mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	getSubLoops/getTopLevelLoops methods, replacing them with iterator-based accessors. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10714 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			590 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			590 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs several transformations to transform natural loops into a
 | 
						|
// simpler form, which makes subsequent analyses and transformations simpler and
 | 
						|
// more effective.
 | 
						|
//
 | 
						|
// Loop pre-header insertion guarantees that there is a single, non-critical
 | 
						|
// entry edge from outside of the loop to the loop header.  This simplifies a
 | 
						|
// number of analyses and transformations, such as LICM.
 | 
						|
//
 | 
						|
// Loop exit-block insertion guarantees that all exit blocks from the loop
 | 
						|
// (blocks which are outside of the loop that have predecessors inside of the
 | 
						|
// loop) only have predecessors from inside of the loop (and are thus dominated
 | 
						|
// by the loop header).  This simplifies transformations such as store-sinking
 | 
						|
// that are built into LICM.
 | 
						|
//
 | 
						|
// This pass also guarantees that loops will have exactly one backedge.
 | 
						|
//
 | 
						|
// Note that the simplifycfg pass will clean up blocks which are split out but
 | 
						|
// end up being unnecessary, so usage of this pass should not pessimize
 | 
						|
// generated code.
 | 
						|
//
 | 
						|
// This pass obviously modifies the CFG, but updates loop information and
 | 
						|
// dominator information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/SetOperations.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include "Support/DepthFirstIterator.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>
 | 
						|
  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
 | 
						|
 | 
						|
  struct LoopSimplify : public FunctionPass {
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      // We need loop information to identify the loops...
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorSet>();
 | 
						|
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addPreserved<DominatorSet>();
 | 
						|
      AU.addPreserved<ImmediateDominators>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<DominanceFrontier>();
 | 
						|
      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    bool ProcessLoop(Loop *L);
 | 
						|
    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
 | 
						|
                                       const std::vector<BasicBlock*> &Preds);
 | 
						|
    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | 
						|
    void InsertPreheaderForLoop(Loop *L);
 | 
						|
    void InsertUniqueBackedgeBlock(Loop *L);
 | 
						|
 | 
						|
    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | 
						|
                                         std::vector<BasicBlock*> &PredBlocks);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<LoopSimplify>
 | 
						|
  X("loopsimplify", "Canonicalize natural loops", true);
 | 
						|
}
 | 
						|
 | 
						|
// Publically exposed interface to pass...
 | 
						|
const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
 | 
						|
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | 
						|
 | 
						|
/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | 
						|
/// it in any convenient order) inserting preheaders...
 | 
						|
///
 | 
						|
bool LoopSimplify::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  LoopInfo &LI = getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
 | 
						|
    Changed |= ProcessLoop(*I);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | 
						|
/// all loops have preheaders.
 | 
						|
///
 | 
						|
bool LoopSimplify::ProcessLoop(Loop *L) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Does the loop already have a preheader?  If so, don't modify the loop...
 | 
						|
  if (L->getLoopPreheader() == 0) {
 | 
						|
    InsertPreheaderForLoop(L);
 | 
						|
    NumInserted++;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, check to make sure that all exit nodes of the loop only have
 | 
						|
  // predecessors that are inside of the loop.  This check guarantees that the
 | 
						|
  // loop preheader/header will dominate the exit blocks.  If the exit block has
 | 
						|
  // predecessors from outside of the loop, split the edge now.
 | 
						|
  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitBlock = L->getExitBlocks()[i];
 | 
						|
    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | 
						|
         PI != PE; ++PI)
 | 
						|
      if (!L->contains(*PI)) {
 | 
						|
        RewriteLoopExitBlock(L, ExitBlock);
 | 
						|
        NumInserted++;
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // The preheader may have more than two predecessors at this point (from the
 | 
						|
  // preheader and from the backedges).  To simplify the loop more, insert an
 | 
						|
  // extra back-edge block in the loop so that there is exactly one backedge.
 | 
						|
  if (L->getNumBackEdges() != 1) {
 | 
						|
    InsertUniqueBackedgeBlock(L);
 | 
						|
    NumInserted++;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    Changed |= ProcessLoop(*I);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
 | 
						|
/// to move the predecessors specified in the Preds list to point to the new
 | 
						|
/// block, leaving the remaining predecessors pointing to BB.  This method
 | 
						|
/// updates the SSA PHINode's, but no other analyses.
 | 
						|
///
 | 
						|
BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
 | 
						|
                                                 const char *Suffix,
 | 
						|
                                       const std::vector<BasicBlock*> &Preds) {
 | 
						|
  
