mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10727 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			282 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inlining of a function into a call site, resolving
 | 
						|
// parameters and the return value as appropriate.
 | 
						|
//
 | 
						|
// FIXME: This pass should transform alloca instructions in the called function
 | 
						|
//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
 | 
						|
bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
 | 
						|
 | 
						|
// InlineFunction - This function inlines the called function into the basic
 | 
						|
// block of the caller.  This returns false if it is not possible to inline this
 | 
						|
// call.  The program is still in a well defined state if this occurs though.
 | 
						|
//
 | 
						|
// Note that this only does one level of inlining.  For example, if the 
 | 
						|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
 | 
						|
// exists in the instruction stream.  Similiarly this will inline a recursive
 | 
						|
// function by one level.
 | 
						|
//
 | 
						|
bool llvm::InlineFunction(CallSite CS) {
 | 
						|
  Instruction *TheCall = CS.getInstruction();
 | 
						|
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | 
						|
         "Instruction not in function!");
 | 
						|
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | 
						|
      CalledFunc->isExternal() || // call, or call to a vararg function!
 | 
						|
      CalledFunc->getFunctionType()->isVarArg()) return false;
 | 
						|
 | 
						|
  BasicBlock *OrigBB = TheCall->getParent();
 | 
						|
  Function *Caller = OrigBB->getParent();
 | 
						|
 | 
						|
  // We want to clone the entire callee function into the whole between the
 | 
						|
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | 
						|
  // this is an invoke instruction or a call instruction.
 | 
						|
 | 
						|
  BasicBlock *InvokeDest = 0;     // Exception handling destination
 | 
						|
  std::vector<Value*> InvokeDestPHIValues; // Values for PHI nodes in InvokeDest
 | 
						|
  BasicBlock *AfterCallBB;
 | 
						|
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | 
						|
    InvokeDest = II->getExceptionalDest();
 | 
						|
 | 
						|
    // If there are PHI nodes in the exceptional destination block, we need to
 | 
						|
    // keep track of which values came into them from this invoke, then remove
 | 
						|
    // the entry for this block.
 | 
						|
    for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
      // Save the value to use for this edge...
 | 
						|
      InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an unconditional branch to make this look like the CallInst case...
 | 
						|
    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
 | 
						|
 | 
						|
    // Split the basic block.  This guarantees that no PHI nodes will have to be
 | 
						|
    // updated due to new incoming edges, and make the invoke case more
 | 
						|
    // symmetric to the call case.
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
 | 
						|
                                          CalledFunc->getName()+".entry");
 | 
						|
 | 
						|
    // Remove (unlink) the InvokeInst from the function...
 | 
						|
    OrigBB->getInstList().remove(TheCall);
 | 
						|
 | 
						|
  } else {  // It's a call
 | 
						|
    // If this is a call instruction, we need to split the basic block that the
 | 
						|
    // call lives in.
 | 
						|
    //
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | 
						|
                                          CalledFunc->getName()+".entry");
 | 
						|
    // Remove (unlink) the CallInst from the function...
 | 
						|
    AfterCallBB->getInstList().remove(TheCall);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a return value generated by this call, convert it into a PHI 
 | 
						|
  // node that gets values from each of the old RET instructions in the original
 | 
						|
  // function.
 | 
						|
  //
 | 
						|
  PHINode *PHI = 0;
 | 
						|
  if (!TheCall->use_empty()) {
 | 
						|
    // The PHI node should go at the front of the new basic block to merge all 
 | 
						|
    // possible incoming values.
 | 
						|
    //
 | 
						|
    PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(),
 | 
						|
                      AfterCallBB->begin());
 | 
						|
 | 
						|
    // Anything that used the result of the function call should now use the PHI
 | 
						|
    // node as their operand.
 | 
						|
    //
 | 
						|
    TheCall->replaceAllUsesWith(PHI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get an iterator to the last basic block in the function, which will have
 | 
						|
  // the new function inlined after it.
 | 
						|
  //
 | 
						|
  Function::iterator LastBlock = &Caller->back();
 | 
						|
 | 
						|
  // Calculate the vector of arguments to pass into the function cloner...
 | 
						|
  std::map<const Value*, Value*> ValueMap;
 | 
						|
  assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) == 
 | 
						|
         std::distance(CS.arg_begin(), CS.arg_end()) &&
 | 
						|
         "No varargs calls can be inlined!");
 | 
						|
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
 | 
						|
       I != E; ++I, ++AI)
 | 
						|
    ValueMap[I] = *AI;
 | 
						|
 | 
						|
  // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
  delete TheCall;
 | 
						|
 | 
						|
  // Make a vector to capture the return instructions in the cloned function...
 | 
						|
  std::vector<ReturnInst*> Returns;
 | 
						|
 | 
						|
  // Do all of the hard part of cloning the callee into the caller...
 | 
						|
  CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
 | 
						|
 | 
						|
  // Loop over all of the return instructions, turning them into unconditional
 | 
						|
  // branches to the merge point now...
 | 
						|
  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
    ReturnInst *RI = Returns[i];
 | 
						|
    BasicBlock *BB = RI->getParent();
 | 
						|
 | 
						|
    // Add a branch to the merge point where the PHI node lives if it exists.
 | 
						|
    new BranchInst(AfterCallBB, RI);
 | 
						|
 | 
						|
    if (PHI) {   // The PHI node should include this value!
 | 
						|
      assert(RI->getReturnValue() && "Ret should have value!");
 | 
						|
      assert(RI->getReturnValue()->getType() == PHI->getType() && 
 | 
						|
             "Ret value not consistent in function!");
 | 
						|
      PHI->addIncoming(RI->getReturnValue(), BB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete the return instruction now
 | 
						|
    BB->getInstList().erase(RI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the PHI node only has one argument.  This is a common
 | 
						|
  // case resulting from there only being a single return instruction in the
 | 
						|
  // function call.  Because this is so common, eliminate the PHI node.
 | 
						|
  //
 | 
						|
  if (PHI && PHI->getNumIncomingValues() == 1) {
 | 
						|
    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
 | 
						|
    PHI->getParent()->getInstList().erase(PHI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the branch that used to go to AfterCallBB to branch to the first
 | 
						|
  // basic block of the inlined function.
 | 
						|
  //
 | 
						|
  TerminatorInst *Br = OrigBB->getTerminator();
 | 
						|
  assert(Br && Br->getOpcode() == Instruction::Br && 
 | 
						|
	 "splitBasicBlock broken!");
 | 
						|
  Br->setOperand(0, ++LastBlock);
 | 
						|
 | 
						|
  // If there are any alloca instructions in the block that used to be the entry
 | 
						|
  // block for the callee, move them to the entry block of the caller.  First
 | 
						|
  // calculate which instruction they should be inserted before.  We insert the
 | 
						|
  // instructions at the end of the current alloca list.
 | 
						|
  //
 | 
						|
  if (isa<AllocaInst>(LastBlock->begin())) {
 | 
						|
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | 
						|
    while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
 | 
						|
    
