mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120298 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			561 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			561 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the abstract interface that implements execution support
 | |
| // for LLVM.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_EXECUTION_ENGINE_H
 | |
| #define LLVM_EXECUTION_ENGINE_H
 | |
| 
 | |
| #include <vector>
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/ValueMap.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| struct GenericValue;
 | |
| class Constant;
 | |
| class ExecutionEngine;
 | |
| class Function;
 | |
| class GlobalVariable;
 | |
| class GlobalValue;
 | |
| class JITEventListener;
 | |
| class JITMemoryManager;
 | |
| class MachineCodeInfo;
 | |
| class Module;
 | |
| class MutexGuard;
 | |
| class TargetData;
 | |
| class Type;
 | |
| 
 | |
| /// \brief Helper class for helping synchronize access to the global address map
 | |
| /// table.
 | |
| class ExecutionEngineState {
 | |
| public:
 | |
|   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
 | |
|     typedef ExecutionEngineState *ExtraData;
 | |
|     static sys::Mutex *getMutex(ExecutionEngineState *EES);
 | |
|     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
 | |
|     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
 | |
|                        const GlobalValue *);
 | |
|   };
 | |
| 
 | |
|   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
 | |
|       GlobalAddressMapTy;
 | |
| 
 | |
| private:
 | |
|   ExecutionEngine &EE;
 | |
| 
 | |
|   /// GlobalAddressMap - A mapping between LLVM global values and their
 | |
|   /// actualized version...
 | |
|   GlobalAddressMapTy GlobalAddressMap;
 | |
| 
 | |
|   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
 | |
|   /// used to convert raw addresses into the LLVM global value that is emitted
 | |
|   /// at the address.  This map is not computed unless getGlobalValueAtAddress
 | |
|   /// is called at some point.
 | |
|   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
 | |
| 
 | |
| public:
 | |
|   ExecutionEngineState(ExecutionEngine &EE);
 | |
| 
 | |
|   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
 | |
|     return GlobalAddressMap;
 | |
|   }
 | |
| 
 | |
|   std::map<void*, AssertingVH<const GlobalValue> > &
 | |
|   getGlobalAddressReverseMap(const MutexGuard &) {
 | |
|     return GlobalAddressReverseMap;
 | |
|   }
 | |
| 
 | |
|   /// \brief Erase an entry from the mapping table.
 | |
|   ///
 | |
|   /// \returns The address that \arg ToUnmap was happed to.
 | |
|   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
 | |
| };
 | |
| 
 | |
| /// \brief Abstract interface for implementation execution of LLVM modules,
 | |
| /// designed to support both interpreter and just-in-time (JIT) compiler
 | |
| /// implementations.
 | |
| class ExecutionEngine {
 | |
|   /// The state object holding the global address mapping, which must be
 | |
|   /// accessed synchronously.
 | |
|   //
 | |
|   // FIXME: There is no particular need the entire map needs to be
 | |
|   // synchronized.  Wouldn't a reader-writer design be better here?
 | |
|   ExecutionEngineState EEState;
 | |
| 
 | |
|   /// The target data for the platform for which execution is being performed.
 | |
|   const TargetData *TD;
 | |
| 
 | |
|   /// Whether lazy JIT compilation is enabled.
 | |
|   bool CompilingLazily;
 | |
| 
 | |
|   /// Whether JIT compilation of external global variables is allowed.
 | |
|   bool GVCompilationDisabled;
 | |
| 
 | |
|   /// Whether the JIT should perform lookups of external symbols (e.g.,
 | |
|   /// using dlsym).
 | |
|   bool SymbolSearchingDisabled;
 | |
| 
 | |
|   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
 | |
| 
 | |
| protected:
 | |
|   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
 | |
|   /// optimize for the case where there is only one module.
