mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	will allow simplifying LegalizeDAG to eliminate type legalization. (I have a patch to do that, but it's not quite finished; I'll commit it once it's finished and I've fixed any review comments for this patch.) See the comment at the beginning of lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp for more details on the motivation for this patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72325 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1348 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1348 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "SelectionDAGBuild.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/GCStrategy.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/DwarfWriter.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
 | |
| static cl::opt<bool>
 | |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
 | |
|           cl::desc("Enable verbose messages in the \"fast\" "
 | |
|                    "instruction selector"));
 | |
| static cl::opt<bool>
 | |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden,
 | |
|           cl::desc("Enable abort calls when \"fast\" instruction fails"));
 | |
| static cl::opt<bool>
 | |
| SchedLiveInCopies("schedule-livein-copies",
 | |
|                   cl::desc("Schedule copies of livein registers"),
 | |
|                   cl::init(false));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the first "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before legalize types"));
 | |
| static cl::opt<bool>
 | |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before legalize"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the second "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the post legalize types"
 | |
|                    " dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewISelDAGs("view-isel-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| static cl::opt<bool>
 | |
| ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| static cl::opt<bool>
 | |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
 | |
|       cl::desc("Pop up a window to show SUnit dags after they are processed"));
 | |
| #else
 | |
| static const bool ViewDAGCombine1 = false,
 | |
|                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
 | |
|                   ViewDAGCombine2 = false,
 | |
|                   ViewDAGCombineLT = false,
 | |
|                   ViewISelDAGs = false, ViewSchedDAGs = false,
 | |
|                   ViewSUnitDAGs = false;
 | |
| #endif
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// RegisterScheduler class - Track the registration of instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| MachinePassRegistry RegisterScheduler::Registry;
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// ISHeuristic command line option for instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | |
|                RegisterPassParser<RegisterScheduler> >
 | |
| ISHeuristic("pre-RA-sched",
 | |
|             cl::init(&createDefaultScheduler),
 | |
|             cl::desc("Instruction schedulers available (before register"
 | |
|                      " allocation):"));
 | |
| 
 | |
| static RegisterScheduler
 | |
| defaultListDAGScheduler("default", "Best scheduler for the target",
 | |
|                         createDefaultScheduler);
 | |
| 
 | |
| namespace llvm {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | |
|   /// for the target.
 | |
|   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
 | |
|                                              CodeGenOpt::Level OptLevel) {
 | |
|     const TargetLowering &TLI = IS->getTargetLowering();
 | |
| 
 | |
|     if (OptLevel == CodeGenOpt::None)
 | |
|       return createFastDAGScheduler(IS, OptLevel);
 | |
|     if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
 | |
|       return createTDListDAGScheduler(IS, OptLevel);
 | |
|     assert(TLI.getSchedulingPreference() ==
 | |
|          TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
 | |
|     return createBURRListDAGScheduler(IS, OptLevel);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitInstrWithCustomInserter - This method should be implemented by targets
 | |
| // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and the scheduler passes ownership of it to this method.
 | |
| MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                  MachineBasicBlock *MBB) const {
 | |
|   cerr << "If a target marks an instruction with "
 | |
|        << "'usesCustomDAGSchedInserter', it must implement "
 | |
|        << "TargetLowering::EmitInstrWithCustomInserter!\n";
 | |
|   abort();
 | |
|   return 0;  
 | |
| }
 | |
| 
 | |
| /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
 | |
| /// physical register has only a single copy use, then coalesced the copy
 | |
| /// if possible.
 | |
| static void EmitLiveInCopy(MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator &InsertPos,
 | |
|                            unsigned VirtReg, unsigned PhysReg,
 | |
|                            const TargetRegisterClass *RC,
 | |
|                            DenseMap<MachineInstr*, unsigned> &CopyRegMap,
 | |
|                            const MachineRegisterInfo &MRI,
 | |
|                            const TargetRegisterInfo &TRI,
 | |
|                            const TargetInstrInfo &TII) {
 | |
|   unsigned NumUses = 0;
 | |
|   MachineInstr *UseMI = NULL;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
 | |
|          UE = MRI.use_end(); UI != UE; ++UI) {
 | |
|     UseMI = &*UI;
 | |
|     if (++NumUses > 1)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If the number of uses is not one, or the use is not a move instruction,
 | |
|   // don't coalesce. Also, only coalesce away a virtual register to virtual
 | |
|   // register copy.
 | |
|   bool Coalesced = false;
 | |
|   unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|   if (NumUses == 1 &&
 | |
|       TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | |
|     VirtReg = DstReg;
 | |
|     Coalesced = true;
 | |
|   }
 | |
| 
 | |
|   // Now find an ideal location to insert the copy.
 | |
|   MachineBasicBlock::iterator Pos = InsertPos;
 | |
|   while (Pos != MBB->begin()) {
 | |
|     MachineInstr *PrevMI = prior(Pos);
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
 | |
|     // copyRegToReg might emit multiple instructions to do a copy.
 | |
|     unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
 | |
|     if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
 | |
|       // This is what the BB looks like right now:
 | |
|       // r1024 = mov r0
 | |
|       // ...
 | |
|       // r1    = mov r1024
 | |
|       //
 | |
|       // We want to insert "r1025 = mov r1". Inserting this copy below the
 | |
|       // move to r1024 makes it impossible for that move to be coalesced.
 | |
|       //
 | |
|       // r1025 = mov r1
 | |
|       // r1024 = mov r0
 | |
|       // ...
 | |
|       // r1    = mov 1024
 | |
|       // r2    = mov 1025
 | |
|       break; // Woot! Found a good location.
 | |
|     --Pos;
 | |
|   }
 | |
| 
 | |
|   TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
 | |
|   CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
 | |
|   if (Coalesced) {
 | |
|     if (&*InsertPos == UseMI) ++InsertPos;
 | |
|     MBB->erase(UseMI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitLiveInCopies - If this is the first basic block in the function,
 | |
| /// and if it has live ins that need to be copied into vregs, emit the
 | |
| /// copies into the block.
 | |
| static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
 | |
|                              const MachineRegisterInfo &MRI,
 | |
|                              const TargetRegisterInfo &TRI,
 | |
|                              const TargetInstrInfo &TII) {
 | |
|   if (SchedLiveInCopies) {
 | |
|     // Emit the copies at a heuristically-determined location in the block.
 | |
|     DenseMap<MachineInstr*, unsigned> CopyRegMap;
 | |
|     MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
 | |
|     for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
 | |
|            E = MRI.livein_end(); LI != E; ++LI)
 | |
|       if (LI->second) {
 | |
|         const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
 | |
|         EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
 | |
|                        RC, CopyRegMap, MRI, TRI, TII);
 | |
|       }
 | |
|   } else {
 | |
|     // Emit the copies into the top of the block.
 | |
|     for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
 | |
|            E = MRI.livein_end(); LI != E; ++LI)
 | |
|       if (LI->second) {
 | |
|         const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
 | |
|         TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
 | |
|                          LI->second, LI->first, RC, RC);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
 | |
|   FunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
 | |
|   FuncInfo(new FunctionLoweringInfo(TLI)),
 | |
|   CurDAG(new SelectionDAG(TLI, *FuncInfo)),
 | |
|   SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
 | |
|   GFI(),
 | |
|   OptLevel(OL),
 | |
|   DAGSize(0)
 | |
| {}
 | |
| 
 | |
| SelectionDAGISel::~SelectionDAGISel() {
 | |
|   delete SDL;
 | |
|   delete CurDAG;
 | |
|   delete FuncInfo;
 | |
| }
 | |
| 
 | |
| unsigned SelectionDAGISel::MakeReg(MVT VT) {
 | |
|   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addRequired<GCModuleInfo>();
 | |
|   AU.addRequired<DwarfWriter>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | |
|   // Do some sanity-checking on the command-line options.
 | |
|   assert((!EnableFastISelVerbose || EnableFastISel) &&
 | |
|          "-fast-isel-verbose requires -fast-isel");
 | |
|   assert((!EnableFastISelAbort || EnableFastISel) &&
 | |
|          "-fast-isel-abort requires -fast-isel");
 | |
| 
 | |
|   // Do not codegen any 'available_externally' functions at all, they have
 | |
|   // definitions outside the translation unit.
 | |
|   if (Fn.hasAvailableExternallyLinkage())
 | |
|     return false;
 | |
| 
 | |
| 
 | |
|   // Get alias analysis for load/store combining.
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   TargetMachine &TM = TLI.getTargetMachine();
 | |
|   MF = &MachineFunction::construct(&Fn, TM);
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
 | |
| 
 | |
|   if (MF->getFunction()->hasGC())
 | |
|     GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF->getFunction());
 | |
|   else
 | |
|     GFI = 0;
 | |
|   RegInfo = &MF->getRegInfo();
 | |
|   DOUT << "\n\n\n=== " << Fn.getName() << "\n";
 | |
| 
 | |
|   MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
 | |
|   DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
 | |
|   CurDAG->init(*MF, MMI, DW);
 | |
|   FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
 | |
|   SDL->init(GFI, *AA);
 | |
| 
 | |
|   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|     if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
 | |
|       // Mark landing pad.
 | |
|       FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
 | |
| 
 | |
|   SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
 | |
| 
 | |
|   // If the first basic block in the function has live ins that need to be
 | |
|   // copied into vregs, emit the copies into the top of the block before
 | |
|   // emitting the code for the block.
 | |
|   EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
 | |
| 
 | |
|   // Add function live-ins to entry block live-in set.
 | |
|   for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
 | |
|          E = RegInfo->livein_end(); I != E; ++I)
 | |
|     MF->begin()->addLiveIn(I->first);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
 | |
|          "Not all catch info was assigned to a landing pad!");
 | |
| #endif
 | |
| 
 | |
|   FuncInfo->clear();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
 | |
|                           MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
 | |
|   for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
 | |
|     if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
 | |
|       // Apply the catch info to DestBB.
 | |
|       AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
 | |
| #ifndef NDEBUG
 | |
|       if (!FLI.MBBMap[SrcBB]->isLandingPad())
 | |
|         FLI.CatchInfoFound.insert(EHSel);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
 | |
| /// whether object offset >= 0.
 | |
| static bool
 | |
| IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
 | |
|   if (!isa<FrameIndexSDNode>(Op)) return false;
 | |
| 
 | |
|   FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
 | |
|   int FrameIdx =  FrameIdxNode->getIndex();
 | |
|   return MFI->isFixedObjectIndex(FrameIdx) &&
 | |
|     MFI->getObjectOffset(FrameIdx) >= 0;
 | |
| }
 | |
| 
 | |
| /// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
 | |
| /// possibly be overwritten when lowering the outgoing arguments in a tail
 | |
| /// call. Currently the implementation of this call is very conservative and
 | |
| /// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
 | |
| /// virtual registers would be overwritten by direct lowering.
 | |
| static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
 | |
|                                                     MachineFrameInfo *MFI) {
 | |
|   RegisterSDNode * OpReg = NULL;
 | |
|   if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
 | |
|       (Op.getOpcode()== ISD::CopyFromReg &&
 | |
|        (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
 | |
|        (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
 | |
|       (Op.getOpcode() == ISD::LOAD &&
 | |
|        IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
 | |
|       (Op.getOpcode() == ISD::MERGE_VALUES &&
 | |
|        Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
 | |
|        IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
 | |
|                                        getOperand(1))))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
 | |
| /// DAG and fixes their tailcall attribute operand.
 | |
| static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG, 
 | |
|                                            const TargetLowering& TLI) {
 | |
|   SDNode * Ret = NULL;
 | |
|   SDValue Terminator = DAG.getRoot();
 | |
| 
 | |
|   // Find RET node.
 | |
|   if (Terminator.getOpcode() == ISD::RET) {
 | |
|     Ret = Terminator.getNode();
 | |
|   }
 | |
|  
 | |
|   // Fix tail call attribute of CALL nodes.
 | |
|   for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
 | |
|          BI = DAG.allnodes_end(); BI != BE; ) {
 | |
|     --BI;
 | |
|     if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
 | |
|       SDValue OpRet(Ret, 0);
 | |
|       SDValue OpCall(BI, 0);
 | |
|       bool isMarkedTailCall = TheCall->isTailCall();
 | |
|       // If CALL node has tail call attribute set to true and the call is not
 | |
|       // eligible (no RET or the target rejects) the attribute is fixed to
 | |
|       // false. The TargetLowering::IsEligibleForTailCallOptimization function
 | |
|       // must correctly identify tail call optimizable calls.
 | |
|       if (!isMarkedTailCall) continue;
 | |
|       if (Ret==NULL ||
 | |
|           !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
 | |
|         // Not eligible. Mark CALL node as non tail call. Note that we
 | |
|         // can modify the call node in place since calls are not CSE'd.
 | |
|         TheCall->setNotTailCall();
 | |
|       } else {
 | |
|         // Look for tail call clobbered arguments. Emit a series of
 | |
|         // copyto/copyfrom virtual register nodes to protect them.
 | |
|         SmallVector<SDValue, 32> Ops;
 | |
|         SDValue Chain = TheCall->getChain(), InFlag;
 | |
|         Ops.push_back(Chain);
 | |
|         Ops.push_back(TheCall->getCallee());
 | |
|         for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
 | |
|           SDValue Arg = TheCall->getArg(i);
 | |
|           bool isByVal = TheCall->getArgFlags(i).isByVal();
 | |
|           MachineFunction &MF = DAG.getMachineFunction();
 | |
|           MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|           if (!isByVal &&
 | |
|               IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
 | |
|             MVT VT = Arg.getValueType();
 | |
|             unsigned VReg = MF.getRegInfo().
 | |
|               createVirtualRegister(TLI.getRegClassFor(VT));
 | |
|             Chain = DAG.getCopyToReg(Chain, Arg.getDebugLoc(),
 | |
|                                      VReg, Arg, InFlag);
 | |
|             InFlag = Chain.getValue(1);
 | |
|             Arg = DAG.getCopyFromReg(Chain, Arg.getDebugLoc(),
 | |
|                                      VReg, VT, InFlag);
 | |
|             Chain = Arg.getValue(1);
 | |
|             InFlag = Arg.getValue(2);
 | |
|           }
 | |
|           Ops.push_back(Arg);
 | |
|           Ops.push_back(TheCall->getArgFlagsVal(i));
 | |
|         }
 | |
|         // Link in chain of CopyTo/CopyFromReg.
 | |
|         Ops[0] = Chain;
 | |
|         DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
 | |
|                                         BasicBlock::iterator Begin,
 | |
|                                         BasicBlock::iterator End) {
 | |
|   SDL->setCurrentBasicBlock(BB);
 | |
| 
 | |
|   // Lower all of the non-terminator instructions.
 | |
|   for (BasicBlock::iterator I = Begin; I != End; ++I)
 | |
|     if (!isa<TerminatorInst>(I))
 | |
|       SDL->visit(*I);
 | |
| 
 | |
|   // Ensure that all instructions which are used outside of their defining
 | |
|   // blocks are available as virtual registers.  Invoke is handled elsewhere.
 | |
|   for (BasicBlock::iterator I = Begin; I != End; ++I)
 | |
|     if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
 | |
|       SDL->CopyToExportRegsIfNeeded(I);
 | |
| 
 | |
|   // Handle PHI nodes in successor blocks.
 | |
|   if (End == LLVMBB->end()) {
 | |
|     HandlePHINodesInSuccessorBlocks(LLVMBB);
 | |
| 
 | |
|     // Lower the terminator after the copies are emitted.
 | |
|     SDL->visit(*LLVMBB->getTerminator());
 | |
|   }
 | |
|     
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   CurDAG->setRoot(SDL->getControlRoot());
 | |
| 
 | |
|   // Check whether calls in this block are real tail calls. Fix up CALL nodes
 | |
|   // with correct tailcall attribute so that the target can rely on the tailcall
 | |
|   // attribute indicating whether the call is really eligible for tail call
 | |
|   // optimization.
 | |
|   if (PerformTailCallOpt)
 | |
|     CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
 | |
| 
 | |
|   // Final step, emit the lowered DAG as machine code.
 | |
|   CodeGenAndEmitDAG();
 | |
|   SDL->clear();
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() {
 | |
|   SmallPtrSet<SDNode*, 128> VisitedNodes;
 | |
|   SmallVector<SDNode*, 128> Worklist;
 | |
|   
 | |
|   Worklist.push_back(CurDAG->getRoot().getNode());
 | |
|   
 | |
|   APInt Mask;
 | |
|   APInt KnownZero;
 | |
|   APInt KnownOne;
 | |
|   
 | |
|   while (!Worklist.empty()) {
 | |
|     SDNode *N = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     
 | |
|     // If we've already seen this node, ignore it.
 | |
|     if (!VisitedNodes.insert(N))
 | |
|       continue;
 | |
|     
 | |
|     // Otherwise, add all chain operands to the worklist.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|       if (N->getOperand(i).getValueType() == MVT::Other)
 | |
|         Worklist.push_back(N->getOperand(i).getNode());
 | |
|     
 | |
|     // If this is a CopyToReg with a vreg dest, process it.
 | |
|     if (N->getOpcode() != ISD::CopyToReg)
 | |
|       continue;
 | |
|     
 | |
|     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|       continue;
 | |
|     
 | |
|     // Ignore non-scalar or non-integer values.
 | |
|     SDValue Src = N->getOperand(2);
 | |
|     MVT SrcVT = Src.getValueType();
 | |
|     if (!SrcVT.isInteger() || SrcVT.isVector())
 | |
|       continue;
 | |
|     
 | |
|     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
 | |
|     Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
 | |
|     CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
 | |
|     
 | |
|     // Only install this information if it tells us something.
 | |
|     if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
 | |
|       DestReg -= TargetRegisterInfo::FirstVirtualRegister;
 | |
|       FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
 | |
|       if (DestReg >= FLI.LiveOutRegInfo.size())
 | |
|         FLI.LiveOutRegInfo.resize(DestReg+1);
 | |
|       FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
 | |
|       LOI.NumSignBits = NumSignBits;
 | |
|       LOI.KnownOne = KnownOne;
 | |
|       LOI.KnownZero = KnownZero;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CodeGenAndEmitDAG() {
 | |
|   std::string GroupName;
 | |
|   if (TimePassesIsEnabled)
 | |
|     GroupName = "Instruction Selection and Scheduling";
 | |
|   std::string BlockName;
 | |
|   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
 | |
|       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
 | |
|       ViewSUnitDAGs)
 | |
|     BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
 | |
|                 BB->getBasicBlock()->getName();
 | |
| 
 | |
|   DOUT << "Initial selection DAG:\n";
 | |
|   DEBUG(CurDAG->dump());
 | |
| 
 | |
|   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("DAG Combining 1", GroupName);
 | |
|     CurDAG->Combine(Unrestricted, *AA, OptLevel);
 | |
|   } else {
 | |
|     CurDAG->Combine(Unrestricted, *AA, OptLevel);
 | |
|   }
 | |
|   
 | |
|   DOUT << "Optimized lowered selection DAG:\n";
 | |
|   DEBUG(CurDAG->dump());
 | |
|   
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   if (!DisableLegalizeTypes) {
 | |
|     if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
 | |
|                                                  BlockName);
 | |
| 
 | |
|     bool Changed;
 | |
|     if (TimePassesIsEnabled) {
 | |
|       NamedRegionTimer T("Type Legalization", GroupName);
 | |
|       Changed = CurDAG->LegalizeTypes();
 | |
|     } else {
 | |
|       Changed = CurDAG->LegalizeTypes();
 | |
|     }
 | |
| 
 | |
|     DOUT << "Type-legalized selection DAG:\n";
 | |
|     DEBUG(CurDAG->dump());
 | |
| 
 | |
|     if (Changed) {
 | |
|       if (ViewDAGCombineLT)
 | |
|         CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
 | |
| 
 | |
|       // Run the DAG combiner in post-type-legalize mode.
 | |
|       if (TimePassesIsEnabled) {
 | |
|         NamedRegionTimer T("DAG Combining after legalize types", GroupName);
 | |
|         CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
 | |
|       } else {
 | |
|         CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
 | |
|       }
 | |
| 
 | |
|       DOUT << "Optimized type-legalized selection DAG:\n";
 | |
|       DEBUG(CurDAG->dump());
 | |
|     }
 | |
| 
 | |
|     if (TimePassesIsEnabled) {
 | |
|       NamedRegionTimer T("Vector Legalization", GroupName);
 | |
|       Changed = CurDAG->LegalizeVectors();
 | |
|     } else {
 | |
|       Changed = CurDAG->LegalizeVectors();
 | |
|     }
 | |
| 
 | |
|     if (Changed) {
 | |
|       if (TimePassesIsEnabled) {
 | |
|         NamedRegionTimer T("Type Legalization 2", GroupName);
 | |
|         Changed = CurDAG->LegalizeTypes();
 | |
|       } else {
 | |
|         Changed = CurDAG->LegalizeTypes();
 | |
|       }
 | |
| 
 | |
|       if (ViewDAGCombineLT)
 | |
|         CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
 | |
| 
 | |
|       // Run the DAG combiner in post-type-legalize mode.
 | |
|       if (TimePassesIsEnabled) {
 | |
|         NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
 | |
|         CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|       } else {
 | |
|         CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|       }
 | |
| 
 | |
|       DOUT << "Optimized vector-legalized selection DAG:\n";
 | |
|       DEBUG(CurDAG->dump());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
 | |
| 
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("DAG Legalization", GroupName);
 | |
|     CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
 | |
|   } else {
 | |
|     CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
 | |
|   }
 | |
|   
 | |
|   DOUT << "Legalized selection DAG:\n";
 | |
|   DEBUG(CurDAG->dump());
 | |
|   
 | |
|   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("DAG Combining 2", GroupName);
 | |
|     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|   } else {
 | |
|     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
 | |
|   }
 | |
|   
 | |
|   DOUT << "Optimized legalized selection DAG:\n";
 | |
|   DEBUG(CurDAG->dump());
 | |
| 
 | |
|   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
 | |
|   
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     ComputeLiveOutVRegInfo();
 | |
| 
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("Instruction Selection", GroupName);
 | |
|     InstructionSelect();
 | |
|   } else {
 | |
|     InstructionSelect();
 | |
|   }
 | |
| 
 | |
|   DOUT << "Selected selection DAG:\n";
 | |
|   DEBUG(CurDAG->dump());
 | |
| 
 | |
|   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
 | |
| 
 | |
|   // Schedule machine code.
 | |
|   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("Instruction Scheduling", GroupName);
 | |
|     Scheduler->Run(CurDAG, BB, BB->end());
 | |
|   } else {
 | |
|     Scheduler->Run(CurDAG, BB, BB->end());
 | |
|   }
 | |
| 
 | |
|   if (ViewSUnitDAGs) Scheduler->viewGraph();
 | |
| 
 | |
|   // Emit machine code to BB.  This can change 'BB' to the last block being 
 | |
|   // inserted into.
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("Instruction Creation", GroupName);
 | |
|     BB = Scheduler->EmitSchedule();
 | |
|   } else {
 | |
|     BB = Scheduler->EmitSchedule();
 | |
|   }
 | |
| 
 | |
|   // Free the scheduler state.
 | |
|   if (TimePassesIsEnabled) {
 | |
|     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
 | |
|     delete Scheduler;
 | |
|   } else {
 | |
|     delete Scheduler;
 | |
|   }
 | |
| 
 | |
|   DOUT << "Selected machine code:\n";
 | |
|   DEBUG(BB->dump());
 | |
| }  
 | |
| 
 | |
| void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
 | |
|                                             MachineFunction &MF,
 | |
|                                             MachineModuleInfo *MMI,
 | |
|                                             DwarfWriter *DW,
 | |
|                                             const TargetInstrInfo &TII) {
 | |
|   // Initialize the Fast-ISel state, if needed.
 | |
|   FastISel *FastIS = 0;
 | |
|   if (EnableFastISel)
 | |
|     FastIS = TLI.createFastISel(MF, MMI, DW,
 | |
|                                 FuncInfo->ValueMap,
 | |
|                                 FuncInfo->MBBMap,
 | |
|                                 FuncInfo->StaticAllocaMap
 | |
| #ifndef NDEBUG
 | |
|                                 , FuncInfo->CatchInfoLost
 | |
| #endif
 | |
|                                 );
 | |
| 
 | |
|   // Iterate over all basic blocks in the function.
 | |
|   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
 | |
|     BasicBlock *LLVMBB = &*I;
 | |
|     BB = FuncInfo->MBBMap[LLVMBB];
 | |
| 
 | |
|     BasicBlock::iterator const Begin = LLVMBB->begin();
 | |
|     BasicBlock::iterator const End = LLVMBB->end();
 | |
|     BasicBlock::iterator BI = Begin;
 | |
| 
 | |
|     // Lower any arguments needed in this block if this is the entry block.
 | |
|     bool SuppressFastISel = false;
 | |
|     if (LLVMBB == &Fn.getEntryBlock()) {
 | |
|       LowerArguments(LLVMBB);
 | |
| 
 | |
|       // If any of the arguments has the byval attribute, forgo
 | |
|       // fast-isel in the entry block.
 | |
|       if (FastIS) {
 | |
|         unsigned j = 1;
 | |
|         for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
 | |
|              I != E; ++I, ++j)
 | |
|           if (Fn.paramHasAttr(j, Attribute::ByVal)) {
 | |
|             if (EnableFastISelVerbose || EnableFastISelAbort)
 | |
|               cerr << "FastISel skips entry block due to byval argument\n";
 | |
|             SuppressFastISel = true;
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (MMI && BB->isLandingPad()) {
 | |
|       // Add a label to mark the beginning of the landing pad.  Deletion of the
 | |
|       // landing pad can thus be detected via the MachineModuleInfo.
 | |
|       unsigned LabelID = MMI->addLandingPad(BB);
 | |
| 
 | |
|       const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
 | |
|       BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
 | |
| 
 | |
|       // Mark exception register as live in.
 | |
|       unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|       if (Reg) BB->addLiveIn(Reg);
 | |
| 
 | |
|       // Mark exception selector register as live in.
 | |
|       Reg = TLI.getExceptionSelectorRegister();
 | |
|       if (Reg) BB->addLiveIn(Reg);
 | |
| 
 | |
|       // FIXME: Hack around an exception handling flaw (PR1508): the personality
 | |
|       // function and list of typeids logically belong to the invoke (or, if you
 | |
|       // like, the basic block containing the invoke), and need to be associated
 | |
|       // with it in the dwarf exception handling tables.  Currently however the
 | |
|       // information is provided by an intrinsic (eh.selector) that can be moved
 | |
|       // to unexpected places by the optimizers: if the unwind edge is critical,
 | |
|       // then breaking it can result in the intrinsics being in the successor of
 | |
|       // the landing pad, not the landing pad itself.  This results in exceptions
 | |
|       // not being caught because no typeids are associated with the invoke.
 | |
|       // This may not be the only way things can go wrong, but it is the only way
 | |
|       // we try to work around for the moment.
 | |
|       BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
 | |
| 
 | |
|       if (Br && Br->isUnconditional()) { // Critical edge?
 | |
|         BasicBlock::iterator I, E;
 | |
|         for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
 | |
|           if (isa<EHSelectorInst>(I))
 | |
|             break;
 | |
| 
 | |
|         if (I == E)
 | |
|           // No catch info found - try to extract some from the successor.
