i - 1);
 | 
						|
        FieldVals.push_back(FieldVal);
 | 
						|
        ++Num;
 | 
						|
      } else {
 | 
						|
        State = 2; // Still in Island
 | 
						|
        ++BitNo;
 | 
						|
        FieldVal = FieldVal | Val << BitNo;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we are still in Island after the loop, do some housekeeping.
 | 
						|
  if (State == 2) {
 | 
						|
    EndBits.push_back(BIT_WIDTH - 1);
 | 
						|
    FieldVals.push_back(FieldVal);
 | 
						|
    ++Num;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(StartBits.size() == Num && EndBits.size() == Num &&
 | 
						|
         FieldVals.size() == Num);
 | 
						|
  return Num;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode the singleton.  Return true if we have matched all the
 | 
						|
// well-known bits.
 | 
						|
bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
 | 
						|
                                         unsigned Opc) {
 | 
						|
  std::vector<unsigned> StartBits;
 | 
						|
  std::vector<unsigned> EndBits;
 | 
						|
  std::vector<uint64_t> FieldVals;
 | 
						|
  insn_t Insn;
 | 
						|
  insnWithID(Insn, Opc);
 | 
						|
 | 
						|
  // This provides a good opportunity to check for possible Ld/St Coprocessor
 | 
						|
  // Opcode and escapes if the coproc # is either 10 or 11.  It is a NEON/VFP
 | 
						|
  // instruction is disguise.
 | 
						|
  if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
 | 
						|
    o.indent(Indentation);
 | 
						|
    // A8.6.51 & A8.6.188
 | 
						|
    // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
 | 
						|
    o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for islands of undecoded bits of the singleton.
 | 
						|
  getIslands(StartBits, EndBits, FieldVals, Insn);
 | 
						|
 | 
						|
  unsigned Size = StartBits.size();
 | 
						|
  unsigned I, NumBits;
 | 
						|
 | 
						|
  // If we have matched all the well-known bits, just issue a return.
 | 
						|
  if (Size == 0) {
 | 
						|
    o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
 | 
						|
                          << '\n';
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, there are more decodings to be done!
 | 
						|
 | 
						|
  // Emit code to match the island(s) for the singleton.
 | 
						|
  o.indent(Indentation) << "// Check ";
 | 
						|
 | 
						|
  for (I = Size; I != 0; --I) {
 | 
						|
    o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
 | 
						|
    if (I > 1)
 | 
						|
      o << "&& ";
 | 
						|
    else
 | 
						|
      o << "for singleton decoding...\n";
 | 
						|
  }
 | 
						|
 | 
						|
  o.indent(Indentation) << "if (";
 | 
						|
 | 
						|
  for (I = Size; I != 0; --I) {
 | 
						|
    NumBits = EndBits[I-1] - StartBits[I-1] + 1;
 | 
						|
    o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
 | 
						|
      << ") == " << FieldVals[I-1];
 | 
						|
    if (I > 1)
 | 
						|
      o << " && ";
 | 
						|
    else
 | 
						|
      o << ")\n";
 | 
						|
  }
 | 
						|
 | 
						|
  o.indent(Indentation) << "  return " << Opc << "; // " << nameWithID(Opc)
 | 
						|
                        << '\n';
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode the singleton, and then to decode the rest.
 | 
						|
void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o,
 | 
						|
                                            unsigned &Indentation,
 | 
						|
                                            ARMFilter &Best) {
 | 
						|
 | 
						|
  unsigned Opc = Best.getSingletonOpc();
 | 
						|
 | 
						|
  emitSingletonDecoder(o, Indentation, Opc);
 | 
						|
 | 
						|
  // Emit code for the rest.
 | 
						|
  o.indent(Indentation) << "else\n";
 | 
						|
 | 
						|
  Indentation += 2;
 | 
						|
  Best.getVariableFC().emit(o, Indentation);
 | 
						|
  Indentation -= 2;
 | 
						|
}
 | 
						|
 | 
						|
// Assign a single filter and run with it.  Top level API client can initialize
 | 
						|
// with a single filter to start the filtering process.
