mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Patch by: Mei Ye git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187764 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			769 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			769 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform manipulations on basic blocks, and
 | |
| // instructions contained within basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// DeleteDeadBlock - Delete the specified block, which must have no
 | |
| /// predecessors.
 | |
| void llvm::DeleteDeadBlock(BasicBlock *BB) {
 | |
|   assert((pred_begin(BB) == pred_end(BB) ||
 | |
|          // Can delete self loop.
 | |
|          BB->getSinglePredecessor() == BB) && "Block is not dead!");
 | |
|   TerminatorInst *BBTerm = BB->getTerminator();
 | |
| 
 | |
|   // Loop through all of our successors and make sure they know that one
 | |
|   // of their predecessors is going away.
 | |
|   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
 | |
|     BBTerm->getSuccessor(i)->removePredecessor(BB);
 | |
| 
 | |
|   // Zap all the instructions in the block.
 | |
|   while (!BB->empty()) {
 | |
|     Instruction &I = BB->back();
 | |
|     // If this instruction is used, replace uses with an arbitrary value.
 | |
|     // Because control flow can't get here, we don't care what we replace the
 | |
|     // value with.  Note that since this block is unreachable, and all values
 | |
|     // contained within it must dominate their uses, that all uses will
 | |
|     // eventually be removed (they are themselves dead).
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     BB->getInstList().pop_back();
 | |
|   }
 | |
| 
 | |
|   // Zap the block!
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
 | |
| /// any single-entry PHI nodes in it, fold them away.  This handles the case
 | |
| /// when all entries to the PHI nodes in a block are guaranteed equal, such as
 | |
| /// when the block has exactly one predecessor.
 | |
| void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
 | |
|   if (!isa<PHINode>(BB->begin())) return;
 | |
| 
 | |
|   AliasAnalysis *AA = 0;
 | |
|   MemoryDependenceAnalysis *MemDep = 0;
 | |
|   if (P) {
 | |
|     AA = P->getAnalysisIfAvailable<AliasAnalysis>();
 | |
|     MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
 | |
|   }
 | |
| 
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     if (PN->getIncomingValue(0) != PN)
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     else
 | |
|       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
| 
 | |
|     if (MemDep)
 | |
|       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
 | |
|     else if (AA && isa<PointerType>(PN->getType()))
 | |
|       AA->deleteValue(PN);
 | |
| 
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
 | |
| /// is dead. Also recursively delete any operands that become dead as
 | |
| /// a result. This includes tracing the def-use list from the PHI to see if
 | |
| /// it is ultimately unused or if it reaches an unused cycle.
 | |
| bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
 | |
|   // Recursively deleting a PHI may cause multiple PHIs to be deleted
 | |
|   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = BB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
 | |
|       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
 | |
| /// if possible.  The return value indicates success or failure.
 | |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
 | |
|   // Don't merge away blocks who have their address taken.
 | |
|   if (BB->hasAddressTaken()) return false;
 | |
| 
 | |
|   // Can't merge if there are multiple predecessors, or no predecessors.
 | |
|   BasicBlock *PredBB = BB->getUniquePredecessor();
 | |
|   if (!PredBB) return false;
 | |
| 
 | |
|   // Don't break self-loops.
 | |
|   if (PredBB == BB) return false;
 | |
|   // Don't break invokes.
 | |
|   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
 | |
| 
 | |
|   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
 | |
|   BasicBlock *OnlySucc = BB;
 | |
|   for (; SI != SE; ++SI)
 | |
|     if (*SI != OnlySucc) {
 | |
|       OnlySucc = 0;     // There are multiple distinct successors!
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Can't merge if there are multiple successors.
 | |
|   if (!OnlySucc) return false;
 | |
| 
 | |
|   // Can't merge if there is PHI loop.
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == PN)
 | |
|           return false;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Begin by getting rid of unneeded PHIs.
 | |
|   if (isa<PHINode>(BB->front()))
 | |
|     FoldSingleEntryPHINodes(BB, P);
 | |
| 
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   PredBB->getInstList().pop_back();
 | |
| 
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(PredBB);
 | |
| 
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | |
| 
 | |
|   // Inherit predecessors name if it exists.
 | |
|   if (!PredBB->hasName())
 | |
|     PredBB->takeName(BB);
 | |
| 
 | |
|   // Finally, erase the old block and update dominator info.
