mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			648 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates machine instruction PHI nodes by inserting copy
 | 
						|
// instructions.  This destroys SSA information, but is the desired input for
 | 
						|
// some register allocators.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "PHIEliminationUtils.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "phielim"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
 | 
						|
                     cl::Hidden, cl::desc("Disable critical edge splitting "
 | 
						|
                                          "during PHI elimination"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
 | 
						|
                      cl::Hidden, cl::desc("Split all critical edges during "
 | 
						|
                                           "PHI elimination"));
 | 
						|
 | 
						|
namespace {
 | 
						|
  class PHIElimination : public MachineFunctionPass {
 | 
						|
    MachineRegisterInfo *MRI; // Machine register information
 | 
						|
    LiveVariables *LV;
 | 
						|
    LiveIntervals *LIS;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    PHIElimination() : MachineFunctionPass(ID) {
 | 
						|
      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn) override;
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  private:
 | 
						|
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | 
						|
    /// in predecessor basic blocks.
 | 
						|
    ///
 | 
						|
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | 
						|
    void LowerPHINode(MachineBasicBlock &MBB,
 | 
						|
                      MachineBasicBlock::iterator LastPHIIt);
 | 
						|
 | 
						|
    /// analyzePHINodes - Gather information about the PHI nodes in
 | 
						|
    /// here. In particular, we want to map the number of uses of a virtual
 | 
						|
    /// register which is used in a PHI node. We map that to the BB the
 | 
						|
    /// vreg is coming from. This is used later to determine when the vreg
 | 
						|
    /// is killed in the BB.
 | 
						|
    ///
 | 
						|
    void analyzePHINodes(const MachineFunction& Fn);
 | 
						|
 | 
						|
    /// Split critical edges where necessary for good coalescer performance.
 | 
						|
    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
                       MachineLoopInfo *MLI);
 | 
						|
 | 
						|
    // These functions are temporary abstractions around LiveVariables and
 | 
						|
    // LiveIntervals, so they can go away when LiveVariables does.
 | 
						|
    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
 | 
						|
    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    typedef std::pair<unsigned, unsigned> BBVRegPair;
 | 
						|
    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
 | 
						|
 | 
						|
    VRegPHIUse VRegPHIUseCount;
 | 
						|
 | 
						|
    // Defs of PHI sources which are implicit_def.
 | 
						|
    SmallPtrSet<MachineInstr*, 4> ImpDefs;
 | 
						|
 | 
						|
    // Map reusable lowered PHI node -> incoming join register.
 | 
						|
    typedef DenseMap<MachineInstr*, unsigned,
 | 
						|
                     MachineInstrExpressionTrait> LoweredPHIMap;
 | 
						|
    LoweredPHIMap LoweredPHIs;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
STATISTIC(NumLowered, "Number of phis lowered");
 | 
						|
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
 | 
						|
STATISTIC(NumReused, "Number of reused lowered phis");
 | 
						|
 | 
						|
char PHIElimination::ID = 0;
 | 
						|
char& llvm::PHIEliminationID = PHIElimination::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
 | 
						|
                      "Eliminate PHI nodes for register allocation",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | 
						|
INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
 | 
						|
                    "Eliminate PHI nodes for register allocation", false, false)
 | 
						|
 | 
						|
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addPreserved<LiveVariables>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  AU.addPreserved<MachineDominatorTree>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  LV = getAnalysisIfAvailable<LiveVariables>();
 | 
						|
  LIS = getAnalysisIfAvailable<LiveIntervals>();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // This pass takes the function out of SSA form.
 | 
						|
  MRI->leaveSSA();
 | 
						|
 | 
						|
  // Split critical edges to help the coalescer. This does not yet support
 | 
						|
  // updating LiveIntervals, so we disable it.