 | |
|   SmallVector<Module*, 1> Modules;
 | |
|   
 | |
|   void setTargetData(const TargetData *td) {
 | |
|     TD = td;
 | |
|   }
 | |
|   
 | |
|   /// getMemoryforGV - Allocate memory for a global variable.
 | |
|   virtual char *getMemoryForGV(const GlobalVariable *GV);
 | |
| 
 | |
|   // To avoid having libexecutionengine depend on the JIT and interpreter
 | |
|   // libraries, the execution engine implementations set these functions to ctor
 | |
|   // pointers at startup time if they are linked in.
 | |
|   static ExecutionEngine *(*JITCtor)(
 | |
|     Module *M,
 | |
|     std::string *ErrorStr,
 | |
|     JITMemoryManager *JMM,
 | |
|     CodeGenOpt::Level OptLevel,
 | |
|     bool GVsWithCode,
 | |
|     CodeModel::Model CMM,
 | |
|     StringRef MArch,
 | |
|     StringRef MCPU,
 | |
|     const SmallVectorImpl<std::string>& MAttrs);
 | |
|   static ExecutionEngine *(*MCJITCtor)(
 | |
|     Module *M,
 | |
|     std::string *ErrorStr,
 | |
|     JITMemoryManager *JMM,
 | |
|     CodeGenOpt::Level OptLevel,
 | |
|     bool GVsWithCode,
 | |
|     CodeModel::Model CMM,
 | |
|     StringRef MArch,
 | |
|     StringRef MCPU,
 | |
|     const SmallVectorImpl<std::string>& MAttrs);
 | |
|   static ExecutionEngine *(*InterpCtor)(Module *M,
 | |
|                                         std::string *ErrorStr);
 | |
| 
 | |
|   /// LazyFunctionCreator - If an unknown function is needed, this function
 | |
|   /// pointer is invoked to create it.  If this returns null, the JIT will
 | |
|   /// abort.
 | |
|   void *(*LazyFunctionCreator)(const std::string &);
 | |
|   
 | |
|   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
 | |
|   /// register dwarf tables with this function.
 | |
|   typedef void (*EERegisterFn)(void*);
 | |
|   EERegisterFn ExceptionTableRegister;
 | |
|   EERegisterFn ExceptionTableDeregister;
 | |
|   std::vector<void*> AllExceptionTables;
 | |
| 
 | |
| public:
 | |
|   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
 | |
|   /// JITEmitter classes.  It must be held while changing the internal state of
 | |
|   /// any of those classes.
 | |
|   sys::Mutex lock;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  ExecutionEngine Startup
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   virtual ~ExecutionEngine();
 | |
| 
 | |
|   /// create - This is the factory method for creating an execution engine which
 | |
|   /// is appropriate for the current machine.  This takes ownership of the
 | |
|   /// module.
 | |
|   ///
 | |
|   /// \param GVsWithCode - Allocating globals with code breaks
 | |
|   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
 | |
|   /// However, we have clients who depend on this behavior, so we must support
 | |
|   /// it.  Eventually, when we're willing to break some backwards compatability,
 | |
|   /// this flag should be flipped to false, so that by default
 | |
|   /// freeMachineCodeForFunction works.
 | |
|   static ExecutionEngine *create(Module *M,
 | |
|                                  bool ForceInterpreter = false,
 | |
|                                  std::string *ErrorStr = 0,
 | |
|                                  CodeGenOpt::Level OptLevel =
 | |
|                                    CodeGenOpt::Default,
 | |
|                                  bool GVsWithCode = true);
 | |
| 
 | |
|   /// createJIT - This is the factory method for creating a JIT for the current
 | |
|   /// machine, it does not fall back to the interpreter.  This takes ownership
 | |
|   /// of the Module and JITMemoryManager if successful.
 | |
|   ///
 | |
|   /// Clients should make sure to initialize targets prior to calling this
 | |
|   /// function.
