mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	block into MachineBasicBlock::getFirstTerminator(). This also fixes a bug in the implementation of the above in both RegAllocLocal and InstrSched, where instructions where added after the terminator if the basic block's only instruction was a terminator (it shouldn't matter for RegAllocLocal since this case never occurs in practice). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11748 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2514 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2514 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a simple peephole instruction selector for the x86 target
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicLowering.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>
 | 
						|
  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
 | 
						|
}
 | 
						|
 | 
						|
/// BMI - A special BuildMI variant that takes an iterator to insert the
 | 
						|
/// instruction at as well as a basic block.  This is the version for when you
 | 
						|
/// have a destination register in mind.
 | 
						|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator I,
 | 
						|
                                      int Opcode, unsigned NumOperands,
 | 
						|
                                      unsigned DestReg) {
 | 
						|
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
 | 
						|
  MBB->insert(I, MI);
 | 
						|
  return MachineInstrBuilder(MI).addReg(DestReg, MachineOperand::Def);
 | 
						|
}
 | 
						|
 | 
						|
/// BMI - A special BuildMI variant that takes an iterator to insert the
 | 
						|
/// instruction at as well as a basic block.
 | 
						|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator I,
 | 
						|
                                      int Opcode, unsigned NumOperands) {
 | 
						|
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
 | 
						|
  MBB->insert(I, MI);
 | 
						|
  return MachineInstrBuilder(MI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ISel : public FunctionPass, InstVisitor<ISel> {
 | 
						|
    TargetMachine &TM;
 | 
						|
    MachineFunction *F;                 // The function we are compiling into
 | 
						|
    MachineBasicBlock *BB;              // The current MBB we are compiling
 | 
						|
    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | 
						|
    int ReturnAddressIndex;             // FrameIndex for the return address
 | 
						|
 | 
						|
    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
 | 
						|
 | 
						|
    // MBBMap - Mapping between LLVM BB -> Machine BB
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | 
						|
 | 
						|
    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
 | 
						|
 | 
						|
    /// runOnFunction - Top level implementation of instruction selection for
 | 
						|
    /// the entire function.
 | 
						|
    ///
 | 
						|
    bool runOnFunction(Function &Fn) {
 | 
						|
      // First pass over the function, lower any unknown intrinsic functions
 | 
						|
      // with the IntrinsicLowering class.
 | 
						|
      LowerUnknownIntrinsicFunctionCalls(Fn);
 | 
						|
 | 
						|
      F = &MachineFunction::construct(&Fn, TM);
 | 
						|
 | 
						|
      // Create all of the machine basic blocks for the function...
 | 
						|
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | 
						|
 | 
						|
      BB = &F->front();
 | 
						|
 | 
						|
      // Set up a frame object for the return address.  This is used by the
 | 
						|
      // llvm.returnaddress & llvm.frameaddress intrinisics.
 | 
						|
      ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
 | 
						|
 | 
						|
      // Copy incoming arguments off of the stack...
 | 
						|
      LoadArgumentsToVirtualRegs(Fn);
 | 
						|
 | 
						|
      // Instruction select everything except PHI nodes
 | 
						|
      visit(Fn);
 | 
						|
 | 
						|
      // Select the PHI nodes
 | 
						|
      SelectPHINodes();
 | 
						|
 | 
						|
      // Insert the FP_REG_KILL instructions into blocks that need them.
 | 
						|
      InsertFPRegKills();
 | 
						|
 | 
						|
      RegMap.clear();
 | 
						|
      MBBMap.clear();
 | 
						|
      F = 0;
 | 
						|
      // We always build a machine code representation for the function
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Simple Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
    /// visitBasicBlock - This method is called when we are visiting a new basic
 | 
						|
    /// block.  This simply creates a new MachineBasicBlock to emit code into
 | 
						|
    /// and adds it to the current MachineFunction.  Subsequent visit* for
 | 
						|
    /// instructions will be invoked for all instructions in the basic block.
 | 
						|
    ///
 | 
						|
    void visitBasicBlock(BasicBlock &LLVM_BB) {
 | 
						|
      BB = MBBMap[&LLVM_BB];
 | 
						|
    }
 | 
						|
 | 
						|
    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | 
						|
    /// function, lowering any calls to unknown intrinsic functions into the
 | 
						|
    /// equivalent LLVM code.
 | 
						|
    void LowerUnknownIntrinsicFunctionCalls(Function &F);
 | 
						|
 | 
						|
    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | 
						|
    /// from the stack into virtual registers.
 | 
						|
    ///
 | 
						|
    void LoadArgumentsToVirtualRegs(Function &F);
 | 
						|
 | 
						|
    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
    /// because we have to generate our sources into the source basic blocks,
 | 
						|
    /// not the current one.
 | 
						|
    ///
 | 
						|
    void SelectPHINodes();
 | 
						|
 | 
						|
    /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
 | 
						|
    /// that need them.  This only occurs due to the floating point stackifier
 | 
						|
    /// not being aggressive enough to handle arbitrary global stackification.
 | 
						|
    ///
 | 
						|
    void InsertFPRegKills();
 | 
						|
 | 
						|
    // Visitation methods for various instructions.  These methods simply emit
 | 
						|
    // fixed X86 code for each instruction.
 | 
						|
    //
 | 
						|
 | 
						|
    // Control flow operators
 | 
						|
    void visitReturnInst(ReturnInst &RI);
 | 
						|
    void visitBranchInst(BranchInst &BI);
 | 
						|
 | 
						|
    struct ValueRecord {
 | 
						|
      Value *Val;
 | 
						|
      unsigned Reg;
 | 
						|
      const Type *Ty;
 | 
						|
      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | 
						|
      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | 
						|
    };
 | 
						|
    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | 
						|
                const std::vector<ValueRecord> &Args);
 | 
						|
    void visitCallInst(CallInst &I);
 | 
						|
    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
 | 
						|
 | 
						|
    // Arithmetic operators
 | 
						|
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | 
						|
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | 
						|
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | 
						|
    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
                    unsigned DestReg, const Type *DestTy,
 | 
						|
                    unsigned Op0Reg, unsigned Op1Reg);
 | 
						|
    void doMultiplyConst(MachineBasicBlock *MBB, 
 | 
						|
                         MachineBasicBlock::iterator MBBI,
 | 
						|
                         unsigned DestReg, const Type *DestTy,
 | 
						|
                         unsigned Op0Reg, unsigned Op1Val);
 | 
						|
    void visitMul(BinaryOperator &B);
 | 
						|
 | 
						|
    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitDivRem(BinaryOperator &B);
 | 
						|
 | 
						|
    // Bitwise operators
 | 
						|
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | 
						|
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | 
						|
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | 
						|
 | 
						|
    // Comparison operators...
 | 
						|
    void visitSetCondInst(SetCondInst &I);
 | 
						|
    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | 
						|
                            MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator MBBI);
 | 
						|
    
 | 
						|
    // Memory Instructions
 | 
						|
    void visitLoadInst(LoadInst &I);
 | 
						|
    void visitStoreInst(StoreInst &I);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    void visitMallocInst(MallocInst &I);
 | 
						|
    void visitFreeInst(FreeInst &I);
 | 
						|
    
 | 
						|
    // Other operators
 | 
						|
    void visitShiftInst(ShiftInst &I);
 | 
						|
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | 
						|
    void visitCastInst(CastInst &I);
 | 
						|
    void visitVANextInst(VANextInst &I);
 | 
						|
    void visitVAArgInst(VAArgInst &I);
 | 
						|
 | 
						|
    void visitInstruction(Instruction &I) {
 | 
						|
      std::cerr << "Cannot instruction select: " << I;
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
    /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | 
						|
    ///
 | 
						|
    void promote32(unsigned targetReg, const ValueRecord &VR);
 | 
						|
 | 
						|
    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | 
						|
    /// constant expression GEP support.
 | 
						|
    ///
 | 
						|
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | 
						|
                          Value *Src, User::op_iterator IdxBegin,
 | 
						|
                          User::op_iterator IdxEnd, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitCastOperation - Common code shared between visitCastInst and
 | 
						|
    /// constant expression cast support.
 | 
						|
    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
 | 
						|
                           Value *Src, const Type *DestTy, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | 
						|
    /// and constant expression support.
 | 
						|
    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | 
						|
                                   MachineBasicBlock::iterator IP,
 | 
						|
                                   Value *Op0, Value *Op1,
 | 
						|
                                   unsigned OperatorClass, unsigned TargetReg);
 | 
						|
 | 
						|
    void emitDivRemOperation(MachineBasicBlock *BB,
 | 
						|
                             MachineBasicBlock::iterator IP,
 | 
						|
                             unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
 | 
						|
                             const Type *Ty, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | 
						|
    /// constant expression support.
 | 
						|
    void emitSetCCOperation(MachineBasicBlock *BB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Op0, Value *Op1, unsigned Opcode,
 | 
						|
                            unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitShiftOperation - Common code shared between visitShiftInst and
 | 
						|
    /// constant expression support.
 | 
						|
    void emitShiftOperation(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Op, Value *ShiftAmount, bool isLeftShift,
 | 
						|
                            const Type *ResultTy, unsigned DestReg);
 | 
						|
      