 | 
						|
void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner,
 | 
						|
                                       unsigned startBit,
 | 
						|
                                       unsigned numBit, bool mixed) {
 | 
						|
  Filters.clear();
 | 
						|
  ARMFilter F(*this, startBit, numBit, true);
 | 
						|
  Filters.push_back(F);
 | 
						|
  BestIndex = 0; // Sole Filter instance to choose from.
 | 
						|
  bestFilter().recurse();
 | 
						|
}
 | 
						|
 | 
						|
// reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
// eligible for use as a filter region.
 | 
						|
void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
 | 
						|
                                    unsigned BitIndex, bool AllowMixed) {
 | 
						|
  if (RA == ATTR_MIXED && AllowMixed)
 | 
						|
    Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true));   
 | 
						|
  else if (RA == ATTR_ALL_SET && !AllowMixed)
 | 
						|
    Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false));
 | 
						|
}
 | 
						|
 | 
						|
// FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
// builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
// recursively descends down the decoding tree.
 | 
						|
bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
 | 
						|
  Filters.clear();
 | 
						|
  BestIndex = -1;
 | 
						|
  unsigned numInstructions = Opcodes.size();
 | 
						|
 | 
						|
  assert(numInstructions && "Filter created with no instructions");
 | 
						|
 | 
						|
  // No further filtering is necessary.
 | 
						|
  if (numInstructions == 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
 | 
						|
  // instructions is 3.
 | 
						|
  if (AllowMixed && !Greedy) {
 | 
						|
    assert(numInstructions == 3);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
      std::vector<unsigned> StartBits;
 | 
						|
      std::vector<unsigned> EndBits;
 | 
						|
      std::vector<uint64_t> FieldVals;
 | 
						|
      insn_t Insn;
 | 
						|
 | 
						|
      insnWithID(Insn, Opcodes[i]);
 | 
						|
 | 
						|
      // Look for islands of undecoded bits of any instruction.
 | 
						|
      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
 | 
						|
        // Found an instruction with island(s).  Now just assign a filter.
 | 
						|
        runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
 | 
						|
                        true);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BitIndex, InsnIndex;
 | 
						|
 | 
						|
  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
 | 
						|
  // The automaton consumes the corresponding bit from each
 | 
						|
  // instruction.
 | 
						|
  //
 | 
						|
  //   Input symbols: 0, 1, and _ (unset).
 | 
						|
  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
 | 
						|
  //   Initial state: NONE.
 | 
						|
  //
 | 
						|
  // (NONE) ------- [01] -> (ALL_SET)
 | 
						|
  // (NONE) ------- _ ----> (ALL_UNSET)
 | 
						|
  // (ALL_SET) ---- [01] -> (ALL_SET)
 | 
						|
  // (ALL_SET) ---- _ ----> (MIXED)
 | 
						|
  // (ALL_UNSET) -- [01] -> (MIXED)
 | 
						|
  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
 | 
						|
  // (MIXED) ------ . ----> (MIXED)
 | 
						|
  // (FILTERED)---- . ----> (FILTERED)
 | 
						|
 | 
						|
  bitAttr_t bitAttrs[BIT_WIDTH];
 | 
						|
 | 
						|
  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
 | 
						|
  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
 | 
						|
  for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
 | 
						|
    if (FilterBitValues[BitIndex] == BIT_TRUE ||
 | 
						|
        FilterBitValues[BitIndex] == BIT_FALSE)
 | 
						|
      bitAttrs[BitIndex] = ATTR_FILTERED;
 | 
						|
    else
 | 
						|
      bitAttrs[BitIndex] = ATTR_NONE;
 | 
						|
 | 
						|
  for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
 | 
						|
    insn_t insn;
 | 
						|
 | 
						|
    insnWithID(insn, Opcodes[InsnIndex]);
 | 
						|
 | 
						|
    for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
 | 
						|
      switch (bitAttrs[BitIndex]) {
 | 
						|
      case ATTR_NONE:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
 | 
						|
        else
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        if (insn[BitIndex] != BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The regionAttr automaton consumes the bitAttrs automatons' state,
 | 
						|
  // lowest-to-highest.