 | |
|   if (P) {
 | |
|     if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
 | |
|       if (DomTreeNode *DTN = DT->getNode(BB)) {
 | |
|         DomTreeNode *PredDTN = DT->getNode(PredBB);
 | |
|         SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
 | |
|         for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
 | |
|              DE = Children.end(); DI != DE; ++DI)
 | |
|           DT->changeImmediateDominator(*DI, PredDTN);
 | |
| 
 | |
|         DT->eraseNode(BB);
 | |
|       }
 | |
| 
 | |
|       if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
 | |
|         LI->removeBlock(BB);
 | |
| 
 | |
|       if (MemoryDependenceAnalysis *MD =
 | |
|             P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
 | |
|         MD->invalidateCachedPredecessors();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BB->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
 | |
| /// with a value, then remove and delete the original instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | |
|                                 BasicBlock::iterator &BI, Value *V) {
 | |
|   Instruction &I = *BI;
 | |
|   // Replaces all of the uses of the instruction with uses of the value
 | |
|   I.replaceAllUsesWith(V);
 | |
| 
 | |
|   // Make sure to propagate a name if there is one already.
 | |
|   if (I.hasName() && !V->hasName())
 | |
|     V->takeName(&I);
 | |
| 
 | |
|   // Delete the unnecessary instruction now...
 | |
|   BI = BIL.erase(BI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by BI with the
 | |
| /// instruction specified by I.  The original instruction is deleted and BI is
 | |
| /// updated to point to the new instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | |
|                                BasicBlock::iterator &BI, Instruction *I) {
 | |
|   assert(I->getParent() == 0 &&
 | |
|          "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | |
| 
 | |
|   // Insert the new instruction into the basic block...
 | |
|   BasicBlock::iterator New = BIL.insert(BI, I);
 | |
| 
 | |
|   // Replace all uses of the old instruction, and delete it.
 | |
|   ReplaceInstWithValue(BIL, BI, I);
 | |
| 
 | |
|   // Move BI back to point to the newly inserted instruction
 | |
|   BI = New;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by From with the
 | |
| /// instruction specified by To.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | |
|   BasicBlock::iterator BI(From);
 | |
|   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | |
| }
 | |
| 
 | |
| /// SplitEdge -  Split the edge connecting specified block. Pass P must
 | |
| /// not be NULL.
 | |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
 | |
|   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
 | |
| 
 | |
|   // If this is a critical edge, let SplitCriticalEdge do it.
 | |
|   TerminatorInst *LatchTerm = BB->getTerminator();
 | |
|   if (SplitCriticalEdge(LatchTerm, SuccNum, P))
 | |
|     return LatchTerm->getSuccessor(SuccNum);
 | |
| 
 | |
|   // If the edge isn't critical, then BB has a single successor or Succ has a
 | |
|   // single pred.  Split the block.
 | |
|   BasicBlock::iterator SplitPoint;
 | |
|   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | |
|     // If the successor only has a single pred, split the top of the successor
 | |
|     // block.
 | |
|     assert(SP == BB && "CFG broken");
 | |
|     SP = NULL;
 | |
|     return SplitBlock(Succ, Succ->begin(), P);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if BB has a single successor, split it at the bottom of the
 | |
|   // block.
 | |
|   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|          "Should have a single succ!");
 | |
|   return SplitBlock(BB, BB->getTerminator(), P);
 | |
| }
 | |
| 
 | |
| /// SplitBlock - Split the specified block at the specified instruction - every
 | |
| /// thing before SplitPt stays in Old and everything starting with SplitPt moves
 | |
| /// to a new block.  The two blocks are joined by an unconditional branch and
 | |
| /// the loop info is updated.
 | |
| ///
 | |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
 | |
|   BasicBlock::iterator SplitIt = SplitPt;
 | |
|   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
 | |
|     ++SplitIt;
 | |
|   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | |
| 
 | |
|   // The new block lives in whichever loop the old one did. This preserves
 | |
|   // LCSSA as well, because we force the split point to be after any PHI nodes.
 | |
|   if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
 | |
|     if (Loop *L = LI->getLoopFor(Old))
 | |
|       L->addBasicBlockToLoop(New, LI->getBase());
 | |
| 
 | |
|   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
 | |
|     // Old dominates New. New node dominates all other nodes dominated by Old.
 | |
|     if (DomTreeNode *OldNode = DT->getNode(Old)) {
 | |
|       std::vector<DomTreeNode *> Children;
 | |
|       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
 | |
|            I != E; ++I)
 | |
|         Children.push_back(*I);
 | |
| 
 | |
|       DomTreeNode *NewNode = DT->addNewBlock(New,Old);
 | |
|       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
 | |
|              E = Children.end(); I != E; ++I)
 | |
|         DT->changeImmediateDominator(*I, NewNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
 | |
| /// analysis information.