 | |
|           copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Before doing SelectionDAG ISel, see if FastISel has been requested.
 | |
|     if (FastIS && !SuppressFastISel) {
 | |
|       // Emit code for any incoming arguments. This must happen before
 | |
|       // beginning FastISel on the entry block.
 | |
|       if (LLVMBB == &Fn.getEntryBlock()) {
 | |
|         CurDAG->setRoot(SDL->getControlRoot());
 | |
|         CodeGenAndEmitDAG();
 | |
|         SDL->clear();
 | |
|       }
 | |
|       FastIS->startNewBlock(BB);
 | |
|       // Do FastISel on as many instructions as possible.
 | |
|       for (; BI != End; ++BI) {
 | |
|         // Just before the terminator instruction, insert instructions to
 | |
|         // feed PHI nodes in successor blocks.
 | |
|         if (isa<TerminatorInst>(BI))
 | |
|           if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
 | |
|             if (EnableFastISelVerbose || EnableFastISelAbort) {
 | |
|               cerr << "FastISel miss: ";
 | |
|               BI->dump();
 | |
|             }
 | |
|             if (EnableFastISelAbort)
 | |
|               assert(0 && "FastISel didn't handle a PHI in a successor");
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // First try normal tablegen-generated "fast" selection.
 | |
|         if (FastIS->SelectInstruction(BI))
 | |
|           continue;
 | |
| 
 | |
|         // Next, try calling the target to attempt to handle the instruction.
 | |
|         if (FastIS->TargetSelectInstruction(BI))
 | |
|           continue;
 | |
| 
 | |
|         // Then handle certain instructions as single-LLVM-Instruction blocks.
 | |
|         if (isa<CallInst>(BI)) {
 | |
|           if (EnableFastISelVerbose || EnableFastISelAbort) {
 | |
|             cerr << "FastISel missed call: ";
 | |
|             BI->dump();
 | |
|           }
 | |
| 
 | |
|           if (BI->getType() != Type::VoidTy) {
 | |
|             unsigned &R = FuncInfo->ValueMap[BI];
 | |
|             if (!R)
 | |
|               R = FuncInfo->CreateRegForValue(BI);
 | |
|           }
 | |
| 
 | |
|           SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
 | |
|           SelectBasicBlock(LLVMBB, BI, next(BI));
 | |
|           // If the instruction was codegen'd with multiple blocks,
 | |
|           // inform the FastISel object where to resume inserting.
 | |
|           FastIS->setCurrentBlock(BB);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, give up on FastISel for the rest of the block.
 | |
|         // For now, be a little lenient about non-branch terminators.
 | |
|         if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
 | |
|           if (EnableFastISelVerbose || EnableFastISelAbort) {
 | |
|             cerr << "FastISel miss: ";
 | |
|             BI->dump();
 | |
|           }
 | |
|           if (EnableFastISelAbort)
 | |
|             // The "fast" selector couldn't handle something and bailed.
 | |
|             // For the purpose of debugging, just abort.
 | |
|             assert(0 && "FastISel didn't select the entire block");
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Run SelectionDAG instruction selection on the remainder of the block
 | |
|     // not handled by FastISel. If FastISel is not run, this is the entire
 | |
|     // block.
 | |
|     if (BI != End) {
 | |
|       // If FastISel is run and it has known DebugLoc then use it.
 | |
|       if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
 | |
|         SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
 | |
|       SelectBasicBlock(LLVMBB, BI, End);
 | |
|     }
 | |
| 
 | |
|     FinishBasicBlock();
 | |
|   }
 | |
| 
 | |
|   delete FastIS;
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGISel::FinishBasicBlock() {
 | |
| 
 | |
|   DOUT << "Target-post-processed machine code:\n";
 | |
|   DEBUG(BB->dump());
 | |
| 
 | |
|   DOUT << "Total amount of phi nodes to update: "
 | |
|        << SDL->PHINodesToUpdate.size() << "\n";
 | |
|   DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
 | |
|           DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
 | |
|                << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
 | |
|   
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   if (SDL->SwitchCases.empty() &&
 | |
|       SDL->JTCases.empty() &&
 | |
|       SDL->BitTestCases.empty()) {
 | |
|     for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
 | |
|       MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
 | |
|                                                 false));
 | |
|       PHI->addOperand(MachineOperand::CreateMBB(BB));
 | |
|     }
 | |
|     SDL->PHINodesToUpdate.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!SDL->BitTestCases[i].Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = SDL->BitTestCases[i].Parent;
 | |
|       SDL->setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       SDL->visitBitTestHeader(SDL->BitTestCases[i]);
 | |
|       CurDAG->setRoot(SDL->getRoot());
 | |
|       CodeGenAndEmitDAG();
 | |
|       SDL->clear();
 | |
|     }    
 | |
| 
 | |
|     for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = SDL->BitTestCases[i].Cases[j].ThisBB;
 | |
|       SDL->setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       if (j+1 != ej)
 | |
|         SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
 | |
|                               SDL->BitTestCases[i].Reg,
 | |
|                               SDL->BitTestCases[i].Cases[j]);
 | |
|       else
 | |
|         SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
 | |
|                               SDL->BitTestCases[i].Reg,
 | |
|                               SDL->BitTestCases[i].Cases[j]);
 | |
|         
 | |
|         
 | |
|       CurDAG->setRoot(SDL->getRoot());
 | |
|       CodeGenAndEmitDAG();
 | |
|       SDL->clear();
 | |
|     }
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // This is "default" BB. We have two jumps to it. From "header" BB and
 | |
|       // from last "case" BB.