 | 
						|
 | 
						|
    /// copyConstantToRegister - Output the instructions required to put the
 | 
						|
    /// specified constant into the specified register.
 | 
						|
    ///
 | 
						|
    void copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                MachineBasicBlock::iterator MBBI,
 | 
						|
                                Constant *C, unsigned Reg);
 | 
						|
 | 
						|
    /// makeAnotherReg - This method returns the next register number we haven't
 | 
						|
    /// yet used.
 | 
						|
    ///
 | 
						|
    /// Long values are handled somewhat specially.  They are always allocated
 | 
						|
    /// as pairs of 32 bit integer values.  The register number returned is the
 | 
						|
    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
 | 
						|
    /// of the long value.
 | 
						|
    ///
 | 
						|
    unsigned makeAnotherReg(const Type *Ty) {
 | 
						|
      assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
 | 
						|
             "Current target doesn't have X86 reg info??");
 | 
						|
      const X86RegisterInfo *MRI =
 | 
						|
        static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
 | 
						|
      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
 | 
						|
        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
 | 
						|
        // Create the lower part
 | 
						|
        F->getSSARegMap()->createVirtualRegister(RC);
 | 
						|
        // Create the upper part.
 | 
						|
        return F->getSSARegMap()->createVirtualRegister(RC)-1;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add the mapping of regnumber => reg class to MachineFunction
 | 
						|
      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
 | 
						|
      return F->getSSARegMap()->createVirtualRegister(RC);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getReg - This method turns an LLVM value into a register number.  This
 | 
						|
    /// is guaranteed to produce the same register number for a particular value
 | 
						|
    /// every time it is queried.
 | 
						|
    ///
 | 
						|
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | 
						|
    unsigned getReg(Value *V) {
 | 
						|
      // Just append to the end of the current bb.
 | 
						|
      MachineBasicBlock::iterator It = BB->end();
 | 
						|
      return getReg(V, BB, It);
 | 
						|
    }
 | 
						|
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | 
						|
                    MachineBasicBlock::iterator IPt) {
 | 
						|
      unsigned &Reg = RegMap[V];
 | 
						|
      if (Reg == 0) {
 | 
						|
        Reg = makeAnotherReg(V->getType());
 | 
						|
        RegMap[V] = Reg;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this operand is a constant, emit the code to copy the constant into
 | 
						|
      // the register here...
 | 
						|
      //
 | 
						|
      if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
        copyConstantToRegister(MBB, IPt, C, Reg);
 | 
						|
        RegMap.erase(V);  // Assign a new name to this constant if ref'd again
 | 
						|
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
        // Move the address of the global into the register
 | 
						|
        BMI(MBB, IPt, X86::MOVri32, 1, Reg).addGlobalAddress(GV);
 | 
						|
        RegMap.erase(V);  // Assign a new name to this address if ref'd again
 | 
						|
      }
 | 
						|
 | 
						|
      return Reg;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
 | 
						|
/// Representation.
 | 
						|
///
 | 
						|
enum TypeClass {
 | 
						|
  cByte, cShort, cInt, cFP, cLong
 | 
						|
};
 | 
						|
 | 
						|
/// getClass - Turn a primitive type into a "class" number which is based on the
 | 
						|
/// size of the type, and whether or not it is floating point.
 | 
						|
///
 | 
						|
static inline TypeClass getClass(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
 | 
						|
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:  return cFP;        // Floating Point is #3
 | 
						|
 | 
						|
  case Type::LongTyID:
 | 
						|
  case Type::ULongTyID:   return cLong;      // Longs are class #4
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid type to getClass!");
 | 
						|
    return cByte;  // not reached
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getClassB - Just like getClass, but treat boolean values as bytes.
 | 
						|
static inline TypeClass getClassB(const Type *Ty) {
 | 
						|
  if (Ty == Type::BoolTy) return cByte;
 | 
						|
  return getClass(Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// copyConstantToRegister - Output the instructions required to put the
 | 
						|
/// specified constant into the specified register.
 | 
						|
///
 | 
						|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                  MachineBasicBlock::iterator IP,
 | 
						|
                                  Constant *C, unsigned R) {
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    unsigned Class = 0;
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      emitGEPOperation(MBB, IP, CE->getOperand(0),
 | 
						|
                       CE->op_begin()+1, CE->op_end(), R);
 | 
						|
      return;
 | 
						|
    case Instruction::Cast:
 | 
						|
      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Xor: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Or:  ++Class; // FALL THROUGH
 | 
						|
    case Instruction::And: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Sub: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Add:
 | 
						|
      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                                Class, R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Mul: {
 | 
						|
      unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
 | 
						|
      unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
 | 
						|
      doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Div:
 | 
						|
    case Instruction::Rem: {
 | 
						|
      unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
 | 
						|
      unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
 | 
						|
      emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
 | 
						|
                          CE->getOpcode() == Instruction::Div,
 | 
						|
                          CE->getType(), R);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::SetNE:
 | 
						|
    case Instruction::SetEQ:
 | 
						|
    case Instruction::SetLT:
 | 
						|
    case Instruction::SetGT:
 | 
						|
    case Instruction::SetLE:
 | 
						|
    case Instruction::SetGE:
 | 
						|
      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                         CE->getOpcode(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::Shr:
 | 
						|
      emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                         CE->getOpcode() == Instruction::Shl, CE->getType(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    default:
 | 
						|
      std::cerr << "Offending expr: " << C << "\n";
 | 
						|
      assert(0 && "Constant expression not yet handled!\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (C->getType()->isIntegral()) {
 | 
						|
    unsigned Class = getClassB(C->getType());
 | 
						|
 | 
						|
    if (Class == cLong) {
 | 
						|
      // Copy the value into the register pair.
 | 
						|
      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
 | 
						|
      BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(Val & 0xFFFFFFFF);
 | 
						|
      BMI(MBB, IP, X86::MOVri32, 1, R+1).addZImm(Val >> 32);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Class <= cInt && "Type not handled yet!");
 | 
						|
 | 
						|
    static const unsigned IntegralOpcodeTab[] = {
 | 
						|
      X86::MOVri8, X86::MOVri16, X86::MOVri32
 | 
						|
    };
 | 
						|
 | 
						|
    if (C->getType() == Type::BoolTy) {
 | 
						|
      BMI(MBB, IP, X86::MOVri8, 1, R).addZImm(C == ConstantBool::True);
 | 
						|
    } else {
 | 
						|
      ConstantInt *CI = cast<ConstantInt>(C);
 | 
						|
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
 | 
						|
    }
 | 
						|
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
    if (CFP->isExactlyValue(+0.0))
 | 
						|
      BMI(MBB, IP, X86::FLD0, 0, R);
 | 
						|
    else if (CFP->isExactlyValue(+1.0))
 | 
						|
      BMI(MBB, IP, X86::FLD1, 0, R);
 | 
						|
    else {
 | 
						|
      // Otherwise we need to spill the constant to memory...
 | 
						|
      MachineConstantPool *CP = F->getConstantPool();
 | 
						|
      unsigned CPI = CP->getConstantPoolIndex(CFP);
 | 
						|
      const Type *Ty = CFP->getType();
 | 
						|
 | 
						|
      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | 
						|
      unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
 | 
						|
      addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (isa<ConstantPointerNull>(C)) {
 | 
						|
    // Copy zero (null pointer) to the register.
 | 
						|
    BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(0);
 | 
						|
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
 | 
						|
    BMI(MBB, IP, X86::MOVri32, 1, R).addGlobalAddress(CPR->getValue());
 | 
						|
  } else {
 | 
						|
    std::cerr << "Offending constant: " << C << "\n";
 | 
						|
    assert(0 && "Type not handled yet!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | 
						|
/// the stack into virtual registers.
 | 
						|
///
 | 
						|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | 
						|
  // Emit instructions to load the arguments...  On entry to a function on the
 | 
						|
  // X86, the stack frame looks like this:
 | 
						|
  //
 | 
						|
  // [ESP] -- return address
 | 
						|
  // [ESP + 4] -- first argument (leftmost lexically)
 | 
						|
  // [ESP + 8] -- second argument, if first argument is four bytes in size
 | 
						|
  //    ... 
 | 
						|
  //
 | 
						|
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | 
						|
  MachineFrameInfo *MFI = F->getFrameInfo();
 | 
						|
 | 
						|
  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
 | 
						|
    unsigned Reg = getReg(*I);
 | 
						|
    