 | 
						|
  // Create new basic block, insert right before the original block...
 | 
						|
  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
 | 
						|
 | 
						|
  // The preheader first gets an unconditional branch to the loop header...
 | 
						|
  BranchInst *BI = new BranchInst(BB, NewBB);
 | 
						|
  
 | 
						|
  // For every PHI node in the block, insert a PHI node into NewBB where the
 | 
						|
  // incoming values from the out of loop edges are moved to NewBB.  We have two
 | 
						|
  // possible cases here.  If the loop is dead, we just insert dummy entries
 | 
						|
  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
 | 
						|
  // incoming edges in BB into new PHI nodes in NewBB.
 | 
						|
  //
 | 
						|
  if (!Preds.empty()) {  // Is the loop not obviously dead?
 | 
						|
    // Check to see if the values being merged into the new block need PHI
 | 
						|
    // nodes.  If so, insert them.
 | 
						|
    for (BasicBlock::iterator I = BB->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
      
 | 
						|
      // Check to see if all of the values coming in are the same.  If so, we
 | 
						|
      // don't need to create a new PHI node.
 | 
						|
      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
 | 
						|
      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
 | 
						|
        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | 
						|
          InVal = 0;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // If the values coming into the block are not the same, we need a PHI.
 | 
						|
      if (InVal == 0) {
 | 
						|
        // Create the new PHI node, insert it into NewBB at the end of the block
 | 
						|
        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
 | 
						|
        
 | 
						|
        // Move all of the edges from blocks outside the loop to the new PHI
 | 
						|
        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
          Value *V = PN->removeIncomingValue(Preds[i]);
 | 
						|
          NewPHI->addIncoming(V, Preds[i]);
 | 
						|
        }
 | 
						|
        InVal = NewPHI;
 | 
						|
      } else {
 | 
						|
        // Remove all of the edges coming into the PHI nodes from outside of the
 | 
						|
        // block.
 | 
						|
        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | 
						|
          PN->removeIncomingValue(Preds[i], false);
 | 
						|
      }
 | 
						|
 | 
						|
      // Add an incoming value to the PHI node in the loop for the preheader
 | 
						|
      // edge.
 | 
						|
      PN->addIncoming(InVal, NewBB);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now that the PHI nodes are updated, actually move the edges from
 | 
						|
    // Preds to point to NewBB instead of BB.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
      TerminatorInst *TI = Preds[i]->getTerminator();
 | 
						|
      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
 | 
						|
        if (TI->getSuccessor(s) == BB)
 | 
						|
          TI->setSuccessor(s, NewBB);
 | 
						|
    }
 | 
						|
    
 | 
						|
  } else {                       // Otherwise the loop is dead...
 | 
						|
    for (BasicBlock::iterator I = BB->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
      // Insert dummy values as the incoming value...
 | 
						|
      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
 | 
						|
  }  
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
// ChangeExitBlock - This recursive function is used to change any exit blocks
 | 
						|
// that use OldExit to use NewExit instead.  This is recursive because children
 | 
						|
// may need to be processed as well.
 | 
						|
//
 | 
						|
static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
 | 
						|
  if (L->hasExitBlock(OldExit)) {
 | 
						|
    L->changeExitBlock(OldExit, NewExit);
 | 
						|
    for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
      ChangeExitBlock(*I, OldExit, NewExit);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | 
						|
/// preheader, this method is called to insert one.  This method has two phases:
 | 
						|
/// preheader insertion and analysis updating.
 | 
						|
///
 | 
						|
void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  // Compute the set of predecessors of the loop that are not in the loop.
 | 
						|
  std::vector<BasicBlock*> OutsideBlocks;
 | 
						|
  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | 
						|
       PI != PE; ++PI)
 | 
						|
      if (!L->contains(*PI))           // Coming in from outside the loop?
 | 
						|
        OutsideBlocks.push_back(*PI);  // Keep track of it...
 | 
						|
  