 | 
						|
  //
 | 
						|
  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
 | 
						|
  //   States:        NONE, ALL_SET, MIXED
 | 
						|
  //   Initial state: NONE
 | 
						|
  //
 | 
						|
  // (NONE) ----- F --> (NONE)
 | 
						|
  // (NONE) ----- S --> (ALL_SET)     ; and set region start
 | 
						|
  // (NONE) ----- U --> (NONE)
 | 
						|
  // (NONE) ----- M --> (MIXED)       ; and set region start
 | 
						|
  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- S --> (ALL_SET)
 | 
						|
  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
 | 
						|
  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
 | 
						|
  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- M --> (MIXED)
 | 
						|
 | 
						|
  bitAttr_t RA = ATTR_NONE;
 | 
						|
  unsigned StartBit = 0;
 | 
						|
 | 
						|
  for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
 | 
						|
    bitAttr_t bitAttr = bitAttrs[BitIndex];
 | 
						|
 | 
						|
    assert(bitAttr != ATTR_NONE && "Bit without attributes");
 | 
						|
 | 
						|
    switch (RA) {
 | 
						|
    case ATTR_NONE:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_SET:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_MIXED:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_UNSET:
 | 
						|
      assert(0 && "regionAttr state machine has no ATTR_UNSET state");
 | 
						|
    case ATTR_FILTERED:
 | 
						|
      assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At the end, if we're still in ALL_SET or MIXED states, report a region
 | 
						|
  switch (RA) {
 | 
						|
  case ATTR_NONE:
 | 
						|
    break;
 | 
						|
  case ATTR_FILTERED:
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_SET:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_UNSET:
 | 
						|
    break;
 | 
						|
  case ATTR_MIXED:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have finished with the filter processings.  Now it's time to choose
 | 
						|
  // the best performing filter.
 | 
						|
  BestIndex = 0;
 | 
						|
  bool AllUseless = true;
 | 
						|
  unsigned BestScore = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
 | 
						|
    unsigned Usefulness = Filters[i].usefulness();
 | 
						|
 | 
						|
    if (Usefulness)
 | 
						|
      AllUseless = false;
 | 
						|
 | 
						|
    if (Usefulness > BestScore) {
 | 
						|
      BestIndex = i;
 | 
						|
      BestScore = Usefulness;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllUseless)
 | 
						|
    bestFilter().recurse();
 | 
						|
 | 
						|
  return !AllUseless;
 | 
						|
} // end of FilterChooser::filterProcessor(bool)
 | 
						|
 | 
						|
// Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
// the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
// dump the conflict set to the standard error.
 | 
						|
void ARMFilterChooser::doFilter() {
 | 
						|
  unsigned Num = Opcodes.size();
 | 
						|
  assert(Num && "FilterChooser created with no instructions");
 | 
						|
 | 
						|
  // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
 | 
						|
  if (TargetName == TARGET_ARM && Parent == NULL) {
 | 
						|
    runSingleFilter(*this, 28, 4, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try regions of consecutive known bit values first. 
 | 
						|
  if (filterProcessor(false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Then regions of mixed bits (both known and unitialized bit values allowed).
 | 
						|
  if (filterProcessor(true))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
 | 
						|
  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
 | 
						|
  // well-known encoding pattern.  In such case, we backtrack and scan for the
 | 
						|
  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
 | 
						|
  if (Num == 3 && filterProcessor(true, false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we come to here, the instruction decoding has failed.
 | 
						|
  // Set the BestIndex to -1 to indicate so.
 | 
						|
  BestIndex = -1;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode our share of instructions.  Returns true if the
 | 
						|
// emitted code causes a return, which occurs if we know how to decode
 | 
						|
// the instruction at this level or the instruction is not decodeable.
 | 
						|
bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  if (Opcodes.size() == 1)
 | 
						|
    // There is only one instruction in the set, which is great!
 | 
						|
    // Call emitSingletonDecoder() to see whether there are any remaining
 | 
						|
    // encodings bits.
 | 
						|
    return emitSingletonDecoder(o, Indentation, Opcodes[0]);
 | 
						|
 | 
						|
  // Choose the best filter to do the decodings!
 | 
						|
  if (BestIndex != -1) {
 | 
						|
    ARMFilter &Best = bestFilter();
 | 
						|
    if (Best.getNumFiltered() == 1)
 | 
						|
      emitSingletonDecoder(o, Indentation, Best);
 | 
						|
    else
 | 
						|
      bestFilter().emit(o, Indentation);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here, there is a conflict in decoding.  Let's resolve the known
 | 
						|
  // conflicts!