 | 
						|
    int FI;          // Frame object index
 | 
						|
    switch (getClassB(I->getType())) {
 | 
						|
    case cByte:
 | 
						|
      FI = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOVrm8, 4, Reg), FI);
 | 
						|
      break;
 | 
						|
    case cShort:
 | 
						|
      FI = MFI->CreateFixedObject(2, ArgOffset);
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOVrm16, 4, Reg), FI);
 | 
						|
      break;
 | 
						|
    case cInt:
 | 
						|
      FI = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
 | 
						|
      break;
 | 
						|
    case cLong:
 | 
						|
      FI = MFI->CreateFixedObject(8, ArgOffset);
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg+1), FI, 4);
 | 
						|
      ArgOffset += 4;   // longs require 4 additional bytes
 | 
						|
      break;
 | 
						|
    case cFP:
 | 
						|
      unsigned Opcode;
 | 
						|
      if (I->getType() == Type::FloatTy) {
 | 
						|
        Opcode = X86::FLDr32;
 | 
						|
        FI = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
      } else {
 | 
						|
        Opcode = X86::FLDr64;
 | 
						|
        FI = MFI->CreateFixedObject(8, ArgOffset);
 | 
						|
        ArgOffset += 4;   // doubles require 4 additional bytes
 | 
						|
      }
 | 
						|
      addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unhandled argument type!");
 | 
						|
    }
 | 
						|
    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, add a frame offset for
 | 
						|
  // the start of the first vararg value... this is used to expand
 | 
						|
  // llvm.va_start.
 | 
						|
  if (Fn.getFunctionType()->isVarArg())
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
/// because we have to generate our sources into the source basic blocks, not
 | 
						|
/// the current one.
 | 
						|
///
 | 
						|
void ISel::SelectPHINodes() {
 | 
						|
  const TargetInstrInfo &TII = TM.getInstrInfo();
 | 
						|
  const Function &LF = *F->getFunction();  // The LLVM function...
 | 
						|
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | 
						|
    const BasicBlock *BB = I;
 | 
						|
    MachineBasicBlock *MBB = MBBMap[I];
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes in the LLVM basic block...
 | 
						|
    MachineBasicBlock::iterator instr = MBB->begin();
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin();
 | 
						|
         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
 | 
						|
 | 
						|
      // Create a new machine instr PHI node, and insert it.
 | 
						|
      unsigned PHIReg = getReg(*PN);
 | 
						|
      MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
 | 
						|
      MBB->insert(instr, PhiMI);
 | 
						|
 | 
						|
      MachineInstr *LongPhiMI = 0;
 | 
						|
      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
 | 
						|
        LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
 | 
						|
        MBB->insert(instr, LongPhiMI);
 | 
						|
      }
 | 
						|
 | 
						|
      // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | 
						|
      // so that we only initialize one incoming value for a particular block,
 | 
						|
      // even if the block has multiple entries in the PHI node.
 | 
						|
      //
 | 
						|
      std::map<MachineBasicBlock*, unsigned> PHIValues;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
 | 
						|
        unsigned ValReg;
 | 
						|
        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | 
						|
          PHIValues.lower_bound(PredMBB);
 | 
						|
 | 
						|
        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | 
						|
          // We already inserted an initialization of the register for this
 | 
						|
          // predecessor.  Recycle it.
 | 
						|
          ValReg = EntryIt->second;
 | 
						|
 | 
						|
        } else {        
 | 
						|
          // Get the incoming value into a virtual register.
 | 
						|
          //
 | 
						|
          Value *Val = PN->getIncomingValue(i);
 | 
						|
 | 
						|
          // If this is a constant or GlobalValue, we may have to insert code
 | 
						|
          // into the basic block to compute it into a virtual register.
 | 
						|
          if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
 | 
						|
            // Because we don't want to clobber any values which might be in
 | 
						|
            // physical registers with the computation of this constant (which
 | 
						|
            // might be arbitrarily complex if it is a constant expression),
 | 
						|
            // just insert the computation at the top of the basic block.
 | 
						|
            MachineBasicBlock::iterator PI = PredMBB->begin();
 | 
						|
 | 
						|
            // Skip over any PHI nodes though!
 | 
						|
            while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
 | 
						|
              ++PI;
 | 
						|
 | 
						|
            ValReg = getReg(Val, PredMBB, PI);
 | 
						|
          } else {
 | 
						|
            ValReg = getReg(Val);
 | 
						|
          }
 | 
						|
 | 
						|
          // Remember that we inserted a value for this PHI for this predecessor
 | 
						|
          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | 
						|
        }
 | 
						|
 | 
						|
        PhiMI->addRegOperand(ValReg);
 | 
						|
        PhiMI->addMachineBasicBlockOperand(PredMBB);
 | 
						|
        if (LongPhiMI) {
 | 
						|
          LongPhiMI->addRegOperand(ValReg+1);
 | 
						|
          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RequiresFPRegKill - The floating point stackifier pass cannot insert
 | 
						|
/// compensation code on critical edges.  As such, it requires that we kill all
 | 
						|
/// FP registers on the exit from any blocks that either ARE critical edges, or
 | 
						|
/// branch to a block that has incoming critical edges.
 | 
						|
///
 | 
						|
/// Note that this kill instruction will eventually be eliminated when
 | 
						|
/// restrictions in the stackifier are relaxed.
 | 
						|
///
 | 
						|
static bool RequiresFPRegKill(const BasicBlock *BB) {
 | 
						|
#if 0
 | 
						|
  for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
 | 
						|
    const BasicBlock *Succ = *SI;
 | 
						|
    pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | 
						|
    ++PI;  // Block have at least one predecessory
 | 
						|
    if (PI != PE) {             // If it has exactly one, this isn't crit edge
 | 
						|
      // If this block has more than one predecessor, check all of the
 | 
						|
      // predecessors to see if they have multiple successors.  If so, then the
 | 
						|
      // block we are analyzing needs an FPRegKill.
 | 
						|
      for (PI = pred_begin(Succ); PI != PE; ++PI) {
 | 
						|
        const BasicBlock *Pred = *PI;
 | 
						|
        succ_const_iterator SI2 = succ_begin(Pred);
 | 
						|
        ++SI2;  // There must be at least one successor of this block.
 | 
						|
        if (SI2 != succ_end(Pred))
 | 
						|
          return true;   // Yes, we must insert the kill on this edge.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we got this far, there is no need to insert the kill instruction.
 | 
						|
  return false;
 | 
						|
#else
 | 
						|
  return true;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
 | 
						|
// need them.  This only occurs due to the floating point stackifier not being
 | 
						|
// aggressive enough to handle arbitrary global stackification.
 | 
						|
//
 | 
						|
// Currently we insert an FP_REG_KILL instruction into each block that uses or
 | 
						|
// defines a floating point virtual register.
 | 
						|
//
 | 
						|
// When the global register allocators (like linear scan) finally update live
 | 
						|
// variable analysis, we can keep floating point values in registers across
 | 
						|
// portions of the CFG that do not involve critical edges.  This will be a big
 | 
						|
// win, but we are waiting on the global allocators before we can do this.
 | 
						|
//
 | 
						|
// With a bit of work, the floating point stackifier pass can be enhanced to
 | 
						|
// break critical edges as needed (to make a place to put compensation code),
 | 
						|
// but this will require some infrastructure improvements as well.
 | 
						|
//
 | 
						|
void ISel::InsertFPRegKills() {
 | 
						|
  SSARegMap &RegMap = *F->getSSARegMap();
 | 
						|
 | 
						|
  for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
    for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (I->getOperand(i).isRegister()) {
 | 
						|
          unsigned Reg = I->getOperand(i).getReg();
 | 
						|
          if (MRegisterInfo::isVirtualRegister(Reg))
 | 
						|
            if (RegMap.getRegClass(Reg)->getSize() == 10)
 | 
						|
              goto UsesFPReg;
 | 
						|
        }
 | 
						|
 | 
						|
    // If we haven't found an FP register use or def in this basic block, check
 | 
						|
    // to see if any of our successors has an FP PHI node, which will cause a
 | 
						|
    // copy to be inserted into this block.
 | 
						|
    for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()),
 | 
						|
           E = succ_end(BB->getBasicBlock()); SI != E; ++SI) {
 | 
						|
      MachineBasicBlock *SBB = MBBMap[*SI];
 | 
						|
      for (MachineBasicBlock::iterator I = SBB->begin();
 | 
						|
           I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
 | 
						|
        if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
 | 
						|
          goto UsesFPReg;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    continue;
 | 
						|
  UsesFPReg:
 | 
						|
    // Okay, this block uses an FP register.  If the block has successors (ie,
 | 
						|
    // it's not an unwind/return), insert the FP_REG_KILL instruction.
 | 
						|
    if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() &&
 | 
						|
        RequiresFPRegKill(BB->getBasicBlock())) {
 | 
						|
      BMI(BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
 | 
						|
      ++NumFPKill;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
 | 
						|
// the conditional branch instruction which is the only user of the cc
 | 
						|
// instruction.  This is the case if the conditional branch is the only user of
 | 
						|
// the setcc, and if the setcc is in the same basic block as the conditional
 | 
						|
// branch.  We also don't handle long arguments below, so we reject them here as
 | 
						|
// well.
 | 
						|
//
 | 
						|
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
 | 
						|
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | 
						|
    if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
 | 
						|
        SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
 | 
						|
      const Type *Ty = SCI->getOperand(0)->getType();
 | 
						|
      if (Ty != Type::LongTy && Ty != Type::ULongTy)
 | 
						|
        return SCI;
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Return a fixed numbering for setcc instructions which does not depend on the
 | 
						|
// order of the opcodes.
 | 
						|
//
 | 
						|
static unsigned getSetCCNumber(unsigned Opcode) {
 | 
						|
  switch(Opcode) {
 | 
						|
  default: assert(0 && "Unknown setcc instruction!");
 | 
						|
  case Instruction::SetEQ: return 0;
 | 
						|
  case Instruction::SetNE: return 1;
 | 
						|
  case Instruction::SetLT: return 2;
 | 
						|
  case Instruction::SetGE: return 3;
 | 
						|
  case Instruction::SetGT: return 4;
 | 
						|
  case Instruction::SetLE: return 5;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// LLVM  -> X86 signed  X86 unsigned
 | 
						|
// -----    ----------  ------------
 | 
						|
// seteq -> sete        sete
 | 
						|
// setne -> setne       setne
 | 
						|
// setlt -> setl        setb
 | 
						|
// setge -> setge       setae
 | 
						|
// setgt -> setg        seta
 | 
						|
// setle -> setle       setbe
 | 
						|
// ----
 | 
						|
//          sets                       // Used by comparison with 0 optimization
 | 
						|
//          setns
 | 
						|
static const unsigned SetCCOpcodeTab[2][8] = {
 | 
						|
  { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
 | 
						|
    0, 0 },
 | 
						|
  { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
 | 
						|
    X86::SETSr, X86::SETNSr },
 | 
						|
};
 | 
						|
 | 
						|
// EmitComparison - This function emits a comparison of the two operands,
 | 
						|
// returning the extended setcc code to use.
 | 
						|
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | 
						|
                              MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP) {
 | 
						|
  // The arguments are already supposed to be of the same type.
 | 
						|
  const Type *CompTy = Op0->getType();
 | 
						|
  unsigned Class = getClassB(CompTy);
 | 
						|
  unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
 | 
						|
  // Special case handling of: cmp R, i
 | 
						|
  if (Class == cByte || Class == cShort || Class == cInt)
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
      uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
 | 
						|
 | 
						|
      // Mask off any upper bits of the constant, if there are any...
 | 
						|
      Op1v &= (1ULL << (8 << Class)) - 1;
 | 
						|
 | 
						|
      // If this is a comparison against zero, emit more efficient code.  We
 | 
						|
      // can't handle unsigned comparisons against zero unless they are == or
 | 
						|
      // !=.  These should have been strength reduced already anyway.
 | 
						|
      if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
 | 
						|
        static const unsigned TESTTab[] = {
 | 
						|
          X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
 | 
						|
        };
 | 
						|
        BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
 | 
						|
 | 
						|
        if (OpNum == 2) return 6;   // Map jl -> js
 | 
						|
        if (OpNum == 3) return 7;   // Map jg -> jns
 | 
						|
        return OpNum;
 | 
						|
      }
 | 
						|
 | 
						|
      static const unsigned CMPTab[] = {
 | 
						|
        X86::CMPri8, X86::CMPri16, X86::CMPri32
 | 
						|
      };
 | 
						|
 | 
						|
      BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
 | 
						|
      return OpNum;
 | 
						|
    }
 | 
						|
 | 
						|
  // Special case handling of comparison against +/- 0.0
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
 | 
						|
    if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
 | 
						|
      BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
 | 
						|
      BMI(MBB, IP, X86::FNSTSWr8, 0);
 | 
						|
      BMI(MBB, IP, X86::SAHF, 1);
 | 
						|
      return OpNum;
 | 
						|
    }
 | 
						|
 | 
						|
  unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
  switch (Class) {
 | 
						|
  default: assert(0 && "Unknown type class!");
 | 
						|
    // Emit: cmp <var1>, <var2> (do the comparison).  We can
 | 
						|
    // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
 | 
						|
    // 32-bit.
 | 
						|
  case cByte:
 | 
						|
    BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
 | 
						|
    break;
 | 
						|
  case cShort:
 | 
						|
    BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
 | 
						|
    break;
 | 
						|
  case cInt:
 | 
						|
    BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
 | 
						|
    break;
 | 
						|
  case cFP:
 | 
						|
    BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
 | 
						|
    BMI(MBB, IP, X86::FNSTSWr8, 0);
 | 
						|
    BMI(MBB, IP, X86::SAHF, 1);
 | 
						|
    break;
 | 
						|
 | 
						|
  case cLong:
 | 
						|
    if (OpNum < 2) {    // seteq, setne
 | 
						|
      unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
 | 
						|
      BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
 | 
						|
      BMI(MBB, IP, X86::ORrr32,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | 
						|
      break;  // Allow the sete or setne to be generated from flags set by OR
 | 
						|
    } else {
 | 
						|
      // Emit a sequence of code which compares the high and low parts once
 | 
						|
      // each, then uses a conditional move to handle the overflow case.  For
 | 
						|
      // example, a setlt for long would generate code like this:
 | 
						|
      //
 | 
						|
      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
 | 
						|
      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
 | 
						|
      // dest = hi(op1) == hi(op2) ? AL : BL;
 | 
						|
      //
 | 
						|
 | 
						|
      // FIXME: This would be much better if we had hierarchical register
 | 
						|
      // classes!  Until then, hardcode registers so that we can deal with their
 | 
						|
      // aliases (because we don't have conditional byte moves).
 | 
						|
      //
 | 
						|
      BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
 | 
						|
      BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
 | 
						|
      BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
 | 
						|
      BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
 | 
						|
      BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
 | 
						|
      BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
 | 
						|
      BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
 | 
						|
      // NOTE: visitSetCondInst knows that the value is dumped into the BL
 | 
						|
      // register at this point for long values...
 | 
						|
      return OpNum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OpNum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
 | 
						|
/// register, then move it to wherever the result should be. 
 | 
						|
///
 | 
						|
void ISel::visitSetCondInst(SetCondInst &I) {
 | 
						|
  if (canFoldSetCCIntoBranch(&I)) return;  // Fold this into a branch...
 | 
						|
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
  MachineBasicBlock::iterator MII = BB->end();
 | 
						|
  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
 | 
						|
                     DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
 | 
						|
/// constant expression support.
 | 
						|
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP,
 | 
						|
                              Value *Op0, Value *Op1, unsigned Opcode,
 | 
						|
                              unsigned TargetReg) {
 | 
						|
  unsigned OpNum = getSetCCNumber(Opcode);
 | 
						|
  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
 | 
						|
 | 
						|
  const Type *CompTy = Op0->getType();
 | 
						|
  unsigned CompClass = getClassB(CompTy);
 | 
						|
  bool isSigned = CompTy->isSigned() && CompClass != cFP;
 | 
						|
 | 
						|
  if (CompClass != cLong || OpNum < 2) {
 | 
						|
    // Handle normal comparisons with a setcc instruction...
 | 
						|
    BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
 | 
						|
  } else {
 | 
						|
    // Handle long comparisons by copying the value which is already in BL into
 | 
						|
    // the register we want...
 | 
						|
    BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | 
						|
/// operand, in the specified target register.
 | 
						|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | 
						|
  bool isUnsigned = VR.Ty->isUnsigned();
 | 
						|
 | 
						|
  // Make sure we have the register number for this value...
 | 
						|
  unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
 | 
						|
 | 
						|
  switch (getClassB(VR.Ty)) {
 | 
						|
  case cByte:
 | 
						|
    // Extend value into target register (8->32)
 | 
						|
    if (isUnsigned)
 | 
						|
      BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
 | 
						|
    else
 | 
						|
      BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  case cShort:
 | 
						|
    // Extend value into target register (16->32)
 | 
						|
    if (isUnsigned)
 | 
						|
      BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
 | 
						|
    else
 | 
						|
      BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  case cInt:
 | 
						|
    // Move value into target register (32->32)
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unpromotable operand class in promote32");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
 | 
						|
/// we have the following possibilities:
 | 
						|
///
 | 
						|
///   ret void: No return value, simply emit a 'ret' instruction
 | 
						|
///   ret sbyte, ubyte : Extend value into EAX and return
 | 
						|
///   ret short, ushort: Extend value into EAX and return
 | 
						|
///   ret int, uint    : Move value into EAX and return
 | 
						|
///   ret pointer      : Move value into EAX and return
 | 
						|
///   ret long, ulong  : Move value into EAX/EDX and return
 | 
						|
///   ret float/double : Top of FP stack
 | 
						|
///
 | 
						|
void ISel::visitReturnInst(ReturnInst &I) {
 | 
						|
  if (I.getNumOperands() == 0) {
 | 
						|
    BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *RetVal = I.getOperand(0);
 | 
						|
  unsigned RetReg = getReg(RetVal);
 | 
						|
  switch (getClassB(RetVal->getType())) {
 | 
						|
  case cByte:   // integral return values: extend or move into EAX and return
 | 
						|
  case cShort:
 | 
						|
  case cInt:
 | 
						|
    promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
 | 
						|
    // Declare that EAX is live on exit
 | 
						|
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
 | 
						|
    break;
 | 
						|
  case cFP:                   // Floats & Doubles: Return in ST(0)
 | 
						|
    BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
 | 
						|
    // Declare that top-of-stack is live on exit
 | 
						|
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
 | 
						|
    break;
 | 
						|
  case cLong:
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
 | 
						|
    // Declare that EAX & EDX are live on exit
 | 
						|
    BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
 | 
						|
      .addReg(X86::ESP);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    visitInstruction(I);
 | 
						|
  }
 | 
						|
  // Emit a 'ret' instruction
 | 
						|
  BuildMI(BB, X86::RET, 0);
 | 
						|
}
 | 
						|
 | 
						|
// getBlockAfter - Return the basic block which occurs lexically after the
 | 
						|
// specified one.
 | 
						|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | 
						|
  Function::iterator I = BB; ++I;  // Get iterator to next block
 | 
						|
  return I != BB->getParent()->end() ? &*I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | 
						|
/// that since code layout is frozen at this point, that if we are trying to
 | 
						|
/// jump to a block that is the immediate successor of the current block, we can
 | 
						|
/// just make a fall-through (but we don't currently).
 | 
						|
///
 | 
						|
void ISel::visitBranchInst(BranchInst &BI) {
 | 
						|
  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | 
						|
 | 
						|
  if (!BI.isConditional()) {  // Unconditional branch?
 | 
						|
    if (BI.getSuccessor(0) != NextBB)
 | 
						|
      BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can fold the setcc into the branch itself...
 | 
						|
  SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
 | 
						|
  if (SCI == 0) {
 | 
						|
    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | 
						|
    // computed some other way...
 | 
						|
    unsigned condReg = getReg(BI.getCondition());
 | 
						|
    BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
 | 
						|
    if (BI.getSuccessor(1) == NextBB) {
 | 
						|
      if (BI.getSuccessor(0) != NextBB)
 | 
						|
        BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
 | 
						|
    } else {
 | 
						|
      BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
 | 
						|
      
