mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	the new predicates I added) instead of going through a context and doing a pointer comparison. Besides being cheaper, this allows a smart compiler to turn the if sequence into a switch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83297 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1862 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1862 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation implements the well known scalar replacement of
 | |
| // aggregates transformation.  This xform breaks up alloca instructions of
 | |
| // aggregate type (structure or array) into individual alloca instructions for
 | |
| // each member (if possible).  Then, if possible, it transforms the individual
 | |
| // alloca instructions into nice clean scalar SSA form.
 | |
| //
 | |
| // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | |
| // often interact, especially for C++ programs.  As such, iterating between
 | |
| // SRoA, then Mem2Reg until we run out of things to promote works well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "scalarrepl"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumReplaced,  "Number of allocas broken up");
 | |
| STATISTIC(NumPromoted,  "Number of allocas promoted");
 | |
| STATISTIC(NumConverted, "Number of aggregates converted to scalar");
 | |
| STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
 | |
| 
 | |
| namespace {
 | |
|   struct SROA : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit SROA(signed T = -1) : FunctionPass(&ID) {
 | |
|       if (T == -1)
 | |
|         SRThreshold = 128;
 | |
|       else
 | |
|         SRThreshold = T;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     bool performScalarRepl(Function &F);
 | |
|     bool performPromotion(Function &F);
 | |
| 
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     TargetData *TD;
 | |
|     
 | |
|     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
 | |
|     /// information about the uses.  All these fields are initialized to false
 | |
|     /// and set to true when something is learned.
 | |
|     struct AllocaInfo {
 | |
|       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
 | |
|       bool isUnsafe : 1;
 | |
|       
 | |
|       /// needsCleanup - This is set to true if there is some use of the alloca
 | |
|       /// that requires cleanup.
 | |
|       bool needsCleanup : 1;
 | |
|       
 | |
|       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
 | |
|       bool isMemCpySrc : 1;
 | |
| 
 | |
|       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
 | |
|       bool isMemCpyDst : 1;
 | |
| 
 | |
|       AllocaInfo()
 | |
|         : isUnsafe(false), needsCleanup(false), 
 | |
|           isMemCpySrc(false), isMemCpyDst(false) {}
 | |
|     };
 | |
|     
 | |
|     unsigned SRThreshold;
 | |
| 
 | |
|     void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
 | |
| 
 | |
|     int isSafeAllocaToScalarRepl(AllocationInst *AI);
 | |
| 
 | |
|     void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
 | |
|                                AllocaInfo &Info);
 | |
|     void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
 | |
|                          AllocaInfo &Info);
 | |
|     void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
 | |
|                                         unsigned OpNo, AllocaInfo &Info);
 | |
|     void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
 | |
|                                         AllocaInfo &Info);
 | |
|     
 | |
|     void DoScalarReplacement(AllocationInst *AI, 
 | |
|                              std::vector<AllocationInst*> &WorkList);
 | |
|     void CleanupGEP(GetElementPtrInst *GEP);
 | |
|     void CleanupAllocaUsers(AllocationInst *AI);
 | |
|     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
 | |
|     
 | |
|     void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
 | |
|                                     SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     
 | |
|     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
 | |
|                                       AllocationInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
 | |
|                                        SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     
 | |
|     bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
 | |
|                             bool &SawVec, uint64_t Offset, unsigned AllocaSize);
 | |
|     void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
 | |
|     Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
 | |
|                                      uint64_t Offset, IRBuilder<> &Builder);
 | |
|     Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
 | |
|                                      uint64_t Offset, IRBuilder<> &Builder);
 | |
|     static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char SROA::ID = 0;
 | |
| static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
 | |
| 
 | |
| // Public interface to the ScalarReplAggregates pass
 | |
| FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { 
 | |
|   return new SROA(Threshold);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|   bool Changed = performPromotion(F);
 | |
| 
 | |
|   // FIXME: ScalarRepl currently depends on TargetData more than it
 | |
|   // theoretically needs to. It should be refactored in order to support
 | |
|   // target-independent IR. Until this is done, just skip the actual
 | |
|   // scalar-replacement portion of this pass.
 | |
|   if (!TD) return Changed;
 | |
| 
 | |
|   while (1) {
 | |
|     bool LocalChange = performScalarRepl(F);
 | |
|     if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | |
|     Changed = true;
 | |
|     LocalChange = performPromotion(F);
 | |
|     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::performPromotion(Function &F) {
 | |
|   std::vector<AllocaInst*> Allocas;
 | |
|   DominatorTree         &DT = getAnalysis<DominatorTree>();
 | |
|   DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | |
| 
 | |
|   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   while (1) {
 | |
|     Allocas.clear();
 | |
| 
 | |
|     // Find allocas that are safe to promote, by looking at all instructions in
 | |
|     // the entry node
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | |
|         if (isAllocaPromotable(AI))
 | |
|           Allocas.push_back(AI);
 | |
| 
 | |
|     if (Allocas.empty()) break;
 | |
| 
 | |
|     PromoteMemToReg(Allocas, DT, DF, F.getContext());
 | |
|     NumPromoted += Allocas.size();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// getNumSAElements - Return the number of elements in the specific struct or
 | |
| /// array.
 | |
| static uint64_t getNumSAElements(const Type *T) {
 | |
|   if (const StructType *ST = dyn_cast<StructType>(T))
 | |
|     return ST->getNumElements();
 | |
|   return cast<ArrayType>(T)->getNumElements();
 | |
| }
 | |
| 
 | |
| // performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | |
| // which runs on all of the malloc/alloca instructions in the function, removing
 | |
| // them if they are only used by getelementptr instructions.
 | |
| //
 | |
| bool SROA::performScalarRepl(Function &F) {
 | |
|   std::vector<AllocationInst*> WorkList;
 | |
| 
 | |
|   // Scan the entry basic block, adding any alloca's and mallocs to the worklist
 | |
|   BasicBlock &BB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | |
|     if (AllocationInst *A = dyn_cast<AllocationInst>(I))
 | |
|       WorkList.push_back(A);
 | |
| 
 | |
|   // Process the worklist
 | |
|   bool Changed = false;
 | |
|   while (!WorkList.empty()) {
 | |
|     AllocationInst *AI = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     
 | |
|     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
 | |
|     // with unused elements.
 | |
|     if (AI->use_empty()) {
 | |
|       AI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this alloca is impossible for us to promote, reject it early.
 | |
|     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
 | |
|       continue;
 | |
|     
 | |
|     // Check to see if this allocation is only modified by a memcpy/memmove from
 | |
|     // a constant global.  If this is the case, we can change all users to use
 | |
|     // the constant global instead.  This is commonly produced by the CFE by
 | |
|     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | |
|     // is only subsequently read.
 | |
|     if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
 | |
|       DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
 | |
|       DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
 | |
|       Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
 | |
|       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
 | |
|       TheCopy->eraseFromParent();  // Don't mutate the global.
 | |
|       AI->eraseFromParent();
 | |
|       ++NumGlobals;
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check to see if we can perform the core SROA transformation.  We cannot
 | |
|     // transform the allocation instruction if it is an array allocation
 | |
|     // (allocations OF arrays are ok though), and an allocation of a scalar
 | |
|     // value cannot be decomposed at all.
 | |
|     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 | |
| 
 | |
|     // Do not promote [0 x %struct].
 | |
|     if (AllocaSize == 0) continue;
 | |
| 
 | |
|     // Do not promote any struct whose size is too big.
 | |
|     if (AllocaSize > SRThreshold) continue;
 | |
| 
 | |
|     if ((isa<StructType>(AI->getAllocatedType()) ||
 | |
|          isa<ArrayType>(AI->getAllocatedType())) &&
 | |
|         // Do not promote any struct into more than "32" separate vars.
 | |
|         getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
 | |
|       // Check that all of the users of the allocation are capable of being
 | |
|       // transformed.