 | 
						|
  if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
 | 
						|
      Opcodes.size() == 2) {
 | 
						|
    // Resolve the known conflict sets:
 | 
						|
    //
 | 
						|
    // 1. source registers are identical => VMOVDneon; otherwise => VORRd
 | 
						|
    // 2. source registers are identical => VMOVQ; otherwise => VORRq
 | 
						|
    // 3. LDR, LDRcp => return LDR for now.
 | 
						|
    // FIXME: How can we distinguish between LDR and LDRcp?  Do we need to?
 | 
						|
    // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
 | 
						|
    //    wback = registers<Rn> = 0
 | 
						|
    // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
 | 
						|
    //       addressing mode resolution!!!
 | 
						|
    // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
 | 
						|
    //    are resolved returning the non-UPD versions of the instructions if the
 | 
						|
    //    Rm field, i.e., Inst{3-0} is 0b1111.  This is specified in A7.7.1
 | 
						|
    //    Advanced SIMD addressing mode.
 | 
						|
    const std::string &name1 = nameWithID(Opcodes[0]);
 | 
						|
    const std::string &name2 = nameWithID(Opcodes[1]);
 | 
						|
    if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
 | 
						|
        (name1 == "VMOVQ" && name2 == "VORRq")) {
 | 
						|
      // Inserting the opening curly brace for this case block.
 | 
						|
      --Indentation; --Indentation;
 | 
						|
      o.indent(Indentation) << "{\n";
 | 
						|
      ++Indentation; ++Indentation;
 | 
						|
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "field_t N = fieldFromInstruction(insn, 7, 1), "
 | 
						|
        << "M = fieldFromInstruction(insn, 5, 1);\n";
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
 | 
						|
        << "Vm = fieldFromInstruction(insn, 0, 4);\n";
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "return (N == M && Vn == Vm) ? "
 | 
						|
        << Opcodes[0] << " /* " << name1 << " */ : "
 | 
						|
        << Opcodes[1] << " /* " << name2 << " */ ;\n";
 | 
						|
 | 
						|
      // Inserting the closing curly brace for this case block.
 | 
						|
      --Indentation; --Indentation;
 | 
						|
      o.indent(Indentation) << "}\n";
 | 
						|
      ++Indentation; ++Indentation;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (name1 == "LDR" && name2 == "LDRcp") {
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "return " << Opcodes[0]
 | 
						|
        << "; // Returning LDR for {LDR, LDRcp}\n";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") {
 | 
						|
      // Inserting the opening curly brace for this case block.
 | 
						|
      --Indentation; --Indentation;
 | 
						|
      o.indent(Indentation) << "{\n";
 | 
						|
      ++Indentation; ++Indentation;
 | 
						|
      
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
 | 
						|
        << "list = fieldFromInstruction(insn, 0, 8);\n";
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "return ((list >> Rn) & 1) == 0 ? "
 | 
						|
        << Opcodes[1] << " /* " << name2 << " */ : "
 | 
						|
        << Opcodes[0] << " /* " << name1 << " */ ;\n";
 | 
						|
 | 
						|
      // Inserting the closing curly brace for this case block.
 | 
						|
      --Indentation; --Indentation;
 | 
						|
      o.indent(Indentation) << "}\n";
 | 
						|
      ++Indentation; ++Indentation;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (sameStringExceptSuffix(name1, name2, "_UPD")) {
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
 | 
						|
        << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
 | 
						|
        << " */ ; // Advanced SIMD addressing mode\n";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, it does not belong to the known conflict sets.
