mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This is the first commit in a series that add an @llvm.assume intrinsic which can be used to provide the optimizer with a condition it may assume to be true (when the control flow would hit the intrinsic call). Some basic properties are added here: - llvm.invariant(true) is dead. - llvm.invariant(false) is unreachable (this directly corresponds to the documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef). The intrinsic is tagged as writing arbitrarily, in order to maintain control dependencies. BasicAA has been updated, however, to return NoModRef for any particular location-based query so that we don't unnecessarily block code motion. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			642 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			642 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file provides the implementation of a basic TargetTransformInfo pass
 | |
| /// predicated on the target abstractions present in the target independent
 | |
| /// code generator. It uses these (primarily TargetLowering) to model as much
 | |
| /// of the TTI query interface as possible. It is included by most targets so
 | |
| /// that they can specialize only a small subset of the query space.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <utility>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
 | |
|   cl::desc("Threshold for partial unrolling"), cl::Hidden);
 | |
| 
 | |
| #define DEBUG_TYPE "basictti"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
 | |
|   const TargetMachine *TM;
 | |
| 
 | |
|   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | |
|   /// are set if the result needs to be inserted and/or extracted from vectors.
 | |
|   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | |
| 
 | |
|   /// Estimate the cost overhead of SK_Alternate shuffle.
 | |
|   unsigned getAltShuffleOverhead(Type *Ty) const;
 | |
| 
 | |
|   const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
 | |
| 
 | |
| public:
 | |
|   BasicTTI() : ImmutablePass(ID), TM(nullptr) {
 | |
|     llvm_unreachable("This pass cannot be directly constructed");
 | |
|   }
 | |
| 
 | |
|   BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
 | |
|     initializeBasicTTIPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void initializePass() override {
 | |
|     pushTTIStack(this);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     TargetTransformInfo::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Pass identification.
 | |
|   static char ID;
 | |
| 
 | |
|   /// Provide necessary pointer adjustments for the two base classes.
 | |
|   void *getAdjustedAnalysisPointer(const void *ID) override {
 | |
|     if (ID == &TargetTransformInfo::ID)
 | |
|       return (TargetTransformInfo*)this;
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   bool hasBranchDivergence() const override;
 | |
| 
 | |
|   /// \name Scalar TTI Implementations
 | |
|   /// @{
 | |
| 
 | |
|   bool isLegalAddImmediate(int64_t imm) const override;
 | |
|   bool isLegalICmpImmediate(int64_t imm) const override;
 | |
|   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
 | |
|                              int64_t BaseOffset, bool HasBaseReg,
 | |
|                              int64_t Scale) const override;
 | |
|   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 | |
|                            int64_t BaseOffset, bool HasBaseReg,
 | |
|                            int64_t Scale) const override;
 | |
|   bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
 | |
|   bool isTypeLegal(Type *Ty) const override;
 | |
|   unsigned getJumpBufAlignment() const override;
 | |
|   unsigned getJumpBufSize() const override;
 | |
|   bool shouldBuildLookupTables() const override;
 | |
|   bool haveFastSqrt(Type *Ty) const override;
 | |
|   void getUnrollingPreferences(Loop *L,
 | |
|                                UnrollingPreferences &UP) const override;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Vector TTI Implementations
 | |
|   /// @{
 | |
| 
 | |
|   unsigned getNumberOfRegisters(bool Vector) const override;
 | |
|   unsigned getMaximumUnrollFactor() const override;
 | |
|   unsigned getRegisterBitWidth(bool Vector) const override;
 | |
|   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
 | |
|                                   OperandValueKind) const override;
 | |
|   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
 | |
|                           int Index, Type *SubTp) const override;
 | |
|   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                             Type *Src) const override;
 | |
|   unsigned getCFInstrCost(unsigned Opcode) const override;
 | |
|   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                               Type *CondTy) const override;
 | |
|   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                               unsigned Index) const override;
 | |
|   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                            unsigned AddressSpace) const override;
 | |
|   unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
 | |
|                                  ArrayRef<Type*> Tys) const override;
 | |
|   unsigned getNumberOfParts(Type *Tp) const override;
 | |
|   unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
 | |
|   unsigned getReductionCost(unsigned Opcode, Type *Ty,
 | |
|                             bool IsPairwise) const override;
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
 | |
|                    "Target independent code generator's TTI", true, true, false)
