mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Change `Instruction::getMetadata()` to return `Value` as part of PR21433. Update most callers to use `Instruction::getMDNode()`, which wraps the result in a `cast_or_null<MDNode>`. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3783 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3783 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | 
						|
// stores that can be put together into vector-stores. Next, it attempts to
 | 
						|
// construct vectorizable tree using the use-def chains. If a profitable tree
 | 
						|
// was found, the SLP vectorizer performs vectorization on the tree.
 | 
						|
//
 | 
						|
// The pass is inspired by the work described in the paper:
 | 
						|
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "llvm/Transforms/Vectorize.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionTracker.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/NoFolder.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/VectorUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define SV_NAME "slp-vectorizer"
 | 
						|
#define DEBUG_TYPE "SLP"
 | 
						|
 | 
						|
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | 
						|
                     cl::desc("Only vectorize if you gain more than this "
 | 
						|
                              "number "));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
 | 
						|
                   cl::desc("Attempt to vectorize horizontal reductions"));
 | 
						|
 | 
						|
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
 | 
						|
    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc(
 | 
						|
        "Attempt to vectorize horizontal reductions feeding into a store"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static const unsigned MinVecRegSize = 128;
 | 
						|
 | 
						|
static const unsigned RecursionMaxDepth = 12;
 | 
						|
 | 
						|
/// \returns the parent basic block if all of the instructions in \p VL
 | 
						|
/// are in the same block or null otherwise.
 | 
						|
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return nullptr;
 | 
						|
  BasicBlock *BB = I0->getParent();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (BB != I->getParent())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if all of the values in \p VL are constants.
 | 
						|
static bool allConstant(ArrayRef<Value *> VL) {
 | 
						|
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | 
						|
    if (!isa<Constant>(VL[i]))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if all of the values in \p VL are identical.
 | 
						|
static bool isSplat(ArrayRef<Value *> VL) {
 | 
						|
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | 
						|
    if (VL[i] != VL[0])
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
///\returns Opcode that can be clubbed with \p Op to create an alternate
 | 
						|
/// sequence which can later be merged as a ShuffleVector instruction.
 | 
						|
static unsigned getAltOpcode(unsigned Op) {
 | 
						|
  switch (Op) {
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return Instruction::FSub;
 | 
						|
  case Instruction::FSub:
 | 
						|
    return Instruction::FAdd;
 | 
						|
  case Instruction::Add:
 | 
						|
    return Instruction::Sub;
 | 
						|
  case Instruction::Sub:
 | 
						|
    return Instruction::Add;
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
///\returns bool representing if Opcode \p Op can be part
 | 
						|
/// of an alternate sequence which can later be merged as
 | 
						|
/// a ShuffleVector instruction.
 | 
						|
static bool canCombineAsAltInst(unsigned Op) {
 | 
						|
  if (Op == Instruction::FAdd || Op == Instruction::FSub ||
 | 
						|
      Op == Instruction::Sub || Op == Instruction::Add)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns ShuffleVector instruction if intructions in \p VL have
 | 
						|
///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
 | 
						|
/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
 | 
						|
static unsigned isAltInst(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  unsigned Opcode = I0->getOpcode();
 | 
						|
  unsigned AltOpcode = getAltOpcode(Opcode);
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  return Instruction::ShuffleVector;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns The opcode if all of the Instructions in \p VL have the same
 | 
						|
/// opcode, or zero.
 | 
						|
static unsigned getSameOpcode(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return 0;
 | 
						|
  unsigned Opcode = I0->getOpcode();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I || Opcode != I->getOpcode()) {
 | 
						|
      if (canCombineAsAltInst(Opcode) && i == 1)
 | 
						|
        return isAltInst(VL);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Opcode;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the intersection (logical and) of all of the potential IR flags
 | 
						|
/// of each scalar operation (VL) that will be converted into a vector (I).
 | 
						|
/// Flag set: NSW, NUW, exact, and all of fast-math.
 | 
						|
static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
 | 
						|
  if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
 | 
						|
      // Intersection is initialized to the 0th scalar,
 | 
						|
      // so start counting from index '1'.
 | 
						|
      for (int i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
        if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
 | 
						|
          Intersection->andIRFlags(Scalar);
 | 
						|
      }
 | 
						|
      VecOp->copyIRFlags(Intersection);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
  
 | 
						|
/// \returns \p I after propagating metadata from \p VL.
 | 
						|
static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = cast<Instruction>(VL[0]);
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | 
						|
  I0->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
 | 
						|
  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
 | 
						|
    unsigned Kind = Metadata[i].first;
 | 
						|
    MDNode *MD = Metadata[i].second;
 | 
						|
 | 
						|
    for (int i = 1, e = VL.size(); MD && i != e; i++) {
 | 
						|
      Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
      MDNode *IMD = I->getMDNode(Kind);
 | 
						|
 | 
						|
      switch (Kind) {
 | 
						|
      default:
 | 
						|
        MD = nullptr; // Remove unknown metadata
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        MD = MDNode::getMostGenericTBAA(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_alias_scope:
 | 
						|
      case LLVMContext::MD_noalias:
 | 
						|
        MD = MDNode::intersect(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        MD = MDNode::getMostGenericFPMath(MD, IMD);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    I->setMetadata(Kind, MD);
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns The type that all of the values in \p VL have or null if there
 | 
						|
/// are different types.
 | 
						|
static Type* getSameType(ArrayRef<Value *> VL) {
 | 
						|
  Type *Ty = VL[0]->getType();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++)
 | 
						|
    if (VL[i]->getType() != Ty)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if the ExtractElement instructions in VL can be vectorized
 | 
						|
/// to use the original vector.
 | 
						|
static bool CanReuseExtract(ArrayRef<Value *> VL) {
 | 
						|
  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
 | 
						|
  // Check if all of the extracts come from the same vector and from the
 | 
						|
  // correct offset.
 | 
						|
  Value *VL0 = VL[0];
 | 
						|
  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
 | 
						|
  Value *Vec = E0->getOperand(0);
 | 
						|
 | 
						|
  // We have to extract from the same vector type.
 | 
						|
  unsigned NElts = Vec->getType()->getVectorNumElements();
 | 
						|
 | 
						|
  if (NElts != VL.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that all of the indices extract from the correct offset.
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
 | 
						|
  if (!CI || CI->getZExtValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | 
						|
 | 
						|
    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | 
						|
                                           SmallVectorImpl<Value *> &Left,
 | 
						|
                                           SmallVectorImpl<Value *> &Right) {
 | 
						|
 | 
						|
  SmallVector<Value *, 16> OrigLeft, OrigRight;
 | 
						|
 | 
						|
  bool AllSameOpcodeLeft = true;
 | 
						|
  bool AllSameOpcodeRight = true;
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
    Value *V0 = I->getOperand(0);
 | 
						|
    Value *V1 = I->getOperand(1);
 | 
						|
 | 
						|
    OrigLeft.push_back(V0);
 | 
						|
    OrigRight.push_back(V1);
 | 
						|
 | 
						|
    Instruction *I0 = dyn_cast<Instruction>(V0);
 | 
						|
    Instruction *I1 = dyn_cast<Instruction>(V1);
 | 
						|
 | 
						|
    // Check whether all operands on one side have the same opcode. In this case
 | 
						|
    // we want to preserve the original order and not make things worse by
 | 
						|
    // reordering.
 | 
						|
    AllSameOpcodeLeft = I0;
 | 
						|
    AllSameOpcodeRight = I1;
 | 
						|
 | 
						|
    if (i && AllSameOpcodeLeft) {
 | 
						|
      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
 | 
						|
        if(P0->getOpcode() != I0->getOpcode())
 | 
						|
          AllSameOpcodeLeft = false;
 | 
						|
      } else
 | 
						|
        AllSameOpcodeLeft = false;
 | 
						|
    }
 | 
						|
    if (i && AllSameOpcodeRight) {
 | 
						|
      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
 | 
						|
        if(P1->getOpcode() != I1->getOpcode())
 | 
						|
          AllSameOpcodeRight = false;
 | 
						|
      } else
 | 
						|
        AllSameOpcodeRight = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort two opcodes. In the code below we try to preserve the ability to use
 | 
						|
    // broadcast of values instead of individual inserts.
 | 
						|
    // vl1 = load
 | 
						|
    // vl2 = phi
 | 
						|
    // vr1 = load
 | 
						|
    // vr2 = vr2
 | 
						|
    //    = vl1 x vr1
 | 
						|
    //    = vl2 x vr2
 | 
						|
    // If we just sorted according to opcode we would leave the first line in
 | 
						|
    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
 | 
						|
    //    = vl1 x vr1
 | 
						|
    //    = vr2 x vl2
 | 
						|
    // Because vr2 and vr1 are from the same load we loose the opportunity of a
 | 
						|
    // broadcast for the packed right side in the backend: we have [vr1, vl2]
 | 
						|
    // instead of [vr1, vr2=vr1].
 | 
						|
    if (I0 && I1) {
 | 
						|
       if(!i && I0->getOpcode() > I1->getOpcode()) {
 | 
						|
         Left.push_back(I1);
 | 
						|
         Right.push_back(I0);
 | 
						|
       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
 | 
						|
         // Try not to destroy a broad cast for no apparent benefit.
 | 
						|
         Left.push_back(I1);
 | 
						|
         Right.push_back(I0);
 | 
						|
       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
 | 
						|
         // Try preserve broadcasts.
 | 
						|
         Left.push_back(I1);
 | 
						|
         Right.push_back(I0);
 | 
						|
       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
 | 
						|
         // Try preserve broadcasts.
 | 
						|
         Left.push_back(I1);
 | 
						|
         Right.push_back(I0);
 | 
						|
       } else {
 | 
						|
         Left.push_back(I0);
 | 
						|
         Right.push_back(I1);
 | 
						|
       }
 | 
						|
       continue;
 | 
						|
    }
 | 
						|
    // One opcode, put the instruction on the right.
 | 
						|
    if (I0) {
 | 
						|
      Left.push_back(V1);
 | 
						|
      Right.push_back(I0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Left.push_back(V0);
 | 
						|
    Right.push_back(V1);
 | 
						|
  }
 | 
						|
 | 
						|
  bool LeftBroadcast = isSplat(Left);
 | 
						|
  bool RightBroadcast = isSplat(Right);
 | 
						|
 | 
						|
  // Don't reorder if the operands where good to begin with.
 | 
						|
  if (!(LeftBroadcast || RightBroadcast) &&
 | 
						|
      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
 | 
						|
    Left = OrigLeft;
 | 
						|
    Right = OrigRight;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if in-tree use also needs extract. This refers to
 | 
						|
/// possible scalar operand in vectorized instruction.
 | 
						|
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
 | 
						|
                                    TargetLibraryInfo *TLI) {
 | 
						|
 | 
						|
  unsigned Opcode = UserInst->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Load: {
 | 
						|
    LoadInst *LI = cast<LoadInst>(UserInst);
 | 
						|
    return (LI->getPointerOperand() == Scalar);
 | 
						|
  }
 | 
						|
  case Instruction::Store: {
 | 
						|
    StoreInst *SI = cast<StoreInst>(UserInst);
 | 
						|
    return (SI->getPointerOperand() == Scalar);
 | 
						|
  }
 | 
						|
  case Instruction::Call: {
 | 
						|
    CallInst *CI = cast<CallInst>(UserInst);
 | 
						|
    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | 
						|
    if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | 
						|
      return (CI->getArgOperand(1) == Scalar);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Bottom Up SLP Vectorizer.
 | 
						|
class BoUpSLP {
 | 
						|
public:
 | 
						|
  typedef SmallVector<Value *, 8> ValueList;
 | 
						|
  typedef SmallVector<Instruction *, 16> InstrList;
 | 
						|
  typedef SmallPtrSet<Value *, 16> ValueSet;
 | 
						|
  typedef SmallVector<StoreInst *, 8> StoreList;
 | 
						|
 | 
						|
  BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
 | 
						|
          TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
 | 
						|
          LoopInfo *Li, DominatorTree *Dt, AssumptionTracker *AT)
 | 
						|
      : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0),
 | 
						|
        F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
 | 
						|
        Builder(Se->getContext()) {
 | 
						|
    CodeMetrics::collectEphemeralValues(F, AT, EphValues);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Vectorize the tree that starts with the elements in \p VL.
 | 
						|
  /// Returns the vectorized root.
 | 
						|
  Value *vectorizeTree();
 | 
						|
 | 
						|
  /// \returns the cost incurred by unwanted spills and fills, caused by
 | 
						|
  /// holding live values over call sites.
 | 
						|
  int getSpillCost();
 | 
						|
 | 
						|
  /// \returns the vectorization cost of the subtree that starts at \p VL.
 | 
						|
  /// A negative number means that this is profitable.
 | 
						|
  int getTreeCost();
 | 
						|
 | 
						|
  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | 
						|
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
 | 
						|
  void buildTree(ArrayRef<Value *> Roots,
 | 
						|
                 ArrayRef<Value *> UserIgnoreLst = None);
 | 
						|
 | 
						|
  /// Clear the internal data structures that are created by 'buildTree'.
 | 
						|
  void deleteTree() {
 | 
						|
    VectorizableTree.clear();
 | 
						|
    ScalarToTreeEntry.clear();
 | 
						|
    MustGather.clear();
 | 
						|
    ExternalUses.clear();
 | 
						|
    NumLoadsWantToKeepOrder = 0;
 | 
						|
    NumLoadsWantToChangeOrder = 0;
 | 
						|
    for (auto &Iter : BlocksSchedules) {
 | 
						|
      BlockScheduling *BS = Iter.second.get();
 | 
						|
      BS->clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \returns true if the memory operations A and B are consecutive.
 | 
						|
  bool isConsecutiveAccess(Value *A, Value *B);
 | 
						|
 | 
						|
  /// \brief Perform LICM and CSE on the newly generated gather sequences.
 | 
						|
  void optimizeGatherSequence();
 | 
						|
 | 
						|
  /// \returns true if it is benefitial to reverse the vector order.
 | 
						|
  bool shouldReorder() const {
 | 
						|
    return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  struct TreeEntry;
 | 
						|
 | 
						|
  /// \returns the cost of the vectorizable entry.
 | 
						|
  int getEntryCost(TreeEntry *E);
 | 
						|
 | 
						|
  /// This is the recursive part of buildTree.
 | 
						|
  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
 | 
						|
 | 
						|
  /// Vectorize a single entry in the tree.
 | 
						|
  Value *vectorizeTree(TreeEntry *E);
 | 
						|
 | 
						|
  /// Vectorize a single entry in the tree, starting in \p VL.
 | 
						|
  Value *vectorizeTree(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \returns the pointer to the vectorized value if \p VL is already
 | 
						|
  /// vectorized, or NULL. They may happen in cycles.