 | 
						|
  // Split out the loop pre-header
 | 
						|
  BasicBlock *NewBB =
 | 
						|
    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //  Update analysis results now that we have performed the transformation
 | 
						|
  //
 | 
						|
  
 | 
						|
  // We know that we have loop information to update... update it now.
 | 
						|
  if (Loop *Parent = L->getParentLoop())
 | 
						|
    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | 
						|
 | 
						|
  // If the header for the loop used to be an exit node for another loop, then
 | 
						|
  // we need to update this to know that the loop-preheader is now the exit
 | 
						|
  // node.  Note that the only loop that could have our header as an exit node
 | 
						|
  // is a sibling loop, ie, one with the same parent loop, or one if it's
 | 
						|
  // children.
 | 
						|
  //
 | 
						|
  LoopInfo::iterator ParentLoops, ParentLoopsE;
 | 
						|
  if (Loop *Parent = L->getParentLoop()) {
 | 
						|
    ParentLoops = Parent->begin();
 | 
						|
    ParentLoopsE = Parent->end();
 | 
						|
  } else {      // Must check top-level loops...
 | 
						|
    ParentLoops = getAnalysis<LoopInfo>().begin();
 | 
						|
    ParentLoopsE = getAnalysis<LoopInfo>().end();
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all sibling loops, performing the substitution (recursively to
 | 
						|
  // include child loops)...
 | 
						|
  for (; ParentLoops != ParentLoopsE; ++ParentLoops)
 | 
						|
    ChangeExitBlock(*ParentLoops, Header, NewBB);
 | 
						|
  
 | 
						|
  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
 | 
						|
  {
 | 
						|
    // The blocks that dominate NewBB are the blocks that dominate Header,
 | 
						|
    // minus Header, plus NewBB.
 | 
						|
    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
 | 
						|
    DomSet.insert(NewBB);  // We dominate ourself
 | 
						|
    DomSet.erase(Header);  // Header does not dominate us...
 | 
						|
    DS.addBasicBlock(NewBB, DomSet);
 | 
						|
 | 
						|
    // The newly created basic block dominates all nodes dominated by Header.
 | 
						|
    for (Function::iterator I = Header->getParent()->begin(),
 | 
						|
           E = Header->getParent()->end(); I != E; ++I)
 | 
						|
      if (DS.dominates(Header, I))
 | 
						|
        DS.addDominator(I, NewBB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update immediate dominator information if we have it...
 | 
						|
  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | 
						|
    // Whatever i-dominated the header node now immediately dominates NewBB
 | 
						|
    ID->addNewBlock(NewBB, ID->get(Header));
 | 
						|
    
 | 
						|
    // The preheader now is the immediate dominator for the header node...
 | 
						|
    ID->setImmediateDominator(Header, NewBB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update DominatorTree information if it is active.
 | 
						|
  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | 
						|
    // The immediate dominator of the preheader is the immediate dominator of
 | 
						|
    // the old header.
 | 
						|
    //
 | 
						|
    DominatorTree::Node *HeaderNode = DT->getNode(Header);
 | 
						|
    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
 | 
						|
                                                    HeaderNode->getIDom());
 | 
						|
    