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know how to decode these instructions!  Return 0 and dump the
 | 
						|
  // conflict set!
 | 
						|
  o.indent(Indentation) << "return 0;" << " // Conflict set: ";
 | 
						|
  for (int i = 0, N = Opcodes.size(); i < N; ++i) {
 | 
						|
    o << nameWithID(Opcodes[i]);
 | 
						|
    if (i < (N - 1))
 | 
						|
      o << ", ";
 | 
						|
    else
 | 
						|
      o << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out useful conflict information for postmortem analysis.
 | 
						|
  errs() << "Decoding Conflict:\n";
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); i++) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////////////////
 | 
						|
//                                        //
 | 
						|
//  ARMDEBackend                          //
 | 
						|
//  (Helper class for ARMDecoderEmitter)  //
 | 
						|
//                                        //
 | 
						|
////////////////////////////////////////////
 | 
						|
 | 
						|
class ARMDecoderEmitter::ARMDEBackend {
 | 
						|
public:
 | 
						|
  ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) :
 | 
						|
    NumberedInstructions(),
 | 
						|
    Opcodes(),
 | 
						|
    Frontend(frontend),
 | 
						|
    Target(Records),
 | 
						|
    FC(NULL)
 | 
						|
  {
 | 
						|
    if (Target.getName() == "ARM")
 | 
						|
      TargetName = TARGET_ARM;
 | 
						|
    else {
 | 
						|
      errs() << "Target name " << Target.getName() << " not recognized\n";
 | 
						|
      assert(0 && "Unknown target");
 | 
						|
    }
 | 
						|
 | 
						|
    // Populate the instructions for our TargetName.
 | 
						|
    populateInstructions();
 | 
						|
  }
 | 
						|
 | 
						|
  ~ARMDEBackend() {
 | 
						|
    if (FC) {
 | 
						|
      delete FC;
 | 
						|
      FC = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
 | 
						|
                                                &NumberedInstructions) {
 | 
						|
    // We must emit the PHI opcode first...
 | 
						|
    std::string Namespace = Target.getInstNamespace();
 | 
						|
    assert(!Namespace.empty() && "No instructions defined.");
 | 
						|
 | 
						|
    NumberedInstructions = Target.getInstructionsByEnumValue();
 | 
						|
  }
 | 
						|
 | 
						|
  bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
 | 
						|
 | 
						|
  void populateInstructions();
 | 
						|
 | 
						|
  // Emits disassembler code for instruction decoding.  This delegates to the
 | 
						|
  // FilterChooser instance to do the heavy lifting.
 | 
						|
  void emit(raw_ostream &o);
 | 
						|
 | 
						|
protected:
 | 
						|
  std::vector<const CodeGenInstruction*> NumberedInstructions;
 | 
						|
  std::vector<unsigned> Opcodes;
 | 
						|
  // Special case for the ARM chip, which supports ARM and Thumb ISAs.
 | 
						|
  // Opcodes2 will be populated with the Thumb opcodes.
 | 
						|
  std::vector<unsigned> Opcodes2;
 | 
						|
  ARMDecoderEmitter &Frontend;
 | 
						|
  CodeGenTarget Target;
 | 
						|
  ARMFilterChooser *FC;
 | 
						|
 | 
						|
  TARGET_NAME_t TargetName;
 | 
						|
};
 | 
						|
 | 
						|
bool ARMDecoderEmitter::
 | 
						|
ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI,
 | 
						|
                                  TARGET_NAME_t TN) {
 | 
						|
  const Record &Def = *CGI.TheDef;
 | 
						|
  const StringRef Name = Def.getName();
 | 
						|
  uint8_t Form = getByteField(Def, "Form");
 | 
						|
 | 
						|
  BitsInit &Bits = getBitsField(Def, "Inst");
 | 
						|
 | 
						|
  // If all the bit positions are not specified; do not decode this instruction.
 | 
						|
  // We are bound to fail!  For proper disassembly, the well-known encoding bits
 | 
						|
  // of the instruction must be fully specified.
 | 
						|
  //
 | 
						|
  // This also removes pseudo instructions from considerations of disassembly,
 | 
						|
  // which is a better design and less fragile than the name matchings.
 | 
						|
  if (Bits.allInComplete()) return false;
 | 
						|
 | 
						|
  // Ignore "asm parser only" instructions.
 | 
						|
  if (Def.getValueAsBit("isAsmParserOnly"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TN == TARGET_ARM) {
 | 
						|
    if (Form == ARM_FORMAT_PSEUDO)
 | 
						|
      return false;
 | 
						|
    if (thumbInstruction(Form))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Tail calls are other patterns that generate existing instructions.