 | |
| char BasicTTI::ID = 0;
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
 | |
|   return new BasicTTI(TM);
 | |
| }
 | |
| 
 | |
| bool BasicTTI::hasBranchDivergence() const { return false; }
 | |
| 
 | |
| bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
 | |
|   return getTLI()->isLegalAddImmediate(imm);
 | |
| }
 | |
| 
 | |
| bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
 | |
|   return getTLI()->isLegalICmpImmediate(imm);
 | |
| }
 | |
| 
 | |
| bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
 | |
|                                      int64_t BaseOffset, bool HasBaseReg,
 | |
|                                      int64_t Scale) const {
 | |
|   TargetLoweringBase::AddrMode AM;
 | |
|   AM.BaseGV = BaseGV;
 | |
|   AM.BaseOffs = BaseOffset;
 | |
|   AM.HasBaseReg = HasBaseReg;
 | |
|   AM.Scale = Scale;
 | |
|   return getTLI()->isLegalAddressingMode(AM, Ty);
 | |
| }
 | |
| 
 | |
| int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 | |
|                                    int64_t BaseOffset, bool HasBaseReg,
 | |
|                                    int64_t Scale) const {
 | |
|   TargetLoweringBase::AddrMode AM;
 | |
|   AM.BaseGV = BaseGV;
 | |
|   AM.BaseOffs = BaseOffset;
 | |
|   AM.HasBaseReg = HasBaseReg;
 | |
|   AM.Scale = Scale;
 | |
|   return getTLI()->getScalingFactorCost(AM, Ty);
 | |
| }
 | |
| 
 | |
| bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   return getTLI()->isTruncateFree(Ty1, Ty2);
 | |
| }
 | |
| 
 | |
| bool BasicTTI::isTypeLegal(Type *Ty) const {
 | |
|   EVT T = getTLI()->getValueType(Ty);
 | |
|   return getTLI()->isTypeLegal(T);
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getJumpBufAlignment() const {
 | |
|   return getTLI()->getJumpBufAlignment();
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getJumpBufSize() const {
 | |
|   return getTLI()->getJumpBufSize();
 | |
| }
 | |
| 
 | |
| bool BasicTTI::shouldBuildLookupTables() const {
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   return TLI->supportJumpTables() &&
 | |
|       (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
 | |
|        TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
 | |
| }
 | |
| 
 | |
| bool BasicTTI::haveFastSqrt(Type *Ty) const {
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   EVT VT = TLI->getValueType(Ty);
 | |
|   return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
 | |
| }
 | |
| 
 | |
| void BasicTTI::getUnrollingPreferences(Loop *L,
 | |
|                                        UnrollingPreferences &UP) const {
 | |
|   // This unrolling functionality is target independent, but to provide some
 | |
|   // motivation for its intended use, for x86:
 | |
| 
 | |
|   // According to the Intel 64 and IA-32 Architectures Optimization Reference
 | |
|   // Manual, Intel Core models and later have a loop stream detector
 | |
|   // (and associated uop queue) that can benefit from partial unrolling.
 | |
|   // The relevant requirements are:
 | |
|   //  - The loop must have no more than 4 (8 for Nehalem and later) branches
 | |
|   //    taken, and none of them may be calls.
 | |
|   //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
 | |
| 
 | |
|   // According to the Software Optimization Guide for AMD Family 15h Processors,
 | |
|   // models 30h-4fh (Steamroller and later) have a loop predictor and loop
 | |
|   // buffer which can benefit from partial unrolling.
 | |
|   // The relevant requirements are:
 | |
|   //  - The loop must have fewer than 16 branches
 | |
|   //  - The loop must have less than 40 uops in all executed loop branches
 | |
| 
 | |
|   // The number of taken branches in a loop is hard to estimate here, and
 | |
|   // benchmarking has revealed that it is better not to be conservative when
 | |
|   // estimating the branch count. As a result, we'll ignore the branch limits
 | |
|   // until someone finds a case where it matters in practice.
 | |
| 
 | |
|   unsigned MaxOps;
 | |
|   const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
 | |
|   if (PartialUnrollingThreshold.getNumOccurrences() > 0)
 | |
|     MaxOps = PartialUnrollingThreshold;
 | |
|   else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
 | |
|     MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   // Scan the loop: don't unroll loops with calls.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
| 
 | |
|     for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
 | |
|       if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
 | |
|         ImmutableCallSite CS(J);
 | |
|         if (const Function *F = CS.getCalledFunction()) {
 | |
|           if (!TopTTI->isLoweredToCall(F))
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Enable runtime and partial unrolling up to the specified size.
 | |
|   UP.Partial = UP.Runtime = true;
 | |
|   UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Calls used by the vectorizers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
 | |
|                                             bool Extract) const {
 | |
|   assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | |
|     if (Insert)
 | |
|       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|     if (Extract)
 | |
|       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
 | |
|   return 32;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getMaximumUnrollFactor() const {
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                           OperandValueKind,
 | |
|                                           OperandValueKind) const {
 | |
|   // Check if any of the operands are vector operands.
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | |
| 
 | |
|   bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
 | |
|   // Assume that floating point arithmetic operations cost twice as much as
 | |
|   // integer operations.
 | |
|   unsigned OpCost = (IsFloat ? 2 : 1);
 | |
| 
 | |
|   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
 | |
|     // The operation is legal. Assume it costs 1.
 | |
|     // If the type is split to multiple registers, assume that there is some
 | |
|     // overhead to this.
 | |
|     // TODO: Once we have extract/insert subvector cost we need to use them.
 | |
|     if (LT.first > 1)
 | |
|       return LT.first * 2 * OpCost;
 | |
|     return LT.first * 1 * OpCost;
 | |
|   }
 | |
| 
 | |
|   if (!TLI->isOperationExpand(ISD, LT.second)) {
 | |
|     // If the operation is custom lowered then assume
 | |
|     // thare the code is twice as expensive.
 | |
|     return LT.first * 2 * OpCost;
 | |
|   }
 | |
| 
 | |
|   // Else, assume that we need to scalarize this op.
 | |
|   if (Ty->isVectorTy()) {
 | |
|     unsigned Num = Ty->getVectorNumElements();
 | |
|     unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
 | |
|     // return the cost of multiple scalar invocation plus the cost of inserting
 | |
|     // and extracting the values.
 | |
|     return getScalarizationOverhead(Ty, true, true) + Num * Cost;
 | |
|   }
 | |
| 
 | |
|   // We don't know anything about this scalar instruction.
 | |
|   return OpCost;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
 | |
|   assert(Ty->isVectorTy() && "Can only shuffle vectors");
 | |
|   unsigned Cost = 0;
 | |
|   // Shuffle cost is equal to the cost of extracting element from its argument
 | |
|   // plus the cost of inserting them onto the result vector.
 | |
| 
 | |
|   // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
 | |
|   // 0 of first vector, index 1 of second vector,index 2 of first vector and
 | |
|   // finally index 3 of second vector and insert them at index <0,1,2,3> of
 | |
|   // result vector.
 | |
|   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | |
|     Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|     Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                   Type *SubTp) const {
 | |
|   if (Kind == SK_Alternate) {
 | |
|     return getAltShuffleOverhead(Tp);
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                                     Type *Src) const {
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
 | |
|   std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
 | |
| 
 | |
|   // Check for NOOP conversions.
 | |
|   if (SrcLT.first == DstLT.first &&
 | |
|       SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
 | |
| 
 | |
|       // Bitcast between types that are legalized to the same type are free.
 | |
|       if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
 | |
|         return 0;
 | |
|   }
 | |
| 
 | |
|   if (Opcode == Instruction::Trunc &&
 | |
|       TLI->isTruncateFree(SrcLT.second, DstLT.second))
 | |
|     return 0;
 | |
| 
 | |
|   if (Opcode == Instruction::ZExt &&
 | |
|       TLI->isZExtFree(SrcLT.second, DstLT.second))
 | |
|     return 0;
 | |
| 
 | |
|   // If the cast is marked as legal (or promote) then assume low cost.
 | |
|   if (SrcLT.first == DstLT.first &&
 | |
|       TLI->isOperationLegalOrPromote(ISD, DstLT.second))
 | |
|     return 1;
 | |
| 
 | |
|   // Handle scalar conversions.
 | |
|   if (!Src->isVectorTy() && !Dst->isVectorTy()) {
 | |
| 
 | |
|     // Scalar bitcasts are usually free.
 | |
|     if (Opcode == Instruction::BitCast)
 | |
|       return 0;
 | |
| 
 | |
|     // Just check the op cost. If the operation is legal then assume it costs 1.
 | |
|     if (!TLI->isOperationExpand(ISD, DstLT.second))
 | |
|       return  1;
 | |
| 
 | |
|     // Assume that illegal scalar instruction are expensive.
 | |
|     return 4;
 | |
|   }
 | |
| 
 | |
|   // Check vector-to-vector casts.
 | |
|   if (Dst->isVectorTy() && Src->isVectorTy()) {
 | |
| 
 | |
|     // If the cast is between same-sized registers, then the check is simple.
 | |
|     if (SrcLT.first == DstLT.first &&
 | |
|         SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
 | |
| 
 | |
|       // Assume that Zext is done using AND.
 | |
|       if (Opcode == Instruction::ZExt)
 | |
|         return 1;
 | |
| 
 | |
|       // Assume that sext is done using SHL and SRA.
 | |
|       if (Opcode == Instruction::SExt)
 | |
|         return 2;
 | |
| 
 | |
|       // Just check the op cost. If the operation is legal then assume it costs
 | |
|       // 1 and multiply by the type-legalization overhead.
 | |
|       if (!TLI->isOperationExpand(ISD, DstLT.second))
 | |
|         return SrcLT.first * 1;
 | |
|     }
 | |
| 
 | |
|     // If we are converting vectors and the operation is illegal, or
 | |
|     // if the vectors are legalized to different types, estimate the
 | |
|     // scalarization costs.
 | |
|     unsigned Num = Dst->getVectorNumElements();
 | |
|     unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
 | |
|                                              Src->getScalarType());
 | |
| 
 | |
|     // Return the cost of multiple scalar invocation plus the cost of
 | |
|     // inserting and extracting the values.
 | |
|     return getScalarizationOverhead(Dst, true, true) + Num * Cost;
 | |
|   }
 | |
| 
 | |
|   // We already handled vector-to-vector and scalar-to-scalar conversions. This
 | |
|   // is where we handle bitcast between vectors and scalars. We need to assume
 | |
|   //  that the conversion is scalarized in one way or another.
 | |
|   if (Opcode == Instruction::BitCast)
 | |
|     // Illegal bitcasts are done by storing and loading from a stack slot.
 | |
|     return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
 | |
|            (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
 | |
| 
 | |
|   llvm_unreachable("Unhandled cast");
 | |
|  }
 | |
| 
 | |
| unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
 | |
|   // Branches are assumed to be predicted.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                       Type *CondTy) const {
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // Selects on vectors are actually vector selects.
 | |
|   if (ISD == ISD::SELECT) {
 | |
|     assert(CondTy && "CondTy must exist");
 | |
|     if (CondTy->isVectorTy())
 | |
|       ISD = ISD::VSELECT;
 | |
|   }
 | |
| 
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | |
| 
 | |
|   if (!TLI->isOperationExpand(ISD, LT.second)) {
 | |
|     // The operation is legal. Assume it costs 1. Multiply
 | |
|     // by the type-legalization overhead.
 | |
|     return LT.first * 1;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, assume that the cast is scalarized.
 | |
|   if (ValTy->isVectorTy()) {
 | |
|     unsigned Num = ValTy->getVectorNumElements();
 | |
|     if (CondTy)
 | |
|       CondTy = CondTy->getScalarType();
 | |
|     unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
 | |
|                                                CondTy);
 | |
| 
 | |
|     // Return the cost of multiple scalar invocation plus the cost of inserting
 | |
|     // and extracting the values.
 | |
|     return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
 | |
|   }
 | |
| 
 | |
|   // Unknown scalar opcode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                       unsigned Index) const {
 | |
|   std::pair<unsigned, MVT> LT =  getTLI()->getTypeLegalizationCost(Val->getScalarType());
 | |
| 
 | |
|   return LT.first;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                    unsigned Alignment,
 | |
|                                    unsigned AddressSpace) const {
 | |
|   assert(!Src->isVoidTy() && "Invalid type");
 | |
|   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
 | |
| 
 | |
|   // Assuming that all loads of legal types cost 1.
 | |
|   unsigned Cost = LT.first;
 | |
| 
 | |
|   if (Src->isVectorTy() &&
 | |
|       Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
 | |
|     // This is a vector load that legalizes to a larger type than the vector
 | |
|     // itself. Unless the corresponding extending load or truncating store is
 | |
|     // legal, then this will scalarize.
 | |
|     TargetLowering::LegalizeAction LA = TargetLowering::Expand;
 | |
|     EVT MemVT = getTLI()->getValueType(Src, true);
 | |
|     if (MemVT.isSimple() && MemVT != MVT::Other) {
 | |
|       if (Opcode == Instruction::Store)
 | |
|         LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
 | |
|       else
 | |
|         LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
 | |
|     }
 | |
| 
 | |
|     if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
 | |
|       // This is a vector load/store for some illegal type that is scalarized.
 | |
|       // We must account for the cost of building or decomposing the vector.
 | |
|       Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
 | |
|                                             Opcode == Instruction::Store);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
 | |
|                                          ArrayRef<Type *> Tys) const {
 | |
|   unsigned ISD = 0;
 | |
|   switch (IID) {
 | |
|   default: {
 | |
|     // Assume that we need to scalarize this intrinsic.