 | 
						|
    // Change the header node so that PNHode is the new immediate dominator
 | 
						|
    DT->changeImmediateDominator(HeaderNode, PHNode);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update dominance frontier information...
 | 
						|
  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | 
						|
    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
 | 
						|
    // everything that Header does, and it strictly dominates Header in
 | 
						|
    // addition.
 | 
						|
    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
 | 
						|
    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
 | 
						|
    NewDFSet.erase(Header);
 | 
						|
    DF->addBasicBlock(NewBB, NewDFSet);
 | 
						|
 | 
						|
    // Now we must loop over all of the dominance frontiers in the function,
 | 
						|
    // replacing occurrences of Header with NewBB in some cases.  If a block
 | 
						|
    // dominates a (now) predecessor of NewBB, but did not strictly dominate
 | 
						|
    // Header, it will have Header in it's DF set, but should now have NewBB in
 | 
						|
    // its set.
 | 
						|
    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
 | 
						|
      // Get all of the dominators of the predecessor...
 | 
						|
      const DominatorSet::DomSetType &PredDoms =
 | 
						|
        DS.getDominators(OutsideBlocks[i]);
 | 
						|
      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | 
						|
             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | 
						|
        BasicBlock *PredDom = *PDI;
 | 
						|
        // If the loop header is in DF(PredDom), then PredDom didn't dominate
 | 
						|
        // the header but did dominate a predecessor outside of the loop.  Now
 | 
						|
        // we change this entry to include the preheader in the DF instead of
 | 
						|
        // the header.
 | 
						|
        DominanceFrontier::iterator DFI = DF->find(PredDom);
 | 
						|
        assert(DFI != DF->end() && "No dominance frontier for node?");
 | 
						|
        if (DFI->second.count(Header)) {
 | 
						|
          DF->removeFromFrontier(DFI, Header);
 | 
						|
          DF->addToFrontier(DFI, NewBB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | 
						|
  DominatorSet &DS = getAnalysis<DominatorSet>();
 | 
						|
  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
 | 
						|
         != L->getExitBlocks().end() && "Not a current exit block!");
 | 
						|
  
 | 
						|
  std::vector<BasicBlock*> LoopBlocks;
 | 
						|
  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
 | 
						|
    if (L->contains(*I))
 | 
						|
      LoopBlocks.push_back(*I);
 | 
						|
 | 
						|
  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | 
						|
  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
 | 
						|
 | 
						|
  // Update Loop Information - we know that the new block will be in the parent
 | 
						|
  // loop of L.
 | 
						|
  if (Loop *Parent = L->getParentLoop())
 | 
						|
    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | 
						|
 | 
						|
  // Replace any instances of Exit with NewBB in this and any nested loops...
 | 
						|
  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
 | 
						|
    if (I->hasExitBlock(Exit))
 | 
						|
      I->changeExitBlock(Exit, NewBB);   // Update exit block information
 | 
						|
 | 
						|
  // Update dominator information (set, immdom, domtree, and domfrontier)
 | 
						|
  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertUniqueBackedgeBlock - This method is called when the specified loop
 | 
						|
/// has more than one backedge in it.  If this occurs, revector all of these
 | 
						|
/// backedges to target a new basic block and have that block branch to the loop
 | 
						|
/// header.  This ensures that loops have exactly one backedge.
 | 
						|
///
 | 
						|
void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
 | 
						|
  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | 
						|
 | 
						|
  // Get information about the loop
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
 | 
						|
  // Figure out which basic blocks contain back-edges to the loop header.
 | 
						|
  std::vector<BasicBlock*> BackedgeBlocks;
 | 
						|
  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
 | 
						|
    if (*I != Preheader) BackedgeBlocks.push_back(*I);
 | 
						|
 | 
						|
  // Create and insert the new backedge block...
 | 
						|
  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
 | 
						|
  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
 | 
						|
 | 
						|
  // Move the new backedge block to right after the last backedge block.
 | 
						|
  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | 
						|
  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | 
						|
  