 | 
						|
    for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
 | 
						|
         I != E; )
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
 | 
						|
        if (isa<Constant>(AI->getArraySize())) {
 | 
						|
          LastBlock->getInstList().remove(AI);
 | 
						|
          Caller->front().getInstList().insert(InsertPoint, AI);      
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we just inlined a call due to an invoke instruction, scan the inlined
 | 
						|
  // function checking for function calls that should now be made into invoke
 | 
						|
  // instructions, and for unwind's which should be turned into branches.
 | 
						|
  if (InvokeDest) {
 | 
						|
    for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) {
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | 
						|
        // We only need to check for function calls: inlined invoke instructions
 | 
						|
        // require no special handling...
 | 
						|
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
          // Convert this function call into an invoke instruction...
 | 
						|
 | 
						|
          // First, split the basic block...
 | 
						|
          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | 
						|
          
 | 
						|
          // Next, create the new invoke instruction, inserting it at the end
 | 
						|
          // of the old basic block.
 | 
						|
          InvokeInst *II =
 | 
						|
            new InvokeInst(CI->getCalledValue(), Split, InvokeDest, 
 | 
						|
                           std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
 | 
						|
                           CI->getName(), BB->getTerminator());
 | 
						|
 | 
						|
          // Make sure that anything using the call now uses the invoke!
 | 
						|
          CI->replaceAllUsesWith(II);
 | 
						|
 | 
						|
          // Delete the unconditional branch inserted by splitBasicBlock
 | 
						|
          BB->getInstList().pop_back();
 | 
						|
          Split->getInstList().pop_front();  // Delete the original call
 | 
						|
          
 | 
						|
          // Update any PHI nodes in the exceptional block to indicate that
 | 
						|
          // there is now a new entry in them.
 | 
						|
          unsigned i = 0;
 | 
						|
          for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
               PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
 | 
						|
            PN->addIncoming(InvokeDestPHIValues[i], BB);
 | 
						|
 | 
						|
          // This basic block is now complete, start scanning the next one.
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          ++I;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | 
						|
        // An UnwindInst requires special handling when it gets inlined into an
 | 
						|
        // invoke site.  Once this happens, we know that the unwind would cause
 | 
						|
        // a control transfer to the invoke exception destination, so we can
 | 
						|
        // transform it into a direct branch to the exception destination.
 | 
						|
        new BranchInst(InvokeDest, UI);
 | 
						|
 | 
						|
        // Delete the unwind instruction!
 | 
						|
        UI->getParent()->getInstList().pop_back();
 | 
						|
 | 
						|
        // Update any PHI nodes in the exceptional block to indicate that
 | 
						|
        // there is now a new entry in them.
 | 
						|
        unsigned i = 0;
 | 
						|
        for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
             PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
 | 
						|
          PN->addIncoming(InvokeDestPHIValues[i], BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
    // the exception destination block still have entries due to the original
 | 
						|
    // invoke instruction.  Eliminate these entries (which might even delete the
 | 
						|
    // PHI node) now.
 | 
						|
    for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
      PN->removeIncomingValue(AfterCallBB);
 | 
						|
  }
 | 
						|
  // Now that the function is correct, make it a little bit nicer.  In
 | 
						|
  // particular, move the basic blocks inserted from the end of the function
 | 
						|
  // into the space made by splitting the source basic block.
 | 
						|
  //
 | 
						|
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 
 | 
						|
                                     LastBlock, Caller->end());
 | 
						|
 | 
						|
  // We should always be able to fold the entry block of the function into the
 | 
						|
  // single predecessor of the block...
 | 
						|
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | 
						|
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | 
						|
  SimplifyCFG(CalleeEntry);
 | 
						|
  
 | 
						|
  // Okay, continue the CFG cleanup.  It's often the case that there is only a
 | 
						|
  // single return instruction in the callee function.  If this is the case,
 | 
						|
  // then we have an unconditional branch from the return block to the
 | 
						|
  // 'AfterCallBB'.  Check for this case, and eliminate the branch is possible.
 | 
						|
  SimplifyCFG(AfterCallBB);
 | 
						|
  return true;
 | 
						|
}
 |