 | 
						|
      if (BI.getSuccessor(0) != NextBB)
 | 
						|
        BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | 
						|
  MachineBasicBlock::iterator MII = BB->end();
 | 
						|
  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
 | 
						|
 | 
						|
  const Type *CompTy = SCI->getOperand(0)->getType();
 | 
						|
  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
 | 
						|
  
 | 
						|
 | 
						|
  // LLVM  -> X86 signed  X86 unsigned
 | 
						|
  // -----    ----------  ------------
 | 
						|
  // seteq -> je          je
 | 
						|
  // setne -> jne         jne
 | 
						|
  // setlt -> jl          jb
 | 
						|
  // setge -> jge         jae
 | 
						|
  // setgt -> jg          ja
 | 
						|
  // setle -> jle         jbe
 | 
						|
  // ----
 | 
						|
  //          js                  // Used by comparison with 0 optimization
 | 
						|
  //          jns
 | 
						|
 | 
						|
  static const unsigned OpcodeTab[2][8] = {
 | 
						|
    { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
 | 
						|
    { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
 | 
						|
      X86::JS, X86::JNS },
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (BI.getSuccessor(0) != NextBB) {
 | 
						|
    BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
 | 
						|
    if (BI.getSuccessor(1) != NextBB)
 | 
						|
      BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
 | 
						|
  } else {
 | 
						|
    // Change to the inverse condition...
 | 
						|
    if (BI.getSuccessor(1) != NextBB) {
 | 
						|
      OpNum ^= 1;
 | 
						|
      BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// doCall - This emits an abstract call instruction, setting up the arguments
 | 
						|
/// and the return value as appropriate.  For the actual function call itself,
 | 
						|
/// it inserts the specified CallMI instruction into the stream.
 | 
						|
///
 | 
						|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | 
						|
                  const std::vector<ValueRecord> &Args) {
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack...
 | 
						|
  unsigned NumBytes = 0;
 | 
						|
 | 
						|
  if (!Args.empty()) {
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | 
						|
      switch (getClassB(Args[i].Ty)) {
 | 
						|
      case cByte: case cShort: case cInt:
 | 
						|
        NumBytes += 4; break;
 | 
						|
      case cLong:
 | 
						|
        NumBytes += 8; break;
 | 
						|
      case cFP:
 | 
						|
        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
 | 
						|
        break;
 | 
						|
      default: assert(0 && "Unknown class!");
 | 
						|
      }
 | 
						|
 | 
						|
    // Adjust the stack pointer for the new arguments...
 | 
						|
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
 | 
						|
 | 
						|
    // Arguments go on the stack in reverse order, as specified by the ABI.
 | 
						|
    unsigned ArgOffset = 0;
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
      unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | 
						|
      switch (getClassB(Args[i].Ty)) {
 | 
						|
      case cByte:
 | 
						|
      case cShort: {
 | 
						|
        // Promote arg to 32 bits wide into a temporary register...
 | 
						|
        unsigned R = makeAnotherReg(Type::UIntTy);
 | 
						|
        promote32(R, Args[i]);
 | 
						|
        addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
 | 
						|
                     X86::ESP, ArgOffset).addReg(R);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case cInt:
 | 
						|
        addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
 | 
						|
                     X86::ESP, ArgOffset).addReg(ArgReg);
 | 
						|
        break;
 | 
						|
      case cLong:
 | 
						|
        addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
 | 
						|
                     X86::ESP, ArgOffset).addReg(ArgReg);
 | 
						|
        addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
 | 
						|
                     X86::ESP, ArgOffset+4).addReg(ArgReg+1);
 | 
						|
        ArgOffset += 4;        // 8 byte entry, not 4.
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case cFP:
 | 
						|
        if (Args[i].Ty == Type::FloatTy) {
 | 
						|
          addRegOffset(BuildMI(BB, X86::FSTr32, 5),
 | 
						|
                       X86::ESP, ArgOffset).addReg(ArgReg);
 | 
						|
        } else {
 | 
						|
          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
 | 
						|
          addRegOffset(BuildMI(BB, X86::FSTr64, 5),
 | 
						|
                       X86::ESP, ArgOffset).addReg(ArgReg);
 | 
						|
          ArgOffset += 4;       // 8 byte entry, not 4.
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      default: assert(0 && "Unknown class!");
 | 
						|
      }
 | 
						|
      ArgOffset += 4;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
 | 
						|
  }
 | 
						|
 | 
						|
  BB->push_back(CallMI);
 | 
						|
 | 
						|
  BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
 | 
						|
 | 
						|
  // If there is a return value, scavenge the result from the location the call
 | 
						|
  // leaves it in...
 | 
						|
  //
 | 
						|
  if (Ret.Ty != Type::VoidTy) {
 | 
						|
    unsigned DestClass = getClassB(Ret.Ty);
 | 
						|
    switch (DestClass) {
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt: {
 | 
						|
      // Integral results are in %eax, or the appropriate portion
 | 
						|
      // thereof.
 | 
						|
      static const unsigned regRegMove[] = {
 | 
						|
        X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
 | 
						|
      };
 | 
						|
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
 | 
						|
      BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case cFP:     // Floating-point return values live in %ST(0)
 | 
						|
      BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
 | 
						|
      break;
 | 
						|
    case cLong:   // Long values are left in EDX:EAX
 | 
						|
      BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
 | 
						|
      BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
 | 
						|
      break;
 | 
						|
    default: assert(0 && "Unknown class!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCallInst - Push args on stack and do a procedure call instruction.
 | 
						|
void ISel::visitCallInst(CallInst &CI) {
 | 
						|
  MachineInstr *TheCall;
 | 
						|
  if (Function *F = CI.getCalledFunction()) {
 | 
						|
    // Is it an intrinsic function call?
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | 
						|
      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit a CALL instruction with PC-relative displacement.
 | 
						|
    TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
 | 
						|
  } else {  // Emit an indirect call...
 | 
						|
    unsigned Reg = getReg(CI.getCalledValue());
 | 
						|
    TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | 
						|
    Args.push_back(ValueRecord(CI.getOperand(i)));
 | 
						|
 | 
						|
  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | 
						|
  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
 | 
						|
}         
 | 
						|
 | 
						|
 | 
						|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | 
						|
/// function, lowering any calls to unknown intrinsic functions into the
 | 
						|
/// equivalent LLVM code.
 | 
						|
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(I++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          case Intrinsic::not_intrinsic:
 | 
						|
          case Intrinsic::va_start:
 | 
						|
          case Intrinsic::va_copy:
 | 
						|
          case Intrinsic::va_end:
 | 
						|
          case Intrinsic::returnaddress:
 | 
						|
          case Intrinsic::frameaddress:
 | 
						|
          case Intrinsic::memcpy:
 | 
						|
          case Intrinsic::memset:
 | 
						|
            // We directly implement these intrinsics
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            // All other intrinsic calls we must lower.
 | 
						|
            Instruction *Before = CI->getPrev();
 | 
						|
            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
 | 
						|
            if (Before) {        // Move iterator to instruction after call
 | 
						|
              I = Before;  ++I;
 | 
						|
            } else {
 | 
						|
              I = BB->begin();
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
 | 
						|
  unsigned TmpReg1, TmpReg2;
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::va_start:
 | 
						|
    // Get the address of the first vararg value...
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
 | 
						|
    return;
 | 
						|
 | 
						|
  case Intrinsic::va_copy:
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    TmpReg2 = getReg(CI.getOperand(1));
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
 | 
						|
    return;
 | 
						|
  case Intrinsic::va_end: return;   // Noop on X86
 | 
						|
 | 
						|
  case Intrinsic::returnaddress:
 | 
						|
  case Intrinsic::frameaddress:
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | 
						|
      if (ID == Intrinsic::returnaddress) {
 | 
						|
        // Just load the return address
 | 
						|
        addFrameReference(BuildMI(BB, X86::MOVrm32, 4, TmpReg1),
 | 
						|
                          ReturnAddressIndex);
 | 
						|
      } else {
 | 
						|
        addFrameReference(BuildMI(BB, X86::LEAr32, 4, TmpReg1),
 | 
						|
                          ReturnAddressIndex, -4);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Values other than zero are not implemented yet.
 | 
						|
      BuildMI(BB, X86::MOVri32, 1, TmpReg1).addZImm(0);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
 | 
						|
  case Intrinsic::memcpy: {
 | 
						|
    assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
 | 
						|
    unsigned Align = 1;
 | 
						|
    if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
 | 
						|
      Align = AlignC->getRawValue();
 | 
						|
      if (Align == 0) Align = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Turn the byte code into # iterations
 | 
						|
    unsigned ByteReg;
 | 
						|
    unsigned CountReg;
 | 
						|
    unsigned Opcode;
 | 
						|
    switch (Align & 3) {
 | 
						|
    case 2:   // WORD aligned
 | 
						|
      if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | 
						|
        CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
 | 
						|
      } else {
 | 
						|
        CountReg = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
 | 
						|
      }
 | 
						|
      Opcode = X86::REP_MOVSW;
 | 
						|
      break;
 | 
						|
    case 0:   // DWORD aligned
 | 
						|
      if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | 
						|
        CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
 | 
						|
      } else {
 | 
						|
        CountReg = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
 | 
						|
      }
 | 
						|
      Opcode = X86::REP_MOVSD;
 | 
						|
      break;
 | 
						|
    case 1:   // BYTE aligned
 | 
						|
    case 3:   // BYTE aligned
 | 
						|
      CountReg = getReg(CI.getOperand(3));
 | 
						|
      Opcode = X86::REP_MOVSB;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // No matter what the alignment is, we put the source in ESI, the
 | 
						|
    // destination in EDI, and the count in ECX.
 | 
						|
    TmpReg1 = getReg(CI.getOperand(1));
 | 
						|
    TmpReg2 = getReg(CI.getOperand(2));
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::ESI).addReg(TmpReg2);
 | 
						|
    BuildMI(BB, Opcode, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Intrinsic::memset: {
 | 
						|
    assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
 | 
						|
    unsigned Align = 1;
 | 
						|
    if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
 | 
						|
      Align = AlignC->getRawValue();
 | 
						|
      if (Align == 0) Align = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Turn the byte code into # iterations
 | 
						|
    unsigned ByteReg;
 | 
						|
    unsigned CountReg;
 | 
						|
    unsigned Opcode;
 | 
						|
    if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
 | 
						|
      unsigned Val = ValC->getRawValue() & 255;
 | 
						|
 | 
						|
      // If the value is a constant, then we can potentially use larger copies.
 | 
						|
      switch (Align & 3) {
 | 
						|
      case 2:   // WORD aligned
 | 
						|
        if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | 
						|
          CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
 | 
						|
        } else {
 | 
						|
          CountReg = makeAnotherReg(Type::IntTy);
 | 
						|
          BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
 | 
						|
        }
 | 
						|
        BuildMI(BB, X86::MOVri16, 1, X86::AX).addZImm((Val << 8) | Val);
 | 
						|
        Opcode = X86::REP_STOSW;
 | 
						|
        break;
 | 
						|
      case 0:   // DWORD aligned
 | 
						|
        if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | 
						|
          CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
 | 
						|
        } else {
 | 
						|
          CountReg = makeAnotherReg(Type::IntTy);
 | 
						|
          BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
 | 
						|
        }
 | 
						|
        Val = (Val << 8) | Val;
 | 
						|
        BuildMI(BB, X86::MOVri32, 1, X86::EAX).addZImm((Val << 16) | Val);
 | 
						|
        Opcode = X86::REP_STOSD;
 | 
						|
        break;
 | 
						|
      case 1:   // BYTE aligned
 | 
						|
      case 3:   // BYTE aligned
 | 
						|
        CountReg = getReg(CI.getOperand(3));
 | 
						|
        BuildMI(BB, X86::MOVri8, 1, X86::AL).addZImm(Val);
 | 
						|
        Opcode = X86::REP_STOSB;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If it's not a constant value we are storing, just fall back.  We could
 | 
						|
      // try to be clever to form 16 bit and 32 bit values, but we don't yet.
 | 
						|
      unsigned ValReg = getReg(CI.getOperand(2));
 | 
						|
      BuildMI(BB, X86::MOVrr8, 1, X86::AL).addReg(ValReg);
 | 
						|
      CountReg = getReg(CI.getOperand(3));
 | 
						|
      Opcode = X86::REP_STOSB;
 | 
						|
    }
 | 
						|
 | 
						|
    // No matter what the alignment is, we put the source in ESI, the
 | 
						|
    // destination in EDI, and the count in ECX.
 | 
						|
    TmpReg1 = getReg(CI.getOperand(1));
 | 
						|
    //TmpReg2 = getReg(CI.getOperand(2));
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
 | 
						|
    BuildMI(BB, Opcode, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitSimpleBinary - Implement simple binary operators for integral types...
 | 
						|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | 
						|
/// Xor.
 | 
						|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | 
						|
  unsigned DestReg = getReg(B);
 | 
						|
  MachineBasicBlock::iterator MI = BB->end();
 | 
						|
  emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
 | 
						|
                            OperatorClass, DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
 | 
						|
/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
 | 
						|
/// Or, 4 for Xor.
 | 
						|
///
 | 
						|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | 
						|
/// and constant expression support.
 | 
						|
///
 | 
						|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
 | 
						|
                                     MachineBasicBlock::iterator IP,
 | 
						|
                                     Value *Op0, Value *Op1,
 | 
						|
                                     unsigned OperatorClass, unsigned DestReg) {
 | 
						|
  unsigned Class = getClassB(Op0->getType());
 | 
						|
 | 
						|
  // sub 0, X -> neg X
 | 
						|
  if (OperatorClass == 1 && Class != cLong)
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
 | 
						|
      if (CI->isNullValue()) {
 | 
						|
        unsigned op1Reg = getReg(Op1, MBB, IP);
 | 
						|
        switch (Class) {
 | 
						|
        default: assert(0 && "Unknown class for this function!");
 | 
						|
        case cByte:
 | 
						|
          BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
 | 
						|
          return;
 | 
						|
        case cShort:
 | 
						|
          BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
 | 
						|
          return;
 | 
						|
        case cInt:
 | 
						|
          BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
 | 
						|
      if (CFP->isExactlyValue(-0.0)) {
 | 
						|
        // -0.0 - X === -X
 | 
						|
        unsigned op1Reg = getReg(Op1, MBB, IP);
 | 
						|
        BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  if (!isa<ConstantInt>(Op1) || Class == cLong) {
 | 
						|
    static const unsigned OpcodeTab[][4] = {
 | 
						|
      // Arithmetic operators
 | 
						|
      { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD },  // ADD
 | 
						|
      { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB },  // SUB
 | 
						|
      