 | 
						|
  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
 | 
						|
 | 
						|
  /// \brief Take the pointer operand from the Load/Store instruction.
 | 
						|
  /// \returns NULL if this is not a valid Load/Store instruction.
 | 
						|
  static Value *getPointerOperand(Value *I);
 | 
						|
 | 
						|
  /// \brief Take the address space operand from the Load/Store instruction.
 | 
						|
  /// \returns -1 if this is not a valid Load/Store instruction.
 | 
						|
  static unsigned getAddressSpaceOperand(Value *I);
 | 
						|
 | 
						|
  /// \returns the scalarization cost for this type. Scalarization in this
 | 
						|
  /// context means the creation of vectors from a group of scalars.
 | 
						|
  int getGatherCost(Type *Ty);
 | 
						|
 | 
						|
  /// \returns the scalarization cost for this list of values. Assuming that
 | 
						|
  /// this subtree gets vectorized, we may need to extract the values from the
 | 
						|
  /// roots. This method calculates the cost of extracting the values.
 | 
						|
  int getGatherCost(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \brief Set the Builder insert point to one after the last instruction in
 | 
						|
  /// the bundle
 | 
						|
  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \returns a vector from a collection of scalars in \p VL.
 | 
						|
  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | 
						|
 | 
						|
  /// \returns whether the VectorizableTree is fully vectoriable and will
 | 
						|
  /// be beneficial even the tree height is tiny.
 | 
						|
  bool isFullyVectorizableTinyTree();
 | 
						|
 | 
						|
  struct TreeEntry {
 | 
						|
    TreeEntry() : Scalars(), VectorizedValue(nullptr),
 | 
						|
    NeedToGather(0) {}
 | 
						|
 | 
						|
    /// \returns true if the scalars in VL are equal to this entry.
 | 
						|
    bool isSame(ArrayRef<Value *> VL) const {
 | 
						|
      assert(VL.size() == Scalars.size() && "Invalid size");
 | 
						|
      return std::equal(VL.begin(), VL.end(), Scalars.begin());
 | 
						|
    }
 | 
						|
 | 
						|
    /// A vector of scalars.
 | 
						|
    ValueList Scalars;
 | 
						|
 | 
						|
    /// The Scalars are vectorized into this value. It is initialized to Null.
 | 
						|
    Value *VectorizedValue;
 | 
						|
 | 
						|
    /// Do we need to gather this sequence ?
 | 
						|
    bool NeedToGather;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Create a new VectorizableTree entry.
 | 
						|
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
 | 
						|
    VectorizableTree.push_back(TreeEntry());
 | 
						|
    int idx = VectorizableTree.size() - 1;
 | 
						|
    TreeEntry *Last = &VectorizableTree[idx];
 | 
						|
    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | 
						|
    Last->NeedToGather = !Vectorized;
 | 
						|
    if (Vectorized) {
 | 
						|
      for (int i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
 | 
						|
        ScalarToTreeEntry[VL[i]] = idx;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      MustGather.insert(VL.begin(), VL.end());
 | 
						|
    }
 | 
						|
    return Last;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// -- Vectorization State --
 | 
						|
  /// Holds all of the tree entries.
 | 
						|
  std::vector<TreeEntry> VectorizableTree;
 | 
						|
 | 
						|
  /// Maps a specific scalar to its tree entry.
 | 
						|
  SmallDenseMap<Value*, int> ScalarToTreeEntry;
 | 
						|
 | 
						|
  /// A list of scalars that we found that we need to keep as scalars.
 | 
						|
  ValueSet MustGather;
 | 
						|
 | 
						|
  /// This POD struct describes one external user in the vectorized tree.
 | 
						|
  struct ExternalUser {
 | 
						|
    ExternalUser (Value *S, llvm::User *U, int L) :
 | 
						|
      Scalar(S), User(U), Lane(L){};
 | 
						|
    // Which scalar in our function.
 | 
						|
    Value *Scalar;
 | 
						|
    // Which user that uses the scalar.
 | 
						|
    llvm::User *User;
 | 
						|
    // Which lane does the scalar belong to.
 | 
						|
    int Lane;
 | 
						|
  };
 | 
						|
  typedef SmallVector<ExternalUser, 16> UserList;
 | 
						|
 | 
						|
  /// A list of values that need to extracted out of the tree.
 | 
						|
  /// This list holds pairs of (Internal Scalar : External User).
 | 
						|
  UserList ExternalUses;
 | 
						|
 | 
						|
  /// Values used only by @llvm.assume calls.
 | 
						|
  SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
 | 
						|
  /// Holds all of the instructions that we gathered.
 | 
						|
  SetVector<Instruction *> GatherSeq;
 | 
						|
  /// A list of blocks that we are going to CSE.
 | 
						|
  SetVector<BasicBlock *> CSEBlocks;
 | 
						|
 | 
						|
  /// Contains all scheduling relevant data for an instruction.
 | 
						|
  /// A ScheduleData either represents a single instruction or a member of an
 | 
						|
  /// instruction bundle (= a group of instructions which is combined into a
 | 
						|
  /// vector instruction).
 | 
						|
  struct ScheduleData {
 | 
						|
 | 
						|
    // The initial value for the dependency counters. It means that the
 | 
						|
    // dependencies are not calculated yet.
 | 
						|
    enum { InvalidDeps = -1 };
 | 
						|
 | 
						|
    ScheduleData()
 | 
						|
        : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
 | 
						|
          NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
 | 
						|
          Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
 | 
						|
          UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
 | 
						|
 | 
						|
    void init(int BlockSchedulingRegionID) {
 | 
						|
      FirstInBundle = this;
 | 
						|
      NextInBundle = nullptr;
 | 
						|
      NextLoadStore = nullptr;
 | 
						|
      IsScheduled = false;
 | 
						|
      SchedulingRegionID = BlockSchedulingRegionID;
 | 
						|
      UnscheduledDepsInBundle = UnscheduledDeps;
 | 
						|
      clearDependencies();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if the dependency information has been calculated.
 | 
						|
    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
 | 
						|
 | 
						|
    /// Returns true for single instructions and for bundle representatives
 | 
						|
    /// (= the head of a bundle).
 | 
						|
    bool isSchedulingEntity() const { return FirstInBundle == this; }
 | 
						|
 | 
						|
    /// Returns true if it represents an instruction bundle and not only a
 | 
						|
    /// single instruction.
 | 
						|
    bool isPartOfBundle() const {
 | 
						|
      return NextInBundle != nullptr || FirstInBundle != this;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if it is ready for scheduling, i.e. it has no more
 | 
						|
    /// unscheduled depending instructions/bundles.
 | 
						|
    bool isReady() const {
 | 
						|
      assert(isSchedulingEntity() &&
 | 
						|
             "can't consider non-scheduling entity for ready list");
 | 
						|
      return UnscheduledDepsInBundle == 0 && !IsScheduled;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Modifies the number of unscheduled dependencies, also updating it for
 | 
						|
    /// the whole bundle.
 | 
						|
    int incrementUnscheduledDeps(int Incr) {
 | 
						|
      UnscheduledDeps += Incr;
 | 
						|
      return FirstInBundle->UnscheduledDepsInBundle += Incr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Sets the number of unscheduled dependencies to the number of
 | 
						|
    /// dependencies.
 | 
						|
    void resetUnscheduledDeps() {
 | 
						|
      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Clears all dependency information.
 | 
						|
    void clearDependencies() {
 | 
						|
      Dependencies = InvalidDeps;
 | 
						|
      resetUnscheduledDeps();
 | 
						|
      MemoryDependencies.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void dump(raw_ostream &os) const {
 | 
						|
      if (!isSchedulingEntity()) {
 | 
						|
        os << "/ " << *Inst;
 | 
						|
      } else if (NextInBundle) {
 | 
						|
        os << '[' << *Inst;
 | 
						|
        ScheduleData *SD = NextInBundle;
 | 
						|
        while (SD) {
 | 
						|
          os << ';' << *SD->Inst;
 | 
						|
          SD = SD->NextInBundle;
 | 
						|
        }
 | 
						|
        os << ']';
 | 
						|
      } else {
 | 
						|
        os << *Inst;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
    /// Points to the head in an instruction bundle (and always to this for
 | 
						|
    /// single instructions).
 | 
						|
    ScheduleData *FirstInBundle;
 | 
						|
 | 
						|
    /// Single linked list of all instructions in a bundle. Null if it is a
 | 
						|
    /// single instruction.
 | 
						|
    ScheduleData *NextInBundle;
 | 
						|
 | 
						|
    /// Single linked list of all memory instructions (e.g. load, store, call)
 | 
						|
    /// in the block - until the end of the scheduling region.
 | 
						|
    ScheduleData *NextLoadStore;
 | 
						|
 | 
						|
    /// The dependent memory instructions.
 | 
						|
    /// This list is derived on demand in calculateDependencies().
 | 
						|
    SmallVector<ScheduleData *, 4> MemoryDependencies;
 | 
						|
 | 
						|
    /// This ScheduleData is in the current scheduling region if this matches
 | 
						|
    /// the current SchedulingRegionID of BlockScheduling.
 | 
						|
    int SchedulingRegionID;
 | 
						|
 | 
						|
    /// Used for getting a "good" final ordering of instructions.
 | 
						|
    int SchedulingPriority;
 | 
						|
 | 
						|
    /// The number of dependencies. Constitutes of the number of users of the
 | 
						|
    /// instruction plus the number of dependent memory instructions (if any).
 | 
						|
    /// This value is calculated on demand.
 | 
						|
    /// If InvalidDeps, the number of dependencies is not calculated yet.
 | 
						|
    ///
 | 
						|
    int Dependencies;
 | 
						|
 | 
						|
    /// The number of dependencies minus the number of dependencies of scheduled
 | 
						|
    /// instructions. As soon as this is zero, the instruction/bundle gets ready
 | 
						|
    /// for scheduling.
 | 
						|
    /// Note that this is negative as long as Dependencies is not calculated.
 | 
						|
    int UnscheduledDeps;
 | 
						|
 | 
						|
    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
 | 
						|
    /// single instructions.
 | 
						|
    int UnscheduledDepsInBundle;
 | 
						|
 | 
						|
    /// True if this instruction is scheduled (or considered as scheduled in the
 | 
						|
    /// dry-run).
 | 
						|
    bool IsScheduled;
 | 
						|
  };
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  friend raw_ostream &operator<<(raw_ostream &os,
 | 
						|
                                 const BoUpSLP::ScheduleData &SD);
 | 
						|
#endif
 | 
						|
 | 
						|
  /// Contains all scheduling data for a basic block.
 | 
						|
  ///
 | 
						|
  struct BlockScheduling {
 | 
						|
 | 
						|
    BlockScheduling(BasicBlock *BB)
 | 
						|
        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
 | 
						|
          ScheduleStart(nullptr), ScheduleEnd(nullptr),
 | 
						|
          FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
 | 
						|
          // Make sure that the initial SchedulingRegionID is greater than the
 | 
						|
          // initial SchedulingRegionID in ScheduleData (which is 0).
 | 
						|
          SchedulingRegionID(1) {}
 | 
						|
 | 
						|
    void clear() {
 | 
						|
      ReadyInsts.clear();
 | 
						|
      ScheduleStart = nullptr;
 | 
						|
      ScheduleEnd = nullptr;
 | 
						|
      FirstLoadStoreInRegion = nullptr;
 | 
						|
      LastLoadStoreInRegion = nullptr;
 | 
						|
 | 
						|
      // Make a new scheduling region, i.e. all existing ScheduleData is not
 | 
						|
      // in the new region yet.
 | 
						|
      ++SchedulingRegionID;
 | 
						|
    }
 | 
						|
 | 
						|
    ScheduleData *getScheduleData(Value *V) {
 | 
						|
      ScheduleData *SD = ScheduleDataMap[V];
 | 
						|
      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | 
						|
        return SD;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isInSchedulingRegion(ScheduleData *SD) {
 | 
						|
      return SD->SchedulingRegionID == SchedulingRegionID;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Marks an instruction as scheduled and puts all dependent ready
 | 
						|
    /// instructions into the ready-list.
 | 
						|
    template <typename ReadyListType>
 | 
						|
    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
 | 
						|
      SD->IsScheduled = true;
 | 
						|
      DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
 | 
						|
 | 
						|
      ScheduleData *BundleMember = SD;
 | 
						|
      while (BundleMember) {
 | 
						|
        // Handle the def-use chain dependencies.
 | 
						|
        for (Use &U : BundleMember->Inst->operands()) {
 | 
						|
          ScheduleData *OpDef = getScheduleData(U.get());
 | 
						|
          if (OpDef && OpDef->hasValidDependencies() &&
 | 
						|
              OpDef->incrementUnscheduledDeps(-1) == 0) {
 | 
						|
            // There are no more unscheduled dependencies after decrementing,
 | 
						|
            // so we can put the dependent instruction into the ready list.
 | 
						|
            ScheduleData *DepBundle = OpDef->FirstInBundle;
 | 
						|
            assert(!DepBundle->IsScheduled &&
 | 
						|
                   "already scheduled bundle gets ready");
 | 
						|
            ReadyList.insert(DepBundle);
 | 
						|
            DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Handle the memory dependencies.
 | 
						|
        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
 | 
						|
          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
 | 
						|
            // There are no more unscheduled dependencies after decrementing,
 | 
						|
            // so we can put the dependent instruction into the ready list.
 | 
						|
            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
 | 
						|
            assert(!DepBundle->IsScheduled &&
 | 
						|
                   "already scheduled bundle gets ready");
 | 
						|
            ReadyList.insert(DepBundle);
 | 
						|
            DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        BundleMember = BundleMember->NextInBundle;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Put all instructions into the ReadyList which are ready for scheduling.
 | 
						|
    template <typename ReadyListType>
 | 
						|
    void initialFillReadyList(ReadyListType &ReadyList) {
 | 
						|
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
        ScheduleData *SD = getScheduleData(I);
 | 
						|
        if (SD->isSchedulingEntity() && SD->isReady()) {
 | 
						|
          ReadyList.insert(SD);
 | 
						|
          DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Checks if a bundle of instructions can be scheduled, i.e. has no
 | 
						|
    /// cyclic dependencies. This is only a dry-run, no instructions are
 | 
						|
    /// actually moved at this stage.
 | 
						|
    bool tryScheduleBundle(ArrayRef<Value *> VL, AliasAnalysis *AA);
 | 
						|
 | 
						|
    /// Un-bundles a group of instructions.
 | 
						|
    void cancelScheduling(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
    /// Extends the scheduling region so that V is inside the region.
 | 
						|
    void extendSchedulingRegion(Value *V);
 | 
						|
 | 
						|
    /// Initialize the ScheduleData structures for new instructions in the
 | 
						|
    /// scheduling region.