 | |
|       switch (isSafeAllocaToScalarRepl(AI)) {
 | |
|       default: llvm_unreachable("Unexpected value!");
 | |
|       case 0:  // Not safe to scalar replace.
 | |
|         break;
 | |
|       case 1:  // Safe, but requires cleanup/canonicalizations first
 | |
|         CleanupAllocaUsers(AI);
 | |
|         // FALL THROUGH.
 | |
|       case 3:  // Safe to scalar replace.
 | |
|         DoScalarReplacement(AI, WorkList);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we can turn this aggregate value (potentially with casts) into a
 | |
|     // simple scalar value that can be mem2reg'd into a register value.
 | |
|     // IsNotTrivial tracks whether this is something that mem2reg could have
 | |
|     // promoted itself.  If so, we don't want to transform it needlessly.  Note
 | |
|     // that we can't just check based on the type: the alloca may be of an i32
 | |
|     // but that has pointer arithmetic to set byte 3 of it or something.
 | |
|     bool IsNotTrivial = false;
 | |
|     const Type *VectorTy = 0;
 | |
|     bool HadAVector = false;
 | |
|     if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector, 
 | |
|                            0, unsigned(AllocaSize)) && IsNotTrivial) {
 | |
|       AllocaInst *NewAI;
 | |
|       // If we were able to find a vector type that can handle this with
 | |
|       // insert/extract elements, and if there was at least one use that had
 | |
|       // a vector type, promote this to a vector.  We don't want to promote
 | |
|       // random stuff that doesn't use vectors (e.g. <9 x double>) because then
 | |
|       // we just get a lot of insert/extracts.  If at least one vector is
 | |
|       // involved, then we probably really do have a union of vector/array.
 | |
|       if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
 | |
|         DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
 | |
|                      << *VectorTy << '\n');
 | |
|         
 | |
|         // Create and insert the vector alloca.
 | |
|         NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
 | |
|         ConvertUsesToScalar(AI, NewAI, 0);
 | |
|       } else {
 | |
|         DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
 | |
|         
 | |
|         // Create and insert the integer alloca.
 | |
|         const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
 | |
|         NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
 | |
|         ConvertUsesToScalar(AI, NewAI, 0);
 | |
|       }
 | |
|       NewAI->takeName(AI);
 | |
|       AI->eraseFromParent();
 | |
|       ++NumConverted;
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, couldn't process this alloca.
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 | |
| /// predicate, do SROA now.
 | |
| void SROA::DoScalarReplacement(AllocationInst *AI, 
 | |
|                                std::vector<AllocationInst*> &WorkList) {
 | |
|   DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
 | |
|   SmallVector<AllocaInst*, 32> ElementAllocas;
 | |
|   if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|     ElementAllocas.reserve(ST->getNumContainedTypes());
 | |
|     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
 | |
|                                       AI->getAlignment(),
 | |
|                                       AI->getName() + "." + Twine(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   } else {
 | |
|     const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | |
|     ElementAllocas.reserve(AT->getNumElements());
 | |
|     const Type *ElTy = AT->getElementType();
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | |
|                                       AI->getName() + "." + Twine(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we have created the alloca instructions that we want to use,
 | |
|   // expand the getelementptr instructions to use them.
 | |
|   //
 | |
|   while (!AI->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(AI->use_back());
 | |
|     if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
 | |
|       RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
 | |
|       BCInst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Replace:
 | |
|     //   %res = load { i32, i32 }* %alloc
 | |
|     // with:
 | |
|     //   %load.0 = load i32* %alloc.0
 | |
|     //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 
 | |
|     //   %load.1 = load i32* %alloc.1
 | |
|     //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 
 | |
|     // (Also works for arrays instead of structs)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       Value *Insert = UndefValue::get(LI->getType());
 | |
|       for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
 | |
|         Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
 | |
|         Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
 | |
|       }
 | |
|       LI->replaceAllUsesWith(Insert);
 | |
|       LI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Replace:
 | |
|     //   store { i32, i32 } %val, { i32, i32 }* %alloc
 | |
|     // with:
 | |
|     //   %val.0 = extractvalue { i32, i32 } %val, 0 
 | |
|     //   store i32 %val.0, i32* %alloc.0
 | |
|     //   %val.1 = extractvalue { i32, i32 } %val, 1 
 | |
|     //   store i32 %val.1, i32* %alloc.1
 | |
|     // (Also works for arrays instead of structs)
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       Value *Val = SI->getOperand(0);
 | |
|       for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
 | |
|         Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
 | |
|         new StoreInst(Extract, ElementAllocas[i], SI);
 | |
|       }
 | |
|       SI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|     // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
 | |
|     unsigned Idx =
 | |
|        (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     assert(Idx < ElementAllocas.size() && "Index out of range?");
 | |
|     AllocaInst *AllocaToUse = ElementAllocas[Idx];
 | |
| 
 | |
|     Value *RepValue;
 | |
|     if (GEPI->getNumOperands() == 3) {
 | |
|       // Do not insert a new getelementptr instruction with zero indices, only
 | |
|       // to have it optimized out later.
 | |
|       RepValue = AllocaToUse;
 | |
|     } else {
 | |
|       // We are indexing deeply into the structure, so we still need a
 | |
|       // getelement ptr instruction to finish the indexing.  This may be
 | |
|       // expanded itself once the worklist is rerun.
 | |
|       //
 | |
|       SmallVector<Value*, 8> NewArgs;
 | |
|       NewArgs.push_back(Constant::getNullValue(
 | |
|                                            Type::getInt32Ty(AI->getContext())));
 | |
|       NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
 | |
|       RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
 | |
|                                            NewArgs.end(), "", GEPI);
 | |
|       RepValue->takeName(GEPI);
 | |
|     }
 | |
|     
 | |
|     // If this GEP is to the start of the aggregate, check for memcpys.
 | |
|     if (Idx == 0 && GEPI->hasAllZeroIndices())
 | |
|       RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
 | |
| 
 | |
|     // Move all of the users over to the new GEP.
 | |
|     GEPI->replaceAllUsesWith(RepValue);
 | |
|     // Delete the old GEP
 | |
|     GEPI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Finally, delete the Alloca instruction
 | |
|   AI->eraseFromParent();
 | |
|   NumReplaced++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeElementUse - Check to see if this use is an allowed use for a
 | |
| /// getelementptr instruction of an array aggregate allocation.  isFirstElt
 | |
| /// indicates whether Ptr is known to the start of the aggregate.
 | |
| ///
 | |
| void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
 | |
|                             AllocaInfo &Info) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I) {
 | |
|     Instruction *User = cast<Instruction>(*I);
 | |
|     switch (User->getOpcode()) {
 | |
|     case Instruction::Load:  break;
 | |
|     case Instruction::Store:
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
 | |
|       bool AreAllZeroIndices = isFirstElt;
 | |
|       if (GEP->getNumOperands() > 1) {
 | |
|         if (!isa<ConstantInt>(GEP->getOperand(1)) ||
 | |
|             !cast<ConstantInt>(GEP->getOperand(1))->isZero())
 | |
|           // Using pointer arithmetic to navigate the array.
 | |
|           return MarkUnsafe(Info);
 | |
|        
 | |
|         if (AreAllZeroIndices)
 | |
|           AreAllZeroIndices = GEP->hasAllZeroIndices();
 | |
|       }
 | |
|       isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
 | |
|       if (Info.isUnsafe) return;
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::BitCast:
 | |
|       if (isFirstElt) {
 | |
|         isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
 | |
|         if (Info.isUnsafe) return;
 | |
|         break;
 | |
|       }
 | |
|       DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
 | |
|       return MarkUnsafe(Info);
 | |
|     case Instruction::Call:
 | |
|       if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | |
|         if (isFirstElt) {
 | |
|           isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
 | |
|           if (Info.isUnsafe) return;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
 | |
|       return MarkUnsafe(Info);
 | |
|     default:
 | |
|       DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|   }
 | |
|   return;  // All users look ok :)
 | |
| }
 | |
| 
 | |
| /// AllUsersAreLoads - Return true if all users of this value are loads.