 | |
|   static ExecutionEngine *createJIT(Module *M,
 | |
|                                     std::string *ErrorStr = 0,
 | |
|                                     JITMemoryManager *JMM = 0,
 | |
|                                     CodeGenOpt::Level OptLevel =
 | |
|                                       CodeGenOpt::Default,
 | |
|                                     bool GVsWithCode = true,
 | |
|                                     CodeModel::Model CMM =
 | |
|                                       CodeModel::Default);
 | |
| 
 | |
|   /// addModule - Add a Module to the list of modules that we can JIT from.
 | |
|   /// Note that this takes ownership of the Module: when the ExecutionEngine is
 | |
|   /// destroyed, it destroys the Module as well.
 | |
|   virtual void addModule(Module *M) {
 | |
|     Modules.push_back(M);
 | |
|   }
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   const TargetData *getTargetData() const { return TD; }
 | |
| 
 | |
|   /// removeModule - Remove a Module from the list of modules.  Returns true if
 | |
|   /// M is found.
 | |
|   virtual bool removeModule(Module *M);
 | |
| 
 | |
|   /// FindFunctionNamed - Search all of the active modules to find the one that
 | |
|   /// defines FnName.  This is very slow operation and shouldn't be used for
 | |
|   /// general code.
 | |
|   Function *FindFunctionNamed(const char *FnName);
 | |
|   
 | |
|   /// runFunction - Execute the specified function with the specified arguments,
 | |
|   /// and return the result.
 | |
|   virtual GenericValue runFunction(Function *F,
 | |
|                                 const std::vector<GenericValue> &ArgValues) = 0;
 | |
| 
 | |
|   /// runStaticConstructorsDestructors - This method is used to execute all of
 | |
|   /// the static constructors or destructors for a program.
 | |
|   ///
 | |
|   /// \param isDtors - Run the destructors instead of constructors.
 | |
|   void runStaticConstructorsDestructors(bool isDtors);
 | |
| 
 | |
|   /// runStaticConstructorsDestructors - This method is used to execute all of
 | |
|   /// the static constructors or destructors for a particular module.
 | |
|   ///
 | |
|   /// \param isDtors - Run the destructors instead of constructors.
 | |
|   void runStaticConstructorsDestructors(Module *module, bool isDtors);
 | |
|   
 | |
|   
 | |
|   /// runFunctionAsMain - This is a helper function which wraps runFunction to
 | |
|   /// handle the common task of starting up main with the specified argc, argv,
 | |
|   /// and envp parameters.
 | |
|   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
 | |
|                         const char * const * envp);
 | |
| 
 | |
| 
 | |
|   /// addGlobalMapping - Tell the execution engine that the specified global is
 | |
|   /// at the specified location.  This is used internally as functions are JIT'd
 | |
|   /// and as global variables are laid out in memory.  It can and should also be
 | |
|   /// used by clients of the EE that want to have an LLVM global overlay
 | |
|   /// existing data in memory.  Mappings are automatically removed when their
 | |
|   /// GlobalValue is destroyed.
 | |
|   void addGlobalMapping(const GlobalValue *GV, void *Addr);
 | |
|   
 | |
|   /// clearAllGlobalMappings - Clear all global mappings and start over again,
 | |
|   /// for use in dynamic compilation scenarios to move globals.
 | |
|   void clearAllGlobalMappings();
 | |
|   
 | |
|   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
 | |
|   /// particular module, because it has been removed from the JIT.
 | |
|   void clearGlobalMappingsFromModule(Module *M);
 | |
|   
 | |
|   /// updateGlobalMapping - Replace an existing mapping for GV with a new
 | |
|   /// address.  This updates both maps as required.  If "Addr" is null, the
 | |
|   /// entry for the global is removed from the mappings.  This returns the old
 | |
|   /// value of the pointer, or null if it was not in the map.
 | |
|   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
 | |
|   
 | |
|   /// getPointerToGlobalIfAvailable - This returns the address of the specified
 | |
|   /// global value if it is has already been codegen'd, otherwise it returns
 | |
|   /// null.