 | 
						|
    void initScheduleData(Instruction *FromI, Instruction *ToI,
 | 
						|
                          ScheduleData *PrevLoadStore,
 | 
						|
                          ScheduleData *NextLoadStore);
 | 
						|
 | 
						|
    /// Updates the dependency information of a bundle and of all instructions/
 | 
						|
    /// bundles which depend on the original bundle.
 | 
						|
    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
 | 
						|
                               AliasAnalysis *AA);
 | 
						|
 | 
						|
    /// Sets all instruction in the scheduling region to un-scheduled.
 | 
						|
    void resetSchedule();
 | 
						|
 | 
						|
    BasicBlock *BB;
 | 
						|
 | 
						|
    /// Simple memory allocation for ScheduleData.
 | 
						|
    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
 | 
						|
 | 
						|
    /// The size of a ScheduleData array in ScheduleDataChunks.
 | 
						|
    int ChunkSize;
 | 
						|
 | 
						|
    /// The allocator position in the current chunk, which is the last entry
 | 
						|
    /// of ScheduleDataChunks.
 | 
						|
    int ChunkPos;
 | 
						|
 | 
						|
    /// Attaches ScheduleData to Instruction.
 | 
						|
    /// Note that the mapping survives during all vectorization iterations, i.e.
 | 
						|
    /// ScheduleData structures are recycled.
 | 
						|
    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
 | 
						|
 | 
						|
    struct ReadyList : SmallVector<ScheduleData *, 8> {
 | 
						|
      void insert(ScheduleData *SD) { push_back(SD); }
 | 
						|
    };
 | 
						|
 | 
						|
    /// The ready-list for scheduling (only used for the dry-run).
 | 
						|
    ReadyList ReadyInsts;
 | 
						|
 | 
						|
    /// The first instruction of the scheduling region.
 | 
						|
    Instruction *ScheduleStart;
 | 
						|
 | 
						|
    /// The first instruction _after_ the scheduling region.
 | 
						|
    Instruction *ScheduleEnd;
 | 
						|
 | 
						|
    /// The first memory accessing instruction in the scheduling region
 | 
						|
    /// (can be null).
 | 
						|
    ScheduleData *FirstLoadStoreInRegion;
 | 
						|
 | 
						|
    /// The last memory accessing instruction in the scheduling region
 | 
						|
    /// (can be null).
 | 
						|
    ScheduleData *LastLoadStoreInRegion;
 | 
						|
 | 
						|
    /// The ID of the scheduling region. For a new vectorization iteration this
 | 
						|
    /// is incremented which "removes" all ScheduleData from the region.
 | 
						|
    int SchedulingRegionID;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Attaches the BlockScheduling structures to basic blocks.
 | 
						|
  DenseMap<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
 | 
						|
 | 
						|
  /// Performs the "real" scheduling. Done before vectorization is actually
 | 
						|
  /// performed in a basic block.
 | 
						|
  void scheduleBlock(BlockScheduling *BS);
 | 
						|
 | 
						|
  /// List of users to ignore during scheduling and that don't need extracting.
 | 
						|
  ArrayRef<Value *> UserIgnoreList;
 | 
						|
 | 
						|
  // Number of load-bundles, which contain consecutive loads.
 | 
						|
  int NumLoadsWantToKeepOrder;
 | 
						|
 | 
						|
  // Number of load-bundles of size 2, which are consecutive loads if reversed.
 | 
						|
  int NumLoadsWantToChangeOrder;
 | 
						|
 | 
						|
  // Analysis and block reference.
 | 
						|
  Function *F;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  const DataLayout *DL;
 | 
						|
  TargetTransformInfo *TTI;
 | 
						|
  TargetLibraryInfo *TLI;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  /// Instruction builder to construct the vectorized tree.
 | 
						|
  IRBuilder<> Builder;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
 | 
						|
  SD.dump(os);
 | 
						|
  return os;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | 
						|
                        ArrayRef<Value *> UserIgnoreLst) {
 | 
						|
  deleteTree();
 | 
						|
  UserIgnoreList = UserIgnoreLst;
 | 
						|
  if (!getSameType(Roots))
 | 
						|
    return;
 | 
						|
  buildTree_rec(Roots, 0);
 | 
						|
 | 
						|
  // Collect the values that we need to extract from the tree.
 | 
						|
  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | 
						|
    TreeEntry *Entry = &VectorizableTree[EIdx];
 | 
						|
 | 
						|
    // For each lane:
 | 
						|
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						|
      Value *Scalar = Entry->Scalars[Lane];
 | 
						|
 | 
						|
      // No need to handle users of gathered values.
 | 
						|
      if (Entry->NeedToGather)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (User *U : Scalar->users()) {
 | 
						|
        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
 | 
						|
 | 
						|
        Instruction *UserInst = dyn_cast<Instruction>(U);
 | 
						|
        if (!UserInst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Skip in-tree scalars that become vectors
 | 
						|
        if (ScalarToTreeEntry.count(U)) {
 | 
						|
          int Idx = ScalarToTreeEntry[U];
 | 
						|
          TreeEntry *UseEntry = &VectorizableTree[Idx];
 | 
						|
          Value *UseScalar = UseEntry->Scalars[0];
 | 
						|
          // Some in-tree scalars will remain as scalar in vectorized
 | 
						|
          // instructions. If that is the case, the one in Lane 0 will
 | 
						|
          // be used.
 | 
						|
          if (UseScalar != U ||
 | 
						|
              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
 | 
						|
            DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
 | 
						|
                         << ".\n");
 | 
						|
            assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Ignore users in the user ignore list.
 | 
						|
        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
 | 
						|
            UserIgnoreList.end())
 | 
						|
          continue;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
 | 
						|
              Lane << " from " << *Scalar << ".\n");
 | 
						|
        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | 
						|
  bool SameTy = getSameType(VL); (void)SameTy;
 | 
						|
  bool isAltShuffle = false;
 | 
						|
  assert(SameTy && "Invalid types!");
 | 
						|
 | 
						|
  if (Depth == RecursionMaxDepth) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't handle vectors.
 | 
						|
  if (VL[0]->getType()->isVectorTy()) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    if (SI->getValueOperand()->getType()->isVectorTy()) {
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  unsigned Opcode = getSameOpcode(VL);
 | 
						|
 | 
						|
  // Check that this shuffle vector refers to the alternate
 | 
						|
  // sequence of opcodes.
 | 
						|
  if (Opcode == Instruction::ShuffleVector) {
 | 
						|
    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
    unsigned Op = I0->getOpcode();
 | 
						|
    if (Op != Instruction::ShuffleVector)
 | 
						|
      isAltShuffle = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of the operands are identical or constant we have a simple solution.
 | 
						|
  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We now know that this is a vector of instructions of the same type from
 | 
						|
  // the same block.
 | 
						|
 | 
						|
  // Don't vectorize ephemeral values.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (EphValues.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | 
						|
            ") is ephemeral.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if this is a duplicate of another entry.
 | 
						|
  if (ScalarToTreeEntry.count(VL[0])) {
 | 
						|
    int Idx = ScalarToTreeEntry[VL[0]];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
 | 
						|
      if (E->Scalars[i] != VL[i]) {
 | 
						|
        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that none of the instructions in the bundle are already in the tree.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (ScalarToTreeEntry.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | 
						|
            ") is already in tree.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the scalars appears in the table OR it is marked as a value that
 | 
						|
  // needs to stat scalar then we need to gather the scalars.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that all of the users of the scalars that we want to vectorize are
 | 
						|
  // schedulable.
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
 | 
						|
 | 
						|
  if (!DT->isReachableFromEntry(BB)) {
 | 
						|
    // Don't go into unreachable blocks. They may contain instructions with
 | 
						|
    // dependency cycles which confuse the final scheduling.
 | 
						|
    DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check that every instructions appears once in this bundle.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | 
						|
    for (unsigned j = i+1; j < e; ++j)
 | 
						|
      if (VL[i] == VL[j]) {
 | 
						|
        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  auto &BSRef = BlocksSchedules[BB];
 | 
						|
  if (!BSRef) {
 | 
						|
    BSRef = llvm::make_unique<BlockScheduling>(BB);
 | 
						|
  }
 | 
						|
  BlockScheduling &BS = *BSRef.get();
 | 
						|
 | 
						|
  if (!BS.tryScheduleBundle(VL, AA)) {
 | 
						|
    DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
 | 
						|
    BS.cancelScheduling(VL);
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      PHINode *PH = dyn_cast<PHINode>(VL0);
 | 
						|
 | 
						|
      // Check for terminator values (e.g. invoke).
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
          TerminatorInst *Term = dyn_cast<TerminatorInst>(
 | 
						|
              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
 | 
						|
          if (Term) {
 | 
						|
            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
 | 
						|
            BS.cancelScheduling(VL);
 | 
						|
            newTreeEntry(VL, false);
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
 | 
						|
              PH->getIncomingBlock(i)));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      bool Reuse = CanReuseExtract(VL);
 | 
						|
      if (Reuse) {
 | 
						|
        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
 | 
						|
      } else {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, Reuse);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Check if the loads are consecutive or of we need to swizzle them.
 | 
						|
      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
 | 
						|
        LoadInst *L = cast<LoadInst>(VL[i]);
 | 
						|
        if (!L->isSimple()) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
 | 
						|
          if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) {
 | 
						|
            ++NumLoadsWantToChangeOrder;
 | 
						|
          }
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++NumLoadsWantToKeepOrder;
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						|
      for (unsigned i = 0; i < VL.size(); ++i) {
 | 
						|
        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
 | 
						|
        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp: {
 | 
						|
      // Check that all of the compares have the same predicate.
 | 
						|
      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | 
						|
      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
 | 
						|
      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
        CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | 
						|
        if (Cmp->getPredicate() != P0 ||
 | 
						|
            Cmp->getOperand(0)->getType() != ComparedTy) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
 | 
						|
 | 
						|
      // Sort operands of the instructions so that each side is more likely to
 | 
						|
      // have the same opcode.
 | 
						|
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
 | 
						|
        ValueList Left, Right;
 | 
						|
        reorderInputsAccordingToOpcode(VL, Left, Right);
 | 
						|
        buildTree_rec(Left, Depth + 1);
 | 
						|
        buildTree_rec(Right, Depth + 1);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      // We don't combine GEPs with complicated (nested) indexing.
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
 | 
						|
          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We can't combine several GEPs into one vector if they operate on
 | 
						|
      // different types.
 | 
						|
      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
 | 
						|
        if (Ty0 != CurTy) {
 | 
						|
          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We don't combine GEPs with non-constant indexes.
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        auto Op = cast<Instruction>(VL[j])->getOperand(1);
 | 
						|
        if (!isa<ConstantInt>(Op)) {
 | 
						|
          DEBUG(
 | 
						|
              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
 | 
						|
      for (unsigned i = 0, e = 2; i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      // Check if the stores are consecutive or of we need to swizzle them.
 | 
						|
      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | 
						|
        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | 
						|
 | 
						|
      ValueList Operands;
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | 
						|
 | 
						|
      buildTree_rec(Operands, Depth + 1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      // Check if the calls are all to the same vectorizable intrinsic.
 | 
						|
      CallInst *CI = cast<CallInst>(VL[0]);
 | 
						|
      // Check if this is an Intrinsic call or something that can be
 | 
						|
      // represented by an intrinsic call
 | 
						|
      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | 
						|
      if (!isTriviallyVectorizable(ID)) {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Function *Int = CI->getCalledFunction();
 | 
						|
      Value *A1I = nullptr;
 | 
						|
      if (hasVectorInstrinsicScalarOpd(ID, 1))
 | 
						|
        A1I = CI->getArgOperand(1);
 | 
						|
      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | 
						|
        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
 | 
						|
        if (!CI2 || CI2->getCalledFunction() != Int ||
 | 
						|
            getIntrinsicIDForCall(CI2, TLI) != ID) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
 | 
						|
                       << "\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        // ctlz,cttz and powi are special intrinsics whose second argument
 | 
						|
        // should be same in order for them to be vectorized.
 | 
						|
        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | 
						|
          Value *A1J = CI2->getArgOperand(1);
 | 
						|
          if (A1I != A1J) {
 | 
						|
            BS.cancelScheduling(VL);
 | 
						|
            newTreeEntry(VL, false);
 | 
						|
            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
 | 
						|
                         << " argument "<< A1I<<"!=" << A1J
 | 
						|
                         << "\n");
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
          CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
 | 
						|
          Operands.push_back(CI2->getArgOperand(i));
 | 
						|
        }
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      // If this is not an alternate sequence of opcode like add-sub
 | 
						|
      // then do not vectorize this instruction.
 | 
						|
      if (!isAltShuffle) {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      BS.cancelScheduling(VL);
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getEntryCost(TreeEntry *E) {
 | 
						|
  ArrayRef<Value*> VL = E->Scalars;
 | 
						|
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
 | 
						|
  if (E->NeedToGather) {
 | 
						|
    if (allConstant(VL))
 | 
						|
      return 0;
 | 
						|
    if (isSplat(VL)) {
 | 
						|
      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | 
						|
    }
 | 
						|
    return getGatherCost(E->Scalars);
 | 
						|
  }
 | 
						|
  unsigned Opcode = getSameOpcode(VL);
 | 
						|
  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      if (CanReuseExtract(VL)) {
 | 
						|
        int DeadCost = 0;
 | 
						|
        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | 
						|
          ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | 
						|
          if (E->hasOneUse())
 | 
						|
            // Take credit for instruction that will become dead.
 | 
						|
            DeadCost +=
 | 
						|
                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
 | 
						|
        }
 | 
						|
        return -DeadCost;
 | 
						|
      }
 | 
						|
      return getGatherCost(VecTy);
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						|
 | 
						|
      // Calculate the cost of this instruction.
 | 
						|
      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
 | 
						|
                                                         VL0->getType(), SrcTy);
 | 
						|
 | 
						|
      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | 
						|
      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      // Calculate the cost of this instruction.
 | 
						|
      int ScalarCost = 0;
 | 
						|
      int VecCost = 0;
 | 
						|
      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
 | 
						|
          Opcode == Instruction::Select) {
 | 
						|
        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | 
						|
        ScalarCost = VecTy->getNumElements() *
 | 
						|
        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
 | 
						|
        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
 | 
						|
      } else {
 | 
						|
        // Certain instructions can be cheaper to vectorize if they have a
 | 
						|
        // constant second vector operand.
 | 
						|
        TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
            TargetTransformInfo::OK_AnyValue;
 | 
						|
        TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
            TargetTransformInfo::OK_UniformConstantValue;
 | 
						|
        TargetTransformInfo::OperandValueProperties Op1VP =
 | 
						|
            TargetTransformInfo::OP_None;
 | 
						|
        TargetTransformInfo::OperandValueProperties Op2VP =
 | 
						|
            TargetTransformInfo::OP_None;
 | 
						|
 | 
						|
        // If all operands are exactly the same ConstantInt then set the
 | 
						|
        // operand kind to OK_UniformConstantValue.
 | 
						|
        // If instead not all operands are constants, then set the operand kind
 | 
						|
        // to OK_AnyValue. If all operands are constants but not the same,
 | 
						|
        // then set the operand kind to OK_NonUniformConstantValue.
 | 
						|
        ConstantInt *CInt = nullptr;
 | 
						|
        for (unsigned i = 0; i < VL.size(); ++i) {
 | 
						|
          const Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
          if (!isa<ConstantInt>(I->getOperand(1))) {
 | 
						|
            Op2VK = TargetTransformInfo::OK_AnyValue;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if (i == 0) {
 | 
						|
            CInt = cast<ConstantInt>(I->getOperand(1));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
              CInt != cast<ConstantInt>(I->getOperand(1)))
 | 
						|
            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | 
						|
        }
 | 
						|
        // FIXME: Currently cost of model modification for division by
 | 
						|
        // power of 2 is handled only for X86. Add support for other targets.
 | 
						|
        if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
 | 
						|
            CInt->getValue().isPowerOf2())
 | 
						|
          Op2VP = TargetTransformInfo::OP_PowerOf2;
 | 
						|
 | 
						|
        ScalarCost = VecTy->getNumElements() *
 | 
						|
                     TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
 | 
						|
                                                 Op1VP, Op2VP);
 | 
						|
        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
 | 
						|
                                              Op1VP, Op2VP);
 | 
						|
      }
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
          TargetTransformInfo::OK_UniformConstantValue;
 | 
						|
 | 
						|
      int ScalarCost =
 | 
						|
          VecTy->getNumElements() *
 | 
						|
          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
 | 
						|
      int VecCost =
 | 
						|
          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
 | 
						|
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Cost of wide load - cost of scalar loads.
 | 
						|
      int ScalarLdCost = VecTy->getNumElements() *
 | 
						|
      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | 
						|
      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
 | 
						|
      return VecLdCost - ScalarLdCost;
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      // We know that we can merge the stores. Calculate the cost.
 | 
						|
      int ScalarStCost = VecTy->getNumElements() *
 | 
						|
      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | 
						|
      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
 | 
						|
      return VecStCost - ScalarStCost;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      CallInst *CI = cast<CallInst>(VL0);
 | 
						|
      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | 
						|
 | 
						|
      // Calculate the cost of the scalar and vector calls.
 | 
						|
      SmallVector<Type*, 4> ScalarTys, VecTys;
 | 
						|
      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
 | 
						|
        ScalarTys.push_back(CI->getArgOperand(op)->getType());
 | 
						|
        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
 | 
						|
                                         VecTy->getNumElements()));
 | 
						|
      }
 | 
						|
 | 
						|
      int ScalarCallCost = VecTy->getNumElements() *
 | 
						|
          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
 | 
						|
 | 
						|
      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
 | 
						|
            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
 | 
						|
            << " for " << *CI << "\n");
 | 
						|
 | 
						|
      return VecCallCost - ScalarCallCost;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      int ScalarCost = 0;
 | 
						|
      int VecCost = 0;
 | 
						|
      for (unsigned i = 0; i < VL.size(); ++i) {
 | 
						|
        Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
        if (!I)
 | 
						|
          break;
 | 
						|
        ScalarCost +=
 | 
						|
            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
 | 
						|
      }
 | 
						|
      // VecCost is equal to sum of the cost of creating 2 vectors
 | 
						|
      // and the cost of creating shuffle.
 | 
						|
      Instruction *I0 = cast<Instruction>(VL[0]);
 | 
						|
      VecCost =
 | 
						|
          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
 | 
						|
      Instruction *I1 = cast<Instruction>(VL[1]);
 | 
						|
      VecCost +=
 | 
						|
          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
 | 
						|
      VecCost +=
 | 
						|
          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown instruction");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BoUpSLP::isFullyVectorizableTinyTree() {
 | 
						|
  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
 | 
						|
        VectorizableTree.size() << " is fully vectorizable .\n");
 | 
						|
 | 
						|
  // We only handle trees of height 2.
 | 
						|
  if (VectorizableTree.size() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle splat stores.
 | 
						|
  if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Gathering cost would be too much for tiny trees.
 | 
						|
  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getSpillCost() {
 | 
						|
  // Walk from the bottom of the tree to the top, tracking which values are
 | 
						|
  // live. When we see a call instruction that is not part of our tree,
 | 
						|
  // query TTI to see if there is a cost to keeping values live over it
 | 
						|
  // (for example, if spills and fills are required).
 | 
						|
  unsigned BundleWidth = VectorizableTree.front().Scalars.size();
 | 
						|
  int Cost = 0;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction*, 4> LiveValues;
 | 
						|
  Instruction *PrevInst = nullptr; 
 | 
						|
 | 
						|
  for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
 | 
						|
    if (!Inst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!PrevInst) {
 | 
						|
      PrevInst = Inst;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(
 | 
						|
      dbgs() << "SLP: #LV: " << LiveValues.size();
 | 
						|
      for (auto *X : LiveValues)
 | 
						|
        dbgs() << " " << X->getName();
 | 
						|
      dbgs() << ", Looking at ";
 | 
						|
      Inst->dump();
 | 
						|
      );
 | 
						|
 | 
						|
    // Update LiveValues.
 | 
						|
    LiveValues.erase(PrevInst);
 | 
						|
    for (auto &J : PrevInst->operands()) {
 | 
						|
      if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
 | 
						|
        LiveValues.insert(cast<Instruction>(&*J));
 | 
						|
    }    
 | 
						|
 | 
						|
    // Now find the sequence of instructions between PrevInst and Inst.
 | 
						|
    BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
 | 
						|
    --PrevInstIt;
 | 
						|
    while (InstIt != PrevInstIt) {
 | 
						|
      if (PrevInstIt == PrevInst->getParent()->rend()) {
 | 
						|
        PrevInstIt = Inst->getParent()->rbegin();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
 | 
						|
        SmallVector<Type*, 4> V;
 | 
						|
        for (auto *II : LiveValues)
 | 
						|
          V.push_back(VectorType::get(II->getType(), BundleWidth));
 | 
						|
        Cost += TTI->getCostOfKeepingLiveOverCall(V);
 | 
						|
      }
 | 
						|
 | 
						|
      ++PrevInstIt;
 | 
						|
    }
 | 
						|
 | 
						|
    PrevInst = Inst;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getTreeCost() {
 | 
						|
  int Cost = 0;
 | 
						|
  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
 | 
						|
        VectorizableTree.size() << ".\n");
 | 
						|
 | 
						|
  // We only vectorize tiny trees if it is fully vectorizable.
 | 
						|
  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
 | 
						|
    if (!VectorizableTree.size()) {
 | 
						|
      assert(!ExternalUses.size() && "We should not have any external users");
 | 
						|
    }
 | 
						|
    return INT_MAX;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
 | 
						|
    int C = getEntryCost(&VectorizableTree[i]);
 | 
						|
    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
 | 
						|
          << *VectorizableTree[i].Scalars[0] << " .\n");
 | 
						|
    Cost += C;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallSet<Value *, 16> ExtractCostCalculated;
 | 
						|
  int ExtractCost = 0;
 | 
						|
  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    // We only add extract cost once for the same scalar.
 | 
						|
    if (!ExtractCostCalculated.insert(I->Scalar))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Uses by ephemeral values are free (because the ephemeral value will be
 | 
						|
    // removed prior to code generation, and so the extraction will be
 | 
						|
    // removed as well).
 | 
						|
    if (EphValues.count(I->User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
 | 
						|
    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
 | 
						|
                                           I->Lane);
 | 
						|
  }
 | 
						|
 | 
						|
  Cost += getSpillCost();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
 | 
						|
  return  Cost + ExtractCost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getGatherCost(Type *Ty) {
 | 
						|
  int Cost = 0;
 | 
						|
  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | 
						|
    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
 | 
						|
  // Find the type of the operands in VL.
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
  // Find the cost of inserting/extracting values from the vector.
 | 
						|
  return getGatherCost(VecTy);
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::getPointerOperand(Value *I) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->getPointerOperand();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->getPointerOperand();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I))
 | 
						|
    return L->getPointerAddressSpace();
 | 
						|
  if (StoreInst *S = dyn_cast<StoreInst>(I))
 | 
						|
    return S->getPointerAddressSpace();
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
 | 
						|
  Value *PtrA = getPointerOperand(A);
 | 
						|
  Value *PtrB = getPointerOperand(B);
 | 
						|
  unsigned ASA = getAddressSpaceOperand(A);
 | 
						|
  unsigned ASB = getAddressSpaceOperand(B);
 | 
						|
 | 
						|
  // Check that the address spaces match and that the pointers are valid.
 | 
						|
  if (!PtrA || !PtrB || (ASA != ASB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that A and B are different pointers of the same type.
 | 
						|
  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
 | 
						|
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
 | 
						|
  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
 | 
						|
 | 
						|
  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
 | 
						|
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
 | 
						|
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
 | 
						|
 | 
						|
  APInt OffsetDelta = OffsetB - OffsetA;
 | 
						|
 | 
						|
  // Check if they are based on the same pointer. That makes the offsets
 | 
						|
  // sufficient.
 | 
						|
  if (PtrA == PtrB)
 | 
						|
    return OffsetDelta == Size;
 | 
						|
 | 
						|
  // Compute the necessary base pointer delta to have the necessary final delta
 | 
						|
  // equal to the size.
 | 
						|
  APInt BaseDelta = Size - OffsetDelta;
 | 
						|
 | 
						|
  // Otherwise compute the distance with SCEV between the base pointers.
 | 
						|
  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
 | 
						|
  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
 | 
						|
  const SCEV *C = SE->getConstant(BaseDelta);
 | 
						|
  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
 | 
						|
  return X == PtrSCEVB;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  BasicBlock::iterator NextInst = VL0;
 | 
						|
  ++NextInst;
 | 
						|
  Builder.SetInsertPoint(VL0->getParent(), NextInst);
 | 
						|
  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | 
						|
  Value *Vec = UndefValue::get(Ty);
 | 
						|
  // Generate the 'InsertElement' instruction.
 | 
						|
  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | 
						|
    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | 
						|
    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
 | 
						|
      GatherSeq.insert(Insrt);
 | 
						|
      CSEBlocks.insert(Insrt->getParent());
 | 
						|
 | 
						|
      // Add to our 'need-to-extract' list.
 | 
						|
      if (ScalarToTreeEntry.count(VL[i])) {
 | 
						|
        int Idx = ScalarToTreeEntry[VL[i]];
 | 
						|
        TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
        // Find which lane we need to extract.
 | 
						|
        int FoundLane = -1;
 | 
						|
        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
 | 
						|
          // Is this the lane of the scalar that we are looking for ?
 | 
						|
          if (E->Scalars[Lane] == VL[i]) {
 | 
						|
            FoundLane = Lane;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        assert(FoundLane >= 0 && "Could not find the correct lane");
 | 
						|
        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Vec;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
 | 
						|
  SmallDenseMap<Value*, int>::const_iterator Entry
 | 
						|
    = ScalarToTreeEntry.find(VL[0]);
 | 
						|
  if (Entry != ScalarToTreeEntry.end()) {
 | 
						|
    int Idx = Entry->second;
 | 
						|
    const TreeEntry *En = &VectorizableTree[Idx];
 | 
						|
    if (En->isSame(VL) && En->VectorizedValue)
 | 
						|
      return En->VectorizedValue;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | 
						|
  if (ScalarToTreeEntry.count(VL[0])) {
 | 
						|
    int Idx = ScalarToTreeEntry[VL[0]];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    if (E->isSame(VL))
 | 
						|
      return vectorizeTree(E);
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
 | 
						|
  return Gather(VL, VecTy);
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | 
						|
  IRBuilder<>::InsertPointGuard Guard(Builder);
 | 
						|
 | 
						|
  if (E->VectorizedValue) {
 | 
						|
    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | 
						|
    return E->VectorizedValue;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
 | 
						|
  Type *ScalarTy = VL0->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
 | 
						|
 | 
						|
  if (E->NeedToGather) {
 | 
						|
    setInsertPointAfterBundle(E->Scalars);
 | 
						|
    return Gather(E->Scalars, VecTy);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opcode = getSameOpcode(E->Scalars);
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      PHINode *PH = dyn_cast<PHINode>(VL0);
 | 
						|
      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
 | 
						|
      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						|
      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | 
						|
      E->VectorizedValue = NewPhi;
 | 
						|
 | 
						|
      // PHINodes may have multiple entries from the same block. We want to
 | 
						|
      // visit every block once.
 | 
						|
      SmallSet<BasicBlock*, 4> VisitedBBs;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        BasicBlock *IBB = PH->getIncomingBlock(i);
 | 
						|
 | 
						|
        if (!VisitedBBs.insert(IBB)) {
 | 
						|
          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (unsigned j = 0; j < E->Scalars.size(); ++j)
 | 
						|
          Operands.push_back(cast<PHINode>(E->Scalars[j])->
 | 
						|
                             getIncomingValueForBlock(IBB));
 | 
						|
 | 
						|
        Builder.SetInsertPoint(IBB->getTerminator());
 | 
						|
        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						|
        Value *Vec = vectorizeTree(Operands);
 | 
						|
        NewPhi->addIncoming(Vec, IBB);
 | 
						|
      }
 | 
						|
 | 
						|
      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | 
						|
             "Invalid number of incoming values");
 | 
						|
      return NewPhi;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      if (CanReuseExtract(E->Scalars)) {
 | 
						|
        Value *V = VL0->getOperand(0);
 | 
						|
        E->VectorizedValue = V;
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
      return Gather(E->Scalars, VecTy);
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      ValueList INVL;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | 
						|
        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *InVec = vectorizeTree(INVL);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      CastInst *CI = dyn_cast<CastInst>(VL0);
 | 
						|
      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::ICmp: {
 | 
						|
      ValueList LHSV, RHSV;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | 
						|
        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | 
						|
        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | 
						|
      }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *L = vectorizeTree(LHSV);
 | 
						|
      Value *R = vectorizeTree(RHSV);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | 
						|
      Value *V;
 | 
						|
      if (Opcode == Instruction::FCmp)
 | 
						|
        V = Builder.CreateFCmp(P0, L, R);
 | 
						|
      else
 | 
						|
        V = Builder.CreateICmp(P0, L, R);
 | 
						|
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Select: {
 | 
						|
      ValueList TrueVec, FalseVec, CondVec;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | 
						|
        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | 
						|
        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | 
						|
        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
 | 
						|
      }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *Cond = vectorizeTree(CondVec);
 | 
						|
      Value *True = vectorizeTree(TrueVec);
 | 
						|
      Value *False = vectorizeTree(FalseVec);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      Value *V = Builder.CreateSelect(Cond, True, False);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      ValueList LHSVL, RHSVL;
 | 
						|
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
 | 
						|
        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
 | 
						|
      else
 | 
						|
        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | 
						|
          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | 
						|
          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | 
						|
        }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *LHS = vectorizeTree(LHSVL);
 | 
						|
      Value *RHS = vectorizeTree(RHSVL);
 | 
						|
 | 
						|
      if (LHS == RHS && isa<Instruction>(LHS)) {
 | 
						|
        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
 | 
						|
      }
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
 | 
						|
      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      propagateIRFlags(E->VectorizedValue, E->Scalars);
 | 
						|
      ++NumVectorInstructions;
 | 
						|
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Loads are inserted at the head of the tree because we don't want to
 | 
						|
      // sink them all the way down past store instructions.
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      LoadInst *LI = cast<LoadInst>(VL0);
 | 
						|
      Type *ScalarLoadTy = LI->getType();
 | 
						|
      unsigned AS = LI->getPointerAddressSpace();
 | 
						|
 | 
						|
      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
 | 
						|
                                            VecTy->getPointerTo(AS));
 | 
						|
 | 
						|
      // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | 
						|
      // ExternalUses list to make sure that an extract will be generated in the
 | 
						|
      // future.
 | 
						|
      if (ScalarToTreeEntry.count(LI->getPointerOperand()))
 | 
						|
        ExternalUses.push_back(
 | 
						|
            ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
 | 
						|
 | 
						|
      unsigned Alignment = LI->getAlignment();
 | 
						|
      LI = Builder.CreateLoad(VecPtr);
 | 
						|
      if (!Alignment)
 | 
						|
        Alignment = DL->getABITypeAlignment(ScalarLoadTy);
 | 
						|
      LI->setAlignment(Alignment);
 | 
						|
      E->VectorizedValue = LI;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return propagateMetadata(LI, E->Scalars);
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      StoreInst *SI = cast<StoreInst>(VL0);
 | 
						|
      unsigned Alignment = SI->getAlignment();
 | 
						|
      unsigned AS = SI->getPointerAddressSpace();
 | 
						|
 | 
						|
      ValueList ValueOp;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | 
						|
        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *VecValue = vectorizeTree(ValueOp);
 | 
						|
      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
 | 
						|
                                            VecTy->getPointerTo(AS));
 | 
						|
      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
 | 
						|
 | 
						|
      // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | 
						|
      // ExternalUses list to make sure that an extract will be generated in the
 | 
						|
      // future.
 | 
						|
      if (ScalarToTreeEntry.count(SI->getPointerOperand()))
 | 
						|
        ExternalUses.push_back(
 | 
						|
            ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
 | 
						|
 | 
						|
      if (!Alignment)
 | 
						|
        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
 | 
						|
      S->setAlignment(Alignment);
 | 
						|
      E->VectorizedValue = S;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return propagateMetadata(S, E->Scalars);
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      ValueList Op0VL;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | 
						|
        Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0));
 | 
						|
 | 
						|
      Value *Op0 = vectorizeTree(Op0VL);
 | 
						|
 | 
						|
      std::vector<Value *> OpVecs;
 | 
						|
      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
 | 
						|
           ++j) {
 | 
						|
        ValueList OpVL;
 | 
						|
        for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | 
						|
          OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j));
 | 
						|
 | 
						|
        Value *OpVec = vectorizeTree(OpVL);
 | 
						|
        OpVecs.push_back(OpVec);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = Builder.CreateGEP(Op0, OpVecs);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      CallInst *CI = cast<CallInst>(VL0);
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
      Function *FI;
 | 
						|
      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
 | 
						|
      Value *ScalarArg = nullptr;
 | 
						|
      if (CI && (FI = CI->getCalledFunction())) {
 | 
						|
        IID = (Intrinsic::ID) FI->getIntrinsicID();
 | 
						|
      }
 | 
						|
      std::vector<Value *> OpVecs;
 | 
						|
      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
 | 
						|
        ValueList OpVL;
 | 
						|
        // ctlz,cttz and powi are special intrinsics whose second argument is
 | 
						|
        // a scalar. This argument should not be vectorized.
 | 
						|
        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
 | 
						|
          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
 | 
						|
          ScalarArg = CEI->getArgOperand(j);
 | 
						|
          OpVecs.push_back(CEI->getArgOperand(j));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | 
						|
          CallInst *CEI = cast<CallInst>(E->Scalars[i]);
 | 
						|
          OpVL.push_back(CEI->getArgOperand(j));
 | 
						|
        }
 | 
						|
 | 
						|
        Value *OpVec = vectorizeTree(OpVL);
 | 
						|
        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
 | 
						|
        OpVecs.push_back(OpVec);
 | 
						|
      }
 | 
						|
 | 
						|
      Module *M = F->getParent();
 | 
						|
      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | 
						|
      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
 | 
						|
      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
 | 
						|
      Value *V = Builder.CreateCall(CF, OpVecs);
 | 
						|
 | 
						|
      // The scalar argument uses an in-tree scalar so we add the new vectorized
 | 
						|
      // call to ExternalUses list to make sure that an extract will be
 | 
						|
      // generated in the future.
 | 
						|
      if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
 | 
						|
        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
 | 
						|
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      ValueList LHSVL, RHSVL;
 | 
						|
      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | 
						|
        LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | 
						|
        RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | 
						|
      }
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *LHS = vectorizeTree(LHSVL);
 | 
						|
      Value *RHS = vectorizeTree(RHSVL);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      // Create a vector of LHS op1 RHS
 | 
						|
      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
 | 
						|
      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
 | 
						|
 | 
						|
      // Create a vector of LHS op2 RHS
 | 
						|
      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
 | 
						|
      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
 | 
						|
      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
 | 
						|
 | 
						|
      // Create shuffle to take alternate operations from the vector.
 | 
						|
      // Also, gather up odd and even scalar ops to propagate IR flags to
 | 
						|
      // each vector operation.
 | 
						|
      ValueList OddScalars, EvenScalars;
 | 
						|
      unsigned e = E->Scalars.size();
 | 
						|
      SmallVector<Constant *, 8> Mask(e);
 | 
						|
      for (unsigned i = 0; i < e; ++i) {
 | 
						|
        if (i & 1) {
 | 
						|
          Mask[i] = Builder.getInt32(e + i);
 | 
						|
          OddScalars.push_back(E->Scalars[i]);
 | 
						|
        } else {
 | 
						|
          Mask[i] = Builder.getInt32(i);
 | 
						|
          EvenScalars.push_back(E->Scalars[i]);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Value *ShuffleMask = ConstantVector::get(Mask);
 | 
						|
      propagateIRFlags(V0, EvenScalars);
 | 
						|
      propagateIRFlags(V1, OddScalars);
 | 
						|
 | 
						|
      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
    llvm_unreachable("unknown inst");
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree() {
 | 
						|
  
 | 
						|
  // All blocks must be scheduled before any instructions are inserted.
 | 
						|
  for (auto &BSIter : BlocksSchedules) {
 | 
						|
    scheduleBlock(BSIter.second.get());
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.SetInsertPoint(F->getEntryBlock().begin());
 | 
						|
  vectorizeTree(&VectorizableTree[0]);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
 | 
						|
 | 
						|
  // Extract all of the elements with the external uses.
 | 
						|
  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
 | 
						|
       it != e; ++it) {
 | 
						|
    Value *Scalar = it->Scalar;
 | 
						|
    llvm::User *User = it->User;
 | 
						|
 | 
						|
    // Skip users that we already RAUW. This happens when one instruction
 | 
						|
    // has multiple uses of the same value.
 | 
						|
    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
 | 
						|
        Scalar->user_end())
 | 
						|
      continue;
 | 
						|
    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
 | 
						|
 | 
						|
    int Idx = ScalarToTreeEntry[Scalar];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    assert(!E->NeedToGather && "Extracting from a gather list");
 | 
						|
 | 
						|
    Value *Vec = E->VectorizedValue;
 | 
						|
    assert(Vec && "Can't find vectorizable value");
 | 
						|
 | 
						|
    Value *Lane = Builder.getInt32(it->Lane);
 | 
						|
    // Generate extracts for out-of-tree users.
 | 
						|
    // Find the insertion point for the extractelement lane.
 | 
						|
    if (isa<Instruction>(Vec)){
 | 
						|
      if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | 
						|
        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | 
						|
          if (PH->getIncomingValue(i) == Scalar) {
 | 
						|
            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | 
						|
            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
            CSEBlocks.insert(PH->getIncomingBlock(i));
 | 
						|
            PH->setOperand(i, Ex);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        Builder.SetInsertPoint(cast<Instruction>(User));
 | 
						|
        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
        CSEBlocks.insert(cast<Instruction>(User)->getParent());
 | 
						|
        User->replaceUsesOfWith(Scalar, Ex);
 | 
						|
     }
 | 
						|
    } else {
 | 
						|
      Builder.SetInsertPoint(F->getEntryBlock().begin());
 | 
						|
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
      CSEBlocks.insert(&F->getEntryBlock());
 | 
						|
      User->replaceUsesOfWith(Scalar, Ex);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // For each vectorized value:
 | 
						|
  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | 
						|
    TreeEntry *Entry = &VectorizableTree[EIdx];
 | 
						|
 | 
						|
    // For each lane:
 | 
						|
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						|
      Value *Scalar = Entry->Scalars[Lane];
 | 
						|
      // No need to handle users of gathered values.
 | 
						|
      if (Entry->NeedToGather)
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | 
						|
 | 
						|
      Type *Ty = Scalar->getType();
 | 
						|
      if (!Ty->isVoidTy()) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (User *U : Scalar->users()) {
 | 
						|
          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
 | 
						|
 | 
						|
          assert((ScalarToTreeEntry.count(U) ||
 | 
						|
                  // It is legal to replace users in the ignorelist by undef.
 | 
						|
                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
 | 
						|
                   UserIgnoreList.end())) &&
 | 
						|
                 "Replacing out-of-tree value with undef");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        Value *Undef = UndefValue::get(Ty);
 | 
						|
        Scalar->replaceAllUsesWith(Undef);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | 
						|
      cast<Instruction>(Scalar)->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
 | 
						|
  return VectorizableTree[0].VectorizedValue;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::optimizeGatherSequence() {
 | 
						|
  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | 
						|
        << " gather sequences instructions.\n");
 | 
						|
  // LICM InsertElementInst sequences.
 | 
						|
  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
 | 
						|
       e = GatherSeq.end(); it != e; ++it) {
 | 
						|
    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
 | 
						|
 | 
						|
    if (!Insert)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if this block is inside a loop.
 | 
						|
    Loop *L = LI->getLoopFor(Insert->getParent());
 | 
						|
    if (!L)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if it has a preheader.
 | 
						|
    BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
    if (!PreHeader)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the vector or the element that we insert into it are
 | 
						|
    // instructions that are defined in this basic block then we can't
 | 
						|
    // hoist this instruction.
 | 
						|
    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
 | 
						|
    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
 | 
						|
    if (CurrVec && L->contains(CurrVec))
 | 
						|
      continue;
 | 
						|
    if (NewElem && L->contains(NewElem))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can hoist this instruction. Move it to the pre-header.
 | 
						|
    Insert->moveBefore(PreHeader->getTerminator());
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a list of all reachable blocks in our CSE queue.
 | 
						|
  SmallVector<const DomTreeNode *, 8> CSEWorkList;
 | 
						|
  CSEWorkList.reserve(CSEBlocks.size());
 | 
						|
  for (BasicBlock *BB : CSEBlocks)
 | 
						|
    if (DomTreeNode *N = DT->getNode(BB)) {
 | 
						|
      assert(DT->isReachableFromEntry(N));
 | 
						|
      CSEWorkList.push_back(N);
 | 
						|
    }
 | 
						|
 | 
						|
  // Sort blocks by domination. This ensures we visit a block after all blocks
 | 
						|
  // dominating it are visited.
 | 
						|
  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
 | 
						|
                   [this](const DomTreeNode *A, const DomTreeNode *B) {
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  });
 | 
						|
 | 
						|
  // Perform O(N^2) search over the gather sequences and merge identical
 | 
						|
  // instructions. TODO: We can further optimize this scan if we split the
 | 
						|
  // instructions into different buckets based on the insert lane.
 | 
						|
  SmallVector<Instruction *, 16> Visited;
 | 
						|
  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
 | 
						|
    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
 | 
						|
           "Worklist not sorted properly!");
 | 
						|
    BasicBlock *BB = (*I)->getBlock();
 | 
						|
    // For all instructions in blocks containing gather sequences:
 | 
						|
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
 | 
						|
      Instruction *In = it++;
 | 
						|
      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check if we can replace this instruction with any of the
 | 
						|
      // visited instructions.
 | 
						|
      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
 | 
						|
                                                    ve = Visited.end();
 | 
						|
           v != ve; ++v) {
 | 
						|
        if (In->isIdenticalTo(*v) &&
 | 
						|
            DT->dominates((*v)->getParent(), In->getParent())) {
 | 
						|
          In->replaceAllUsesWith(*v);
 | 
						|
          In->eraseFromParent();
 | 
						|
          In = nullptr;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (In) {
 | 
						|
        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
 | 
						|
        Visited.push_back(In);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CSEBlocks.clear();
 | 
						|
  GatherSeq.clear();
 | 
						|
}
 | 
						|
 | 
						|
// Groups the instructions to a bundle (which is then a single scheduling entity)
 | 
						|
// and schedules instructions until the bundle gets ready.
 | 
						|
bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
 | 
						|
                                                 AliasAnalysis *AA) {
 | 
						|
  if (isa<PHINode>(VL[0]))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Initialize the instruction bundle.
 | 
						|
  Instruction *OldScheduleEnd = ScheduleEnd;
 | 
						|
  ScheduleData *PrevInBundle = nullptr;
 | 
						|
  ScheduleData *Bundle = nullptr;
 | 
						|
  bool ReSchedule = false;
 | 
						|
  DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
 | 
						|
  for (Value *V : VL) {
 | 
						|
    extendSchedulingRegion(V);
 | 
						|
    ScheduleData *BundleMember = getScheduleData(V);
 | 
						|
    assert(BundleMember &&
 | 
						|
           "no ScheduleData for bundle member (maybe not in same basic block)");
 | 
						|
    if (BundleMember->IsScheduled) {
 | 
						|
      // A bundle member was scheduled as single instruction before and now
 | 
						|
      // needs to be scheduled as part of the bundle. We just get rid of the
 | 
						|
      // existing schedule.