 | |
|       if (PHIBB == SDL->BitTestCases[i].Default) {
 | |
|         PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
 | |
|                                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
 | |
|         PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
 | |
|                                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
 | |
|                                                   back().ThisBB));
 | |
|       }
 | |
|       // One of "cases" BB.
 | |
|       for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
 | |
|            j != ej; ++j) {
 | |
|         MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
 | |
|         if (cBB->succ_end() !=
 | |
|             std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
 | |
|           PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
 | |
|                                                     false));
 | |
|           PHI->addOperand(MachineOperand::CreateMBB(cBB));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDL->BitTestCases.clear();
 | |
| 
 | |
|   // If the JumpTable record is filled in, then we need to emit a jump table.
 | |
|   // Updating the PHI nodes is tricky in this case, since we need to determine
 | |
|   // whether the PHI is a successor of the range check MBB or the jump table MBB
 | |
|   for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!SDL->JTCases[i].first.Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = SDL->JTCases[i].first.HeaderBB;
 | |
|       SDL->setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
 | |
|       CurDAG->setRoot(SDL->getRoot());
 | |
|       CodeGenAndEmitDAG();
 | |
|       SDL->clear();
 | |
|     }
 | |
|     
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = SDL->JTCases[i].second.MBB;
 | |
|     SDL->setCurrentBasicBlock(BB);
 | |
|     // Emit the code
 | |
|     SDL->visitJumpTable(SDL->JTCases[i].second);
 | |
|     CurDAG->setRoot(SDL->getRoot());
 | |
|     CodeGenAndEmitDAG();
 | |
|     SDL->clear();
 | |
|     
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // "default" BB. We can go there only from header BB.
 | |
|       if (PHIBB == SDL->JTCases[i].second.Default) {
 | |
|         PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
 | |
|                                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
 | |
|       }
 | |
|       // JT BB. Just iterate over successors here
 | |
|       if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
 | |
|         PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
 | |
|                                                   false));
 | |
|         PHI->addOperand(MachineOperand::CreateMBB(BB));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDL->JTCases.clear();
 | |
|   
 | |
|   // If the switch block involved a branch to one of the actual successors, we
 | |
|   // need to update PHI nodes in that block.
 | |
|   for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
 | |
|     MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
 | |
|     assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|            "This is not a machine PHI node that we are updating!");
 | |
|     if (BB->isSuccessor(PHI->getParent())) {
 | |
|       PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
 | |
|                                                 false));
 | |
|       PHI->addOperand(MachineOperand::CreateMBB(BB));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we generated any switch lowering information, build and codegen any
 | |
|   // additional DAGs necessary.
 | |
|   for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = SDL->SwitchCases[i].ThisBB;
 | |
|     SDL->setCurrentBasicBlock(BB);
 | |
|     
 | |
|     // Emit the code
 | |
|     SDL->visitSwitchCase(SDL->SwitchCases[i]);
 | |
|     CurDAG->setRoot(SDL->getRoot());
 | |
|     CodeGenAndEmitDAG();
 | |
|     SDL->clear();
 | |
|     
 | |
|     // Handle any PHI nodes in successors of this chunk, as if we were coming
 | |
|     // from the original BB before switch expansion.  Note that PHI nodes can
 | |
|     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | |
|     // handle them the right number of times.
 | |
|     while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
 | |
|       for (MachineBasicBlock::iterator Phi = BB->begin();
 | |
|            Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
 | |
|         // This value for this PHI node is recorded in PHINodesToUpdate, get it.
 | |
|         for (unsigned pn = 0; ; ++pn) {
 | |
|           assert(pn != SDL->PHINodesToUpdate.size() &&
 | |
|                  "Didn't find PHI entry!");
 | |
|           if (SDL->PHINodesToUpdate[pn].first == Phi) {
 | |
|             Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
 | |
|                                                       second, false));
 | |
|             Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Don't process RHS if same block as LHS.
 | |
|       if (BB == SDL->SwitchCases[i].FalseBB)
 | |
|         SDL->SwitchCases[i].FalseBB = 0;
 | |
|       
 | |
|       // If we haven't handled the RHS, do so now.  Otherwise, we're done.
 | |
|       SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
 | |
|       SDL->SwitchCases[i].FalseBB = 0;
 | |
|     }
 | |
|     assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
 | |
|   }
 | |
|   SDL->SwitchCases.clear();
 | |
| 
 | |
|   SDL->PHINodesToUpdate.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Create the scheduler. If a specific scheduler was specified
 | |
| /// via the SchedulerRegistry, use it, otherwise select the
 | |
| /// one preferred by the target.
 | |
| ///
 | |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
 | |
|   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
 | |
|   
 | |
|   if (!Ctor) {
 | |
|     Ctor = ISHeuristic;
 | |
|     RegisterScheduler::setDefault(Ctor);
 | |
|   }
 | |
|   
 | |
|   return Ctor(this, OptLevel);
 | |
| }
 | |
| 
 | |
| ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
 | |
|   return new ScheduleHazardRecognizer();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions used by the generated instruction selector.