 | |
| static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
 | |
|                                       ArrayRef<BasicBlock *> Preds,
 | |
|                                       Pass *P, bool &HasLoopExit) {
 | |
|   if (!P) return;
 | |
| 
 | |
|   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
 | |
|   Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
 | |
| 
 | |
|   // If we need to preserve loop analyses, collect some information about how
 | |
|   // this split will affect loops.
 | |
|   bool IsLoopEntry = !!L;
 | |
|   bool SplitMakesNewLoopHeader = false;
 | |
|   if (LI) {
 | |
|     bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
 | |
|     for (ArrayRef<BasicBlock*>::iterator
 | |
|            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
 | |
|       BasicBlock *Pred = *i;
 | |
| 
 | |
|       // If we need to preserve LCSSA, determine if any of the preds is a loop
 | |
|       // exit.
 | |
|       if (PreserveLCSSA)
 | |
|         if (Loop *PL = LI->getLoopFor(Pred))
 | |
|           if (!PL->contains(OldBB))
 | |
|             HasLoopExit = true;
 | |
| 
 | |
|       // If we need to preserve LoopInfo, note whether any of the preds crosses
 | |
|       // an interesting loop boundary.
 | |
|       if (!L) continue;
 | |
|       if (L->contains(Pred))
 | |
|         IsLoopEntry = false;
 | |
|       else
 | |
|         SplitMakesNewLoopHeader = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update dominator tree if available.
 | |
|   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
 | |
|   if (DT)
 | |
|     DT->splitBlock(NewBB);
 | |
| 
 | |
|   if (!L) return;
 | |
| 
 | |
|   if (IsLoopEntry) {
 | |
|     // Add the new block to the nearest enclosing loop (and not an adjacent
 | |
|     // loop). To find this, examine each of the predecessors and determine which
 | |
|     // loops enclose them, and select the most-nested loop which contains the
 | |
|     // loop containing the block being split.
 | |
|     Loop *InnermostPredLoop = 0;
 | |
|     for (ArrayRef<BasicBlock*>::iterator
 | |
|            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
 | |
|       BasicBlock *Pred = *i;
 | |
|       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
 | |
|         // Seek a loop which actually contains the block being split (to avoid
 | |
|         // adjacent loops).
 | |
|         while (PredLoop && !PredLoop->contains(OldBB))
 | |
|           PredLoop = PredLoop->getParentLoop();
 | |
| 
 | |
|         // Select the most-nested of these loops which contains the block.
 | |
|         if (PredLoop && PredLoop->contains(OldBB) &&
 | |
|             (!InnermostPredLoop ||
 | |
|              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
 | |
|           InnermostPredLoop = PredLoop;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (InnermostPredLoop)
 | |
|       InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|   } else {
 | |
|     L->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|     if (SplitMakesNewLoopHeader)
 | |
|       L->moveToHeader(NewBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
 | |
| /// from NewBB. This also updates AliasAnalysis, if available.
 | |
| static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
 | |
|                            ArrayRef<BasicBlock*> Preds, BranchInst *BI,
 | |
|                            Pass *P, bool HasLoopExit) {
 | |
|   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
 | |
|   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
 | |
|   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I++);
 | |
| 
 | |
|     // Check to see if all of the values coming in are the same.  If so, we
 | |
|     // don't need to create a new PHI node, unless it's needed for LCSSA.
 | |
|     Value *InVal = 0;
 | |
|     if (!HasLoopExit) {
 | |
|       InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 1, e = Preds.size(); i != e; ++i)
 | |
|         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|           InVal = 0;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (InVal) {
 | |
|       // If all incoming values for the new PHI would be the same, just don't
 | |
|       // make a new PHI.  Instead, just remove the incoming values from the old
 | |
|       // PHI.
 | |
|       for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|         PN->removeIncomingValue(Preds[i], false);
 | |
|     } else {
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|       PHINode *NewPHI =
 | |
|         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
 | |
|       if (AA) AA->copyValue(PN, NewPHI);
 | |
| 
 | |
|       // Move all of the PHI values for 'Preds' to the new PHI.