 | |
|   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
 | |
| 
 | |
|   /// getPointerToGlobal - This returns the address of the specified global
 | |
|   /// value. This may involve code generation if it's a function.
 | |
|   void *getPointerToGlobal(const GlobalValue *GV);
 | |
| 
 | |
|   /// getPointerToFunction - The different EE's represent function bodies in
 | |
|   /// different ways.  They should each implement this to say what a function
 | |
|   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
 | |
|   /// remove its global mapping and free any machine code.  Be sure no threads
 | |
|   /// are running inside F when that happens.
 | |
|   virtual void *getPointerToFunction(Function *F) = 0;
 | |
| 
 | |
|   /// getPointerToBasicBlock - The different EE's represent basic blocks in
 | |
|   /// different ways.  Return the representation for a blockaddress of the
 | |
|   /// specified block.
 | |
|   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
 | |
|   
 | |
|   /// getPointerToFunctionOrStub - If the specified function has been
 | |
|   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
 | |
|   /// a stub to implement lazy compilation if available.  See
 | |
|   /// getPointerToFunction for the requirements on destroying F.
 | |
|   virtual void *getPointerToFunctionOrStub(Function *F) {
 | |
|     // Default implementation, just codegen the function.
 | |
|     return getPointerToFunction(F);
 | |
|   }
 | |
| 
 | |
|   // The JIT overrides a version that actually does this.
 | |
|   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
 | |
| 
 | |
|   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
 | |
|   /// at the specified address.
 | |
|   ///
 | |
|   const GlobalValue *getGlobalValueAtAddress(void *Addr);
 | |
| 
 | |
|   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
 | |
|   /// Ptr is the address of the memory at which to store Val, cast to
 | |
|   /// GenericValue *.  It is not a pointer to a GenericValue containing the
 | |
|   /// address at which to store Val.
 | |
|   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
 | |
|                           const Type *Ty);
 | |
| 
 | |
|   void InitializeMemory(const Constant *Init, void *Addr);
 | |
| 
 | |
|   /// recompileAndRelinkFunction - This method is used to force a function which
 | |
|   /// has already been compiled to be compiled again, possibly after it has been
 | |
|   /// modified.  Then the entry to the old copy is overwritten with a branch to
 | |
|   /// the new copy.  If there was no old copy, this acts just like
 | |
|   /// VM::getPointerToFunction().
 | |
|   virtual void *recompileAndRelinkFunction(Function *F) = 0;
 | |
| 
 | |
|   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
 | |
|   /// corresponding to the machine code emitted to execute this function, useful
 | |
|   /// for garbage-collecting generated code.
 | |
|   virtual void freeMachineCodeForFunction(Function *F) = 0;
 | |
| 
 | |
|   /// getOrEmitGlobalVariable - Return the address of the specified global
 | |
|   /// variable, possibly emitting it to memory if needed.  This is used by the
 | |
|   /// Emitter.
 | |
|   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | |
|     return getPointerToGlobal((GlobalValue*)GV);
 | |
|   }
 | |
| 
 | |
|   /// Registers a listener to be called back on various events within
 | |
|   /// the JIT.  See JITEventListener.h for more details.  Does not
 | |
|   /// take ownership of the argument.  The argument may be NULL, in
 | |
|   /// which case these functions do nothing.
 | |
|   virtual void RegisterJITEventListener(JITEventListener *) {}
 | |
|   virtual void UnregisterJITEventListener(JITEventListener *) {}
 | |
| 
 | |
|   /// DisableLazyCompilation - When lazy compilation is off (the default), the
 | |
|   /// JIT will eagerly compile every function reachable from the argument to
 | |
|   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
 | |
|   /// compile the one function and emit stubs to compile the rest when they're
 | |
|   /// first called.  If lazy compilation is turned off again while some lazy
 | |
|   /// stubs are still around, and one of those stubs is called, the program will
 | |
|   /// abort.