 | 
						|
    if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" ||
 | 
						|
        Name == "TCRETURNri" || Name == "TCRETURNriND" ||
 | 
						|
        Name == "TAILJMPd"  || Name == "TAILJMPdt" ||
 | 
						|
        Name == "TAILJMPdND" || Name == "TAILJMPdNDt" ||
 | 
						|
        Name == "TAILJMPr"  || Name == "TAILJMPrND" ||
 | 
						|
        Name == "MOVr_TC")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Delegate ADR disassembly to the more generic ADDri/SUBri instructions.
 | 
						|
    if (Name == "ADR")
 | 
						|
      return false;
 | 
						|
 | 
						|
    //
 | 
						|
    // The following special cases are for conflict resolutions.
 | 
						|
    //
 | 
						|
 | 
						|
    // RSCSri and RSCSrs set the 's' bit, but are not predicated.  We are
 | 
						|
    // better off using the generic RSCri and RSCrs instructions.
 | 
						|
    if (Name == "RSCSri" || Name == "RSCSrs") return false;
 | 
						|
 | 
						|
    // A8-598: VEXT
 | 
						|
    // Vector Extract extracts elements from the bottom end of the second
 | 
						|
    // operand vector and the top end of the first, concatenates them and
 | 
						|
    // places the result in the destination vector.  The elements of the
 | 
						|
    // vectors are treated as being 8-bit bitfields.  There is no distinction
 | 
						|
    // between data types.  The size of the operation can be specified in
 | 
						|
    // assembler as vext.size.  If the value is 16, 32, or 64, the syntax is
 | 
						|
    // a pseudo-instruction for a VEXT instruction specifying the equivalent
 | 
						|
    // number of bytes.
 | 
						|
    //
 | 
						|
    // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
 | 
						|
    // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
 | 
						|
    if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
 | 
						|
        Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
 | 
						|
      return false;
 | 
						|
  } else if (TN == TARGET_THUMB) {
 | 
						|
    if (!thumbInstruction(Form))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A8.6.189 STM / STMIA / STMEA -- Encoding T1
 | 
						|
    // There's only STMIA_UPD for Thumb1.
 | 
						|
    if (Name == "tSTMIA")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // On Darwin R9 is call-clobbered.  Ignore the non-Darwin counterparts.
 | 
						|
    if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
 | 
						|
    if (Name == "tTPsoft" || Name == "t2TPsoft")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ignore tADR, prefer tADDrPCi.
 | 
						|
    if (Name == "tADR")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12
 | 
						|
    // instructions.
 | 
						|
    if (Name == "t2ADR")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
 | 
						|
    // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
 | 
						|
    // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
 | 
						|
    // Ignore t2ADDrSPi/t2SUBrSPi, which have more generic couterparts.
 | 
						|
    // Ignore t2ADDrSPi12/t2SUBrSPi12, which have more generic couterparts
 | 
						|
    if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
 | 
						|
        Name == "t2SUBrSPs" || Name == "t2ADDrSPs" ||
 | 
						|
        Name == "t2ADDrSPi" || Name == "t2SUBrSPi" ||
 | 
						|
        Name == "t2ADDrSPi12" || Name == "t2SUBrSPi12")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
 | 
						|
    if (Name == "t2LDRDpci")
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Resolve conflicts:
 | 
						|
    //
 | 
						|
    //   tBfar conflicts with tBLr9
 | 
						|
    //   tPOP_RET/t2LDMIA_RET conflict with tPOP/t2LDM (ditto)
 | 
						|
    //   tMOVCCi conflicts with tMOVi8
 | 
						|
    //   tMOVCCr conflicts with tMOVgpr2gpr
 | 
						|
    //   tSpill conflicts with tSTRspi
 | 
						|
    //   tLDRcp conflicts with tLDRspi
 | 
						|
    //   tRestore conflicts with tLDRspi
 | 
						|
    //   t2MOVCCi16 conflicts with tMOVi16
 | 
						|
    if (Name == "tBfar" ||
 | 
						|
        Name == "tPOP_RET" || Name == "t2LDMIA_RET" ||
 | 
						|
        Name == "tMOVCCi" || Name == "tMOVCCr" ||
 | 
						|
        Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
 | 
						|
        Name == "t2MOVCCi16")
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      // Dumps the instruction encoding format.