 | 
						|
  if (!DisableEdgeSplitting && (LV || LIS)) {
 | 
						|
    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
 | 
						|
    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
      Changed |= SplitPHIEdges(MF, *I, MLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Populate VRegPHIUseCount
 | 
						|
  analyzePHINodes(MF);
 | 
						|
 | 
						|
  // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
    Changed |= EliminatePHINodes(MF, *I);
 | 
						|
 | 
						|
  // Remove dead IMPLICIT_DEF instructions.
 | 
						|
  for (MachineInstr *DefMI : ImpDefs) {
 | 
						|
    unsigned DefReg = DefMI->getOperand(0).getReg();
 | 
						|
    if (MRI->use_nodbg_empty(DefReg)) {
 | 
						|
      if (LIS)
 | 
						|
        LIS->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
      DefMI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clean up the lowered PHI instructions.
 | 
						|
  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (LIS)
 | 
						|
      LIS->RemoveMachineInstrFromMaps(I->first);
 | 
						|
    MF.DeleteMachineInstr(I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  LoweredPHIs.clear();
 | 
						|
  ImpDefs.clear();
 | 
						|
  VRegPHIUseCount.clear();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | 
						|
/// predecessor basic blocks.
 | 
						|
///
 | 
						|
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
 | 
						|
                                             MachineBasicBlock &MBB) {
 | 
						|
  if (MBB.empty() || !MBB.front().isPHI())
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  // Get an iterator to the first instruction after the last PHI node (this may
 | 
						|
  // also be the end of the basic block).
 | 
						|
  MachineBasicBlock::iterator LastPHIIt =
 | 
						|
    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
 | 
						|
 | 
						|
  while (MBB.front().isPHI())
 | 
						|
    LowerPHINode(MBB, LastPHIIt);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
 | 
						|
/// This includes registers with no defs.
 | 
						|
static bool isImplicitlyDefined(unsigned VirtReg,
 | 
						|
                                const MachineRegisterInfo *MRI) {
 | 
						|
  for (MachineInstr &DI : MRI->def_instructions(VirtReg))
 | 
						|
    if (!DI.isImplicitDef())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
 | 
						|
/// are implicit_def's.
 | 
						|
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
 | 
						|
                                         const MachineRegisterInfo *MRI) {
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | 
						|
    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// LowerPHINode - Lower the PHI node at the top of the specified block,
 | 
						|
///
 | 
						|
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
 | 
						|
                                  MachineBasicBlock::iterator LastPHIIt) {
 | 
						|
  ++NumLowered;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
 | 
						|
 | 
						|
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | 
						|
  MachineInstr *MPhi = MBB.remove(MBB.begin());
 | 
						|
 | 
						|
  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
 | 
						|
  unsigned DestReg = MPhi->getOperand(0).getReg();
 | 
						|
  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
 | 
						|
  bool isDead = MPhi->getOperand(0).isDead();
 | 
						|
 | 
						|
  // Create a new register for the incoming PHI arguments.
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  unsigned IncomingReg = 0;
 | 
						|
  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
 | 
						|
 | 
						|
  // Insert a register to register copy at the top of the current block (but
 | 
						|
  // after any remaining phi nodes) which copies the new incoming register
 | 
						|
  // into the phi node destination.
 | 
						|
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
 | 
						|
    // If all sources of a PHI node are implicit_def, just emit an
 | 
						|
    // implicit_def instead of a copy.
 | 
						|
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | 
						|
            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
 | 
						|
  else {
 | 
						|
    // Can we reuse an earlier PHI node? This only happens for critical edges,
 | 
						|
    // typically those created by tail duplication.
 | 
						|
    unsigned &entry = LoweredPHIs[MPhi];
 | 
						|
    if (entry) {
 | 
						|
      // An identical PHI node was already lowered. Reuse the incoming register.
 | 
						|
      IncomingReg = entry;
 | 
						|
      reusedIncoming = true;
 | 
						|
      ++NumReused;
 | 
						|
      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
 | 
						|
    } else {
 | 
						|
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
 | 
						|
      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
 | 
						|
    }
 | 
						|
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | 
						|
            TII->get(TargetOpcode::COPY), DestReg)
 | 
						|
      .addReg(IncomingReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update live variable information if there is any.