 | |
| static bool AllUsersAreLoads(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I)
 | |
|     if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
 | |
| /// aggregate allocation.
 | |
| ///
 | |
| void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
 | |
|                                  AllocaInfo &Info) {
 | |
|   if (BitCastInst *C = dyn_cast<BitCastInst>(User))
 | |
|     return isSafeUseOfBitCastedAllocation(C, AI, Info);
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(User))
 | |
|     if (!LI->isVolatile())
 | |
|       return;// Loads (returning a first class aggregrate) are always rewritable
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(User))
 | |
|     if (!SI->isVolatile() && SI->getOperand(0) != AI)
 | |
|       return;// Store is ok if storing INTO the pointer, not storing the pointer
 | |
|  
 | |
|   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
 | |
|   if (GEPI == 0)
 | |
|     return MarkUnsafe(Info);
 | |
| 
 | |
|   gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | |
| 
 | |
|   // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
 | |
|   if (I == E ||
 | |
|       I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
 | |
|     return MarkUnsafe(Info);
 | |
|   }
 | |
| 
 | |
|   ++I;
 | |
|   if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
 | |
| 
 | |
|   bool IsAllZeroIndices = true;
 | |
|   
 | |
|   // If the first index is a non-constant index into an array, see if we can
 | |
|   // handle it as a special case.
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|     if (!isa<ConstantInt>(I.getOperand())) {
 | |
|       IsAllZeroIndices = 0;
 | |
|       uint64_t NumElements = AT->getNumElements();
 | |
|       
 | |
|       // If this is an array index and the index is not constant, we cannot
 | |
|       // promote... that is unless the array has exactly one or two elements in
 | |
|       // it, in which case we CAN promote it, but we have to canonicalize this
 | |
|       // out if this is the only problem.
 | |
|       if ((NumElements == 1 || NumElements == 2) &&
 | |
|           AllUsersAreLoads(GEPI)) {
 | |
|         Info.needsCleanup = true;
 | |
|         return;  // Canonicalization required!
 | |
|       }
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Walk through the GEP type indices, checking the types that this indexes
 | |
|   // into.
 | |
|   for (; I != E; ++I) {
 | |
|     // Ignore struct elements, no extra checking needed for these.
 | |
|     if (isa<StructType>(*I))
 | |
|       continue;
 | |
|     
 | |
|     ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
 | |
|     if (!IdxVal) return MarkUnsafe(Info);
 | |
| 
 | |
|     // Are all indices still zero?
 | |
|     IsAllZeroIndices &= IdxVal->isZero();
 | |
|     
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|       // This GEP indexes an array.  Verify that this is an in-range constant
 | |
|       // integer. Specifically, consider A[0][i]. We cannot know that the user
 | |
|       // isn't doing invalid things like allowing i to index an out-of-range
 | |
|       // subscript that accesses A[1].  Because of this, we have to reject SROA
 | |
|       // of any accesses into structs where any of the components are variables. 
 | |
|       if (IdxVal->getZExtValue() >= AT->getNumElements())
 | |
|         return MarkUnsafe(Info);
 | |
|     } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
 | |
|       if (IdxVal->getZExtValue() >= VT->getNumElements())
 | |
|         return MarkUnsafe(Info);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there are any non-simple uses of this getelementptr, make sure to reject
 | |
|   // them.
 | |
|   return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
 | |
| }
 | |
| 
 | |
| /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
 | |
| /// intrinsic can be promoted by SROA.  At this point, we know that the operand
 | |
| /// of the memintrinsic is a pointer to the beginning of the allocation.
 | |
| void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
 | |
|                                           unsigned OpNo, AllocaInfo &Info) {
 | |
|   // If not constant length, give up.
 | |
|   ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   if (!Length) return MarkUnsafe(Info);
 | |
|   
 | |
|   // If not the whole aggregate, give up.
 | |
|   if (Length->getZExtValue() !=
 | |
|       TD->getTypeAllocSize(AI->getType()->getElementType()))
 | |
|     return MarkUnsafe(Info);
 | |
|   
 | |
|   // We only know about memcpy/memset/memmove.
 | |
|   if (!isa<MemIntrinsic>(MI))
 | |
|     return MarkUnsafe(Info);
 | |
|   
 | |
|   // Otherwise, we can transform it.  Determine whether this is a memcpy/set
 | |
|   // into or out of the aggregate.
 | |
|   if (OpNo == 1)
 | |
|     Info.isMemCpyDst = true;
 | |
|   else {
 | |
|     assert(OpNo == 2);
 | |
|     Info.isMemCpySrc = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
 | |
| /// are 
 | |
| void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
 | |
|                                           AllocaInfo &Info) {
 | |
|   for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
 | |
|       isSafeUseOfBitCastedAllocation(BCU, AI, Info);
 | |
|     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
 | |
|       isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
 | |
|       if (SI->isVolatile())
 | |
|         return MarkUnsafe(Info);
 | |
|       
 | |
|       // If storing the entire alloca in one chunk through a bitcasted pointer
 | |
|       // to integer, we can transform it.  This happens (for example) when you
 | |
|       // cast a {i32,i32}* to i64* and store through it.  This is similar to the
 | |
|       // memcpy case and occurs in various "byval" cases and emulated memcpys.
 | |
|       if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
 | |
|           TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
 | |
|           TD->getTypeAllocSize(AI->getType()->getElementType())) {
 | |
|         Info.isMemCpyDst = true;
 | |
|         continue;
 | |
|       }
 | |
|       return MarkUnsafe(Info);
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
 | |
|       if (LI->isVolatile())
 | |
|         return MarkUnsafe(Info);
 | |
| 
 | |
|       // If loading the entire alloca in one chunk through a bitcasted pointer
 | |
|       // to integer, we can transform it.  This happens (for example) when you
 | |
|       // cast a {i32,i32}* to i64* and load through it.  This is similar to the
 | |
|       // memcpy case and occurs in various "byval" cases and emulated memcpys.
 | |
|       if (isa<IntegerType>(LI->getType()) &&
 | |
|           TD->getTypeAllocSize(LI->getType()) ==
 | |
|           TD->getTypeAllocSize(AI->getType()->getElementType())) {
 | |
|         Info.isMemCpySrc = true;
 | |
|         continue;
 | |
|       }
 | |
|       return MarkUnsafe(Info);
 | |
|     } else if (isa<DbgInfoIntrinsic>(UI)) {
 | |
|       // If one user is DbgInfoIntrinsic then check if all users are
 | |
|       // DbgInfoIntrinsics.
 | |
|       if (OnlyUsedByDbgInfoIntrinsics(BC)) {
 | |
|         Info.needsCleanup = true;
 | |
|         return;
 | |
|       }
 | |
|       else
 | |
|         MarkUnsafe(Info);
 | |
|     }
 | |
|     else {
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|     if (Info.isUnsafe) return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
 | |
| /// to its first element.  Transform users of the cast to use the new values
 | |
| /// instead.
 | |
| void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
 | |
|   while (UI != UE) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
 | |
|       RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
 | |
|       if (BCU->use_empty()) BCU->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | |
|       // This must be memcpy/memmove/memset of the entire aggregate.
 | |
|       // Split into one per element.
 | |
|       RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
 | |
|       continue;
 | |
|     }
 | |
|       
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // If this is a store of the entire alloca from an integer, rewrite it.
 | |
|       RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // If this is a load of the entire alloca to an integer, rewrite it.
 | |
|       RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise it must be some other user of a gep of the first pointer.  Just
 | |
|     // leave these alone.
 | |
|     continue;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
 | |
| /// Rewrite it to copy or set the elements of the scalarized memory.
 | |
| void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
 | |
|                                         AllocationInst *AI,
 | |
|                                         SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   
 | |
|   // If this is a memcpy/memmove, construct the other pointer as the
 | |
|   // appropriate type.  The "Other" pointer is the pointer that goes to memory
 | |
|   // that doesn't have anything to do with the alloca that we are promoting. For
 | |
|   // memset, this Value* stays null.
 | |
|   Value *OtherPtr = 0;
 | |
|   LLVMContext &Context = MI->getContext();
 | |
|   unsigned MemAlignment = MI->getAlignment();
 | |
|   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
 | |
|     if (BCInst == MTI->getRawDest())
 | |
|       OtherPtr = MTI->getRawSource();
 | |
|     else {
 | |
|       assert(BCInst == MTI->getRawSource());
 | |
|       OtherPtr = MTI->getRawDest();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there is an other pointer, we want to convert it to the same pointer
 | |
|   // type as AI has, so we can GEP through it safely.
 | |
|   if (OtherPtr) {
 | |
|     // It is likely that OtherPtr is a bitcast, if so, remove it.