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calls to these methods are generated by tblgen.
 | |
| 
 | |
| /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 
 | |
|                                     int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
|   
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
|   
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask.intersects(~DesiredMask))
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
|   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
 | |
|     return true;
 | |
|   
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 
 | |
|                                    int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
|   
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
|   
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask.intersects(~DesiredMask))
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
|   
 | |
|   APInt KnownZero, KnownOne;
 | |
|   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
 | |
|   
 | |
|   // If all the missing bits in the or are already known to be set, match!
 | |
|   if ((NeededMask & KnownOne) == NeededMask)
 | |
|     return true;
 | |
|   
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
|   
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | |
| /// by tblgen.  Others should not call it.
 | |
| void SelectionDAGISel::
 | |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
 | |
|   std::vector<SDValue> InOps;
 | |
|   std::swap(InOps, Ops);
 | |
| 
 | |
|   Ops.push_back(InOps[0]);  // input chain.
 | |
|   Ops.push_back(InOps[1]);  // input asm string.
 | |
| 
 | |
|   unsigned i = 2, e = InOps.size();
 | |
|   if (InOps[e-1].getValueType() == MVT::Flag)
 | |
|     --e;  // Don't process a flag operand if it is here.
 | |
|   
 | |
|   while (i != e) {
 | |
|     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
 | |
|     if ((Flags & 7) != 4 /*MEM*/) {
 | |
|       // Just skip over this operand, copying the operands verbatim.
 | |
|       Ops.insert(Ops.end(), InOps.begin()+i,
 | |
|                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
 | |
|       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
 | |
|     } else {
 | |
|       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
 | |
|              "Memory operand with multiple values?");
 | |
|       // Otherwise, this is a memory operand.  Ask the target to select it.
 | |
|       std::vector<SDValue> SelOps;
 | |
|       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
 | |
|         cerr << "Could not match memory address.  Inline asm failure!\n";
 | |
|         exit(1);
 | |
|       }
 | |
|       
 | |
|       // Add this to the output node.
 | |
|       MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
 | |
|       Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
 | |
|                                               IntPtrTy));
 | |
|       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add the flag input back if present.
 | |
|   if (e != InOps.size())
 | |
|     Ops.push_back(InOps.back());
 | |
| }
 | |
| 
 | |
| /// findFlagUse - Return use of MVT::Flag value produced by the specified
 | |
| /// SDNode.
 | |
| ///
 | |
| static SDNode *findFlagUse(SDNode *N) {
 | |
|   unsigned FlagResNo = N->getNumValues()-1;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDUse &Use = I.getUse();
 | |
|     if (Use.getResNo() == FlagResNo)
 | |
|       return Use.getUser();
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
 | |
| /// This function recursively traverses up the operand chain, ignoring
 | |
| /// certain nodes.
 | |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | |
|                           SDNode *Root,
 | |
|                           SmallPtrSet<SDNode*, 16> &Visited) {
 | |
|   if (Use->getNodeId() < Def->getNodeId() ||
 | |
|       !Visited.insert(Use))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
 | |
|     SDNode *N = Use->getOperand(i).getNode();
 | |
|     if (N == Def) {
 | |
|       if (Use == ImmedUse || Use == Root)
 | |
|         continue;  // We are not looking for immediate use.
 | |
|       assert(N != Root);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Traverse up the operand chain.
 | |
|     if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNonImmUse - Start searching from Root up the DAG to check is Def can
 | |
| /// be reached. Return true if that's the case. However, ignore direct uses
 | |
| /// by ImmedUse (which would be U in the example illustrated in
 | |
| /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
 | |
| /// case).
 | |
| /// FIXME: to be really generic, we should allow direct use by any node
 | |
| /// that is being folded. But realisticly since we only fold loads which
 | |
| /// have one non-chain use, we only need to watch out for load/op/store
 | |
| /// and load/op/cmp case where the root (store / cmp) may reach the load via
 | |
| /// its chain operand.
 | |
| static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
 | |
|   SmallPtrSet<SDNode*, 16> Visited;
 | |
|   return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
 | |
| }
 | |
| 
 | |
| /// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
 | |
| /// U can be folded during instruction selection that starts at Root and
 | |
| /// folding N is profitable.
 | |
| bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
 | |
|                                                   SDNode *Root) const {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
| 
 | |
|   // If Root use can somehow reach N through a path that that doesn't contain
 | |
|   // U then folding N would create a cycle. e.g. In the following
 | |
|   // diagram, Root can reach N through X. If N is folded into into Root, then
 | |
|   // X is both a predecessor and a successor of U.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^     ^          //
 | |
|   //         \   /           //
 | |
|   //          \ /            //
 | |
|   //         [Root*]         //
 | |
|   //
 | |
|   // * indicates nodes to be folded together.
 | |
|   //
 | |
|   // If Root produces a flag, then it gets (even more) interesting. Since it
 | |
|   // will be "glued" together with its flag use in the scheduler, we need to
 | |
|   // check if it might reach N.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^       ^        //
 | |
|   //         \       \       //
 | |
|   //          \      |       //
 | |
|   //         [Root*] |       //
 | |
|   //          ^      |       //
 | |
|   //          f      |       //
 | |
|   //          |      /       //
 | |
|   //         [Y]    /        //
 | |
|   //           ^   /         //
 | |
|   //           f  /          //
 | |
|   //           | /           //
 | |
|   //          [FU]           //
 | |
|   //
 | |
|   // If FU (flag use) indirectly reaches N (the load), and Root folds N
 | |
|   // (call it Fold), then X is a predecessor of FU and a successor of
 | |
|   // Fold. But since Fold and FU are flagged together, this will create
 | |
|   // a cycle in the scheduling graph.
 | |
| 
 | |
|   MVT VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   while (VT == MVT::Flag) {
 | |
|     SDNode *FU = findFlagUse(Root);
 | |
|     if (FU == NULL)
 | |
|       break;
 | |
|     Root = FU;
 | |
|     VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   }
 | |
| 
 | |
|   return !isNonImmUse(Root, N, U);
 | |
| }
 | |
| 
 | |
| 
 | |
| char SelectionDAGISel::ID = 0;
 |