 | |
|     unsigned ScalarizationCost = 0;
 | |
|     unsigned ScalarCalls = 1;
 | |
|     if (RetTy->isVectorTy()) {
 | |
|       ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
 | |
|       ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
 | |
|     }
 | |
|     for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
 | |
|       if (Tys[i]->isVectorTy()) {
 | |
|         ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
 | |
|         ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return ScalarCalls + ScalarizationCost;
 | |
|   }
 | |
|   // Look for intrinsics that can be lowered directly or turned into a scalar
 | |
|   // intrinsic call.
 | |
|   case Intrinsic::sqrt:    ISD = ISD::FSQRT;  break;
 | |
|   case Intrinsic::sin:     ISD = ISD::FSIN;   break;
 | |
|   case Intrinsic::cos:     ISD = ISD::FCOS;   break;
 | |
|   case Intrinsic::exp:     ISD = ISD::FEXP;   break;
 | |
|   case Intrinsic::exp2:    ISD = ISD::FEXP2;  break;
 | |
|   case Intrinsic::log:     ISD = ISD::FLOG;   break;
 | |
|   case Intrinsic::log10:   ISD = ISD::FLOG10; break;
 | |
|   case Intrinsic::log2:    ISD = ISD::FLOG2;  break;
 | |
|   case Intrinsic::fabs:    ISD = ISD::FABS;   break;
 | |
|   case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
 | |
|   case Intrinsic::floor:   ISD = ISD::FFLOOR; break;
 | |
|   case Intrinsic::ceil:    ISD = ISD::FCEIL;  break;
 | |
|   case Intrinsic::trunc:   ISD = ISD::FTRUNC; break;
 | |
|   case Intrinsic::nearbyint:
 | |
|                            ISD = ISD::FNEARBYINT; break;
 | |
|   case Intrinsic::rint:    ISD = ISD::FRINT;  break;
 | |
|   case Intrinsic::round:   ISD = ISD::FROUND; break;
 | |
|   case Intrinsic::pow:     ISD = ISD::FPOW;   break;
 | |
|   case Intrinsic::fma:     ISD = ISD::FMA;    break;
 | |
|   case Intrinsic::fmuladd: ISD = ISD::FMA;    break;
 | |
|   // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end:
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const TargetLoweringBase *TLI = getTLI();
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
 | |
| 
 | |
|   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
 | |
|     // The operation is legal. Assume it costs 1.
 | |
|     // If the type is split to multiple registers, assume that thre is some
 | |
|     // overhead to this.
 | |
|     // TODO: Once we have extract/insert subvector cost we need to use them.
 | |
|     if (LT.first > 1)
 | |
|       return LT.first * 2;
 | |
|     return LT.first * 1;
 | |
|   }
 | |
| 
 | |
|   if (!TLI->isOperationExpand(ISD, LT.second)) {
 | |
|     // If the operation is custom lowered then assume
 | |
|     // thare the code is twice as expensive.
 | |
|     return LT.first * 2;
 | |
|   }
 | |
| 
 | |
|   // If we can't lower fmuladd into an FMA estimate the cost as a floating
 | |
|   // point mul followed by an add.
 | |
|   if (IID == Intrinsic::fmuladd)
 | |
|     return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
 | |
|            TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
 | |
| 
 | |
|   // Else, assume that we need to scalarize this intrinsic. For math builtins
 | |
|   // this will emit a costly libcall, adding call overhead and spills. Make it
 | |
|   // very expensive.
 | |
|   if (RetTy->isVectorTy()) {
 | |
|     unsigned Num = RetTy->getVectorNumElements();
 | |
|     unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
 | |
|                                                   Tys);
 | |
|     return 10 * Cost * Num;
 | |
|   }
 | |
| 
 | |
|   // This is going to be turned into a library call, make it expensive.
 | |
|   return 10;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
 | |
|   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
 | |
|   return LT.first;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
 | |
|                                     bool IsPairwise) const {
 | |
|   assert(Ty->isVectorTy() && "Expect a vector type");
 | |
|   unsigned NumVecElts = Ty->getVectorNumElements();
 | |
|   unsigned NumReduxLevels = Log2_32(NumVecElts);
 | |
|   unsigned ArithCost = NumReduxLevels *
 | |
|     TopTTI->getArithmeticInstrCost(Opcode, Ty);
 | |
|   // Assume the pairwise shuffles add a cost.
 | |
|   unsigned ShuffleCost =
 | |
|       NumReduxLevels * (IsPairwise + 1) *
 | |
|       TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
 | |
|   return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
 | |
| }
 |