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
 | |
|       OtherPtr = BC->getOperand(0);
 | |
|     // All zero GEPs are effectively bitcasts.
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
 | |
|       if (GEP->hasAllZeroIndices())
 | |
|         OtherPtr = GEP->getOperand(0);
 | |
|     
 | |
|     if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
 | |
|       if (BCE->getOpcode() == Instruction::BitCast)
 | |
|         OtherPtr = BCE->getOperand(0);
 | |
|     
 | |
|     // If the pointer is not the right type, insert a bitcast to the right
 | |
|     // type.
 | |
|     if (OtherPtr->getType() != AI->getType())
 | |
|       OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
 | |
|                                  MI);
 | |
|   }
 | |
|   
 | |
|   // Process each element of the aggregate.
 | |
|   Value *TheFn = MI->getOperand(0);
 | |
|   const Type *BytePtrTy = MI->getRawDest()->getType();
 | |
|   bool SROADest = MI->getRawDest() == BCInst;
 | |
|   
 | |
|   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 | |
| 
 | |
|   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|     // If this is a memcpy/memmove, emit a GEP of the other element address.
 | |
|     Value *OtherElt = 0;
 | |
|     unsigned OtherEltAlign = MemAlignment;
 | |
|     
 | |
|     if (OtherPtr) {
 | |
|       Value *Idx[2] = { Zero,
 | |
|                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
 | |
|       OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
 | |
|                                            OtherPtr->getNameStr()+"."+Twine(i),
 | |
|                                            MI);
 | |
|       uint64_t EltOffset;
 | |
|       const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
 | |
|       if (const StructType *ST =
 | |
|             dyn_cast<StructType>(OtherPtrTy->getElementType())) {
 | |
|         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
 | |
|       } else {
 | |
|         const Type *EltTy =
 | |
|           cast<SequentialType>(OtherPtr->getType())->getElementType();
 | |
|         EltOffset = TD->getTypeAllocSize(EltTy)*i;
 | |
|       }
 | |
|       
 | |
|       // The alignment of the other pointer is the guaranteed alignment of the
 | |
|       // element, which is affected by both the known alignment of the whole
 | |
|       // mem intrinsic and the alignment of the element.  If the alignment of
 | |
|       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
 | |
|       // known alignment is just 4 bytes.
 | |
|       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
 | |
|     }
 | |
|     
 | |
|     Value *EltPtr = NewElts[i];
 | |
|     const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
 | |
|     
 | |
|     // If we got down to a scalar, insert a load or store as appropriate.
 | |
|     if (EltTy->isSingleValueType()) {
 | |
|       if (isa<MemTransferInst>(MI)) {
 | |
|         if (SROADest) {
 | |
|           // From Other to Alloca.
 | |
|           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
 | |
|           new StoreInst(Elt, EltPtr, MI);
 | |
|         } else {
 | |
|           // From Alloca to Other.
 | |
|           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
 | |
|           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       assert(isa<MemSetInst>(MI));
 | |
|       
 | |
|       // If the stored element is zero (common case), just store a null
 | |
|       // constant.
 | |
|       Constant *StoreVal;
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
 | |
|         if (CI->isZero()) {
 | |
|           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
 | |
|         } else {
 | |
|           // If EltTy is a vector type, get the element type.
 | |
|           const Type *ValTy = EltTy->getScalarType();
 | |
| 
 | |
|           // Construct an integer with the right value.
 | |
|           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
 | |
|           APInt OneVal(EltSize, CI->getZExtValue());
 | |
|           APInt TotalVal(OneVal);
 | |
|           // Set each byte.
 | |
|           for (unsigned i = 0; 8*i < EltSize; ++i) {
 | |
|             TotalVal = TotalVal.shl(8);
 | |
|             TotalVal |= OneVal;
 | |
|           }
 | |
|           
 | |
|           // Convert the integer value to the appropriate type.
 | |
|           StoreVal = ConstantInt::get(Context, TotalVal);
 | |
|           if (isa<PointerType>(ValTy))
 | |
|             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
 | |
|           else if (ValTy->isFloatingPoint())
 | |
|             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
 | |
|           assert(StoreVal->getType() == ValTy && "Type mismatch!");
 | |
|           
 | |
|           // If the requested value was a vector constant, create it.
 | |
|           if (EltTy != ValTy) {
 | |
|             unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
 | |
|             SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
 | |
|             StoreVal = ConstantVector::get(&Elts[0], NumElts);
 | |
|           }
 | |
|         }
 | |
|         new StoreInst(StoreVal, EltPtr, MI);
 | |
|         continue;
 | |
|       }
 | |
|       // Otherwise, if we're storing a byte variable, use a memset call for
 | |
|       // this element.
 | |
|     }
 | |
|     
 | |
|     // Cast the element pointer to BytePtrTy.
 | |
|     if (EltPtr->getType() != BytePtrTy)
 | |
|       EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
 | |
|     
 | |
|     // Cast the other pointer (if we have one) to BytePtrTy. 
 | |
|     if (OtherElt && OtherElt->getType() != BytePtrTy)
 | |
|       OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
 | |
|                                  MI);
 | |
|     
 | |
|     unsigned EltSize = TD->getTypeAllocSize(EltTy);
 | |
|     
 | |
|     // Finally, insert the meminst for this element.
 | |
|     if (isa<MemTransferInst>(MI)) {
 | |
|       Value *Ops[] = {
 | |
|         SROADest ? EltPtr : OtherElt,  // Dest ptr
 | |
|         SROADest ? OtherElt : EltPtr,  // Src ptr
 | |
|         ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
 | |
|         // Align
 | |
|         ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
 | |
|       };
 | |
|       CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
 | |
|     } else {
 | |
|       assert(isa<MemSetInst>(MI));
 | |
|       Value *Ops[] = {
 | |
|         EltPtr, MI->getOperand(2),  // Dest, Value,
 | |
|         ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
 | |
|         Zero  // Align
 | |
|       };
 | |
|       CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
 | |
|     }
 | |
|   }
 | |
|   MI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
 | |
| /// overwrites the entire allocation.  Extract out the pieces of the stored
 | |
| /// integer and store them individually.
 | |
| void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
 | |
|                                          AllocationInst *AI,
 | |
|                                          SmallVector<AllocaInst*, 32> &NewElts){
 | |
|   // Extract each element out of the integer according to its structure offset
 | |
|   // and store the element value to the individual alloca.
 | |
|   Value *SrcVal = SI->getOperand(0);
 | |
|   const Type *AllocaEltTy = AI->getType()->getElementType();
 | |
|   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | |
|   
 | |
|   // If this isn't a store of an integer to the whole alloca, it may be a store
 | |
|   // to the first element.  Just ignore the store in this case and normal SROA
 | |
|   // will handle it.