 | 
						|
      // Bitwise operators
 | 
						|
      { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
 | 
						|
      { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
 | 
						|
      { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
 | 
						|
    };
 | 
						|
    
 | 
						|
    bool isLong = false;
 | 
						|
    if (Class == cLong) {
 | 
						|
      isLong = true;
 | 
						|
      Class = cInt;          // Bottom 32 bits are handled just like ints
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | 
						|
    assert(Opcode && "Floating point arguments to logical inst?");
 | 
						|
    unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
    unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
    BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | 
						|
    
 | 
						|
    if (isLong) {        // Handle the upper 32 bits of long values...
 | 
						|
      static const unsigned TopTab[] = {
 | 
						|
        X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
 | 
						|
      };
 | 
						|
      BMI(MBB, IP, TopTab[OperatorClass], 2,
 | 
						|
          DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case: op Reg, <const>
 | 
						|
  ConstantInt *Op1C = cast<ConstantInt>(Op1);
 | 
						|
  unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
 | 
						|
  // xor X, -1 -> not X
 | 
						|
  if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
 | 
						|
    static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
 | 
						|
    BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // add X, -1 -> dec X
 | 
						|
  if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
 | 
						|
    static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
 | 
						|
    BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // add X, 1 -> inc X
 | 
						|
  if (OperatorClass == 0 && Op1C->equalsInt(1)) {
 | 
						|
    static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
 | 
						|
    BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  static const unsigned OpcodeTab[][3] = {
 | 
						|
    // Arithmetic operators
 | 
						|
    { X86::ADDri8, X86::ADDri16, X86::ADDri32 },  // ADD
 | 
						|
    { X86::SUBri8, X86::SUBri16, X86::SUBri32 },  // SUB
 | 
						|
    
 | 
						|
    // Bitwise operators
 | 
						|
    { X86::ANDri8, X86::ANDri16, X86::ANDri32 },  // AND
 | 
						|
    { X86:: ORri8, X86:: ORri16, X86:: ORri32 },  // OR
 | 
						|
    { X86::XORri8, X86::XORri16, X86::XORri32 },  // XOR
 | 
						|
  };
 | 
						|
  
 | 
						|
  assert(Class < 3 && "General code handles 64-bit integer types!");
 | 
						|
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | 
						|
  uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
 | 
						|
  
 | 
						|
  // Mask off any upper bits of the constant, if there are any...
 | 
						|
  Op1v &= (1ULL << (8 << Class)) - 1;
 | 
						|
  BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
 | 
						|
}
 | 
						|
 | 
						|
/// doMultiply - Emit appropriate instructions to multiply together the
 | 
						|
/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
 | 
						|
/// result should be given as DestTy.
 | 
						|
///
 | 
						|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
                      unsigned DestReg, const Type *DestTy,
 | 
						|
                      unsigned op0Reg, unsigned op1Reg) {
 | 
						|
  unsigned Class = getClass(DestTy);
 | 
						|
  switch (Class) {
 | 
						|
  case cFP:              // Floating point multiply
 | 
						|
    BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
 | 
						|
    return;
 | 
						|
  case cInt:
 | 
						|
  case cShort:
 | 
						|
    BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
 | 
						|
      .addReg(op0Reg).addReg(op1Reg);
 | 
						|
    return;
 | 
						|
  case cByte:
 | 
						|
    // Must use the MUL instruction, which forces use of AL...
 | 
						|
    BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
 | 
						|
    BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
 | 
						|
    BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
  case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | 
						|
// returns zero when the input is not exactly a power of two.
 | 
						|
static unsigned ExactLog2(unsigned Val) {
 | 
						|
  if (Val == 0) return 0;
 | 
						|
  unsigned Count = 0;
 | 
						|
  while (Val != 1) {
 | 
						|
    if (Val & 1) return 0;
 | 
						|
    Val >>= 1;
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count+1;
 | 
						|
}
 | 
						|
 | 
						|
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
 | 
						|
                           MachineBasicBlock::iterator IP,
 | 
						|
                           unsigned DestReg, const Type *DestTy,
 | 
						|
                           unsigned op0Reg, unsigned ConstRHS) {
 | 
						|
  unsigned Class = getClass(DestTy);
 | 
						|
 | 
						|
  // If the element size is exactly a power of 2, use a shift to get it.
 | 
						|
  if (unsigned Shift = ExactLog2(ConstRHS)) {
 | 
						|
    switch (Class) {
 | 
						|
    default: assert(0 && "Unknown class for this function!");
 | 
						|
    case cByte:
 | 
						|
      BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
 | 
						|
      return;
 | 
						|
    case cShort:
 | 
						|
      BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
 | 
						|
      return;
 | 
						|
    case cInt:
 | 
						|
      BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Class == cShort) {
 | 
						|
    BMI(MBB, IP, X86::IMULrri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
 | 
						|
    return;
 | 
						|
  } else if (Class == cInt) {
 | 
						|
    BMI(MBB, IP, X86::IMULrri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Most general case, emit a normal multiply...
 | 
						|
  static const unsigned MOVriTab[] = {
 | 
						|
    X86::MOVri8, X86::MOVri16, X86::MOVri32
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned TmpReg = makeAnotherReg(DestTy);
 | 
						|
  BMI(MBB, IP, MOVriTab[Class], 1, TmpReg).addZImm(ConstRHS);
 | 
						|
  
 | 
						|
  // Emit a MUL to multiply the register holding the index by
 | 
						|
  // elementSize, putting the result in OffsetReg.
 | 
						|
  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
 | 
						|
}
 | 
						|
 | 
						|
/// visitMul - Multiplies are not simple binary operators because they must deal
 | 
						|
/// with the EAX register explicitly.
 | 
						|
///
 | 
						|
void ISel::visitMul(BinaryOperator &I) {
 | 
						|
  unsigned Op0Reg  = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  // Simple scalar multiply?
 | 
						|
  if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | 
						|
      unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
 | 
						|
      MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
      doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
 | 
						|
    } else {
 | 
						|
      unsigned Op1Reg  = getReg(I.getOperand(1));
 | 
						|
      MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
      doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    unsigned Op1Reg  = getReg(I.getOperand(1));
 | 
						|
 | 
						|
    // Long value.  We have to do things the hard way...
 | 
						|
    // Multiply the two low parts... capturing carry into EDX
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
 | 
						|
    BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg);  // AL*BL
 | 
						|
 | 
						|
    unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX);     // AL*BL
 | 
						|
    BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
 | 
						|
 | 
						|
    MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
 | 
						|
    BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
 | 
						|
 | 
						|
    unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
    BuildMI(BB, X86::ADDrr32, 2,                         // AH*BL+(AL*BL >> 32)
 | 
						|
            AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | 
						|
    