 | 
						|
  // Now that the block has been inserted into the function, create PHI nodes in
 | 
						|
  // the backedge block which correspond to any PHI nodes in the header block.
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
 | 
						|
                                 BETerminator);
 | 
						|
    NewPN->op_reserve(2*BackedgeBlocks.size());
 | 
						|
 | 
						|
    // Loop over the PHI node, moving all entries except the one for the
 | 
						|
    // preheader over to the new PHI node.
 | 
						|
    unsigned PreheaderIdx = ~0U;
 | 
						|
    bool HasUniqueIncomingValue = true;
 | 
						|
    Value *UniqueValue = 0;
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *IBB = PN->getIncomingBlock(i);
 | 
						|
      Value *IV = PN->getIncomingValue(i);
 | 
						|
      if (IBB == Preheader) {
 | 
						|
        PreheaderIdx = i;
 | 
						|
      } else {
 | 
						|
        NewPN->addIncoming(IV, IBB);
 | 
						|
        if (HasUniqueIncomingValue) {
 | 
						|
          if (UniqueValue == 0)
 | 
						|
            UniqueValue = IV;
 | 
						|
          else if (UniqueValue != IV)
 | 
						|
            HasUniqueIncomingValue = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Delete all of the incoming values from the old PN except the preheader's
 | 
						|
    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | 
						|
    if (PreheaderIdx != 0) {
 | 
						|
      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | 
						|
      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | 
						|
    }
 | 
						|
    PN->op_erase(PN->op_begin()+2, PN->op_end());
 | 
						|
 | 
						|
    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | 
						|
    PN->addIncoming(NewPN, BEBlock);
 | 
						|
 | 
						|
    // As an optimization, if all incoming values in the new PhiNode (which is a
 | 
						|
    // subset of the incoming values of the old PHI node) have the same value,
 | 
						|
    // eliminate the PHI Node.
 | 
						|
    if (HasUniqueIncomingValue) {
 | 
						|
      NewPN->replaceAllUsesWith(UniqueValue);
 | 
						|
      BEBlock->getInstList().erase(NewPN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | 
						|
  // backedge blocks to just to the BEBlock instead of the header.
 | 
						|
  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | 
						|
    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | 
						|
    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | 
						|
      if (TI->getSuccessor(Op) == Header)
 | 
						|
        TI->setSuccessor(Op, BEBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--- Update all analyses which we must preserve now -----------------===//
 | 
						|
 | 
						|
  // Update Loop Information - we know that this block is now in the current
 | 
						|
  // loop and all parent loops.
 | 
						|
  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
 | 
						|
 | 
						|
  // Replace any instances of Exit with NewBB in this and any nested loops...
 | 
						|
  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
 | 
						|
    if (I->hasExitBlock(Header))
 | 
						|
      I->changeExitBlock(Header, BEBlock);   // Update exit block information
 | 
						|
 | 
						|
  // Update dominator information (set, immdom, domtree, and domfrontier)
 | 
						|
  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
 | 
						|
/// different kinds of dominator information (dominator sets, immediate
 | 
						|
/// dominators, dominator trees, and dominance frontiers) after a new block has
 | 
						|
/// been added to the CFG.
 | 
						|
///
 | 
						|
/// This only supports the case when an existing block (known as "Exit"), had
 | 
						|
/// some of its predecessors factored into a new basic block.  This
 | 
						|
/// transformation inserts a new basic block ("NewBB"), with a single
 | 
						|
/// unconditional branch to Exit, and moves some predecessors of "Exit" to now
 | 
						|
/// branch to NewBB.  These predecessors are listed in PredBlocks, even though
 | 
						|
/// they are the same as pred_begin(NewBB)/pred_end(NewBB).
 | 
						|
///
 | 
						|
void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | 
						|
                                         std::vector<BasicBlock*> &PredBlocks) {
 | 
						|
  assert(succ_begin(NewBB) != succ_end(NewBB) &&
 | 
						|
         ++succ_begin(NewBB) == succ_end(NewBB) &&
 | 
						|
         "NewBB should have a single successor!");
 | 
						|
  DominatorSet &DS = getAnalysis<DominatorSet>();
 | 
						|
 | 
						|
  // Update dominator information...  The blocks that dominate NewBB are the
 | 
						|