 | 
						|
  if (LV) {
 | 
						|
    MachineInstr *PHICopy = std::prev(AfterPHIsIt);
 | 
						|
 | 
						|
    if (IncomingReg) {
 | 
						|
      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
 | 
						|
 | 
						|
      // Increment use count of the newly created virtual register.
 | 
						|
      LV->setPHIJoin(IncomingReg);
 | 
						|
 | 
						|
      // When we are reusing the incoming register, it may already have been
 | 
						|
      // killed in this block. The old kill will also have been inserted at
 | 
						|
      // AfterPHIsIt, so it appears before the current PHICopy.
 | 
						|
      if (reusedIncoming)
 | 
						|
        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
 | 
						|
          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
 | 
						|
          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
 | 
						|
          DEBUG(MBB.dump());
 | 
						|
        }
 | 
						|
 | 
						|
      // Add information to LiveVariables to know that the incoming value is
 | 
						|
      // killed.  Note that because the value is defined in several places (once
 | 
						|
      // each for each incoming block), the "def" block and instruction fields
 | 
						|
      // for the VarInfo is not filled in.
 | 
						|
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | 
						|
    }
 | 
						|
 | 
						|
    // Since we are going to be deleting the PHI node, if it is the last use of
 | 
						|
    // any registers, or if the value itself is dead, we need to move this
 | 
						|
    // information over to the new copy we just inserted.
 | 
						|
    LV->removeVirtualRegistersKilled(MPhi);
 | 
						|
 | 
						|
    // If the result is dead, update LV.
 | 
						|
    if (isDead) {
 | 
						|
      LV->addVirtualRegisterDead(DestReg, PHICopy);
 | 
						|
      LV->removeVirtualRegisterDead(DestReg, MPhi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update LiveIntervals for the new copy or implicit def.
 | 
						|
  if (LIS) {
 | 
						|
    MachineInstr *NewInstr = std::prev(AfterPHIsIt);
 | 
						|
    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
 | 
						|
 | 
						|
    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
 | 
						|
    if (IncomingReg) {
 | 
						|
      // Add the region from the beginning of MBB to the copy instruction to
 | 
						|
      // IncomingReg's live interval.
 | 
						|
      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
 | 
						|
      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
 | 
						|
      if (!IncomingVNI)
 | 
						|
        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
 | 
						|
                                              LIS->getVNInfoAllocator());
 | 
						|
      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
 | 
						|
                                                  DestCopyIndex.getRegSlot(),
 | 
						|
                                                  IncomingVNI));
 | 
						|
    }
 | 
						|
 | 
						|
    LiveInterval &DestLI = LIS->getInterval(DestReg);
 | 
						|
    assert(DestLI.begin() != DestLI.end() &&
 | 
						|
           "PHIs should have nonempty LiveIntervals.");
 | 
						|
    if (DestLI.endIndex().isDead()) {
 | 
						|
      // A dead PHI's live range begins and ends at the start of the MBB, but
 | 
						|
      // the lowered copy, which will still be dead, needs to begin and end at
 | 
						|
      // the copy instruction.
 | 
						|
      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
 | 
						|
      assert(OrigDestVNI && "PHI destination should be live at block entry.");
 | 
						|
      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
 | 
						|
      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
 | 
						|
                           LIS->getVNInfoAllocator());
 | 
						|
      DestLI.removeValNo(OrigDestVNI);
 | 
						|
    } else {
 | 
						|
      // Otherwise, remove the region from the beginning of MBB to the copy
 | 
						|
      // instruction from DestReg's live interval.