 | 
						|
    MBBI = BB->end();
 | 
						|
    unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | 
						|
    BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
 | 
						|
    
 | 
						|
    BuildMI(BB, X86::ADDrr32, 2,               // AL*BH + AH*BL + (AL*BL >> 32)
 | 
						|
            DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitDivRem - Handle division and remainder instructions... these
 | 
						|
/// instruction both require the same instructions to be generated, they just
 | 
						|
/// select the result from a different register.  Note that both of these
 | 
						|
/// instructions work differently for signed and unsigned operands.
 | 
						|
///
 | 
						|
void ISel::visitDivRem(BinaryOperator &I) {
 | 
						|
  unsigned Op0Reg = getReg(I.getOperand(0));
 | 
						|
  unsigned Op1Reg = getReg(I.getOperand(1));
 | 
						|
  unsigned ResultReg = getReg(I);
 | 
						|
 | 
						|
  MachineBasicBlock::iterator IP = BB->end();
 | 
						|
  emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
 | 
						|
                      I.getType(), ResultReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
 | 
						|
                               MachineBasicBlock::iterator IP,
 | 
						|
                               unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
 | 
						|
                               const Type *Ty, unsigned ResultReg) {
 | 
						|
  unsigned Class = getClass(Ty);
 | 
						|
  switch (Class) {
 | 
						|
  case cFP:              // Floating point divide
 | 
						|
    if (isDiv) {
 | 
						|
      BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
    } else {               // Floating point remainder...
 | 
						|
      MachineInstr *TheCall =
 | 
						|
        BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
 | 
						|
      std::vector<ValueRecord> Args;
 | 
						|
      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
 | 
						|
      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
 | 
						|
      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case cLong: {
 | 
						|
    static const char *FnName[] =
 | 
						|
      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
 | 
						|
 | 
						|
    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
 | 
						|
    MachineInstr *TheCall =
 | 
						|
      BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
 | 
						|
 | 
						|
    std::vector<ValueRecord> Args;
 | 
						|
    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
 | 
						|
    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
 | 
						|
    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case cByte: case cShort: case cInt:
 | 
						|
    break;          // Small integrals, handled below...
 | 
						|
  default: assert(0 && "Unknown class!");
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
 | 
						|
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
 | 
						|
  static const unsigned SarOpcode[]={ X86::SARri8, X86::SARri16, X86::SARri32 };
 | 
						|
  static const unsigned ClrOpcode[]={ X86::MOVri8, X86::MOVri16, X86::MOVri32 };
 | 
						|
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };
 | 
						|
 | 
						|
  static const unsigned DivOpcode[][4] = {
 | 
						|
    { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 },  // Unsigned division
 | 
						|
    { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 },  // Signed division
 | 
						|
  };
 | 
						|
 | 
						|
  bool isSigned   = Ty->isSigned();
 | 
						|
  unsigned Reg    = Regs[Class];
 | 
						|
  unsigned ExtReg = ExtRegs[Class];
 | 
						|
 | 
						|
  // Put the first operand into one of the A registers...
 | 
						|
  BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
 | 
						|
 | 
						|
  if (isSigned) {
 | 
						|
    // Emit a sign extension instruction...
 | 
						|
    unsigned ShiftResult = makeAnotherReg(Ty);
 | 
						|
    BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
 | 
						|
    BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
 | 
						|
  } else {
 | 
						|
    // If unsigned, emit a zeroing instruction... (reg = 0)
 | 
						|
    BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the appropriate divide or remainder instruction...
 | 
						|
  BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
 | 
						|
 | 
						|
  // Figure out which register we want to pick the result out of...
 | 
						|
  unsigned DestReg = isDiv ? Reg : ExtReg;
 | 
						|
  
 | 
						|
  // Put the result into the destination register...
 | 
						|
  BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | 
						|
/// for constant immediate shift values, and for constant immediate
 | 
						|
/// shift values equal to 1. Even the general case is sort of special,
 | 
						|
/// because the shift amount has to be in CL, not just any old register.
 | 
						|
///
 | 
						|
void ISel::visitShiftInst(ShiftInst &I) {
 | 
						|
  MachineBasicBlock::iterator IP = BB->end ();
 | 
						|
  emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
 | 
						|
                      I.getOpcode () == Instruction::Shl, I.getType (),
 | 
						|
                      getReg (I));
 | 
						|
}
 | 
						|
 | 
						|
/// emitShiftOperation - Common code shared between visitShiftInst and
 | 
						|
/// constant expression support.
 | 
						|
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP,
 | 
						|
                              Value *Op, Value *ShiftAmount, bool isLeftShift,
 | 
						|
                              const Type *ResultTy, unsigned DestReg) {
 | 
						|
  unsigned SrcReg = getReg (Op, MBB, IP);
 | 
						|
  bool isSigned = ResultTy->isSigned ();
 | 
						|
  unsigned Class = getClass (ResultTy);
 | 
						|
  
 | 
						|
  static const unsigned ConstantOperand[][4] = {
 | 
						|
    { X86::SHRri8, X86::SHRri16, X86::SHRri32, X86::SHRDri32 },  // SHR
 | 
						|
    { X86::SARri8, X86::SARri16, X86::SARri32, X86::SHRDri32 },  // SAR
 | 
						|
    { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 },  // SHL
 | 
						|
    { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 },  // SAL = SHL
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned NonConstantOperand[][4] = {
 | 
						|
    { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 },  // SHR
 | 
						|
    { X86::SARrr8, X86::SARrr16, X86::SARrr32 },  // SAR
 | 
						|
    { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SHL
 | 
						|
    { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SAL = SHL
 | 
						|
  };
 | 
						|
 | 
						|
  // Longs, as usual, are handled specially...
 | 
						|
  if (Class == cLong) {
 | 
						|
    // If we have a constant shift, we can generate much more efficient code
 | 
						|
    // than otherwise...
 | 
						|
    //
 | 
						|
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | 
						|
      unsigned Amount = CUI->getValue();
 | 
						|
      if (Amount < 32) {
 | 
						|
        const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | 
						|
        if (isLeftShift) {
 | 
						|
          BMI(MBB, IP, Opc[3], 3, 
 | 
						|
              DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
 | 
						|
          BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
 | 
						|
        } else {
 | 
						|
          BMI(MBB, IP, Opc[3], 3,
 | 
						|
              DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addZImm(Amount);
 | 
						|
          BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
 | 
						|
        }
 | 
						|
      } else {                 // Shifting more than 32 bits
 | 
						|
        Amount -= 32;
 | 
						|
        if (isLeftShift) {
 | 
						|
          BMI(MBB, IP, X86::SHLri32, 2,
 | 
						|
              DestReg + 1).addReg(SrcReg).addZImm(Amount);
 | 
						|
          BMI(MBB, IP, X86::MOVri32, 1,
 | 
						|
              DestReg).addZImm(0);
 | 
						|
        } else {
 | 
						|
          unsigned Opcode = isSigned ? X86::SARri32 : X86::SHRri32;
 | 
						|
          BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
 | 
						|
          BMI(MBB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
 | 
						|
      if (!isLeftShift && isSigned) {
 | 
						|
        // If this is a SHR of a Long, then we need to do funny sign extension
 | 
						|
        // stuff.  TmpReg gets the value to use as the high-part if we are
 | 
						|
        // shifting more than 32 bits.
 | 
						|
        BMI(MBB, IP, X86::SARri32, 2, TmpReg).addReg(SrcReg).addZImm(31);
 | 
						|
      } else {
 | 
						|
        // Other shifts use a fixed zero value if the shift is more than 32
 | 
						|
        // bits.
 | 
						|
        BMI(MBB, IP, X86::MOVri32, 1, TmpReg).addZImm(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Initialize CL with the shift amount...
 | 
						|
      unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
 | 
						|
      BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
 | 
						|
 | 
						|
      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | 
						|
      if (isLeftShift) {
 | 
						|
        // TmpReg2 = shld inHi, inLo
 | 
						|
        BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
 | 
						|
        // TmpReg3 = shl  inLo, CL
 | 
						|
        BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
 | 
						|
 | 
						|
        // Set the flags to indicate whether the shift was by more than 32 bits.
 | 
						|
        BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
 | 
						|
 | 
						|
        // DestHi = (>32) ? TmpReg3 : TmpReg2;
 | 
						|
        BMI(MBB, IP, X86::CMOVNErr32, 2, 
 | 
						|
                DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
 | 
						|
        // DestLo = (>32) ? TmpReg : TmpReg3;
 | 
						|
        BMI(MBB, IP, X86::CMOVNErr32, 2,
 | 
						|
            DestReg).addReg(TmpReg3).addReg(TmpReg);
 | 
						|
      } else {
 | 
						|
        // TmpReg2 = shrd inLo, inHi
 | 
						|
        BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
 | 
						|
        // TmpReg3 = s[ah]r  inHi, CL
 | 
						|
        BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
 | 
						|
                       .addReg(SrcReg+1);
 | 
						|
 | 
						|
        // Set the flags to indicate whether the shift was by more than 32 bits.
 | 
						|
        BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
 | 
						|
 | 
						|
        // DestLo = (>32) ? TmpReg3 : TmpReg2;
 | 
						|
        BMI(MBB, IP, X86::CMOVNErr32, 2, 
 | 
						|
                DestReg).addReg(TmpReg2).addReg(TmpReg3);
 | 
						|
 | 
						|
        // DestHi = (>32) ? TmpReg : TmpReg3;
 | 
						|
        BMI(MBB, IP, X86::CMOVNErr32, 2, 
 | 
						|
                DestReg+1).addReg(TmpReg3).addReg(TmpReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | 
						|
    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | 
						|
    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | 
						|
 | 
						|
    const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | 
						|
    BMI(MBB, IP, Opc[Class], 2,
 | 
						|
        DestReg).addReg(SrcReg).addZImm(CUI->getValue());
 | 
						|
  } else {                  // The shift amount is non-constant.
 | 
						|
    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | 
						|
    BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
 | 
						|
 | 
						|
    const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
 | 
						|
    BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
 | 
						|
/// instruction.  The load and store instructions are the only place where we
 | 
						|
/// need to worry about the memory layout of the target machine.
 | 
						|
///
 | 
						|
void ISel::visitLoadInst(LoadInst &I) {
 | 
						|
  unsigned SrcAddrReg = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  unsigned Class = getClassB(I.getType());
 | 
						|
 | 
						|
  if (Class == cLong) {
 | 
						|
    addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), SrcAddrReg);
 | 
						|
    addRegOffset(BuildMI(BB, X86::MOVrm32, 4, DestReg+1), SrcAddrReg, 4);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned Opcodes[] = {
 | 
						|
    X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FLDr32
 | 
						|
  };
 | 
						|
  unsigned Opcode = Opcodes[Class];
 | 
						|
  if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
 | 
						|
  addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
 | 
						|
}
 | 
						|
 | 
						|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
 | 
						|
/// instruction.
 | 
						|
///
 | 
						|
void ISel::visitStoreInst(StoreInst &I) {
 | 
						|
  unsigned ValReg      = getReg(I.getOperand(0));
 | 
						|
  unsigned AddressReg  = getReg(I.getOperand(1));
 | 
						|
 