  // intersection of the dominators of predecessors, plus the block itself.
 | 
						|
  // The newly created basic block does not dominate anything except itself.
 | 
						|
  //
 | 
						|
  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
 | 
						|
  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
 | 
						|
    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
 | 
						|
  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
 | 
						|
  DS.addBasicBlock(NewBB, NewBBDomSet);
 | 
						|
 | 
						|
  // Update immediate dominator information if we have it...
 | 
						|
  BasicBlock *NewBBIDom = 0;
 | 
						|
  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | 
						|
    // This block does not strictly dominate anything, so it is not an immediate
 | 
						|
    // dominator.  To find the immediate dominator of the new exit node, we
 | 
						|
    // trace up the immediate dominators of a predecessor until we find a basic
 | 
						|
    // block that dominates the exit block.
 | 
						|
    //
 | 
						|
    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
 | 
						|
    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
 | 
						|
      assert(Dom != 0 && "No shared dominator found???");
 | 
						|
      Dom = ID->get(Dom);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set the immediate dominator now...
 | 
						|
    ID->addNewBlock(NewBB, Dom);
 | 
						|
    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
 | 
						|
  }
 | 
						|
 | 
						|
  // Update DominatorTree information if it is active.
 | 
						|
  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | 
						|
    // NewBB doesn't dominate anything, so just create a node and link it into
 | 
						|
    // its immediate dominator.  If we don't have ImmediateDominator info
 | 
						|
    // around, calculate the idom as above.
 | 
						|
    DominatorTree::Node *NewBBIDomNode;
 | 
						|
    if (NewBBIDom) {
 | 
						|
      NewBBIDomNode = DT->getNode(NewBBIDom);
 | 
						|
    } else {
 | 
						|
      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
 | 
						|
      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
 | 
						|
        NewBBIDomNode = NewBBIDomNode->getIDom();
 | 
						|
        assert(NewBBIDomNode && "No shared dominator found??");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new dominator tree node...
 | 
						|
    DT->createNewNode(NewBB, NewBBIDomNode);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update dominance frontier information...
 | 
						|
  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | 
						|
    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
 | 
						|
    // does dominate itself (and there is an edge (NewBB -> Exit)).  Exit is the
 | 
						|
    // single successor of NewBB.
 | 
						|
    DominanceFrontier::DomSetType NewDFSet;
 | 
						|
    BasicBlock *Exit = *succ_begin(NewBB);
 | 
						|
    NewDFSet.insert(Exit);
 | 
						|
    DF->addBasicBlock(NewBB, NewDFSet);
 | 
						|
 | 
						|
    // Now we must loop over all of the dominance frontiers in the function,
 | 
						|
    // replacing occurrences of Exit with NewBB in some cases.  All blocks that
 | 
						|
    // dominate a block in PredBlocks and contained Exit in their dominance
 | 
						|
    // frontier must be updated to contain NewBB instead.  This only occurs if
 | 
						|
    // there is more than one block in PredBlocks.
 | 
						|
    //
 | 
						|
    if (PredBlocks.size() > 1) {
 | 
						|
      for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
 | 
						|
        BasicBlock *Pred = PredBlocks[i];
 | 
						|
        // Get all of the dominators of the predecessor...
 | 
						|
        const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
 | 
						|
        for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | 
						|
               PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | 
						|
          BasicBlock *PredDom = *PDI;
 | 
						|
 | 
						|
          // If the Exit node is in DF(PredDom), then PredDom didn't dominate
 | 
						|
          // Exit but did dominate a predecessor of it.  Now we change this
 | 
						|
          // entry to include NewBB in the DF instead of Exit.
 | 
						|
          DominanceFrontier::iterator DFI = DF->find(PredDom);
 | 
						|
          assert(DFI != DF->end() && "No dominance frontier for node?");
 | 
						|
          if (DFI->second.count(Exit)) {
 | 
						|
            DF->removeFromFrontier(DFI, Exit);
 | 
						|
            DF->addToFrontier(DFI, NewBB);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 |