 | 
						|
      switch (TargetName) {
 | 
						|
      case TARGET_ARM:
 | 
						|
      case TARGET_THUMB:
 | 
						|
        errs() << Name << " " << stringForARMFormat((ARMFormat)Form);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      errs() << " ";
 | 
						|
 | 
						|
      // Dumps the instruction encoding bits.
 | 
						|
      dumpBits(errs(), Bits);
 | 
						|
 | 
						|
      errs() << '\n';
 | 
						|
 | 
						|
      // Dumps the list of operand info.
 | 
						|
      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
 | 
						|
        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
 | 
						|
        const std::string &OperandName = Info.Name;
 | 
						|
        const Record &OperandDef = *Info.Rec;
 | 
						|
 | 
						|
        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
 | 
						|
  getInstructionsByEnumValue(NumberedInstructions);
 | 
						|
 | 
						|
  unsigned numUIDs = NumberedInstructions.size();
 | 
						|
  if (TargetName == TARGET_ARM) {
 | 
						|
    for (unsigned uid = 0; uid < numUIDs; uid++) {
 | 
						|
      // filter out intrinsics
 | 
						|
      if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM"))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (populateInstruction(*NumberedInstructions[uid], TargetName))
 | 
						|
        Opcodes.push_back(uid);
 | 
						|
    }
 | 
						|
 | 
						|
    // Special handling for the ARM chip, which supports two modes of execution.
 | 
						|
    // This branch handles the Thumb opcodes.
 | 
						|
    for (unsigned uid = 0; uid < numUIDs; uid++) {
 | 
						|
      // filter out intrinsics
 | 
						|
      if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
 | 
						|
          && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
 | 
						|
        Opcodes2.push_back(uid);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For other targets.
 | 
						|
  for (unsigned uid = 0; uid < numUIDs; uid++) {
 | 
						|
    Record *R = NumberedInstructions[uid]->TheDef;
 | 
						|
    if (R->getValueAsString("Namespace") == "TargetOpcode")
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (populateInstruction(*NumberedInstructions[uid], TargetName))
 | 
						|
      Opcodes.push_back(uid);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emits disassembler code for instruction decoding.  This delegates to the
 | 
						|
// FilterChooser instance to do the heavy lifting.
 | 
						|
void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
 | 
						|
  switch (TargetName) {
 | 
						|
  case TARGET_ARM:
 | 
						|
    Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
  }
 | 
						|
 | 
						|
  o << "#include \"llvm/Support/DataTypes.h\"\n";
 | 
						|
  o << "#include <assert.h>\n";
 | 
						|
  o << '\n';
 | 
						|
  o << "namespace llvm {\n\n";
 | 
						|
 | 
						|
  ARMFilterChooser::setTargetName(TargetName);
 | 
						|
 | 
						|
  switch (TargetName) {
 | 
						|
  case TARGET_ARM: {
 | 
						|
    // Emit common utility and ARM ISA decoder.
 | 
						|
    FC = new ARMFilterChooser(NumberedInstructions, Opcodes);
 | 
						|
    // Reset indentation level.
 | 
						|
    unsigned Indentation = 0;
 | 
						|
    FC->emitTop(o, Indentation);
 | 
						|
    delete FC;
 | 
						|
 | 
						|
    // Emit Thumb ISA decoder as well.
 | 
						|
    ARMFilterChooser::setTargetName(TARGET_THUMB);
 | 
						|
    FC = new ARMFilterChooser(NumberedInstructions, Opcodes2);
 | 
						|
    // Reset indentation level.
 | 
						|
    Indentation = 0;
 | 
						|
    FC->emitBot(o, Indentation);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
  }
 | 
						|
 | 
						|
  o << "\n} // End llvm namespace \n";
 | 
						|
}
 | 
						|
 | 
						|
/////////////////////////
 | 
						|
//  Backend interface  //
 | 
						|
/////////////////////////
 | 
						|
 | 
						|
void ARMDecoderEmitter::initBackend()
 | 
						|
{
 | 
						|
  Backend = new ARMDEBackend(*this, Records);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDecoderEmitter::run(raw_ostream &o)
 | 
						|
{
 | 
						|
  Backend->emit(o);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDecoderEmitter::shutdownBackend()
 | 
						|
{
 | 
						|
  delete Backend;
 | 
						|
  Backend = NULL;
 | 
						|
}
 |