mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	pointer marking the end of the list, the zero *must* be cast to the pointer type. An un-cast zero is a 32-bit int, and at least on x86_64, gcc will not extend the zero to 64 bits, thus allowing the upper 32 bits to be random junk. The new END_WITH_NULL macro may be used to annotate a such a function so that GCC (version 4 or newer) will detect the use of un-casted zero at compile time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23888 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Valery A. Khamenya and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This small program provides an example of how to build quickly a small module
 | |
| // with function Fibonacci and execute it with the JIT.
 | |
| //
 | |
| // The goal of this snippet is to create in the memory the LLVM module
 | |
| // consisting of one function as follow:
 | |
| //
 | |
| //   int fib(int x) {
 | |
| //     if(x<=2) return 1;
 | |
| //     return fib(x-1)+fib(x-2);
 | |
| //   }
 | |
| //
 | |
| // Once we have this, we compile the module via JIT, then execute the `fib'
 | |
| // function and return result to a driver, i.e. to a "host program".
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| static Function *CreateFibFunction(Module *M) {
 | |
|   // Create the fib function and insert it into module M.  This function is said
 | |
|   // to return an int and take an int parameter.
 | |
|   Function *FibF = M->getOrInsertFunction("fib", Type::IntTy, Type::IntTy,
 | |
|                                           (Type *)0);
 | |
| 
 | |
|   // Add a basic block to the function.
 | |
|   BasicBlock *BB = new BasicBlock("EntryBlock", FibF);
 | |
| 
 | |
|   // Get pointers to the constants.
 | |
|   Value *One = ConstantSInt::get(Type::IntTy, 1);
 | |
|   Value *Two = ConstantSInt::get(Type::IntTy, 2);
 | |
| 
 | |
|   // Get pointer to the integer argument of the add1 function...
 | |
|   Argument *ArgX = FibF->arg_begin();   // Get the arg.
 | |
|   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
 | |
| 
 | |
|   // Create the true_block.
 | |
|   BasicBlock *RetBB = new BasicBlock("return", FibF);
 | |
|   // Create an exit block.
 | |
|   BasicBlock* RecurseBB = new BasicBlock("recurse", FibF);
 | |
| 
 | |
|   // Create the "if (arg < 2) goto exitbb"
 | |
|   Value *CondInst = BinaryOperator::createSetLE(ArgX, Two, "cond", BB);
 | |
|   new BranchInst(RetBB, RecurseBB, CondInst, BB);
 | |
| 
 | |
|   // Create: ret int 1
 | |
|   new ReturnInst(One, RetBB);
 | |
| 
 | |
|   // create fib(x-1)
 | |
|   Value *Sub = BinaryOperator::createSub(ArgX, One, "arg", RecurseBB);
 | |
|   CallInst *CallFibX1 = new CallInst(FibF, Sub, "fibx1", RecurseBB);
 | |
|   CallFibX1->setTailCall();
 | |
| 
 | |
|   // create fib(x-2)
 | |
|   Sub = BinaryOperator::createSub(ArgX, Two, "arg", RecurseBB);
 | |
|   CallInst *CallFibX2 = new CallInst(FibF, Sub, "fibx2", RecurseBB);
 | |
|   CallFibX2->setTailCall();
 | |
| 
 | |
| 
 | |
|   // fib(x-1)+fib(x-2)
 | |
|   Value *Sum = BinaryOperator::createAdd(CallFibX1, CallFibX2,
 | |
|                                          "addresult", RecurseBB);
 | |
| 
 | |
|   // Create the return instruction and add it to the basic block
 | |
|   new ReturnInst(Sum, RecurseBB);
 | |
| 
 | |
|   return FibF;
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(int argc, char **argv) {
 | |
|   int n = argc > 1 ? atol(argv[1]) : 24;
 | |
| 
 | |
|   // Create some module to put our function into it.
 | |
|   Module *M = new Module("test");
 | |
| 
 | |
|   // We are about to create the "fib" function:
 | |
|   Function *FibF = CreateFibFunction(M);
 | |
| 
 | |
|   // Now we going to create JIT
 | |
|   ExistingModuleProvider *MP = new ExistingModuleProvider(M);
 | |
|   ExecutionEngine *EE = ExecutionEngine::create(MP, false);
 | |
| 
 | |
|   std::cerr << "verifying... ";
 | |
|   if (verifyModule(*M)) {
 | |
|     std::cerr << argv[0] << ": Error constructing function!\n";
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   std::cerr << "OK\n";
 | |
|   std::cerr << "We just constructed this LLVM module:\n\n---------\n" << *M;
 | |
|   std::cerr << "---------\nstarting fibonacci(" << n << ") with JIT...\n";
 | |
| 
 | |
|   // Call the Fibonacci function with argument n:
 | |
|   std::vector<GenericValue> Args(1);
 | |
|   Args[0].IntVal = n;
 | |
|   GenericValue GV = EE->runFunction(FibF, Args);
 | |
| 
 | |
|   // import result of execution
 | |
|   std::cout << "Result: " << GV.IntVal << "\n";
 | |
|   return 0;
 | |
| }
 |