 | 
						|
      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
 | 
						|
      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
 | 
						|
      assert(DestVNI && "PHI destination should be live at its definition.");
 | 
						|
      DestVNI->def = DestCopyIndex.getRegSlot();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | 
						|
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
 | 
						|
                                 MPhi->getOperand(i).getReg())];
 | 
						|
 | 
						|
  // Now loop over all of the incoming arguments, changing them to copy into the
 | 
						|
  // IncomingReg register in the corresponding predecessor basic block.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
 | 
						|
  for (int i = NumSrcs - 1; i >= 0; --i) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
 | 
						|
    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
 | 
						|
    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
 | 
						|
      isImplicitlyDefined(SrcReg, MRI);
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
           "Machine PHI Operands must all be virtual registers!");
 | 
						|
 | 
						|
    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
 | 
						|
    // path the PHI.
 | 
						|
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
 | 
						|
 | 
						|
    // Check to make sure we haven't already emitted the copy for this block.
 | 
						|
    // This can happen because PHI nodes may have multiple entries for the same
 | 
						|
    // basic block.
 | 
						|
    if (!MBBsInsertedInto.insert(&opBlock).second)
 | 
						|
      continue;  // If the copy has already been emitted, we're done.
 | 
						|
 | 
						|
    // Find a safe location to insert the copy, this may be the first terminator
 | 
						|
    // in the block (or end()).
 | 
						|
    MachineBasicBlock::iterator InsertPos =
 | 
						|
      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
 | 
						|
 | 
						|
    // Insert the copy.
 | 
						|
    MachineInstr *NewSrcInstr = nullptr;
 | 
						|
    if (!reusedIncoming && IncomingReg) {
 | 
						|
      if (SrcUndef) {
 | 
						|
        // The source register is undefined, so there is no need for a real
 | 
						|
        // COPY, but we still need to ensure joint dominance by defs.
 | 
						|
        // Insert an IMPLICIT_DEF instruction.
 | 
						|
        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
 | 
						|
                              TII->get(TargetOpcode::IMPLICIT_DEF),
 | 
						|
                              IncomingReg);
 | 
						|
 | 
						|
        // Clean up the old implicit-def, if there even was one.
 | 
						|
        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
 | 
						|
          if (DefMI->isImplicitDef())
 | 
						|
            ImpDefs.insert(DefMI);
 | 
						|
      } else {
 | 
						|
        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
 | 
						|
                            TII->get(TargetOpcode::COPY), IncomingReg)
 | 
						|
                        .addReg(SrcReg, 0, SrcSubReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We only need to update the LiveVariables kill of SrcReg if this was the
 | 
						|
    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
 | 
						|
    // out of the predecessor. We can also ignore undef sources.
 | 
						|
    if (LV && !SrcUndef &&
 | 
						|
        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
 | 
						|
        !LV->isLiveOut(SrcReg, opBlock)) {
 | 
						|
      // We want to be able to insert a kill of the register if this PHI (aka,
 | 
						|
      // the copy we just inserted) is the last use of the source value. Live
 | 
						|
      // variable analysis conservatively handles this by saying that the value
 | 
						|
      // is live until the end of the block the PHI entry lives in. If the value
 | 
						|
      // really is dead at the PHI copy, there will be no successor blocks which
 | 
						|
      // have the value live-in.
 | 
						|
 | 
						|
      // Okay, if we now know that the value is not live out of the block, we
 | 
						|
      // can add a kill marker in this block saying that it kills the incoming
 | 
						|
      // value!
 | 
						|
 | 
						|
      // In our final twist, we have to decide which instruction kills the
 | 
						|
      // register.  In most cases this is the copy, however, terminator
 | 
						|
      // instructions at the end of the block may also use the value. In this
 | 
						|
      // case, we should mark the last such terminator as being the killing
 | 
						|
      // block, not the copy.