 | |
|   if (!isa<IntegerType>(SrcVal->getType()) ||
 | |
|       TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
 | |
|     return;
 | |
|   // Handle tail padding by extending the operand
 | |
|   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
 | |
|     SrcVal = new ZExtInst(SrcVal,
 | |
|                           IntegerType::get(SI->getContext(), AllocaSizeBits), 
 | |
|                           "", SI);
 | |
| 
 | |
|   DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
 | |
|                << '\n');
 | |
| 
 | |
|   // There are two forms here: AI could be an array or struct.  Both cases
 | |
|   // have different ways to compute the element offset.
 | |
|   if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | |
|     const StructLayout *Layout = TD->getStructLayout(EltSTy);
 | |
|     
 | |
|     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|       // Get the number of bits to shift SrcVal to get the value.
 | |
|       const Type *FieldTy = EltSTy->getElementType(i);
 | |
|       uint64_t Shift = Layout->getElementOffsetInBits(i);
 | |
|       
 | |
|       if (TD->isBigEndian())
 | |
|         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
 | |
|       
 | |
|       Value *EltVal = SrcVal;
 | |
|       if (Shift) {
 | |
|         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | |
|         EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
 | |
|                                             "sroa.store.elt", SI);
 | |
|       }
 | |
|       
 | |
|       // Truncate down to an integer of the right size.
 | |
|       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | |
|       
 | |
|       // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|       if (FieldSizeBits == 0) continue;
 | |
|       
 | |
|       if (FieldSizeBits != AllocaSizeBits)
 | |
|         EltVal = new TruncInst(EltVal,
 | |
|                              IntegerType::get(SI->getContext(), FieldSizeBits),
 | |
|                               "", SI);
 | |
|       Value *DestField = NewElts[i];
 | |
|       if (EltVal->getType() == FieldTy) {
 | |
|         // Storing to an integer field of this size, just do it.
 | |
|       } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
 | |
|         // Bitcast to the right element type (for fp/vector values).
 | |
|         EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
 | |
|       } else {
 | |
|         // Otherwise, bitcast the dest pointer (for aggregates).
 | |
|         DestField = new BitCastInst(DestField,
 | |
|                               PointerType::getUnqual(EltVal->getType()),
 | |
|                                     "", SI);
 | |
|       }
 | |
|       new StoreInst(EltVal, DestField, SI);
 | |
|     }
 | |
|     
 | |
|   } else {
 | |
|     const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
 | |
|     const Type *ArrayEltTy = ATy->getElementType();
 | |
|     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | |
|     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 | |
| 
 | |
|     uint64_t Shift;
 | |
|     
 | |
|     if (TD->isBigEndian())
 | |
|       Shift = AllocaSizeBits-ElementOffset;
 | |
|     else 
 | |
|       Shift = 0;
 | |
|     
 | |
|     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|       // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|       if (ElementSizeBits == 0) continue;
 | |
|       
 | |
|       Value *EltVal = SrcVal;
 | |
|       if (Shift) {
 | |
|         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | |
|         EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
 | |
|                                             "sroa.store.elt", SI);
 | |
|       }
 | |
|       
 | |
|       // Truncate down to an integer of the right size.
 | |
|       if (ElementSizeBits != AllocaSizeBits)
 | |
|         EltVal = new TruncInst(EltVal, 
 | |
|                                IntegerType::get(SI->getContext(), 
 | |
|                                                 ElementSizeBits),"",SI);
 | |
|       Value *DestField = NewElts[i];
 | |
|       if (EltVal->getType() == ArrayEltTy) {
 | |
|         // Storing to an integer field of this size, just do it.
 | |
|       } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
 | |
|         // Bitcast to the right element type (for fp/vector values).
 | |
|         EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
 | |
|       } else {
 | |
|         // Otherwise, bitcast the dest pointer (for aggregates).
 | |
|         DestField = new BitCastInst(DestField,
 | |
|                               PointerType::getUnqual(EltVal->getType()),
 | |
|                                     "", SI);
 | |
|       }
 | |
|       new StoreInst(EltVal, DestField, SI);
 | |
|       
 | |
|       if (TD->isBigEndian())
 | |
|         Shift -= ElementOffset;
 | |
|       else 
 | |
|         Shift += ElementOffset;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   SI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
 | |
| /// an integer.  Load the individual pieces to form the aggregate value.
 | |
| void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
 | |
|                                         SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   // Extract each element out of the NewElts according to its structure offset
 | |
|   // and form the result value.
 | |
|   const Type *AllocaEltTy = AI->getType()->getElementType();
 | |
|   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | |
|   
 | |
|   // If this isn't a load of the whole alloca to an integer, it may be a load
 | |
|   // of the first element.  Just ignore the load in this case and normal SROA
 | |
|   // will handle it.
 | |
|   if (!isa<IntegerType>(LI->getType()) ||
 | |
|       TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
 | |
|     return;
 | |
|   
 | |
|   DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
 | |
|                << '\n');
 | |
|   
 | |
|   // There are two forms here: AI could be an array or struct.  Both cases
 | |
|   // have different ways to compute the element offset.
 | |
|   const StructLayout *Layout = 0;
 | |
|   uint64_t ArrayEltBitOffset = 0;
 | |
|   if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | |
|     Layout = TD->getStructLayout(EltSTy);
 | |
|   } else {
 | |
|     const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
 | |
|     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | |
|   }    
 | |
|   
 | |
|   Value *ResultVal = 
 | |
|     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
 | |
|   
 | |
|   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|     // Load the value from the alloca.  If the NewElt is an aggregate, cast
 | |
|     // the pointer to an integer of the same size before doing the load.
 | |
|     Value *SrcField = NewElts[i];
 | |
|     const Type *FieldTy =
 | |
|       cast<PointerType>(SrcField->getType())->getElementType();
 | |
|     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | |
|     
 | |
|     // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|     if (FieldSizeBits == 0) continue;
 | |
|     
 | |
|     const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 
 | |
|                                                      FieldSizeBits);
 | |
|     if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
 | |
|         !isa<VectorType>(FieldTy))
 | |
|       SrcField = new BitCastInst(SrcField,
 | |
|                                  PointerType::getUnqual(FieldIntTy),
 | |
|                                  "", LI);
 | |
|     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
 | |
| 
 | |
|     // If SrcField is a fp or vector of the right size but that isn't an
 | |
|     // integer type, bitcast to an integer so we can shift it.
 | |
|     if (SrcField->getType() != FieldIntTy)
 | |
|       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
 | |
| 
 | |
|     // Zero extend the field to be the same size as the final alloca so that
 | |
|     // we can shift and insert it.
 | |
|     if (SrcField->getType() != ResultVal->getType())
 | |
|       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
 | |
|     
 | |
|     // Determine the number of bits to shift SrcField.
 | |
|     uint64_t Shift;
 | |
|     if (Layout) // Struct case.
 | |
|       Shift = Layout->getElementOffsetInBits(i);
 | |
|     else  // Array case.
 | |
|       Shift = i*ArrayEltBitOffset;
 | |
|     
 | |
|     if (TD->isBigEndian())
 | |
|       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
 | |
|     
 | |
|     if (Shift) {
 | |
|       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
 | |
|       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
 | |
|     }
 | |
| 
 | |
|     ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
 | |
|   }
 | |
| 
 | |
|   // Handle tail padding by truncating the result
 | |
|   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
 | |
|     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 | |
| 
 | |
|   LI->replaceAllUsesWith(ResultVal);
 | |
|   LI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// HasPadding - Return true if the specified type has any structure or
 | |
| /// alignment padding, false otherwise.
 | |
| static bool HasPadding(const Type *Ty, const TargetData &TD) {
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = TD.getStructLayout(STy);
 | |
|     unsigned PrevFieldBitOffset = 0;
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
 | |
| 
 | |
|       // Padding in sub-elements?
 | |
|       if (HasPadding(STy->getElementType(i), TD))
 | |
|         return true;
 | |
| 
 | |
|       // Check to see if there is any padding between this element and the
 | |
|       // previous one.
 | |
|       if (i) {
 | |
|         unsigned PrevFieldEnd =
 | |
|         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
 | |
|         if (PrevFieldEnd < FieldBitOffset)
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       PrevFieldBitOffset = FieldBitOffset;
 | |
|     }
 | |
| 
 | |
|     //  Check for tail padding.