 | 
						|
  const Type *ValTy = I.getOperand(0)->getType();
 | 
						|
  unsigned Class = getClassB(ValTy);
 | 
						|
 | 
						|
  if (Class == cLong) {
 | 
						|
    addDirectMem(BuildMI(BB, X86::MOVmr32, 1+4), AddressReg).addReg(ValReg);
 | 
						|
    addRegOffset(BuildMI(BB, X86::MOVmr32, 1+4), AddressReg,4).addReg(ValReg+1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned Opcodes[] = {
 | 
						|
    X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FSTr32
 | 
						|
  };
 | 
						|
  unsigned Opcode = Opcodes[Class];
 | 
						|
  if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
 | 
						|
  addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCastInst - Here we have various kinds of copying with or without
 | 
						|
/// sign extension going on.
 | 
						|
void ISel::visitCastInst(CastInst &CI) {
 | 
						|
  Value *Op = CI.getOperand(0);
 | 
						|
  // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | 
						|
  // of the case are GEP instructions, then the cast does not need to be
 | 
						|
  // generated explicitly, it will be folded into the GEP.
 | 
						|
  if (CI.getType() == Type::LongTy &&
 | 
						|
      (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
 | 
						|
    bool AllUsesAreGEPs = true;
 | 
						|
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | 
						|
      if (!isa<GetElementPtrInst>(*I)) {
 | 
						|
        AllUsesAreGEPs = false;
 | 
						|
        break;
 | 
						|
      }        
 | 
						|
 | 
						|
    // No need to codegen this cast if all users are getelementptr instrs...
 | 
						|
    if (AllUsesAreGEPs) return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned DestReg = getReg(CI);
 | 
						|
  MachineBasicBlock::iterator MI = BB->end();
 | 
						|
  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitCastOperation - Common code shared between visitCastInst and
 | 
						|
/// constant expression cast support.
 | 
						|
void ISel::emitCastOperation(MachineBasicBlock *BB,
 | 
						|
                             MachineBasicBlock::iterator IP,
 | 
						|
                             Value *Src, const Type *DestTy,
 | 
						|
                             unsigned DestReg) {
 | 
						|
  unsigned SrcReg = getReg(Src, BB, IP);
 | 
						|
  const Type *SrcTy = Src->getType();
 | 
						|
  unsigned SrcClass = getClassB(SrcTy);
 | 
						|
  unsigned DestClass = getClassB(DestTy);
 | 
						|
 | 
						|
  // Implement casts to bool by using compare on the operand followed by set if
 | 
						|
  // not zero on the result.
 | 
						|
  if (DestTy == Type::BoolTy) {
 | 
						|
    switch (SrcClass) {
 | 
						|
    case cByte:
 | 
						|
      BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case cShort:
 | 
						|
      BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case cInt:
 | 
						|
      BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case cLong: {
 | 
						|
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
      BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case cFP:
 | 
						|
      BMI(BB, IP, X86::FTST, 1).addReg(SrcReg);
 | 
						|
      BMI(BB, IP, X86::FNSTSWr8, 0);
 | 
						|
      BMI(BB, IP, X86::SAHF, 1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the zero flag is not set, then the value is true, set the byte to
 | 
						|
    // true.
 | 
						|
    BMI(BB, IP, X86::SETNEr, 1, DestReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned RegRegMove[] = {
 | 
						|
    X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
 | 
						|
  };
 | 
						|
 | 
						|
  // Implement casts between values of the same type class (as determined by
 | 
						|
  // getClass) by using a register-to-register move.
 | 
						|
  if (SrcClass == DestClass) {
 | 
						|
    if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
 | 
						|
      BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
 | 
						|
    } else if (SrcClass == cFP) {
 | 
						|
      if (SrcTy == Type::FloatTy) {  // double -> float
 | 
						|
        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
 | 
						|
        BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
 | 
						|
      } else {                       // float -> double
 | 
						|
        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
 | 
						|
               "Unknown cFP member!");
 | 
						|
        // Truncate from double to float by storing to memory as short, then
 | 
						|
        // reading it back.
 | 
						|
        unsigned FltAlign = TM.getTargetData().getFloatAlignment();
 | 
						|
        int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
 | 
						|
        addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
 | 
						|
        addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
 | 
						|
      }
 | 
						|
    } else if (SrcClass == cLong) {
 | 
						|
      BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
 | 
						|
      BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
 | 
						|
    } else {
 | 
						|
      assert(0 && "Cannot handle this type of cast instruction!");
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle cast of SMALLER int to LARGER int using a move with sign extension
 | 
						|
  // or zero extension, depending on whether the source type was signed.
 | 
						|
  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
 | 
						|
      SrcClass < DestClass) {
 | 
						|
    bool isLong = DestClass == cLong;
 | 
						|
    if (isLong) DestClass = cInt;
 | 
						|
 | 
						|
    static const unsigned Opc[][4] = {
 | 
						|
      { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
 | 
						|
      { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 }  // u
 | 
						|
    };
 | 
						|
    
 | 
						|
    bool isUnsigned = SrcTy->isUnsigned();
 | 
						|
    BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
 | 
						|
        DestReg).addReg(SrcReg);
 | 
						|
 | 
						|
    if (isLong) {  // Handle upper 32 bits as appropriate...
 | 
						|
      if (isUnsigned)     // Zero out top bits...
 | 
						|
        BMI(BB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
 | 
						|
      else                // Sign extend bottom half...
 | 
						|
        BMI(BB, IP, X86::SARri32, 2, DestReg+1).addReg(DestReg).addZImm(31);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case long -> int ...
 | 
						|
  if (SrcClass == cLong && DestClass == cInt) {
 | 
						|
    BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
 | 
						|
  // move out of AX or AL.
 | 
						|
  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
 | 
						|
      && SrcClass > DestClass) {
 | 
						|
    static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
 | 
						|
    BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
 | 
						|
    BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle casts from integer to floating point now...
 | 
						|
  if (DestClass == cFP) {
 | 
						|
    // Promote the integer to a type supported by FLD.  We do this because there
 | 
						|
    // are no unsigned FLD instructions, so we must promote an unsigned value to
 | 
						|
    // a larger signed value, then use FLD on the larger value.
 | 
						|
    //
 | 
						|
    const Type *PromoteType = 0;
 | 
						|
    unsigned PromoteOpcode;
 | 
						|
    unsigned RealDestReg = DestReg;
 | 
						|
    switch (SrcTy->getPrimitiveID()) {
 | 
						|
    case Type::BoolTyID:
 | 
						|
    case Type::SByteTyID:
 | 
						|
      // We don't have the facilities for directly loading byte sized data from
 | 
						|
      // memory (even signed).  Promote it to 16 bits.
 | 
						|
      PromoteType = Type::ShortTy;
 | 
						|
      PromoteOpcode = X86::MOVSXr16r8;
 | 
						|
      break;
 | 
						|
    case Type::UByteTyID:
 | 
						|
      PromoteType = Type::ShortTy;
 | 
						|
      PromoteOpcode = X86::MOVZXr16r8;
 | 
						|
      break;
 | 
						|
    case Type::UShortTyID:
 | 
						|
      PromoteType = Type::IntTy;
 | 
						|
      PromoteOpcode = X86::MOVZXr32r16;
 | 
						|
      break;
 | 
						|
    case Type::UIntTyID: {
 | 
						|
      // Make a 64 bit temporary... and zero out the top of it...
 | 
						|
      unsigned TmpReg = makeAnotherReg(Type::LongTy);
 | 
						|
      BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
 | 
						|
      BMI(BB, IP, X86::MOVri32, 1, TmpReg+1).addZImm(0);
 | 
						|
      SrcTy = Type::LongTy;
 | 
						|
      SrcClass = cLong;
 | 
						|
      SrcReg = TmpReg;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Type::ULongTyID:
 | 
						|
      // Don't fild into the read destination.
 | 
						|
      DestReg = makeAnotherReg(Type::DoubleTy);
 | 
						|
      break;
 | 
						|
    default:  // No promotion needed...
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (PromoteType) {
 | 
						|
      unsigned TmpReg = makeAnotherReg(PromoteType);
 | 
						|
      unsigned Opc = SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8;
 | 
						|
      BMI(BB, IP, Opc, 1, TmpReg).addReg(SrcReg);
 | 
						|
      SrcTy = PromoteType;
 | 
						|
      SrcClass = getClass(PromoteType);
 | 
						|
      SrcReg = TmpReg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Spill the integer to memory and reload it from there...
 | 
						|
    int FrameIdx = F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | 
						|
 | 
						|
    if (SrcClass == cLong) {
 | 
						|
      addFrameReference(BMI(BB, IP, X86::MOVmr32, 5), FrameIdx).addReg(SrcReg);
 | 
						|
      addFrameReference(BMI(BB, IP, X86::MOVmr32, 5),
 | 
						|
                        FrameIdx, 4).addReg(SrcReg+1);
 | 
						|
    } else {
 | 
						|
      static const unsigned Op1[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
 | 
						|
      addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
 | 
						|
    }
 | 
						|
 | 
						|
    static const unsigned Op2[] =
 | 
						|
      { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
 | 
						|
    addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
 | 
						|
 | 
						|
    // We need special handling for unsigned 64-bit integer sources.  If the
 | 
						|
    // input number has the "sign bit" set, then we loaded it incorrectly as a
 | 
						|
    // negative 64-bit number.  In this case, add an offset value.
 | 
						|
    if (SrcTy == Type::ULongTy) {
 | 
						|
      // Emit a test instruction to see if the dynamic input value was signed.
 | 
						|
      BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg+1).addReg(SrcReg+1);
 | 
						|
 | 
						|
      // If the sign bit is set, get a pointer to an offset, otherwise get a pointer to a zero.
 | 
						|
      MachineConstantPool *CP = F->getConstantPool();
 | 
						|
      unsigned Zero = makeAnotherReg(Type::IntTy);
 | 
						|
      addConstantPoolReference(BMI(BB, IP, X86::LEAr32, 5, Zero), 
 | 
						|
                               CP->getConstantPoolIndex(Constant::getNullValue(Type::UIntTy)));
 | 
						|
      unsigned Offset = makeAnotherReg(Type::IntTy);
 | 
						|
      addConstantPoolReference(BMI(BB, IP, X86::LEAr32, 5, Offset),
 | 
						|
                               CP->getConstantPoolIndex(ConstantUInt::get(Type::UIntTy,
 | 
						|
                                                                          0x5f800000)));
 | 
						|
      unsigned Addr = makeAnotherReg(Type::IntTy);
 | 
						|
      BMI(BB, IP, X86::CMOVSrr32, 2, Addr).addReg(Zero).addReg(Offset);
 | 
						|
 | 
						|
      // Load the constant for an add.  FIXME: this could make an 'fadd' that
 | 
						|
      // reads directly from memory, but we don't support these yet.
 | 
						|
      unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
 | 
						|
      addDirectMem(BMI(BB, IP, X86::FLDr32, 4, ConstReg), Addr);
 | 
						|
 | 
						|
      BMI(BB, IP, X86::FpADD, 2, RealDestReg).addReg(ConstReg).addReg(DestReg);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle casts from floating point to integer now...
 | 
						|
  if (SrcClass == cFP) {
 | 
						|
    // Change the floating point control register to use "round towards zero"
 | 
						|
    // mode when truncating to an integer value.
 | 
						|
    //
 | 
						|
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | 
						|
    addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
 | 
						|
 | 
						|
    // Load the old value of the high byte of the control word...
 | 
						|
    unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
 | 
						|
    addFrameReference(BMI(BB, IP, X86::MOVrm8, 4, HighPartOfCW), CWFrameIdx, 1);
 | 
						|
 | 
						|
    // Set the high part to be round to zero...
 | 
						|
    addFrameReference(BMI(BB, IP, X86::MOVmi8, 5), CWFrameIdx, 1).addZImm(12);
 | 
						|
 | 
						|
    // Reload the modified control word now...
 | 
						|
    addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
 | 
						|
    