 | |
|   ///
 | |
|   /// In order to safely compile lazily in a threaded program, the user must
 | |
|   /// ensure that 1) only one thread at a time can call any particular lazy
 | |
|   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
 | |
|   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
 | |
|   /// lazy stub.  See http://llvm.org/PR5184 for details.
 | |
|   void DisableLazyCompilation(bool Disabled = true) {
 | |
|     CompilingLazily = !Disabled;
 | |
|   }
 | |
|   bool isCompilingLazily() const {
 | |
|     return CompilingLazily;
 | |
|   }
 | |
|   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
 | |
|   // Remove this in LLVM 2.8.
 | |
|   bool isLazyCompilationDisabled() const {
 | |
|     return !CompilingLazily;
 | |
|   }
 | |
| 
 | |
|   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
 | |
|   /// allocate space and populate a GlobalVariable that is not internal to
 | |
|   /// the module.
 | |
|   void DisableGVCompilation(bool Disabled = true) {
 | |
|     GVCompilationDisabled = Disabled;
 | |
|   }
 | |
|   bool isGVCompilationDisabled() const {
 | |
|     return GVCompilationDisabled;
 | |
|   }
 | |
| 
 | |
|   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
 | |
|   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
 | |
|   /// resolve symbols in a custom way.
 | |
|   void DisableSymbolSearching(bool Disabled = true) {
 | |
|     SymbolSearchingDisabled = Disabled;
 | |
|   }
 | |
|   bool isSymbolSearchingDisabled() const {
 | |
|     return SymbolSearchingDisabled;
 | |
|   }
 | |
| 
 | |
|   /// InstallLazyFunctionCreator - If an unknown function is needed, the
 | |
|   /// specified function pointer is invoked to create it.  If it returns null,
 | |
|   /// the JIT will abort.
 | |
|   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
 | |
|     LazyFunctionCreator = P;
 | |
|   }
 | |
|   
 | |
|   /// InstallExceptionTableRegister - The JIT will use the given function
 | |
|   /// to register the exception tables it generates.
 | |
|   void InstallExceptionTableRegister(EERegisterFn F) {
 | |
|     ExceptionTableRegister = F;
 | |
|   }
 | |
|   void InstallExceptionTableDeregister(EERegisterFn F) {
 | |
|     ExceptionTableDeregister = F;
 | |
|   }
 | |
|   
 | |
|   /// RegisterTable - Registers the given pointer as an exception table.  It
 | |
|   /// uses the ExceptionTableRegister function.
 | |
|   void RegisterTable(void* res) {
 | |
|     if (ExceptionTableRegister) {
 | |
|       ExceptionTableRegister(res);
 | |
|       AllExceptionTables.push_back(res);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// DeregisterAllTables - Deregisters all previously registered pointers to an
 | |
|   /// exception tables.  It uses the ExceptionTableoDeregister function.
 | |
|   void DeregisterAllTables();
 | |
| 
 | |
| protected:
 | |
|   explicit ExecutionEngine(Module *M);
 | |
| 
 | |
|   void emitGlobals();
 | |
| 
 | |
|   void EmitGlobalVariable(const GlobalVariable *GV);
 | |
| 
 | |
|   GenericValue getConstantValue(const Constant *C);
 | |
|   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, 
 | |
|                            const Type *Ty);
 | |
| };
 | |
| 
 | |
| namespace EngineKind {
 | |
|   // These are actually bitmasks that get or-ed together.
 | |
|   enum Kind {
 | |
|     JIT         = 0x1,
 | |
|     Interpreter = 0x2
 | |
|   };
 | |
|   const static Kind Either = (Kind)(JIT | Interpreter);
 | |
| }
 | |
| 
 | |
| /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
 | |
| /// stack-allocating a builder, chaining the various set* methods, and
 | |
| /// terminating it with a .create() call.