 | |
|     if (unsigned EltCount = STy->getNumElements()) {
 | |
|       unsigned PrevFieldEnd = PrevFieldBitOffset +
 | |
|                    TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
 | |
|       if (PrevFieldEnd < SL->getSizeInBits())
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     return HasPadding(ATy->getElementType(), TD);
 | |
|   } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     return HasPadding(VTy->getElementType(), TD);
 | |
|   }
 | |
|   return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
 | |
| }
 | |
| 
 | |
| /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | |
| /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | |
| /// or 1 if safe after canonicalization has been performed.
 | |
| ///
 | |
| int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
 | |
|   // Loop over the use list of the alloca.  We can only transform it if all of
 | |
|   // the users are safe to transform.
 | |
|   AllocaInfo Info;
 | |
|   
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | |
|        I != E; ++I) {
 | |
|     isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
 | |
|     if (Info.isUnsafe) {
 | |
|       DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
 | |
|                    << **I << '\n');
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
 | |
|   // source and destination, we have to be careful.  In particular, the memcpy
 | |
|   // could be moving around elements that live in structure padding of the LLVM
 | |
|   // types, but may actually be used.  In these cases, we refuse to promote the
 | |
|   // struct.
 | |
|   if (Info.isMemCpySrc && Info.isMemCpyDst &&
 | |
|       HasPadding(AI->getType()->getElementType(), *TD))
 | |
|     return 0;
 | |
| 
 | |
|   // If we require cleanup, return 1, otherwise return 3.
 | |
|   return Info.needsCleanup ? 1 : 3;
 | |
| }
 | |
| 
 | |
| /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
 | |
| /// is canonicalized here.
 | |
| void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
 | |
|   gep_type_iterator I = gep_type_begin(GEPI);
 | |
|   ++I;
 | |
|   
 | |
|   const ArrayType *AT = dyn_cast<ArrayType>(*I);
 | |
|   if (!AT) 
 | |
|     return;
 | |
| 
 | |
|   uint64_t NumElements = AT->getNumElements();
 | |
|   
 | |
|   if (isa<ConstantInt>(I.getOperand()))
 | |
|     return;
 | |
| 
 | |
|   if (NumElements == 1) {
 | |
|     GEPI->setOperand(2, 
 | |
|                   Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
 | |
|     return;
 | |
|   } 
 | |
|     
 | |
|   assert(NumElements == 2 && "Unhandled case!");
 | |
|   // All users of the GEP must be loads.  At each use of the GEP, insert
 | |
|   // two loads of the appropriate indexed GEP and select between them.
 | |
|   Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(), 
 | |
|                               Constant::getNullValue(I.getOperand()->getType()),
 | |
|                               "isone");
 | |
|   // Insert the new GEP instructions, which are properly indexed.
 | |
|   SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
 | |
|   Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
 | |
|   Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
 | |
|                                              Indices.begin(),
 | |
|                                              Indices.end(),
 | |
|                                              GEPI->getName()+".0", GEPI);
 | |
|   Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
 | |
|   Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
 | |
|                                             Indices.begin(),
 | |
|                                             Indices.end(),
 | |
|                                             GEPI->getName()+".1", GEPI);
 | |
|   // Replace all loads of the variable index GEP with loads from both
 | |
|   // indexes and a select.
 | |
|   while (!GEPI->use_empty()) {
 | |
|     LoadInst *LI = cast<LoadInst>(GEPI->use_back());
 | |
|     Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
 | |
|     Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
 | |
|     Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
 | |
|     LI->replaceAllUsesWith(R);
 | |
|     LI->eraseFromParent();
 | |
|   }
 | |
|   GEPI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CleanupAllocaUsers - If SROA reported that it can promote the specified
 | |
| /// allocation, but only if cleaned up, perform the cleanups required.
 | |
| void SROA::CleanupAllocaUsers(AllocationInst *AI) {
 | |
|   // At this point, we know that the end result will be SROA'd and promoted, so
 | |
|   // we can insert ugly code if required so long as sroa+mem2reg will clean it
 | |
|   // up.
 | |
|   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|        UI != E; ) {
 | |
|     User *U = *UI++;
 | |
|     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
 | |
|       CleanupGEP(GEPI);
 | |
|     else {
 | |
|       Instruction *I = cast<Instruction>(U);
 | |
|       SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
 | |
|       if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
 | |
|         // Safe to remove debug info uses.
 | |
|         while (!DbgInUses.empty()) {
 | |
|           DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
 | |
|           DI->eraseFromParent();
 | |
|         }
 | |
|         I->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
 | |
| /// the offset specified by Offset (which is specified in bytes).
 | |
| ///
 | |
| /// There are two cases we handle here:
 | |
| ///   1) A union of vector types of the same size and potentially its elements.
 | |
| ///      Here we turn element accesses into insert/extract element operations.
 | |
| ///      This promotes a <4 x float> with a store of float to the third element
 | |
| ///      into a <4 x float> that uses insert element.
 | |
| ///   2) A fully general blob of memory, which we turn into some (potentially
 | |
| ///      large) integer type with extract and insert operations where the loads
 | |
| ///      and stores would mutate the memory.
 | |
| static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
 | |
|                         unsigned AllocaSize, const TargetData &TD,
 | |
|                         LLVMContext &Context) {
 | |
|   // If this could be contributing to a vector, analyze it.
 | |
|   if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
 | |
| 
 | |
|     // If the In type is a vector that is the same size as the alloca, see if it
 | |
|     // matches the existing VecTy.
 | |
|     if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
 | |
|       if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
 | |
|         // If we're storing/loading a vector of the right size, allow it as a
 | |
|         // vector.  If this the first vector we see, remember the type so that
 | |
|         // we know the element size.
 | |
|         if (VecTy == 0)
 | |
|           VecTy = VInTy;
 | |
|         return;
 | |
|       }
 | |
|     } else if (In->isFloatTy() || In->isDoubleTy() ||
 | |
|                (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
 | |
|                 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
 | |
|       // If we're accessing something that could be an element of a vector, see
 | |
|       // if the implied vector agrees with what we already have and if Offset is
 | |
|       // compatible with it.
 | |
|       unsigned EltSize = In->getPrimitiveSizeInBits()/8;
 | |
|       if (Offset % EltSize == 0 &&
 | |
|           AllocaSize % EltSize == 0 &&
 | |
|           (VecTy == 0 || 
 | |
|            cast<VectorType>(VecTy)->getElementType()
 | |
|                  ->getPrimitiveSizeInBits()/8 == EltSize)) {
 | |
|         if (VecTy == 0)
 | |
|           VecTy = VectorType::get(In, AllocaSize/EltSize);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we have a case that we can't handle with an optimized vector
 | |
|   // form.  We can still turn this into a large integer.
 | |
|   VecTy = Type::getVoidTy(Context);
 | |
| }
 | |
| 
 | |
| /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
 | |
| /// its accesses to use a to single vector type, return true, and set VecTy to
 | |
| /// the new type.  If we could convert the alloca into a single promotable
 | |
| /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
 | |
| /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
 | |
| /// is the current offset from the base of the alloca being analyzed.
 | |
| ///
 | |
| /// If we see at least one access to the value that is as a vector type, set the
 | |
| /// SawVec flag.
 | |
| ///
 | |
| bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
 | |
|                               bool &SawVec, uint64_t Offset,
 | |
|                               unsigned AllocaSize) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // Don't break volatile loads.
 | |
|       if (LI->isVolatile())
 | |
|         return false;
 | |
|       MergeInType(LI->getType(), Offset, VecTy,
 | |
|                   AllocaSize, *TD, V->getContext());
 | |
|       SawVec |= isa<VectorType>(LI->getType());
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Storing the pointer, not into the value?
 | |
|       if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
 | |
|       MergeInType(SI->getOperand(0)->getType(), Offset,
 | |
|                   VecTy, AllocaSize, *TD, V->getContext());
 | |
|       SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
 | |
|       if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
 | |
|                               AllocaSize))
 | |
|         return false;
 | |
|       IsNotTrivial = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // If this is a GEP with a variable indices, we can't handle it.
 | |
|       if (!GEP->hasAllConstantIndices())
 | |
|         return false;
 | |
|       
 | |
|       // Compute the offset that this GEP adds to the pointer.
 | |
|       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | |
|       uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
 | |
|                                                 &Indices[0], Indices.size());
 | |
|       // See if all uses can be converted.
 | |
|       if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
 | |
|                               AllocaSize))
 | |
|         return false;
 | |
|       IsNotTrivial = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a constant sized memset of a constant value (e.g. 0) we can
 | |
|     // handle it.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | |
|       // Store of constant value and constant size.
 | |
|       if (isa<ConstantInt>(MSI->getValue()) &&
 | |
|           isa<ConstantInt>(MSI->getLength())) {
 | |
|         IsNotTrivial = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is a memcpy or memmove into or out of the whole allocation, we
 | |
|     // can handle it like a load or store of the scalar type.
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | |
|       if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
 | |
|         if (Len->getZExtValue() == AllocaSize && Offset == 0) {
 | |
|           IsNotTrivial = true;
 | |
|           continue;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // Ignore dbg intrinsic.
 | |
|     if (isa<DbgInfoIntrinsic>(User))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, we cannot handle this!
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | |
| /// directly.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
 | |
|   while (!Ptr->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(Ptr->use_back());
 | |
| 
 | |
|     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | |
|       ConvertUsesToScalar(CI, NewAI, Offset);
 | |
|       CI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Compute the offset that this GEP adds to the pointer.
 | |
|       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | |
|       uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
 | |
|                                                 &Indices[0], Indices.size());
 | |
|       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
 | |
|       GEP->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     IRBuilder<> Builder(User->getParent(), User);
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // The load is a bit extract from NewAI shifted right by Offset bits.
 | |
|       Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
 | |
|       Value *NewLoadVal
 | |
|         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
 | |
|       LI->replaceAllUsesWith(NewLoadVal);
 | |
|       LI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | |
|       // FIXME: Remove once builder has Twine API.
 | |
|       Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
 | |
|       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
 | |
|                                              Builder);
 | |
|       Builder.CreateStore(New, NewAI);
 | |
|       SI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this is a constant sized memset of a constant value (e.g. 0) we can
 | |
|     // transform it into a store of the expanded constant value.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | |
|       assert(MSI->getRawDest() == Ptr && "Consistency error!");
 | |
|       unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|       if (NumBytes != 0) {
 | |
|         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
 | |
|         
 | |
|         // Compute the value replicated the right number of times.
 | |
|         APInt APVal(NumBytes*8, Val);
 | |
| 
 | |
|         // Splat the value if non-zero.
 | |
|         if (Val)
 | |
|           for (unsigned i = 1; i != NumBytes; ++i)
 | |
|             APVal |= APVal << 8;
 | |
|         
 | |
|         // FIXME: Remove once builder has Twine API.
 | |
|         Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
 | |
|         Value *New = ConvertScalar_InsertValue(
 | |
|                                     ConstantInt::get(User->getContext(), APVal),
 | |
|                                                Old, Offset, Builder);
 | |
|         Builder.CreateStore(New, NewAI);
 | |
|       }
 | |
|       MSI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a memcpy or memmove into or out of the whole allocation, we
 | |
|     // can handle it like a load or store of the scalar type.
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | |
|       assert(Offset == 0 && "must be store to start of alloca");
 | |
|       
 | |
|       // If the source and destination are both to the same alloca, then this is
 | |
|       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
 | |
|       // as appropriate.
 | |
|       AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
 | |
|       
 | |
|       if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
 | |
|         // Dest must be OrigAI, change this to be a load from the original
 | |
|         // pointer (bitcasted), then a store to our new alloca.
 | |
|         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
 | |
|         Value *SrcPtr = MTI->getSource();
 | |
|         SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
 | |
|         
 | |
|         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
 | |
|         SrcVal->setAlignment(MTI->getAlignment());
 | |
|         Builder.CreateStore(SrcVal, NewAI);
 | |
|       } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
 | |
|         // Src must be OrigAI, change this to be a load from NewAI then a store
 | |
|         // through the original dest pointer (bitcasted).
 | |
|         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
 | |
|         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
 | |
| 
 | |
|         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
 | |
|         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
 | |
|         NewStore->setAlignment(MTI->getAlignment());
 | |
|       } else {
 | |
|         // Noop transfer. Src == Dst
 | |
|       }
 | |
|           
 | |
| 
 | |
|       MTI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If user is a dbg info intrinsic then it is safe to remove it.
 | |
|     if (isa<DbgInfoIntrinsic>(User)) {
 | |
|       User->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Unsupported operation!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
 | |
| /// or vector value FromVal, extracting the bits from the offset specified by
 | |
| /// Offset.  This returns the value, which is of type ToType.
 | |
| ///
 | |
| /// This happens when we are converting an "integer union" to a single
 | |
| /// integer scalar, or when we are converting a "vector union" to a vector with
 | |
| /// insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.
 | |
| Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
 | |
|                                         uint64_t Offset, IRBuilder<> &Builder) {
 | |
|   // If the load is of the whole new alloca, no conversion is needed.
 | |
|   if (FromVal->getType() == ToType && Offset == 0)
 | |
|     return FromVal;
 | |
| 
 | |
|   // If the result alloca is a vector type, this is either an element
 | |
|   // access or a bitcast to another vector type of the same size.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
 | |
|     if (isa<VectorType>(ToType))
 | |
|       return Builder.CreateBitCast(FromVal, ToType, "tmp");
 | |
| 
 | |
|     // Otherwise it must be an element access.
 | |
|     unsigned Elt = 0;
 | |
|     if (Offset) {
 | |
|       unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
 | |
|       Elt = Offset/EltSize;
 | |
|       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
 | |
|     }
 | |
|     // Return the element extracted out of it.
 | |
|     Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
 | |
|                     Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
 | |
|     if (V->getType() != ToType)
 | |
|       V = Builder.CreateBitCast(V, ToType, "tmp");
 | |
|     return V;
 | |
|   }
 | |
|   
 | |
|   // If ToType is a first class aggregate, extract out each of the pieces and
 | |
|   // use insertvalue's to form the FCA.
 | |
|   if (const StructType *ST = dyn_cast<StructType>(ToType)) {
 | |
|     const StructLayout &Layout = *TD->getStructLayout(ST);
 | |
|     Value *Res = UndefValue::get(ST);
 | |
|     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
 | |
|                                         Offset+Layout.getElementOffsetInBits(i),
 | |
|                                               Builder);
 | |
|       Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
|   
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
 | |
|     uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
 | |
|     Value *Res = UndefValue::get(AT);
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
 | |
|                                               Offset+i*EltSize, Builder);
 | |
|       Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this must be a union that was converted to an integer value.
 | |
|   const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
 | |
| 
 | |
|   // If this is a big-endian system and the load is narrower than the
 | |
|   // full alloca type, we need to do a shift to get the right bits.
 | |
|   int ShAmt = 0;
 | |
|   if (TD->isBigEndian()) {
 | |
|     // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|     // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|     // integers with a bitwidth that is not a multiple of 8.
 | |
|     ShAmt = TD->getTypeStoreSizeInBits(NTy) -
 | |
|             TD->getTypeStoreSizeInBits(ToType) - Offset;
 | |
|   } else {
 | |
|     ShAmt = Offset;
 | |
|   }
 | |
| 
 | |
|   // Note: we support negative bitwidths (with shl) which are not defined.
 | |
|   // We do this to support (f.e.) loads off the end of a structure where
 | |
|   // only some bits are used.