 | 
						|
      MachineBasicBlock::iterator KillInst = opBlock.end();
 | 
						|
      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
 | 
						|
      for (MachineBasicBlock::iterator Term = FirstTerm;
 | 
						|
          Term != opBlock.end(); ++Term) {
 | 
						|
        if (Term->readsRegister(SrcReg))
 | 
						|
          KillInst = Term;
 | 
						|
      }
 | 
						|
 | 
						|
      if (KillInst == opBlock.end()) {
 | 
						|
        // No terminator uses the register.
 | 
						|
 | 
						|
        if (reusedIncoming || !IncomingReg) {
 | 
						|
          // We may have to rewind a bit if we didn't insert a copy this time.
 | 
						|
          KillInst = FirstTerm;
 | 
						|
          while (KillInst != opBlock.begin()) {
 | 
						|
            --KillInst;
 | 
						|
            if (KillInst->isDebugValue())
 | 
						|
              continue;
 | 
						|
            if (KillInst->readsRegister(SrcReg))
 | 
						|
              break;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // We just inserted this copy.
 | 
						|
          KillInst = std::prev(InsertPos);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
 | 
						|
 | 
						|
      // Finally, mark it killed.
 | 
						|
      LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | 
						|
 | 
						|
      // This vreg no longer lives all of the way through opBlock.
 | 
						|
      unsigned opBlockNum = opBlock.getNumber();
 | 
						|
      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
 | 
						|
    }
 | 
						|
 | 
						|
    if (LIS) {
 | 
						|
      if (NewSrcInstr) {
 | 
						|
        LIS->InsertMachineInstrInMaps(NewSrcInstr);
 | 
						|
        LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!SrcUndef &&
 | 
						|
          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
 | 
						|
        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
 | 
						|
 | 
						|
        bool isLiveOut = false;
 | 
						|
        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
 | 
						|
             SE = opBlock.succ_end(); SI != SE; ++SI) {
 | 
						|
          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
 | 
						|
          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
 | 
						|
 | 
						|
          // Definitions by other PHIs are not truly live-in for our purposes.
 | 
						|
          if (VNI && VNI->def != startIdx) {
 | 
						|
            isLiveOut = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!isLiveOut) {
 | 
						|
          MachineBasicBlock::iterator KillInst = opBlock.end();
 | 
						|
          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
 | 
						|
          for (MachineBasicBlock::iterator Term = FirstTerm;
 | 
						|
              Term != opBlock.end(); ++Term) {
 | 
						|
            if (Term->readsRegister(SrcReg))
 | 
						|
              KillInst = Term;
 | 
						|
          }
 | 
						|
 | 
						|
          if (KillInst == opBlock.end()) {
 | 
						|
            // No terminator uses the register.
 | 
						|
 | 
						|
            if (reusedIncoming || !IncomingReg) {
 | 
						|
              // We may have to rewind a bit if we didn't just insert a copy.
 | 
						|
              KillInst = FirstTerm;
 | 
						|
              while (KillInst != opBlock.begin()) {
 | 
						|
                --KillInst;
 | 
						|
                if (KillInst->isDebugValue())
 | 
						|
                  continue;
 | 
						|
                if (KillInst->readsRegister(SrcReg))
 | 
						|
                  break;
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              // We just inserted this copy.
 | 
						|
              KillInst = std::prev(InsertPos);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          assert(KillInst->readsRegister(SrcReg) &&
 | 
						|
                 "Cannot find kill instruction");
 | 
						|
 | 
						|
          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
 | 
						|
          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
 | 
						|
                              LIS->getMBBEndIdx(&opBlock));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
 | 
						|
  if (reusedIncoming || !IncomingReg) {
 | 
						|
    if (LIS)
 | 
						|
      LIS->RemoveMachineInstrFromMaps(MPhi);
 | 
						|
    MF.DeleteMachineInstr(MPhi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
 | 
						|
/// particular, we want to map the number of uses of a virtual register which is
 | 
						|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | 
						|
/// used later to determine when the vreg is killed in the BB.