 | |
| class EngineBuilder {
 | |
| private:
 | |
|   Module *M;
 | |
|   EngineKind::Kind WhichEngine;
 | |
|   std::string *ErrorStr;
 | |
|   CodeGenOpt::Level OptLevel;
 | |
|   JITMemoryManager *JMM;
 | |
|   bool AllocateGVsWithCode;
 | |
|   CodeModel::Model CMModel;
 | |
|   std::string MArch;
 | |
|   std::string MCPU;
 | |
|   SmallVector<std::string, 4> MAttrs;
 | |
|   bool UseMCJIT;
 | |
| 
 | |
|   /// InitEngine - Does the common initialization of default options.
 | |
|   void InitEngine() {
 | |
|     WhichEngine = EngineKind::Either;
 | |
|     ErrorStr = NULL;
 | |
|     OptLevel = CodeGenOpt::Default;
 | |
|     JMM = NULL;
 | |
|     AllocateGVsWithCode = false;
 | |
|     CMModel = CodeModel::Default;
 | |
|     UseMCJIT = false;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
 | |
|   /// is successful, the created engine takes ownership of the module.
 | |
|   EngineBuilder(Module *m) : M(m) {
 | |
|     InitEngine();
 | |
|   }
 | |
| 
 | |
|   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
 | |
|   /// or whichever engine works.  This option defaults to EngineKind::Either.
 | |
|   EngineBuilder &setEngineKind(EngineKind::Kind w) {
 | |
|     WhichEngine = w;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setJITMemoryManager - Sets the memory manager to use.  This allows
 | |
|   /// clients to customize their memory allocation policies.  If create() is
 | |
|   /// called and is successful, the created engine takes ownership of the
 | |
|   /// memory manager.  This option defaults to NULL.
 | |
|   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
 | |
|     JMM = jmm;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setErrorStr - Set the error string to write to on error.  This option
 | |
|   /// defaults to NULL.
 | |
|   EngineBuilder &setErrorStr(std::string *e) {
 | |
|     ErrorStr = e;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setOptLevel - Set the optimization level for the JIT.  This option
 | |
|   /// defaults to CodeGenOpt::Default.
 | |
|   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
 | |
|     OptLevel = l;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
 | |
|   /// data is using. Defaults to target specific default "CodeModel::Default".
 | |
|   EngineBuilder &setCodeModel(CodeModel::Model M) {
 | |
|     CMModel = M;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setAllocateGVsWithCode - Sets whether global values should be allocated
 | |
|   /// into the same buffer as code.  For most applications this should be set
 | |
|   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
 | |
|   /// and is probably unsafe and bad for performance.  However, we have clients
 | |
|   /// who depend on this behavior, so we must support it.  This option defaults
 | |
|   /// to false so that users of the new API can safely use the new memory
 | |
|   /// manager and free machine code.
 | |
|   EngineBuilder &setAllocateGVsWithCode(bool a) {
 | |
|     AllocateGVsWithCode = a;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setMArch - Override the architecture set by the Module's triple.
 | |
|   EngineBuilder &setMArch(StringRef march) {
 | |
|     MArch.assign(march.begin(), march.end());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setMCPU - Target a specific cpu type.
 | |
|   EngineBuilder &setMCPU(StringRef mcpu) {
 | |
|     MCPU.assign(mcpu.begin(), mcpu.end());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
 | |
|   /// (experimental).
 | |
|   void setUseMCJIT(bool Value) {
 | |
|     UseMCJIT = Value;
 | |
|   }
 | |
| 
 | |
|   /// setMAttrs - Set cpu-specific attributes.
 | |
|   template<typename StringSequence>
 | |
|   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
 | |
|     MAttrs.clear();
 | |
|     MAttrs.append(mattrs.begin(), mattrs.end());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   ExecutionEngine *create();
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |