mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This patch refactors the definition of common utility function "isInductionPHI" to LoopUtils.cpp. This fixes compilation error when configured with -DBUILD_SHARED_LIBS=ON git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235577 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			500 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			500 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines common loop utility functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-utils"
 | 
						|
 | 
						|
bool ReductionDescriptor::areAllUsesIn(Instruction *I,
 | 
						|
                                       SmallPtrSetImpl<Instruction *> &Set) {
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | 
						|
    if (!Set.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
 | 
						|
                                          Loop *TheLoop, bool HasFunNoNaNAttr,
 | 
						|
                                          ReductionDescriptor &RedDes) {
 | 
						|
  if (Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reduction variables are only found in the loop header block.
 | 
						|
  if (Phi->getParent() != TheLoop->getHeader())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Obtain the reduction start value from the value that comes from the loop
 | 
						|
  // preheader.
 | 
						|
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | 
						|
 | 
						|
  // ExitInstruction is the single value which is used outside the loop.
 | 
						|
  // We only allow for a single reduction value to be used outside the loop.
 | 
						|
  // This includes users of the reduction, variables (which form a cycle
 | 
						|
  // which ends in the phi node).
 | 
						|
  Instruction *ExitInstruction = nullptr;
 | 
						|
  // Indicates that we found a reduction operation in our scan.
 | 
						|
  bool FoundReduxOp = false;
 | 
						|
 | 
						|
  // We start with the PHI node and scan for all of the users of this
 | 
						|
  // instruction. All users must be instructions that can be used as reduction
 | 
						|
  // variables (such as ADD). We must have a single out-of-block user. The cycle
 | 
						|
  // must include the original PHI.
 | 
						|
  bool FoundStartPHI = false;
 | 
						|
 | 
						|
  // To recognize min/max patterns formed by a icmp select sequence, we store
 | 
						|
  // the number of instruction we saw from the recognized min/max pattern,
 | 
						|
  //  to make sure we only see exactly the two instructions.
 | 
						|
  unsigned NumCmpSelectPatternInst = 0;
 | 
						|
  ReductionInstDesc ReduxDesc(false, nullptr);
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 8> VisitedInsts;
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
  Worklist.push_back(Phi);
 | 
						|
  VisitedInsts.insert(Phi);
 | 
						|
 | 
						|
  // A value in the reduction can be used:
 | 
						|
  //  - By the reduction:
 | 
						|
  //      - Reduction operation:
 | 
						|
  //        - One use of reduction value (safe).
 | 
						|
  //        - Multiple use of reduction value (not safe).
 | 
						|
  //      - PHI:
 | 
						|
  //        - All uses of the PHI must be the reduction (safe).
 | 
						|
  //        - Otherwise, not safe.
 | 
						|
  //  - By one instruction outside of the loop (safe).
 | 
						|
  //  - By further instructions outside of the loop (not safe).
 | 
						|
  //  - By an instruction that is not part of the reduction (not safe).
 | 
						|
  //    This is either:
 | 
						|
  //      * An instruction type other than PHI or the reduction operation.
 | 
						|
  //      * A PHI in the header other than the initial PHI.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *Cur = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    // No Users.
 | 
						|
    // If the instruction has no users then this is a broken chain and can't be
 | 
						|
    // a reduction variable.
 | 
						|
    if (Cur->use_empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool IsAPhi = isa<PHINode>(Cur);
 | 
						|
 | 
						|
    // A header PHI use other than the original PHI.
 | 
						|
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Reductions of instructions such as Div, and Sub is only possible if the
 | 
						|
    // LHS is the reduction variable.
 | 
						|
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | 
						|
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | 
						|
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Any reduction instruction must be of one of the allowed kinds.
 | 
						|
    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
 | 
						|
    if (!ReduxDesc.isReduction())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A reduction operation must only have one use of the reduction value.
 | 
						|
    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
 | 
						|
        hasMultipleUsesOf(Cur, VisitedInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // All inputs to a PHI node must be a reduction value.
 | 
						|
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Kind == RK_IntegerMinMax &&
 | 
						|
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
 | 
						|
    // Check  whether we found a reduction operator.
 | 
						|
    FoundReduxOp |= !IsAPhi;
 | 
						|
 | 
						|
    // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | 
						|
    // onto the stack. This way we are going to have seen all inputs to PHI
 | 
						|
    // nodes once we get to them.
 | 
						|
    SmallVector<Instruction *, 8> NonPHIs;
 | 
						|
    SmallVector<Instruction *, 8> PHIs;
 | 
						|
    for (User *U : Cur->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
      // Check if we found the exit user.
 | 
						|
      BasicBlock *Parent = UI->getParent();
 | 
						|
      if (!TheLoop->contains(Parent)) {
 | 
						|
        // Exit if you find multiple outside users or if the header phi node is
 | 
						|
        // being used. In this case the user uses the value of the previous
 | 
						|
        // iteration, in which case we would loose "VF-1" iterations of the
 | 
						|
        // reduction operation if we vectorize.
 | 
						|
        if (ExitInstruction != nullptr || Cur == Phi)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // The instruction used by an outside user must be the last instruction
 | 
						|
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | 
						|
        // operations on the value.
 | 
						|
        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
 | 
						|
          return false;
 | 
						|
 | 
						|
        ExitInstruction = Cur;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Process instructions only once (termination). Each reduction cycle
 | 
						|
      // value must only be used once, except by phi nodes and min/max
 | 
						|
      // reductions which are represented as a cmp followed by a select.
 | 
						|
      ReductionInstDesc IgnoredVal(false, nullptr);
 | 
						|
      if (VisitedInsts.insert(UI).second) {
 | 
						|
        if (isa<PHINode>(UI))
 | 
						|
          PHIs.push_back(UI);
 | 
						|
        else
 | 
						|
          NonPHIs.push_back(UI);
 | 
						|
      } else if (!isa<PHINode>(UI) &&
 | 
						|
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
 | 
						|
                   !isa<SelectInst>(UI)) ||
 | 
						|
                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Remember that we completed the cycle.
 | 
						|
      if (UI == Phi)
 | 
						|
        FoundStartPHI = true;
 | 
						|
    }
 | 
						|
    Worklist.append(PHIs.begin(), PHIs.end());
 | 
						|
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // This means we have seen one but not the other instruction of the
 | 
						|
  // pattern or more than just a select and cmp.
 | 
						|
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
 | 
						|
      NumCmpSelectPatternInst != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We found a reduction var if we have reached the original phi node and we
 | 
						|
  // only have a single instruction with out-of-loop users.
 | 
						|
 | 
						|
  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
 | 
						|
  // is saved as part of the ReductionDescriptor.
 | 
						|
 | 
						|
  // Save the description of this reduction variable.
 | 
						|
  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
 | 
						|
                         ReduxDesc.getMinMaxKind());
 | 
						|
 | 
						|
  RedDes = RD;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | 
						|
/// pattern corresponding to a min(X, Y) or max(X, Y).
 | 
						|
ReductionInstDesc
 | 
						|
ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
 | 
						|
                                              ReductionInstDesc &Prev) {
 | 
						|
 | 
						|
  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
 | 
						|
         "Expect a select instruction");
 | 
						|
  Instruction *Cmp = nullptr;
 | 
						|
  SelectInst *Select = nullptr;
 | 
						|
 | 
						|
  // We must handle the select(cmp()) as a single instruction. Advance to the
 | 
						|
  // select.
 | 
						|
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
 | 
						|
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
 | 
						|
      return ReductionInstDesc(false, I);
 | 
						|
    return ReductionInstDesc(Select, Prev.getMinMaxKind());
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle single use cases for now.
 | 
						|
  if (!(Select = dyn_cast<SelectInst>(I)))
 | 
						|
    return ReductionInstDesc(false, I);
 | 
						|
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
 | 
						|
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
 | 
						|
    return ReductionInstDesc(false, I);
 | 
						|
  if (!Cmp->hasOneUse())
 | 
						|
    return ReductionInstDesc(false, I);
 | 
						|
 | 
						|
  Value *CmpLeft;
 | 
						|
  Value *CmpRight;
 | 
						|
 | 
						|
  // Look for a min/max pattern.
 | 
						|
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
 | 
						|
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
 | 
						|
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
 | 
						|
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
 | 
						|
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
 | 
						|
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
 | 
						|
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
 | 
						|
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
 | 
						|
 | 
						|
  return ReductionInstDesc(false, I);
 | 
						|
}
 | 
						|
 | 
						|
ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
 | 
						|
                                                        ReductionKind Kind,
 | 
						|
                                                        ReductionInstDesc &Prev,
 | 
						|
                                                        bool HasFunNoNaNAttr) {
 | 
						|
  bool FP = I->getType()->isFloatingPointTy();
 | 
						|
  bool FastMath = FP && I->hasUnsafeAlgebra();
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return ReductionInstDesc(false, I);
 | 
						|
  case Instruction::PHI:
 | 
						|
    if (FP &&
 | 
						|
        (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
 | 
						|
      return ReductionInstDesc(false, I);
 | 
						|
    return ReductionInstDesc(I, Prev.getMinMaxKind());
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Add:
 | 
						|
    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return ReductionInstDesc(Kind == RK_IntegerMult, I);
 | 
						|
  case Instruction::And:
 | 
						|
    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
 | 
						|
  case Instruction::Or:
 | 
						|
    return ReductionInstDesc(Kind == RK_IntegerOr, I);
 | 
						|
  case Instruction::Xor:
 | 
						|
    return ReductionInstDesc(Kind == RK_IntegerXor, I);
 | 
						|
  case Instruction::FMul:
 | 
						|
    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
 | 
						|
  case Instruction::FCmp:
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::Select:
 | 
						|
    if (Kind != RK_IntegerMinMax &&
 | 
						|
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
 | 
						|
      return ReductionInstDesc(false, I);
 | 
						|
    return isMinMaxSelectCmpPattern(I, Prev);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ReductionDescriptor::hasMultipleUsesOf(
 | 
						|
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
 | 
						|
       ++Use) {
 | 
						|
    if (Insts.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      ++NumUses;
 | 
						|
    if (NumUses > 1)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
 | 
						|
                                         ReductionDescriptor &RedDes) {
 | 
						|
 | 
						|
  bool HasFunNoNaNAttr = false;
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
  Function &F = *Header->getParent();
 | 
						|
  if (F.hasFnAttribute("no-nans-fp-math"))
 | 
						|
    HasFunNoNaNAttr =
 | 
						|
        F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | 
						|
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
 | 
						|
                      RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Not a reduction of known type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This function returns the identity element (or neutral element) for
 | 
						|
/// the operation K.
 | 
						|
Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
 | 
						|
  switch (K) {
 | 
						|
  case RK_IntegerXor:
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerOr:
 | 
						|
    // Adding, Xoring, Oring zero to a number does not change it.
 | 
						|
    return ConstantInt::get(Tp, 0);
 | 
						|
  case RK_IntegerMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantInt::get(Tp, 1);
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    // AND-ing a number with an all-1 value does not change it.
 | 
						|
    return ConstantInt::get(Tp, -1, true);
 | 
						|
  case RK_FloatMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantFP::get(Tp, 1.0L);
 | 
						|
  case RK_FloatAdd:
 | 
						|
    // Adding zero to a number does not change it.
 | 
						|
    return ConstantFP::get(Tp, 0.0L);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown reduction kind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This function translates the reduction kind to an LLVM binary operator.
 | 
						|
unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case RK_IntegerAdd:
 | 
						|
    return Instruction::Add;
 | 
						|
  case RK_IntegerMult:
 | 
						|
    return Instruction::Mul;
 | 
						|
  case RK_IntegerOr:
 | 
						|
    return Instruction::Or;
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    return Instruction::And;
 | 
						|
  case RK_IntegerXor:
 | 
						|
    return Instruction::Xor;
 | 
						|
  case RK_FloatMult:
 | 
						|
    return Instruction::FMul;
 | 
						|
  case RK_FloatAdd:
 | 
						|
    return Instruction::FAdd;
 | 
						|
  case RK_IntegerMinMax:
 | 
						|
    return Instruction::ICmp;
 | 
						|
  case RK_FloatMinMax:
 | 
						|
    return Instruction::FCmp;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown reduction operation");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *
 | 
						|
ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
 | 
						|
                                    ReductionInstDesc::MinMaxReductionKind RK,
 | 
						|
                                    Value *Left, Value *Right) {
 | 
						|
  CmpInst::Predicate P = CmpInst::ICMP_NE;
 | 
						|
  switch (RK) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown min/max reduction kind");
 | 
						|
  case ReductionInstDesc::MRK_UIntMin:
 | 
						|
    P = CmpInst::ICMP_ULT;
 | 
						|
    break;
 | 
						|
  case ReductionInstDesc::MRK_UIntMax:
 | 
						|
    P = CmpInst::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case ReductionInstDesc::MRK_SIntMin:
 | 
						|
    P = CmpInst::ICMP_SLT;
 | 
						|
    break;
 | 
						|
  case ReductionInstDesc::MRK_SIntMax:
 | 
						|
    P = CmpInst::ICMP_SGT;
 | 
						|
    break;
 | 
						|
  case ReductionInstDesc::MRK_FloatMin:
 | 
						|
    P = CmpInst::FCMP_OLT;
 | 
						|
    break;
 | 
						|
  case ReductionInstDesc::MRK_FloatMax:
 | 
						|
    P = CmpInst::FCMP_OGT;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Cmp;
 | 
						|
  if (RK == ReductionInstDesc::MRK_FloatMin ||
 | 
						|
      RK == ReductionInstDesc::MRK_FloatMax)
 | 
						|
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | 
						|
  else
 | 
						|
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | 
						|
 | 
						|
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | 
						|
  return Select;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
 | 
						|
                          ConstantInt *&StepValue) {
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
  // We only handle integer and pointer inductions variables.
 | 
						|
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the PHI is consecutive.
 | 
						|
  const SCEV *PhiScev = SE->getSCEV(Phi);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | 
						|
  if (!AR) {
 | 
						|
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(*SE);
 | 
						|
  // Calculate the pointer stride and check if it is consecutive.
 | 
						|
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *CV = C->getValue();
 | 
						|
  if (PhiTy->isIntegerTy()) {
 | 
						|
    StepValue = CV;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | 
						|
  Type *PointerElementType = PhiTy->getPointerElementType();
 | 
						|
  // The pointer stride cannot be determined if the pointer element type is not
 | 
						|
  // sized.
 | 
						|
  if (!PointerElementType->isSized())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = Phi->getModule()->getDataLayout();
 | 
						|
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
 | 
						|
  int64_t CVSize = CV->getSExtValue();
 | 
						|
  if (CVSize % Size)
 | 
						|
    return false;
 | 
						|
  StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
 | 
						|
  return true;
 | 
						|
}
 |