 | |
|       for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|         Value *V = PN->removeIncomingValue(Preds[i], false);
 | |
|         NewPHI->addIncoming(V, Preds[i]);
 | |
|       }
 | |
| 
 | |
|       InVal = NewPHI;
 | |
|     }
 | |
| 
 | |
|     // Add an incoming value to the PHI node in the loop for the preheader
 | |
|     // edge.
 | |
|     PN->addIncoming(InVal, NewBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SplitBlockPredecessors - This method transforms BB by introducing a new
 | |
| /// basic block into the function, and moving some of the predecessors of BB to
 | |
| /// be predecessors of the new block.  The new predecessors are indicated by the
 | |
| /// Preds array, which has NumPreds elements in it.  The new block is given a
 | |
| /// suffix of 'Suffix'.
 | |
| ///
 | |
| /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
 | |
| /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
 | |
| /// preserve LoopSimplify (because it's complicated to handle the case where one
 | |
| /// of the edges being split is an exit of a loop with other exits).
 | |
| ///
 | |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                          ArrayRef<BasicBlock*> Preds,
 | |
|                                          const char *Suffix, Pass *P) {
 | |
|   // Create new basic block, insert right before the original block.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
 | |
|                                          BB->getParent(), BB);
 | |
| 
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI = BranchInst::Create(BB, NewBB);
 | |
| 
 | |
|   // Move the edges from Preds to point to NewBB instead of BB.
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     // This is slightly more strict than necessary; the minimum requirement
 | |
|     // is that there be no more than one indirectbr branching to BB. And
 | |
|     // all BlockAddress uses would need to be updated.
 | |
|     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | |
|   // node becomes an incoming value for BB's phi node.  However, if the Preds
 | |
|   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | |
|   // account for the newly created predecessor.
 | |
|   if (Preds.size() == 0) {
 | |
|     // Insert dummy values as the incoming value.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | |
|       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | |
|     return NewBB;
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
|   bool HasLoopExit = false;
 | |
|   UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
 | |
| 
 | |
|   // Update the PHI nodes in BB with the values coming from NewBB.
 | |
|   UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// SplitLandingPadPredecessors - This method transforms the landing pad,
 | |
| /// OrigBB, by introducing two new basic blocks into the function. One of those
 | |
| /// new basic blocks gets the predecessors listed in Preds. The other basic
 | |
| /// block gets the remaining predecessors of OrigBB. The landingpad instruction
 | |
| /// OrigBB is clone into both of the new basic blocks. The new blocks are given
 | |
| /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
 | |
| ///
 | |
| /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
 | |
| /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
 | |
| /// it does not preserve LoopSimplify (because it's complicated to handle the
 | |
| /// case where one of the edges being split is an exit of a loop with other
 | |
| /// exits).
 | |
| ///
 | |
| void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
 | |
|                                        ArrayRef<BasicBlock*> Preds,
 | |
|                                        const char *Suffix1, const char *Suffix2,
 | |
|                                        Pass *P,
 | |
|                                        SmallVectorImpl<BasicBlock*> &NewBBs) {
 | |
|   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
 | |
| 
 | |
|   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
 | |
|   // it right before the original block.
 | |
|   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
 | |
|                                           OrigBB->getName() + Suffix1,
 | |
|                                           OrigBB->getParent(), OrigBB);
 | |
|   NewBBs.push_back(NewBB1);
 | |
| 
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
 | |
| 
 | |
|   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     // This is slightly more strict than necessary; the minimum requirement
 | |
|     // is that there be no more than one indirectbr branching to BB. And
 | |
|     // all BlockAddress uses would need to be updated.
 | |
|     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
|   bool HasLoopExit = false;
 | |
|   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
 | |
| 
 | |
|   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
 | |
|   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
 | |
| 
 | |
|   // Move the remaining edges from OrigBB to point to NewBB2.
 | |
|   SmallVector<BasicBlock*, 8> NewBB2Preds;
 | |
|   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
 | |
|        i != e; ) {
 | |
|     BasicBlock *Pred = *i++;
 | |
|     if (Pred == NewBB1) continue;
 | |
|     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     NewBB2Preds.push_back(Pred);
 | |
|     e = pred_end(OrigBB);
 | |
|   }
 | |
| 
 | |
|   BasicBlock *NewBB2 = 0;
 | |
|   if (!NewBB2Preds.empty()) {
 | |
|     // Create another basic block for the rest of OrigBB's predecessors.
 | |
|     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
 | |
|                                 OrigBB->getName() + Suffix2,
 | |
|                                 OrigBB->getParent(), OrigBB);
 | |
|     NewBBs.push_back(NewBB2);
 | |
| 
 | |
|     // The new block unconditionally branches to the old block.
 | |
|     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
 | |
| 
 | |
|     // Move the remaining edges from OrigBB to point to NewBB2.
 | |
|     for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
 | |
|       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
 | |
| 
 | |
|     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
|     HasLoopExit = false;
 | |
|     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
 | |
| 
 | |
|     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
 | |
|     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
 | |
|   }
 | |
| 
 | |
|   LandingPadInst *LPad = OrigBB->getLandingPadInst();
 | |
|   Instruction *Clone1 = LPad->clone();
 | |
|   Clone1->setName(Twine("lpad") + Suffix1);
 | |
|   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
 | |
| 
 | |
|   if (NewBB2) {
 | |
|     Instruction *Clone2 = LPad->clone();
 | |
|     Clone2->setName(Twine("lpad") + Suffix2);
 | |
|     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
 | |
| 
 | |
|     // Create a PHI node for the two cloned landingpad instructions.
 | |
|     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
 | |
|     PN->addIncoming(Clone1, NewBB1);
 | |
|     PN->addIncoming(Clone2, NewBB2);
 | |
|     LPad->replaceAllUsesWith(PN);
 | |
|     LPad->eraseFromParent();
 | |
|   } else {
 | |
|     // There is no second clone. Just replace the landing pad with the first
 | |
|     // clone.
 | |
|     LPad->replaceAllUsesWith(Clone1);
 | |
|     LPad->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldReturnIntoUncondBranch - This method duplicates the specified return
 | |
| /// instruction into a predecessor which ends in an unconditional branch. If
 | |
| /// the return instruction returns a value defined by a PHI, propagate the
 | |
| /// right value into the return. It returns the new return instruction in the
 | |
| /// predecessor.
 | |
| ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
 | |
|                                              BasicBlock *Pred) {
 | |
|   Instruction *UncondBranch = Pred->getTerminator();
 | |
|   // Clone the return and add it to the end of the predecessor.
 | |
|   Instruction *NewRet = RI->clone();
 | |
|   Pred->getInstList().push_back(NewRet);
 | |
| 
 | |
|   // If the return instruction returns a value, and if the value was a
 | |
|   // PHI node in "BB", propagate the right value into the return.
 | |
|   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
 | |
|        i != e; ++i) {
 | |
|     Value *V = *i;
 | |
|     Instruction *NewBC = 0;
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
 | |
|       // Return value might be bitcasted. Clone and insert it before the
 | |
|       // return instruction.
 | |
|       V = BCI->getOperand(0);
 | |
|       NewBC = BCI->clone();
 | |
|       Pred->getInstList().insert(NewRet, NewBC);
 | |
|       *i = NewBC;
 | |
|     }
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|       if (PN->getParent() == BB) {
 | |
|         if (NewBC)
 | |
|           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | |
|         else
 | |
|           *i = PN->getIncomingValueForBlock(Pred);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update any PHI nodes in the returning block to realize that we no
 | |
|   // longer branch to them.
 | |
|   BB->removePredecessor(Pred);
 | |
|   UncondBranch->eraseFromParent();
 | |
|   return cast<ReturnInst>(NewRet);
 | |
| }
 | |
| 
 | |
| /// SplitBlockAndInsertIfThen - Split the containing block at the
 | |
| /// specified instruction - everything before and including Cmp stays
 | |
| /// in the old basic block, and everything after Cmp is moved to a
 | |
| /// new block. The two blocks are connected by a conditional branch
 | |
| /// (with value of Cmp being the condition).
 | |
| /// Before:
 | |
| ///   Head
 | |
| ///   Cmp
 | |
| ///   Tail
 | |
| /// After:
 | |
| ///   Head
 | |
| ///   Cmp
 | |
| ///   if (Cmp)
 | |
| ///     ThenBlock
 | |
| ///   Tail
 | |
| ///
 | |
| /// If Unreachable is true, then ThenBlock ends with
 | |
| /// UnreachableInst, otherwise it branches to Tail.
 | |
| /// Returns the NewBasicBlock's terminator.