 | 
						|
      DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
 | 
						|
                   << " was already scheduled\n");
 | 
						|
      ReSchedule = true;
 | 
						|
    }
 | 
						|
    assert(BundleMember->isSchedulingEntity() &&
 | 
						|
           "bundle member already part of other bundle");
 | 
						|
    if (PrevInBundle) {
 | 
						|
      PrevInBundle->NextInBundle = BundleMember;
 | 
						|
    } else {
 | 
						|
      Bundle = BundleMember;
 | 
						|
    }
 | 
						|
    BundleMember->UnscheduledDepsInBundle = 0;
 | 
						|
    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
 | 
						|
 | 
						|
    // Group the instructions to a bundle.
 | 
						|
    BundleMember->FirstInBundle = Bundle;
 | 
						|
    PrevInBundle = BundleMember;
 | 
						|
  }
 | 
						|
  if (ScheduleEnd != OldScheduleEnd) {
 | 
						|
    // The scheduling region got new instructions at the lower end (or it is a
 | 
						|
    // new region for the first bundle). This makes it necessary to
 | 
						|
    // recalculate all dependencies.
 | 
						|
    // It is seldom that this needs to be done a second time after adding the
 | 
						|
    // initial bundle to the region.
 | 
						|
    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
      ScheduleData *SD = getScheduleData(I);
 | 
						|
      SD->clearDependencies();
 | 
						|
    }
 | 
						|
    ReSchedule = true;
 | 
						|
  }
 | 
						|
  if (ReSchedule) {
 | 
						|
    resetSchedule();
 | 
						|
    initialFillReadyList(ReadyInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
 | 
						|
               << BB->getName() << "\n");
 | 
						|
 | 
						|
  calculateDependencies(Bundle, true, AA);
 | 
						|
 | 
						|
  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
 | 
						|
  // means that there are no cyclic dependencies and we can schedule it.
 | 
						|
  // Note that's important that we don't "schedule" the bundle yet (see
 | 
						|
  // cancelScheduling).
 | 
						|
  while (!Bundle->isReady() && !ReadyInsts.empty()) {
 | 
						|
 | 
						|
    ScheduleData *pickedSD = ReadyInsts.back();
 | 
						|
    ReadyInsts.pop_back();
 | 
						|
 | 
						|
    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
 | 
						|
      schedule(pickedSD, ReadyInsts);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Bundle->isReady();
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
 | 
						|
  if (isa<PHINode>(VL[0]))
 | 
						|
    return;
 | 
						|
 | 
						|
  ScheduleData *Bundle = getScheduleData(VL[0]);
 | 
						|
  DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
 | 
						|
  assert(!Bundle->IsScheduled &&
 | 
						|
         "Can't cancel bundle which is already scheduled");
 | 
						|
  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
 | 
						|
         "tried to unbundle something which is not a bundle");
 | 
						|
 | 
						|
  // Un-bundle: make single instructions out of the bundle.
 | 
						|
  ScheduleData *BundleMember = Bundle;
 | 
						|
  while (BundleMember) {
 | 
						|
    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
 | 
						|
    BundleMember->FirstInBundle = BundleMember;
 | 
						|
    ScheduleData *Next = BundleMember->NextInBundle;
 | 
						|
    BundleMember->NextInBundle = nullptr;
 | 
						|
    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
 | 
						|
    if (BundleMember->UnscheduledDepsInBundle == 0) {
 | 
						|
      ReadyInsts.insert(BundleMember);
 | 
						|
    }
 | 
						|
    BundleMember = Next;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
 | 
						|
  if (getScheduleData(V))
 | 
						|
    return;
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  assert(I && "bundle member must be an instruction");
 | 
						|
  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
 | 
						|
  if (!ScheduleStart) {
 | 
						|
    // It's the first instruction in the new region.
 | 
						|
    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
 | 
						|
    ScheduleStart = I;
 | 
						|
    ScheduleEnd = I->getNextNode();
 | 
						|
    assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | 
						|
    DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Search up and down at the same time, because we don't know if the new
 | 
						|
  // instruction is above or below the existing scheduling region.
 | 
						|
  BasicBlock::reverse_iterator UpIter(ScheduleStart);
 | 
						|
  BasicBlock::reverse_iterator UpperEnd = BB->rend();
 | 
						|
  BasicBlock::iterator DownIter(ScheduleEnd);
 | 
						|
  BasicBlock::iterator LowerEnd = BB->end();
 | 
						|
  for (;;) {
 | 
						|
    if (UpIter != UpperEnd) {
 | 
						|
      if (&*UpIter == I) {
 | 
						|
        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
 | 
						|
        ScheduleStart = I;
 | 
						|
        DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      UpIter++;
 | 
						|
    }
 | 
						|
    if (DownIter != LowerEnd) {
 | 
						|
      if (&*DownIter == I) {
 | 
						|
        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
 | 
						|
                         nullptr);
 | 
						|
        ScheduleEnd = I->getNextNode();
 | 
						|
        assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | 
						|
        DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      DownIter++;
 | 
						|
    }
 | 
						|
    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
 | 
						|
           "instruction not found in block");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
 | 
						|
                                                Instruction *ToI,
 | 
						|
                                                ScheduleData *PrevLoadStore,
 | 
						|
                                                ScheduleData *NextLoadStore) {
 | 
						|
  ScheduleData *CurrentLoadStore = PrevLoadStore;
 | 
						|
  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = ScheduleDataMap[I];
 | 
						|
    if (!SD) {
 | 
						|
      // Allocate a new ScheduleData for the instruction.
 | 
						|
      if (ChunkPos >= ChunkSize) {
 | 
						|
        ScheduleDataChunks.push_back(
 | 
						|
            llvm::make_unique<ScheduleData[]>(ChunkSize));
 | 
						|
        ChunkPos = 0;
 | 
						|
      }
 | 
						|
      SD = &(ScheduleDataChunks.back()[ChunkPos++]);
 | 
						|
      ScheduleDataMap[I] = SD;
 | 
						|
      SD->Inst = I;
 | 
						|
    }
 | 
						|
    assert(!isInSchedulingRegion(SD) &&
 | 
						|
           "new ScheduleData already in scheduling region");
 | 
						|
    SD->init(SchedulingRegionID);
 | 
						|
 | 
						|
    if (I->mayReadOrWriteMemory()) {
 | 
						|
      // Update the linked list of memory accessing instructions.
 | 
						|
      if (CurrentLoadStore) {
 | 
						|
        CurrentLoadStore->NextLoadStore = SD;
 | 
						|
      } else {
 | 
						|
        FirstLoadStoreInRegion = SD;
 | 
						|
      }
 | 
						|
      CurrentLoadStore = SD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NextLoadStore) {
 | 
						|
    if (CurrentLoadStore)
 | 
						|
      CurrentLoadStore->NextLoadStore = NextLoadStore;
 | 
						|
  } else {
 | 
						|
    LastLoadStoreInRegion = CurrentLoadStore;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \returns the AA location that is being access by the instruction.
 | 
						|
static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) {
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return AA->getLocation(SI);
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return AA->getLocation(LI);
 | 
						|
  return AliasAnalysis::Location();
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
 | 
						|
                                                     bool InsertInReadyList,
 | 
						|
                                                     AliasAnalysis *AA) {
 | 
						|
  assert(SD->isSchedulingEntity());
 | 
						|
 | 
						|
  SmallVector<ScheduleData *, 10> WorkList;
 | 
						|
  WorkList.push_back(SD);
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    ScheduleData *SD = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    ScheduleData *BundleMember = SD;
 | 
						|
    while (BundleMember) {
 | 
						|
      assert(isInSchedulingRegion(BundleMember));
 | 
						|
      if (!BundleMember->hasValidDependencies()) {
 | 
						|
 | 
						|
        DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
 | 
						|
        BundleMember->Dependencies = 0;
 | 
						|
        BundleMember->resetUnscheduledDeps();
 | 
						|
 | 
						|
        // Handle def-use chain dependencies.
 | 
						|
        for (User *U : BundleMember->Inst->users()) {
 | 
						|
          if (isa<Instruction>(U)) {
 | 
						|
            ScheduleData *UseSD = getScheduleData(U);
 | 
						|
            if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | 
						|
              BundleMember->Dependencies++;
 | 
						|
              ScheduleData *DestBundle = UseSD->FirstInBundle;
 | 
						|
              if (!DestBundle->IsScheduled) {
 | 
						|
                BundleMember->incrementUnscheduledDeps(1);
 | 
						|
              }
 | 
						|
              if (!DestBundle->hasValidDependencies()) {
 | 
						|
                WorkList.push_back(DestBundle);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            // I'm not sure if this can ever happen. But we need to be safe.
 | 
						|
            // This lets the instruction/bundle never be scheduled and eventally
 | 
						|
            // disable vectorization.
 | 
						|
            BundleMember->Dependencies++;
 | 
						|
            BundleMember->incrementUnscheduledDeps(1);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Handle the memory dependencies.
 | 
						|
        ScheduleData *DepDest = BundleMember->NextLoadStore;
 | 
						|
        if (DepDest) {
 | 
						|
          AliasAnalysis::Location SrcLoc = getLocation(BundleMember->Inst, AA);
 | 
						|
          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
 | 
						|
 | 
						|
          while (DepDest) {
 | 
						|
            assert(isInSchedulingRegion(DepDest));
 | 
						|
            if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) {
 | 
						|
              AliasAnalysis::Location DstLoc = getLocation(DepDest->Inst, AA);
 | 
						|
              if (!SrcLoc.Ptr || !DstLoc.Ptr || AA->alias(SrcLoc, DstLoc)) {
 | 
						|
                DepDest->MemoryDependencies.push_back(BundleMember);
 | 
						|
                BundleMember->Dependencies++;
 | 
						|
                ScheduleData *DestBundle = DepDest->FirstInBundle;
 | 
						|
                if (!DestBundle->IsScheduled) {
 | 
						|
                  BundleMember->incrementUnscheduledDeps(1);
 | 
						|
                }
 | 
						|
                if (!DestBundle->hasValidDependencies()) {
 | 
						|
                  WorkList.push_back(DestBundle);
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
            DepDest = DepDest->NextLoadStore;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      BundleMember = BundleMember->NextInBundle;
 | 
						|
    }
 | 
						|
    if (InsertInReadyList && SD->isReady()) {
 | 
						|
      ReadyInsts.push_back(SD);
 | 
						|
      DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::resetSchedule() {
 | 
						|
  assert(ScheduleStart &&
 | 
						|
         "tried to reset schedule on block which has not been scheduled");
 | 
						|
  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = getScheduleData(I);
 | 
						|
    assert(isInSchedulingRegion(SD));
 | 
						|
    SD->IsScheduled = false;
 | 
						|
    SD->resetUnscheduledDeps();
 | 
						|
  }
 | 
						|
  ReadyInsts.clear();
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
 | 
						|
  
 | 
						|
  if (!BS->ScheduleStart)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 | 
						|
 | 
						|
  BS->resetSchedule();
 | 
						|
 | 
						|
  // For the real scheduling we use a more sophisticated ready-list: it is
 | 
						|
  // sorted by the original instruction location. This lets the final schedule
 | 
						|
  // be as  close as possible to the original instruction order.
 | 
						|
  struct ScheduleDataCompare {
 | 
						|
    bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
 | 
						|
      return SD2->SchedulingPriority < SD1->SchedulingPriority;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
 | 
						|
 | 
						|
  // Ensure that all depencency data is updated and fill the ready-list with
 | 
						|
  // initial instructions.
 | 
						|
  int Idx = 0;
 | 
						|
  int NumToSchedule = 0;
 | 
						|
  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
 | 
						|
       I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = BS->getScheduleData(I);
 | 
						|
    assert(
 | 
						|
        SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
 | 
						|
        "scheduler and vectorizer have different opinion on what is a bundle");
 | 
						|
    SD->FirstInBundle->SchedulingPriority = Idx++;
 | 
						|
    if (SD->isSchedulingEntity()) {
 | 
						|
      BS->calculateDependencies(SD, false, AA);
 | 
						|
      NumToSchedule++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BS->initialFillReadyList(ReadyInsts);
 | 
						|
 | 
						|
  Instruction *LastScheduledInst = BS->ScheduleEnd;
 | 
						|
 | 
						|
  // Do the "real" scheduling.
 | 
						|
  while (!ReadyInsts.empty()) {
 | 
						|
    ScheduleData *picked = *ReadyInsts.begin();
 | 
						|
    ReadyInsts.erase(ReadyInsts.begin());
 | 
						|
 | 
						|
    // Move the scheduled instruction(s) to their dedicated places, if not
 | 
						|
    // there yet.
 | 
						|
    ScheduleData *BundleMember = picked;
 | 
						|
    while (BundleMember) {
 | 
						|
      Instruction *pickedInst = BundleMember->Inst;
 | 
						|
      if (LastScheduledInst->getNextNode() != pickedInst) {
 | 
						|
        BS->BB->getInstList().remove(pickedInst);
 | 
						|
        BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
 | 
						|
      }
 | 
						|
      LastScheduledInst = pickedInst;
 | 
						|
      BundleMember = BundleMember->NextInBundle;
 | 
						|
    }
 | 
						|
 | 
						|
    BS->schedule(picked, ReadyInsts);
 | 
						|
    NumToSchedule--;
 | 
						|
  }
 | 
						|
  assert(NumToSchedule == 0 && "could not schedule all instructions");
 | 
						|
 | 
						|
  // Avoid duplicate scheduling of the block.
 | 
						|
  BS->ScheduleStart = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// The SLPVectorizer Pass.
 | 
						|
struct SLPVectorizer : public FunctionPass {
 | 
						|
  typedef SmallVector<StoreInst *, 8> StoreList;
 | 
						|
  typedef MapVector<Value *, StoreList> StoreListMap;
 | 
						|
 | 
						|
  /// Pass identification, replacement for typeid
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  explicit SLPVectorizer() : FunctionPass(ID) {
 | 
						|
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  const DataLayout *DL;
 | 
						|
  TargetTransformInfo *TTI;
 | 
						|
  TargetLibraryInfo *TLI;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  AssumptionTracker *AT;
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipOptnoneFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    SE = &getAnalysis<ScalarEvolution>();
 | 
						|
    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
    DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
    TTI = &getAnalysis<TargetTransformInfo>();
 | 
						|
    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 | 
						|
    AA = &getAnalysis<AliasAnalysis>();
 | 
						|
    LI = &getAnalysis<LoopInfo>();
 | 
						|
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    AT = &getAnalysis<AssumptionTracker>();
 | 
						|
 | 
						|
    StoreRefs.clear();
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // If the target claims to have no vector registers don't attempt
 | 
						|
    // vectorization.
 | 
						|
    if (!TTI->getNumberOfRegisters(true))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Must have DataLayout. We can't require it because some tests run w/o
 | 
						|
    // triple.
 | 
						|
    if (!DL)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Don't vectorize when the attribute NoImplicitFloat is used.
 | 
						|
    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
 | 
						|
      return false;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | 
						|
 | 
						|
    // Use the bottom up slp vectorizer to construct chains that start with
 | 
						|
    // store instructions.
 | 
						|
    BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT, AT);
 | 
						|
 | 
						|
    // Scan the blocks in the function in post order.
 | 
						|
    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
 | 
						|
         e = po_end(&F.getEntryBlock()); it != e; ++it) {
 | 
						|
      BasicBlock *BB = *it;
 | 
						|
      // Vectorize trees that end at stores.
 | 
						|
      if (unsigned count = collectStores(BB, R)) {
 | 
						|
        (void)count;
 | 
						|
        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
 | 
						|
        Changed |= vectorizeStoreChains(R);
 | 
						|
      }
 | 
						|
 | 
						|
      // Vectorize trees that end at reductions.
 | 
						|
      Changed |= vectorizeChainsInBlock(BB, R);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Changed) {
 | 
						|
      R.optimizeGatherSequence();
 | 
						|
      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | 
						|
      DEBUG(verifyFunction(F));
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
    AU.addRequired<AssumptionTracker>();
 | 
						|
    AU.addRequired<ScalarEvolution>();
 | 
						|
    AU.addRequired<AliasAnalysis>();
 | 
						|
    AU.addRequired<TargetTransformInfo>();
 | 
						|
    AU.addRequired<LoopInfo>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<LoopInfo>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  /// \brief Collect memory references and sort them according to their base
 | 
						|
  /// object. We sort the stores to their base objects to reduce the cost of the
 | 
						|
  /// quadratic search on the stores. TODO: We can further reduce this cost
 | 
						|
  /// if we flush the chain creation every time we run into a memory barrier.
 | 
						|
  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
 | 
						|
 | 
						|
  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
 | 
						|
  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
 | 
						|
 | 
						|
  /// \brief Try to vectorize a list of operands.
 | 
						|
  /// \@param BuildVector A list of users to ignore for the purpose of
 | 
						|
  ///                     scheduling and that don't need extracting.
 | 
						|
  /// \returns true if a value was vectorized.
 | 
						|
  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | 
						|
                          ArrayRef<Value *> BuildVector = None,
 | 
						|
                          bool allowReorder = false);
 | 
						|
 | 
						|
  /// \brief Try to vectorize a chain that may start at the operands of \V;
 | 
						|
  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
 | 
						|
 | 
						|
  /// \brief Vectorize the stores that were collected in StoreRefs.
 | 
						|
  bool vectorizeStoreChains(BoUpSLP &R);
 | 
						|
 | 
						|
  /// \brief Scan the basic block and look for patterns that are likely to start
 | 
						|
  /// a vectorization chain.
 | 
						|
  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
 | 
						|
 | 
						|
  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
 | 
						|
                           BoUpSLP &R);
 | 
						|
 | 
						|
  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
 | 
						|
                       BoUpSLP &R);
 | 
						|
private:
 | 
						|
  StoreListMap StoreRefs;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Check that the Values in the slice in VL array are still existent in
 | 
						|
/// the WeakVH array.
 | 
						|
/// Vectorization of part of the VL array may cause later values in the VL array
 | 
						|
/// to become invalid. We track when this has happened in the WeakVH array.
 | 
						|
static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
 | 
						|
                               SmallVectorImpl<WeakVH> &VH,
 | 
						|
                               unsigned SliceBegin,
 | 
						|
                               unsigned SliceSize) {
 | 
						|
  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
 | 
						|
    if (VH[i] != VL[i])
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
 | 
						|
                                          int CostThreshold, BoUpSLP &R) {
 | 
						|
  unsigned ChainLen = Chain.size();
 | 
						|
  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | 
						|
        << "\n");
 | 
						|
  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
 | 
						|
  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
 | 
						|
  unsigned VF = MinVecRegSize / Sz;
 | 
						|
 | 
						|
  if (!isPowerOf2_32(Sz) || VF < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Keep track of values that were deleted by vectorizing in the loop below.
 | 
						|
  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  // Look for profitable vectorizable trees at all offsets, starting at zero.
 | 
						|
  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
 | 
						|
    if (i + VF > e)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Check that a previous iteration of this loop did not delete the Value.
 | 
						|
    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | 
						|
          << "\n");
 | 
						|
    ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | 
						|
 | 
						|
    R.buildTree(Operands);
 | 
						|
 | 
						|
    int Cost = R.getTreeCost();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
 | 
						|
    if (Cost < CostThreshold) {
 | 
						|
      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | 
						|
      R.vectorizeTree();
 | 
						|
 | 
						|
      // Move to the next bundle.
 | 
						|
      i += VF - 1;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | 
						|
                                    int costThreshold, BoUpSLP &R) {
 | 
						|
  SetVector<Value *> Heads, Tails;
 | 
						|
  SmallDenseMap<Value *, Value *> ConsecutiveChain;
 | 
						|
 | 
						|
  // We may run into multiple chains that merge into a single chain. We mark the
 | 
						|
  // stores that we vectorized so that we don't visit the same store twice.
 | 
						|
  BoUpSLP::ValueSet VectorizedStores;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Do a quadratic search on all of the given stores and find
 | 
						|
  // all of the pairs of stores that follow each other.
 | 
						|
  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
 | 
						|
    for (unsigned j = 0; j < e; ++j) {
 | 
						|
      if (i == j)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
 | 
						|
        Tails.insert(Stores[j]);
 | 
						|
        Heads.insert(Stores[i]);
 | 
						|
        ConsecutiveChain[Stores[i]] = Stores[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For stores that start but don't end a link in the chain:
 | 
						|
  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
 | 
						|
       it != e; ++it) {
 | 
						|
    if (Tails.count(*it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We found a store instr that starts a chain. Now follow the chain and try
 | 
						|
    // to vectorize it.
 | 
						|
    BoUpSLP::ValueList Operands;
 | 
						|
    Value *I = *it;
 | 
						|
    // Collect the chain into a list.
 | 
						|
    while (Tails.count(I) || Heads.count(I)) {
 | 
						|
      if (VectorizedStores.count(I))
 | 
						|
        break;
 | 
						|
      Operands.push_back(I);
 | 
						|
      // Move to the next value in the chain.
 | 
						|
      I = ConsecutiveChain[I];
 | 
						|
    }
 | 
						|
 | 
						|
    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
 | 
						|
 | 
						|
    // Mark the vectorized stores so that we don't vectorize them again.
 | 
						|
    if (Vectorized)
 | 
						|
      VectorizedStores.insert(Operands.begin(), Operands.end());
 | 
						|
    Changed |= Vectorized;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
 | 
						|
  unsigned count = 0;
 | 
						|
  StoreRefs.clear();
 | 
						|
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | 
						|
    StoreInst *SI = dyn_cast<StoreInst>(it);
 | 
						|
    if (!SI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't touch volatile stores.
 | 
						|
    if (!SI->isSimple())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that the pointer points to scalars.
 | 
						|
    Type *Ty = SI->getValueOperand()->getType();
 | 
						|
    if (Ty->isAggregateType() || Ty->isVectorTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Find the base pointer.
 | 
						|
    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
 | 
						|
 | 
						|
    // Save the store locations.
 | 
						|
    StoreRefs[Ptr].push_back(SI);
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | 
						|
  if (!A || !B)
 | 
						|
    return false;
 | 
						|
  Value *VL[] = { A, B };
 | 
						|
  return tryToVectorizeList(VL, R, None, true);
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | 
						|
                                       ArrayRef<Value *> BuildVector,
 | 
						|
                                       bool allowReorder) {
 | 
						|
  if (VL.size() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
 | 
						|
 | 
						|
  // Check that all of the parts are scalar instructions of the same type.
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opcode0 = I0->getOpcode();
 | 
						|
 | 
						|
  Type *Ty0 = I0->getType();
 | 
						|
  unsigned Sz = DL->getTypeSizeInBits(Ty0);
 | 
						|
  unsigned VF = MinVecRegSize / Sz;
 | 
						|
 | 
						|
  for (int i = 0, e = VL.size(); i < e; ++i) {
 | 
						|
    Type *Ty = VL[i]->getType();
 | 
						|
    if (Ty->isAggregateType() || Ty->isVectorTy())
 | 
						|
      return false;
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!Inst || Inst->getOpcode() != Opcode0)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Keep track of values that were deleted by vectorizing in the loop below.
 | 
						|
  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | 
						|
    unsigned OpsWidth = 0;
 | 
						|
 | 
						|
    if (i + VF > e)
 | 
						|
      OpsWidth = e - i;
 | 
						|
    else
 | 
						|
      OpsWidth = VF;
 | 
						|
 | 
						|
    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Check that a previous iteration of this loop did not delete the Value.
 | 
						|
    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
 | 
						|
                 << "\n");
 | 
						|
    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
 | 
						|
 | 
						|
    ArrayRef<Value *> BuildVectorSlice;
 | 
						|
    if (!BuildVector.empty())
 | 
						|
      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
 | 
						|
 | 
						|
    R.buildTree(Ops, BuildVectorSlice);
 | 
						|
    // TODO: check if we can allow reordering also for other cases than
 | 
						|
    // tryToVectorizePair()
 | 
						|
    if (allowReorder && R.shouldReorder()) {
 | 
						|
      assert(Ops.size() == 2);
 | 
						|
      assert(BuildVectorSlice.empty());
 | 
						|
      Value *ReorderedOps[] = { Ops[1], Ops[0] };
 | 
						|
      R.buildTree(ReorderedOps, None);
 | 
						|
    }
 | 
						|
    int Cost = R.getTreeCost();
 | 
						|
 | 
						|
    if (Cost < -SLPCostThreshold) {
 | 
						|
      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
 | 
						|
      Value *VectorizedRoot = R.vectorizeTree();
 | 
						|
 | 
						|
      // Reconstruct the build vector by extracting the vectorized root. This
 | 
						|
      // way we handle the case where some elements of the vector are undefined.
 | 
						|
      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
 | 
						|
      if (!BuildVectorSlice.empty()) {
 | 
						|
        // The insert point is the last build vector instruction. The vectorized
 | 
						|
        // root will precede it. This guarantees that we get an instruction. The
 | 
						|
        // vectorized tree could have been constant folded.
 | 
						|
        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
 | 
						|
        unsigned VecIdx = 0;
 | 
						|
        for (auto &V : BuildVectorSlice) {
 | 
						|
          IRBuilder<true, NoFolder> Builder(
 | 
						|
              ++BasicBlock::iterator(InsertAfter));
 | 
						|
          InsertElementInst *IE = cast<InsertElementInst>(V);
 | 
						|
          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
 | 
						|
              VectorizedRoot, Builder.getInt32(VecIdx++)));
 | 
						|
          IE->setOperand(1, Extract);
 | 
						|
          IE->removeFromParent();
 | 
						|
          IE->insertAfter(Extract);
 | 
						|
          InsertAfter = IE;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Move to the next bundle.
 | 
						|
      i += VF - 1;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
 | 
						|
  if (!V)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to vectorize V.
 | 
						|
  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
 | 
						|
    return true;
 | 
						|
 | 
						|
  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
 | 
						|
  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
 | 
						|
  // Try to skip B.
 | 
						|
  if (B && B->hasOneUse()) {
 | 
						|
    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | 
						|
    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | 
						|
    if (tryToVectorizePair(A, B0, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (tryToVectorizePair(A, B1, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to skip A.
 | 
						|
  if (A && A->hasOneUse()) {
 | 
						|
    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | 
						|
    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | 
						|
    if (tryToVectorizePair(A0, B, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (tryToVectorizePair(A1, B, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generate a shuffle mask to be used in a reduction tree.
 | 
						|
///
 | 
						|
/// \param VecLen The length of the vector to be reduced.
 | 
						|
/// \param NumEltsToRdx The number of elements that should be reduced in the
 | 
						|
///        vector.
 | 
						|
/// \param IsPairwise Whether the reduction is a pairwise or splitting
 | 
						|
///        reduction. A pairwise reduction will generate a mask of 
 | 
						|
///        <0,2,...> or <1,3,..> while a splitting reduction will generate
 | 
						|
///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
 | 
						|
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
 | 
						|
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
 | 
						|
                                   bool IsPairwise, bool IsLeft,
 | 
						|
                                   IRBuilder<> &Builder) {
 | 
						|
  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
 | 
						|
 | 
						|
  SmallVector<Constant *, 32> ShuffleMask(
 | 
						|
      VecLen, UndefValue::get(Builder.getInt32Ty()));
 | 
						|
 | 
						|
  if (IsPairwise)
 | 
						|
    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
 | 
						|
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | 
						|
      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
 | 
						|
  else
 | 
						|
    // Move the upper half of the vector to the lower half.
 | 
						|
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | 
						|
      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
 | 
						|
 | 
						|
  return ConstantVector::get(ShuffleMask);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Model horizontal reductions.
 | 
						|
///
 | 
						|
/// A horizontal reduction is a tree of reduction operations (currently add and
 | 
						|
/// fadd) that has operations that can be put into a vector as its leaf.
 | 
						|
/// For example, this tree:
 | 
						|
///
 | 
						|
/// mul mul mul mul
 | 
						|
///  \  /    \  /
 | 
						|
///   +       +
 | 
						|
///    \     /
 | 
						|
///       +
 | 
						|
/// This tree has "mul" as its reduced values and "+" as its reduction
 | 
						|
/// operations. A reduction might be feeding into a store or a binary operation
 | 
						|
/// feeding a phi.
 | 
						|
///    ...
 | 
						|
///    \  /
 | 
						|
///     +
 | 
						|
///     |
 | 
						|
///  phi +=
 | 
						|
///
 | 
						|
///  Or:
 | 
						|
///    ...
 | 
						|
///    \  /
 | 
						|
///     +
 | 
						|
///     |
 | 
						|
///   *p =
 | 
						|
///
 | 
						|
class HorizontalReduction {
 | 
						|
  SmallVector<Value *, 16> ReductionOps;
 | 
						|
  SmallVector<Value *, 32> ReducedVals;
 | 
						|
 | 
						|
  BinaryOperator *ReductionRoot;
 | 
						|
  PHINode *ReductionPHI;
 | 
						|
 | 
						|
  /// The opcode of the reduction.
 | 
						|
  unsigned ReductionOpcode;
 | 
						|
  /// The opcode of the values we perform a reduction on.
 | 
						|
  unsigned ReducedValueOpcode;
 | 
						|
  /// The width of one full horizontal reduction operation.
 | 
						|
  unsigned ReduxWidth;
 | 
						|
  /// Should we model this reduction as a pairwise reduction tree or a tree that
 | 
						|
  /// splits the vector in halves and adds those halves.
 | 
						|
  bool IsPairwiseReduction;
 | 
						|
 | 
						|
public:
 | 
						|
  HorizontalReduction()
 | 
						|
    : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
 | 
						|
    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
 | 
						|
 | 
						|
  /// \brief Try to find a reduction tree.
 | 
						|
  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
 | 
						|
                                 const DataLayout *DL) {
 | 
						|
    assert((!Phi ||
 | 
						|
            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
 | 
						|
           "Thi phi needs to use the binary operator");
 | 
						|
 | 
						|
    // We could have a initial reductions that is not an add.
 | 
						|
    //  r *= v1 + v2 + v3 + v4
 | 
						|
    // In such a case start looking for a tree rooted in the first '+'.
 | 
						|
    if (Phi) {
 | 
						|
      if (B->getOperand(0) == Phi) {
 | 
						|
        Phi = nullptr;
 | 
						|
        B = dyn_cast<BinaryOperator>(B->getOperand(1));
 | 
						|
      } else if (B->getOperand(1) == Phi) {
 | 
						|
        Phi = nullptr;
 | 
						|
        B = dyn_cast<BinaryOperator>(B->getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!B)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Type *Ty = B->getType();
 | 
						|
    if (Ty->isVectorTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    ReductionOpcode = B->getOpcode();
 | 
						|
    ReducedValueOpcode = 0;
 | 
						|
    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
 | 
						|
    ReductionRoot = B;
 | 
						|
    ReductionPHI = Phi;
 | 
						|
 | 
						|
    if (ReduxWidth < 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We currently only support adds.
 | 
						|
    if (ReductionOpcode != Instruction::Add &&
 | 
						|
        ReductionOpcode != Instruction::FAdd)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Post order traverse the reduction tree starting at B. We only handle true
 | 
						|
    // trees containing only binary operators.
 | 
						|
    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
 | 
						|
    Stack.push_back(std::make_pair(B, 0));
 | 
						|
    while (!Stack.empty()) {
 | 
						|
      BinaryOperator *TreeN = Stack.back().first;
 | 
						|
      unsigned EdgeToVist = Stack.back().second++;
 | 
						|
      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
 | 
						|
 | 
						|
      // Only handle trees in the current basic block.
 | 
						|
      if (TreeN->getParent() != B->getParent())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Each tree node needs to have one user except for the ultimate
 | 
						|
      // reduction.
 | 
						|
      if (!TreeN->hasOneUse() && TreeN != B)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Postorder vist.
 | 
						|
      if (EdgeToVist == 2 || IsReducedValue) {
 | 
						|
        if (IsReducedValue) {
 | 
						|
          // Make sure that the opcodes of the operations that we are going to
 | 
						|
          // reduce match.
 | 
						|
          if (!ReducedValueOpcode)
 | 
						|
            ReducedValueOpcode = TreeN->getOpcode();
 | 
						|
          else if (ReducedValueOpcode != TreeN->getOpcode())
 | 
						|
            return false;
 | 
						|
          ReducedVals.push_back(TreeN);
 | 
						|
        } else {
 | 
						|
          // We need to be able to reassociate the adds.
 | 
						|
          if (!TreeN->isAssociative())
 | 
						|
            return false;
 | 
						|
          ReductionOps.push_back(TreeN);
 | 
						|
        }
 | 
						|
        // Retract.
 | 
						|
        Stack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Visit left or right.
 | 
						|
      Value *NextV = TreeN->getOperand(EdgeToVist);
 | 
						|
      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
 | 
						|
      if (Next)
 | 
						|
        Stack.push_back(std::make_pair(Next, 0));
 | 
						|
      else if (NextV != Phi)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Attempt to vectorize the tree found by
 | 
						|
  /// matchAssociativeReduction.
 | 
						|
  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
 | 
						|
    if (ReducedVals.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NumReducedVals = ReducedVals.size();
 | 
						|
    if (NumReducedVals < ReduxWidth)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *VectorizedTree = nullptr;
 | 
						|
    IRBuilder<> Builder(ReductionRoot);
 | 
						|
    FastMathFlags Unsafe;
 | 
						|
    Unsafe.setUnsafeAlgebra();
 | 
						|
    Builder.SetFastMathFlags(Unsafe);
 | 
						|
    unsigned i = 0;
 | 
						|
 | 
						|
    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
 | 
						|
      V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
 | 
						|
 | 
						|
      // Estimate cost.
 | 
						|
      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
 | 
						|
      if (Cost >= -SLPCostThreshold)
 | 
						|
        break;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
 | 
						|
                   << ". (HorRdx)\n");
 | 
						|
 | 
						|
      // Vectorize a tree.
 | 
						|
      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
 | 
						|
      Value *VectorizedRoot = V.vectorizeTree();
 | 
						|
 | 
						|
      // Emit a reduction.
 | 
						|
      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
 | 
						|
      if (VectorizedTree) {
 | 
						|
        Builder.SetCurrentDebugLocation(Loc);
 | 
						|
        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | 
						|
                                     ReducedSubTree, "bin.rdx");
 | 
						|
      } else
 | 
						|
        VectorizedTree = ReducedSubTree;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VectorizedTree) {
 | 
						|
      // Finish the reduction.
 | 
						|
      for (; i < NumReducedVals; ++i) {
 | 
						|
        Builder.SetCurrentDebugLocation(
 | 
						|
          cast<Instruction>(ReducedVals[i])->getDebugLoc());
 | 
						|
        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | 
						|
                                     ReducedVals[i]);
 | 
						|
      }
 | 
						|
      // Update users.
 | 
						|
      if (ReductionPHI) {
 | 
						|
        assert(ReductionRoot && "Need a reduction operation");
 | 
						|
        ReductionRoot->setOperand(0, VectorizedTree);
 | 
						|
        ReductionRoot->setOperand(1, ReductionPHI);
 | 
						|
      } else
 | 
						|
        ReductionRoot->replaceAllUsesWith(VectorizedTree);
 | 
						|
    }
 | 
						|
    return VectorizedTree != nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  /// \brief Calcuate the cost of a reduction.
 | 
						|
  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
 | 
						|
    Type *ScalarTy = FirstReducedVal->getType();
 | 
						|
    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
 | 
						|
 | 
						|
    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
 | 
						|
    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
 | 
						|
 | 
						|
    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
 | 
						|
    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
 | 
						|
 | 
						|
    int ScalarReduxCost =
 | 
						|
        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
 | 
						|
                 << " for reduction that starts with " << *FirstReducedVal
 | 
						|
                 << " (It is a "
 | 
						|
                 << (IsPairwiseReduction ? "pairwise" : "splitting")
 | 
						|
                 << " reduction)\n");
 | 
						|
 | 
						|
    return VecReduxCost - ScalarReduxCost;
 | 
						|
  }
 | 
						|
 | 
						|
  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
 | 
						|
                            Value *R, const Twine &Name = "") {
 | 
						|
    if (Opcode == Instruction::FAdd)
 | 
						|
      return Builder.CreateFAdd(L, R, Name);
 | 
						|
    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Emit a horizontal reduction of the vectorized value.
 | 
						|
  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
 | 
						|
    assert(VectorizedValue && "Need to have a vectorized tree node");
 | 
						|
    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
 | 
						|
    assert(isPowerOf2_32(ReduxWidth) &&
 | 
						|
           "We only handle power-of-two reductions for now");
 | 
						|
 | 
						|
    Value *TmpVec = ValToReduce;
 | 
						|
    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
 | 
						|
      if (IsPairwiseReduction) {
 | 
						|
        Value *LeftMask =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
 | 
						|
        Value *RightMask =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
 | 
						|
 | 
						|
        Value *LeftShuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
 | 
						|
        Value *RightShuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
 | 
						|
          "rdx.shuf.r");
 | 
						|
        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
 | 
						|
                             "bin.rdx");
 | 
						|
      } else {
 | 
						|
        Value *UpperHalf =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
 | 
						|
        Value *Shuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
 | 
						|
        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The result is in the first element of the vector.
 | 
						|
    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Recognize construction of vectors like
 | 
						|
///  %ra = insertelement <4 x float> undef, float %s0, i32 0
 | 
						|
///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
 | 
						|
///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
 | 
						|
///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
 | 
						|
///
 | 
						|
/// Returns true if it matches
 | 
						|
///
 | 
						|
static bool findBuildVector(InsertElementInst *FirstInsertElem,
 | 
						|
                            SmallVectorImpl<Value *> &BuildVector,
 | 
						|
                            SmallVectorImpl<Value *> &BuildVectorOpds) {
 | 
						|
  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  InsertElementInst *IE = FirstInsertElem;
 | 
						|
  while (true) {
 | 
						|
    BuildVector.push_back(IE);
 | 
						|
    BuildVectorOpds.push_back(IE->getOperand(1));
 | 
						|
 | 
						|
    if (IE->use_empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
 | 
						|
    if (!NextUse)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If this isn't the final use, make sure the next insertelement is the only
 | 
						|
    // use. It's OK if the final constructed vector is used multiple times
 | 
						|
    if (!IE->hasOneUse())
 | 
						|
      return false;
 | 
						|
 | 
						|
    IE = NextUse;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
 | 
						|
  return V->getType() < V2->getType();
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<Value *, 4> Incoming;
 | 
						|
  SmallSet<Value *, 16> VisitedInstrs;
 | 
						|
 | 
						|
  bool HaveVectorizedPhiNodes = true;
 | 
						|
  while (HaveVectorizedPhiNodes) {
 | 
						|
    HaveVectorizedPhiNodes = false;
 | 
						|
 | 
						|
    // Collect the incoming values from the PHIs.
 | 
						|
    Incoming.clear();
 | 
						|
    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
 | 
						|
         ++instr) {
 | 
						|
      PHINode *P = dyn_cast<PHINode>(instr);
 | 
						|
      if (!P)
 | 
						|
        break;
 | 
						|
 | 
						|
      if (!VisitedInstrs.count(P))
 | 
						|
        Incoming.push_back(P);
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort by type.
 | 
						|
    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
 | 
						|
 | 
						|
    // Try to vectorize elements base on their type.
 | 
						|
    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
 | 
						|
                                           E = Incoming.end();
 | 
						|
         IncIt != E;) {
 | 
						|
 | 
						|
      // Look for the next elements with the same type.
 | 
						|
      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
 | 
						|
      while (SameTypeIt != E &&
 | 
						|
             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
 | 
						|
        VisitedInstrs.insert(*SameTypeIt);
 | 
						|
        ++SameTypeIt;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to vectorize them.
 | 
						|
      unsigned NumElts = (SameTypeIt - IncIt);
 | 
						|
      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
 | 
						|
      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
 | 
						|
        // Success start over because instructions might have been changed.
 | 
						|
        HaveVectorizedPhiNodes = true;
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Start over at the next instruction of a different type (or the end).
 | 
						|
      IncIt = SameTypeIt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  VisitedInstrs.clear();
 | 
						|
 | 
						|
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
 | 
						|
    // We may go through BB multiple times so skip the one we have checked.
 | 
						|
    if (!VisitedInstrs.insert(it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isa<DbgInfoIntrinsic>(it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Try to vectorize reductions that use PHINodes.
 | 
						|
    if (PHINode *P = dyn_cast<PHINode>(it)) {
 | 
						|
      // Check that the PHI is a reduction PHI.
 | 
						|
      if (P->getNumIncomingValues() != 2)
 | 
						|
        return Changed;
 | 
						|
      Value *Rdx =
 | 
						|
          (P->getIncomingBlock(0) == BB
 | 
						|
               ? (P->getIncomingValue(0))
 | 
						|
               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
 | 
						|
                                               : nullptr));
 | 
						|
      // Check if this is a Binary Operator.
 | 
						|
      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
 | 
						|
      if (!BI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Try to match and vectorize a horizontal reduction.
 | 
						|
      HorizontalReduction HorRdx;
 | 
						|
      if (ShouldVectorizeHor &&
 | 
						|
          HorRdx.matchAssociativeReduction(P, BI, DL) &&
 | 
						|
          HorRdx.tryToReduce(R, TTI)) {
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
     Value *Inst = BI->getOperand(0);
 | 
						|
      if (Inst == P)
 | 
						|
        Inst = BI->getOperand(1);
 | 
						|
 | 
						|
      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
 | 
						|
        // We would like to start over since some instructions are deleted
 | 
						|
        // and the iterator may become invalid value.
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to vectorize horizontal reductions feeding into a store.
 | 
						|
    if (ShouldStartVectorizeHorAtStore)
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(it))
 | 
						|
        if (BinaryOperator *BinOp =
 | 
						|
                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
 | 
						|
          HorizontalReduction HorRdx;
 | 
						|
          if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
 | 
						|
                HorRdx.tryToReduce(R, TTI)) ||
 | 
						|
               tryToVectorize(BinOp, R))) {
 | 
						|
            Changed = true;
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    // Try to vectorize trees that start at compare instructions.
 | 
						|
    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
 | 
						|
      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
 | 
						|
        Changed = true;
 | 
						|
        // We would like to start over since some instructions are deleted
 | 
						|
        // and the iterator may become invalid value.
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      for (int i = 0; i < 2; ++i) {
 | 
						|
        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
 | 
						|
          if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
 | 
						|
            Changed = true;
 | 
						|
            // We would like to start over since some instructions are deleted
 | 
						|
            // and the iterator may become invalid value.
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to vectorize trees that start at insertelement instructions.
 | 
						|
    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
 | 
						|
      SmallVector<Value *, 16> BuildVector;
 | 
						|
      SmallVector<Value *, 16> BuildVectorOpds;
 | 
						|
      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Vectorize starting with the build vector operands ignoring the
 | 
						|
      // BuildVector instructions for the purpose of scheduling and user
 | 
						|
      // extraction.
 | 
						|
      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
 | 
						|
  bool Changed = false;
 | 
						|
  // Attempt to sort and vectorize each of the store-groups.
 | 
						|
  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
 | 
						|
       it != e; ++it) {
 | 
						|
    if (it->second.size() < 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | 
						|
          << it->second.size() << ".\n");
 | 
						|
 | 
						|
    // Process the stores in chunks of 16.
 | 
						|
    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
 | 
						|
      unsigned Len = std::min<unsigned>(CE - CI, 16);
 | 
						|
      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
 | 
						|
                                 -SLPCostThreshold, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char SLPVectorizer::ID = 0;
 | 
						|
static const char lv_name[] = "SLP Vectorizer";
 | 
						|
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 | 
						|
}
 |