 | 
						|
///
 | 
						|
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
 | 
						|
  for (const auto &MBB : MF)
 | 
						|
    for (const auto &BBI : MBB) {
 | 
						|
      if (!BBI.isPHI())
 | 
						|
        break;
 | 
						|
      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
 | 
						|
        ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
 | 
						|
                                     BBI.getOperand(i).getReg())];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
 | 
						|
                                   MachineBasicBlock &MBB,
 | 
						|
                                   MachineLoopInfo *MLI) {
 | 
						|
  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
 | 
						|
  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
 | 
						|
       BBI != BBE && BBI->isPHI(); ++BBI) {
 | 
						|
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned Reg = BBI->getOperand(i).getReg();
 | 
						|
      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
 | 
						|
      // Is there a critical edge from PreMBB to MBB?
 | 
						|
      if (PreMBB->succ_size() == 1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Avoid splitting backedges of loops. It would introduce small
 | 
						|
      // out-of-line blocks into the loop which is very bad for code placement.
 | 
						|
      if (PreMBB == &MBB && !SplitAllCriticalEdges)
 | 
						|
        continue;
 | 
						|
      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
 | 
						|
      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
 | 
						|
      // when the source register is live-out for some other reason than a phi
 | 
						|
      // use. That means the copy we will insert in PreMBB won't be a kill, and
 | 
						|
      // there is a risk it may not be coalesced away.
 | 
						|
      //
 | 
						|
      // If the copy would be a kill, there is no need to split the edge.
 | 
						|
      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
 | 
						|
                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
 | 
						|
                   << ": " << *BBI);
 | 
						|
 | 
						|
      // If Reg is not live-in to MBB, it means it must be live-in to some
 | 
						|
      // other PreMBB successor, and we can avoid the interference by splitting
 | 
						|
      // the edge.
 | 
						|
      //
 | 
						|
      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
 | 
						|
      // is likely to be left after coalescing. If we are looking at a loop
 | 
						|
      // exiting edge, split it so we won't insert code in the loop, otherwise
 | 
						|
      // don't bother.
 | 
						|
      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
 | 
						|
 | 
						|
      // Check for a loop exiting edge.
 | 
						|
      if (!ShouldSplit && CurLoop != PreLoop) {
 | 
						|
        DEBUG({
 | 
						|
          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
 | 
						|
          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
 | 
						|
          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
 | 
						|
        });
 | 
						|
        // This edge could be entering a loop, exiting a loop, or it could be
 | 
						|
        // both: Jumping directly form one loop to the header of a sibling
 | 
						|
        // loop.
 | 
						|
        // Split unless this edge is entering CurLoop from an outer loop.
 | 
						|
        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
 | 
						|
      }
 | 
						|
      if (!ShouldSplit)
 | 
						|
        continue;
 | 
						|
      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
 | 
						|
        DEBUG(dbgs() << "Failed to split critical edge.\n");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
      ++NumCriticalEdgesSplit;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
 | 
						|
  assert((LV || LIS) &&
 | 
						|
         "isLiveIn() requires either LiveVariables or LiveIntervals");
 | 
						|
  if (LIS)
 | 
						|
    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
 | 
						|
  else
 | 
						|
    return LV->isLiveIn(Reg, *MBB);
 | 
						|
}
 | 
						|
 | 
						|
bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
 | 
						|
  assert((LV || LIS) &&
 | 
						|
         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
 | 
						|
  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
 | 
						|
  // so that a register used only in a PHI is not live out of the block. In
 | 
						|
  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
 | 
						|
  // in the predecessor basic block, so that a register used only in a PHI is live
 | 
						|
  // out of the block.
 | 
						|
  if (LIS) {
 | 
						|
    const LiveInterval &LI = LIS->getInterval(Reg);
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | 
						|
         SE = MBB->succ_end(); SI != SE; ++SI) {
 | 
						|
      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    return LV->isLiveOut(Reg, *MBB);
 | 
						|
  }
 | 
						|
}
 |