 | |
| 
 | |
| TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
 | |
|     bool Unreachable, MDNode *BranchWeights) {
 | |
|   Instruction *SplitBefore = Cmp->getNextNode();
 | |
|   BasicBlock *Head = SplitBefore->getParent();
 | |
|   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
 | |
|   TerminatorInst *HeadOldTerm = Head->getTerminator();
 | |
|   LLVMContext &C = Head->getContext();
 | |
|   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | |
|   TerminatorInst *CheckTerm;
 | |
|   if (Unreachable)
 | |
|     CheckTerm = new UnreachableInst(C, ThenBlock);
 | |
|   else
 | |
|     CheckTerm = BranchInst::Create(Tail, ThenBlock);
 | |
|   BranchInst *HeadNewTerm =
 | |
|     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
 | |
|   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | |
|   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | |
|   return CheckTerm;
 | |
| }
 | |
| 
 | |
| /// GetIfCondition - Given a basic block (BB) with two predecessors,
 | |
| /// check to see if the merge at this block is due
 | |
| /// to an "if condition".  If so, return the boolean condition that determines
 | |
| /// which entry into BB will be taken.  Also, return by references the block
 | |
| /// that will be entered from if the condition is true, and the block that will
 | |
| /// be entered if the condition is false.
 | |
| ///
 | |
| /// This does no checking to see if the true/false blocks have large or unsavory
 | |
| /// instructions in them.
 | |
| Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
 | |
|                              BasicBlock *&IfFalse) {
 | |
|   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
 | |
|   BasicBlock *Pred1 = NULL;
 | |
|   BasicBlock *Pred2 = NULL;
 | |
| 
 | |
|   if (SomePHI) {
 | |
|     if (SomePHI->getNumIncomingValues() != 2)
 | |
|       return NULL;
 | |
|     Pred1 = SomePHI->getIncomingBlock(0);
 | |
|     Pred2 = SomePHI->getIncomingBlock(1);
 | |
|   } else {
 | |
|     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|     if (PI == PE) // No predecessor
 | |
|       return NULL;
 | |
|     Pred1 = *PI++;
 | |
|     if (PI == PE) // Only one predecessor
 | |
|       return NULL;
 | |
|     Pred2 = *PI++;
 | |
|     if (PI != PE) // More than two predecessors
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   // We can only handle branches.  Other control flow will be lowered to
 | |
|   // branches if possible anyway.
 | |
|   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
 | |
|   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
 | |
|   if (Pred1Br == 0 || Pred2Br == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | |
|   // either are.
 | |
|   if (Pred2Br->isConditional()) {
 | |
|     // If both branches are conditional, we don't have an "if statement".  In
 | |
|     // reality, we could transform this case, but since the condition will be
 | |
|     // required anyway, we stand no chance of eliminating it, so the xform is
 | |
|     // probably not profitable.
 | |
|     if (Pred1Br->isConditional())
 | |
|       return 0;
 | |
| 
 | |
|     std::swap(Pred1, Pred2);
 | |
|     std::swap(Pred1Br, Pred2Br);
 | |
|   }
 | |
| 
 | |
|   if (Pred1Br->isConditional()) {
 | |
|     // The only thing we have to watch out for here is to make sure that Pred2
 | |
|     // doesn't have incoming edges from other blocks.  If it does, the condition
 | |
|     // doesn't dominate BB.
 | |
|     if (Pred2->getSinglePredecessor() == 0)
 | |
|       return 0;
 | |
| 
 | |
|     // If we found a conditional branch predecessor, make sure that it branches
 | |
|     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | |
|     if (Pred1Br->getSuccessor(0) == BB &&
 | |
|         Pred1Br->getSuccessor(1) == Pred2) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | |
|                Pred1Br->getSuccessor(1) == BB) {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     } else {
 | |
|       // We know that one arm of the conditional goes to BB, so the other must
 | |
|       // go somewhere unrelated, and this must not be an "if statement".
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return Pred1Br->getCondition();
 | |
|   }
 | |
| 
 | |
|   // Ok, if we got here, both predecessors end with an unconditional branch to
 | |
|   // BB.  Don't panic!  If both blocks only have a single (identical)
 | |
|   // predecessor, and THAT is a conditional branch, then we're all ok!
 | |
|   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
 | |
|   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, if this is a conditional branch, then we can use it!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
 | |
|   if (BI == 0) return 0;
 | |
| 
 | |
|   assert(BI->isConditional() && "Two successors but not conditional?");
 | |
|   if (BI->getSuccessor(0) == Pred1) {
 | |
|     IfTrue = Pred1;
 | |
|     IfFalse = Pred2;
 | |
|   } else {
 | |
|     IfTrue = Pred2;
 | |
|     IfFalse = Pred1;
 | |
|   }
 | |
|   return BI->getCondition();
 | |
| }
 |