 | 
						|
    // Restore the memory image of control word to original value
 | 
						|
    addFrameReference(BMI(BB, IP, X86::MOVmr8, 5),
 | 
						|
                      CWFrameIdx, 1).addReg(HighPartOfCW);
 | 
						|
 | 
						|
    // We don't have the facilities for directly storing byte sized data to
 | 
						|
    // memory.  Promote it to 16 bits.  We also must promote unsigned values to
 | 
						|
    // larger classes because we only have signed FP stores.
 | 
						|
    unsigned StoreClass  = DestClass;
 | 
						|
    const Type *StoreTy  = DestTy;
 | 
						|
    if (StoreClass == cByte || DestTy->isUnsigned())
 | 
						|
      switch (StoreClass) {
 | 
						|
      case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break;
 | 
						|
      case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break;
 | 
						|
      case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | 
						|
      // The following treatment of cLong may not be perfectly right,
 | 
						|
      // but it survives chains of casts of the form
 | 
						|
      // double->ulong->double.
 | 
						|
      case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | 
						|
      default: assert(0 && "Unknown store class!");
 | 
						|
      }
 | 
						|
 | 
						|
    // Spill the integer to memory and reload it from there...
 | 
						|
    int FrameIdx =
 | 
						|
      F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
 | 
						|
 | 
						|
    static const unsigned Op1[] =
 | 
						|
      { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
 | 
						|
    addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
 | 
						|
 | 
						|
    if (DestClass == cLong) {
 | 
						|
      addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg), FrameIdx);
 | 
						|
      addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg+1), FrameIdx, 4);
 | 
						|
    } else {
 | 
						|
      static const unsigned Op2[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
 | 
						|
      addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
 | 
						|
    }
 | 
						|
 | 
						|
    // Reload the original control word now...
 | 
						|
    addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything we haven't handled already, we can't (yet) handle at all.
 | 
						|
  assert(0 && "Unhandled cast instruction!");
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
/// visitVANextInst - Implement the va_next instruction...
 | 
						|
///
 | 
						|
void ISel::visitVANextInst(VANextInst &I) {
 | 
						|
  unsigned VAList = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  unsigned Size;
 | 
						|
  switch (I.getArgType()->getPrimitiveID()) {
 | 
						|
  default:
 | 
						|
    std::cerr << I;
 | 
						|
    assert(0 && "Error: bad type for va_next instruction!");
 | 
						|
    return;
 | 
						|
  case Type::PointerTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
    Size = 4;
 | 
						|
    break;
 | 
						|
  case Type::ULongTyID:
 | 
						|
  case Type::LongTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Size = 8;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Increment the VAList pointer...
 | 
						|
  BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::visitVAArgInst(VAArgInst &I) {
 | 
						|
  unsigned VAList = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  switch (I.getType()->getPrimitiveID()) {
 | 
						|
  default:
 | 
						|
    std::cerr << I;
 | 
						|
    assert(0 && "Error: bad type for va_next instruction!");
 | 
						|
    return;
 | 
						|
  case Type::PointerTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
    addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
 | 
						|
    break;
 | 
						|
  case Type::ULongTyID:
 | 
						|
  case Type::LongTyID:
 | 
						|
    addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
 | 
						|
    addRegOffset(BuildMI(BB, X86::MOVrm32, 4, DestReg+1), VAList, 4);
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  unsigned outputReg = getReg(I);
 | 
						|
  emitGEPOperation(BB, BB->end(), I.getOperand(0),
 | 
						|
                   I.op_begin()+1, I.op_end(), outputReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Src, User::op_iterator IdxBegin,
 | 
						|
                            User::op_iterator IdxEnd, unsigned TargetReg) {
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
 | 
						|
  if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
 | 
						|
    Src = CPR->getValue();
 | 
						|
 | 
						|
  std::vector<Value*> GEPOps;
 | 
						|
  GEPOps.resize(IdxEnd-IdxBegin+1);
 | 
						|
  GEPOps[0] = Src;
 | 
						|
  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
 | 
						|
  
 | 
						|
  std::vector<const Type*> GEPTypes;
 | 
						|
  GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
 | 
						|
                  gep_type_end(Src->getType(), IdxBegin, IdxEnd));
 | 
						|
 | 
						|
  // Keep emitting instructions until we consume the entire GEP instruction.
 | 
						|
  while (!GEPOps.empty()) {
 | 
						|
    unsigned OldSize = GEPOps.size();
 | 
						|
    
 | 
						|
    if (GEPTypes.empty()) {
 | 
						|
      // The getGEPIndex operation didn't want to build an LEA.  Check to see if
 | 
						|
      // all operands are consumed but the base pointer.  If so, just load it
 | 
						|
      // into the register.
 | 
						|
      if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
 | 
						|
        BMI(MBB, IP, X86::MOVri32, 1, TargetReg).addGlobalAddress(GV);
 | 
						|
      } else {
 | 
						|
        unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
 | 
						|
        BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
 | 
						|
      }
 | 
						|
      break;                // we are now done
 | 
						|
    } else if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
 | 
						|
      // It's a struct access.  CUI is the index into the structure,
 | 
						|
      // which names the field. This index must have unsigned type.
 | 
						|
      const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
 | 
						|
      GEPOps.pop_back();        // Consume a GEP operand
 | 
						|
      GEPTypes.pop_back();
 | 
						|
 | 
						|
      // Use the TargetData structure to pick out what the layout of the
 | 
						|
      // structure is in memory.  Since the structure index must be constant, we
 | 
						|
      // can get its value and use it to find the right byte offset from the
 | 
						|
      // StructLayout class's list of structure member offsets.
 | 
						|
      unsigned idxValue = CUI->getValue();
 | 
						|
      unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
 | 
						|
      if (FieldOff) {
 | 
						|
        unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
        // Emit an ADD to add FieldOff to the basePtr.
 | 
						|
        BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(FieldOff);
 | 
						|
        --IP;            // Insert the next instruction before this one.
 | 
						|
        TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
      }
 | 
						|
      
 | 
						|
    } else {
 | 
						|
      // It's an array or pointer access: [ArraySize x ElementType].
 | 
						|
      const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
 | 
						|
      Value *idx = GEPOps.back();
 | 
						|
      GEPOps.pop_back();        // Consume a GEP operand
 | 
						|
      GEPTypes.pop_back();
 | 
						|
 | 
						|
      // idx is the index into the array.  Unlike with structure
 | 
						|
      // indices, we may not know its actual value at code-generation
 | 
						|
      // time.
 | 
						|
      assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
 | 
						|
 | 
						|
      // Most GEP instructions use a [cast (int/uint) to LongTy] as their
 | 
						|
      // operand on X86.  Handle this case directly now...
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(idx))
 | 
						|
        if (CI->getOperand(0)->getType() == Type::IntTy ||
 | 
						|
            CI->getOperand(0)->getType() == Type::UIntTy)
 | 
						|
          idx = CI->getOperand(0);
 | 
						|
 | 
						|
      // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
 | 
						|
      // must find the size of the pointed-to type (Not coincidentally, the next
 | 
						|
      // type is the type of the elements in the array).
 | 
						|
      const Type *ElTy = SqTy->getElementType();
 | 
						|
      unsigned elementSize = TD.getTypeSize(ElTy);
 | 
						|
 | 
						|
      // If idxReg is a constant, we don't need to perform the multiply!
 | 
						|
      if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
 | 
						|
        if (!CSI->isNullValue()) {
 | 
						|
          unsigned Offset = elementSize*CSI->getValue();
 | 
						|
          unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
          BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(Offset);
 | 
						|
          --IP;            // Insert the next instruction before this one.
 | 
						|
          TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
        }
 | 
						|
      } else if (elementSize == 1) {
 | 
						|
        // If the element size is 1, we don't have to multiply, just add
 | 
						|
        unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
        unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
        BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(idxReg);
 | 
						|
        --IP;            // Insert the next instruction before this one.
 | 
						|
        TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
      } else {
 | 
						|
        unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
 | 
						|
 | 
						|
        // Make sure we can back the iterator up to point to the first
 | 
						|
        // instruction emitted.
 | 
						|
        MachineBasicBlock::iterator BeforeIt = IP;
 | 
						|
        if (IP == MBB->begin())
 | 
						|
          BeforeIt = MBB->end();
 | 
						|
        else
 | 
						|
          --BeforeIt;
 | 
						|
        doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
 | 
						|
 | 
						|
        // Emit an ADD to add OffsetReg to the basePtr.
 | 
						|
        unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
        BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
 | 
						|
 | 
						|
        // Step to the first instruction of the multiply.
 | 
						|
        if (BeforeIt == MBB->end())
 | 
						|
          IP = MBB->begin();
 | 
						|
        else
 | 
						|
          IP = ++BeforeIt;
 | 
						|
 | 
						|
        TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | 
						|
/// frame manager, otherwise do it the hard way.
 | 
						|
///
 | 
						|
void ISel::visitAllocaInst(AllocaInst &I) {
 | 
						|
  // Find the data size of the alloca inst's getAllocatedType.
 | 
						|
  const Type *Ty = I.getAllocatedType();
 | 
						|
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | 
						|
 | 
						|
  // If this is a fixed size alloca in the entry block for the function,
 | 
						|
  // statically stack allocate the space.
 | 
						|
  //
 | 
						|
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
 | 
						|
    if (I.getParent() == I.getParent()->getParent()->begin()) {
 | 
						|
      TySize *= CUI->getValue();   // Get total allocated size...
 | 
						|
      unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | 
						|
      
 | 
						|
      // Create a new stack object using the frame manager...
 | 
						|
      int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | 
						|
      addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create a register to hold the temporary result of multiplying the type size
 | 
						|
  // constant by the variable amount.
 | 
						|
  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  unsigned SrcReg1 = getReg(I.getArraySize());
 | 
						|
  
 | 
						|
  // TotalSizeReg = mul <numelements>, <TypeSize>
 | 
						|
  MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
 | 
						|
 | 
						|
  // AddedSize = add <TotalSizeReg>, 15
 | 
						|
  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
 | 
						|
 | 
						|
  // AlignedSize = and <AddedSize>, ~15
 | 
						|
  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
 | 
						|
  
 | 
						|
  // Subtract size from stack pointer, thereby allocating some space.
 | 
						|
  BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
 | 
						|
 | 
						|
  // Put a pointer to the space into the result register, by copying
 | 
						|
  // the stack pointer.
 | 
						|
  BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
 | 
						|
 | 
						|
  // Inform the Frame Information that we have just allocated a variable-sized
 | 
						|
  // object.
 | 
						|
  F->getFrameInfo()->CreateVariableSizedObject();
 | 
						|
}
 | 
						|
 | 
						|
/// visitMallocInst - Malloc instructions are code generated into direct calls
 | 
						|
/// to the library malloc.
 | 
						|
///
 | 
						|
void ISel::visitMallocInst(MallocInst &I) {
 | 
						|
  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | 
						|
  unsigned Arg;
 | 
						|
 | 
						|
  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | 
						|
    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | 
						|
  } else {
 | 
						|
    Arg = makeAnotherReg(Type::UIntTy);
 | 
						|
    unsigned Op0Reg = getReg(I.getOperand(0));
 | 
						|
    MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | 
						|
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | 
						|
                                  1).addExternalSymbol("malloc", true);
 | 
						|
  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
 | 
						|
/// function.
 | 
						|
///
 | 
						|
void ISel::visitFreeInst(FreeInst &I) {
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  Args.push_back(ValueRecord(I.getOperand(0)));
 | 
						|
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | 
						|
                                  1).addExternalSymbol("free", true);
 | 
						|
  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
 | 
						|
}
 | 
						|
   
 | 
						|
/// createX86SimpleInstructionSelector - This pass converts an LLVM function
 | 
						|
/// into a machine code representation is a very simple peep-hole fashion.  The
 | 
						|
/// generated code sucks but the implementation is nice and simple.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
 | 
						|
  return new ISel(TM);
 | 
						|
}
 |