 | |
|   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
 | |
|     FromVal = Builder.CreateLShr(FromVal,
 | |
|                                  ConstantInt::get(FromVal->getType(),
 | |
|                                                            ShAmt), "tmp");
 | |
|   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
 | |
|     FromVal = Builder.CreateShl(FromVal, 
 | |
|                                 ConstantInt::get(FromVal->getType(),
 | |
|                                                           -ShAmt), "tmp");
 | |
| 
 | |
|   // Finally, unconditionally truncate the integer to the right width.
 | |
|   unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
 | |
|   if (LIBitWidth < NTy->getBitWidth())
 | |
|     FromVal =
 | |
|       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 
 | |
|                                                     LIBitWidth), "tmp");
 | |
|   else if (LIBitWidth > NTy->getBitWidth())
 | |
|     FromVal =
 | |
|        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 
 | |
|                                                     LIBitWidth), "tmp");
 | |
| 
 | |
|   // If the result is an integer, this is a trunc or bitcast.
 | |
|   if (isa<IntegerType>(ToType)) {
 | |
|     // Should be done.
 | |
|   } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
 | |
|     // Just do a bitcast, we know the sizes match up.
 | |
|     FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
 | |
|   } else {
 | |
|     // Otherwise must be a pointer.
 | |
|     FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
 | |
|   }
 | |
|   assert(FromVal->getType() == ToType && "Didn't convert right?");
 | |
|   return FromVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
 | |
| /// or vector value "Old" at the offset specified by Offset.
 | |
| ///
 | |
| /// This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.
 | |
| Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
 | |
|                                        uint64_t Offset, IRBuilder<> &Builder) {
 | |
| 
 | |
|   // Convert the stored type to the actual type, shift it left to insert
 | |
|   // then 'or' into place.
 | |
|   const Type *AllocaType = Old->getType();
 | |
|   LLVMContext &Context = Old->getContext();
 | |
| 
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
 | |
|     uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
 | |
|     uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
 | |
|     
 | |
|     // Changing the whole vector with memset or with an access of a different
 | |
|     // vector type?
 | |
|     if (ValSize == VecSize)
 | |
|       return Builder.CreateBitCast(SV, AllocaType, "tmp");
 | |
| 
 | |
|     uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
 | |
| 
 | |
|     // Must be an element insertion.
 | |
|     unsigned Elt = Offset/EltSize;
 | |
|     
 | |
|     if (SV->getType() != VTy->getElementType())
 | |
|       SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
 | |
|     
 | |
|     SV = Builder.CreateInsertElement(Old, SV, 
 | |
|                      ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
 | |
|                                      "tmp");
 | |
|     return SV;
 | |
|   }
 | |
|   
 | |
|   // If SV is a first-class aggregate value, insert each value recursively.
 | |
|   if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
 | |
|     const StructLayout &Layout = *TD->getStructLayout(ST);
 | |
|     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
 | |
|       Old = ConvertScalar_InsertValue(Elt, Old, 
 | |
|                                       Offset+Layout.getElementOffsetInBits(i),
 | |
|                                       Builder);
 | |
|     }
 | |
|     return Old;
 | |
|   }
 | |
|   
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
 | |
|     uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
 | |
|       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
 | |
|     }
 | |
|     return Old;
 | |
|   }
 | |
| 
 | |
|   // If SV is a float, convert it to the appropriate integer type.
 | |
|   // If it is a pointer, do the same.
 | |
|   unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
 | |
|   unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
 | |
|   unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
 | |
|   unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
 | |
|   if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
 | |
|     SV = Builder.CreateBitCast(SV,
 | |
|                             IntegerType::get(SV->getContext(),SrcWidth), "tmp");
 | |
|   else if (isa<PointerType>(SV->getType()))
 | |
|     SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
 | |
| 
 | |
|   // Zero extend or truncate the value if needed.
 | |
|   if (SV->getType() != AllocaType) {
 | |
|     if (SV->getType()->getPrimitiveSizeInBits() <
 | |
|              AllocaType->getPrimitiveSizeInBits())
 | |
|       SV = Builder.CreateZExt(SV, AllocaType, "tmp");
 | |
|     else {
 | |
|       // Truncation may be needed if storing more than the alloca can hold
 | |
|       // (undefined behavior).
 | |
|       SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
 | |
|       SrcWidth = DestWidth;
 | |
|       SrcStoreWidth = DestStoreWidth;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a big-endian system and the store is narrower than the
 | |
|   // full alloca type, we need to do a shift to get the right bits.
 | |
|   int ShAmt = 0;
 | |
|   if (TD->isBigEndian()) {
 | |
|     // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|     // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|     // integers with a bitwidth that is not a multiple of 8.
 | |
|     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
 | |
|   } else {
 | |
|     ShAmt = Offset;
 | |
|   }
 | |
| 
 | |
|   // Note: we support negative bitwidths (with shr) which are not defined.
 | |
|   // We do this to support (f.e.) stores off the end of a structure where
 | |
|   // only some bits in the structure are set.
 | |
|   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
 | |
|   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
 | |
|     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
 | |
|                            ShAmt), "tmp");
 | |
|     Mask <<= ShAmt;
 | |
|   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
 | |
|     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
 | |
|                             -ShAmt), "tmp");
 | |
|     Mask = Mask.lshr(-ShAmt);
 | |
|   }
 | |
| 
 | |
|   // Mask out the bits we are about to insert from the old value, and or
 | |
|   // in the new bits.
 | |
|   if (SrcWidth != DestWidth) {
 | |
|     assert(DestWidth > SrcWidth);
 | |
|     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
 | |
|     SV = Builder.CreateOr(Old, SV, "ins");
 | |
|   }
 | |
|   return SV;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | |
| /// some part of a constant global variable.  This intentionally only accepts
 | |
| /// constant expressions because we don't can't rewrite arbitrary instructions.
 | |
| static bool PointsToConstantGlobal(Value *V) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return GV->isConstant();
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::BitCast || 
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return PointsToConstantGlobal(CE->getOperand(0));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | |
| /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | |
| /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | |
| /// track of whether it moves the pointer (with isOffset) but otherwise traverse
 | |
| /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | |
| /// the alloca, and if the source pointer is a pointer to a constant  global, we
 | |
| /// can optimize this.
 | |
| static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
 | |
|                                            bool isOffset) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
 | |
|       // Ignore non-volatile loads, they are always ok.
 | |
|       if (!LI->isVolatile())
 | |
|         continue;
 | |
|     
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
 | |
|       // If uses of the bitcast are ok, we are ok.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | |
|       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
 | |
|       // doesn't, it does.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
 | |
|                                          isOffset || !GEP->hasAllZeroIndices()))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this is isn't our memcpy/memmove, reject it as something we can't
 | |
|     // handle.
 | |
|     if (!isa<MemTransferInst>(*UI))
 | |
|       return false;
 | |
| 
 | |
|     // If we already have seen a copy, reject the second one.
 | |
|     if (TheCopy) return false;
 | |
|     
 | |
|     // If the pointer has been offset from the start of the alloca, we can't
 | |
|     // safely handle this.
 | |
|     if (isOffset) return false;
 | |
| 
 | |
|     // If the memintrinsic isn't using the alloca as the dest, reject it.
 | |
|     if (UI.getOperandNo() != 1) return false;
 | |
|     
 | |
|     MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
 | |
|     
 | |
|     // If the source of the memcpy/move is not a constant global, reject it.
 | |
|     if (!PointsToConstantGlobal(MI->getOperand(2)))
 | |
|       return false;
 | |
|     
 | |
|     // Otherwise, the transform is safe.  Remember the copy instruction.
 | |
|     TheCopy = MI;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | |
| /// modified by a copy from a constant global.  If we can prove this, we can
 | |
| /// replace any uses of the alloca with uses of the global directly.
 | |
| Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
 | |
|   Instruction *TheCopy = 0;
 | |
|   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
 | |
|     return TheCopy;
 | |
|   return 0;
 | |
| }
 |