mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	If this causes any new assertion failures that I didn't catch in testing, the fix is usually to change "&v[0]" to "v.data()" for some SmallVector v. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72221 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			618 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			618 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the SmallVector class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_SMALLVECTOR_H
 | 
						|
#define LLVM_ADT_SMALLVECTOR_H
 | 
						|
 | 
						|
#include "llvm/ADT/iterator.h"
 | 
						|
#include "llvm/Support/type_traits.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstring>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
namespace std {
 | 
						|
#if _MSC_VER <= 1310
 | 
						|
  // Work around flawed VC++ implementation of std::uninitialized_copy.  Define
 | 
						|
  // additional overloads so that elements with pointer types are recognized as
 | 
						|
  // scalars and not objects, causing bizarre type conversion errors.
 | 
						|
  template<class T1, class T2>
 | 
						|
  inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
 | 
						|
    _Scalar_ptr_iterator_tag _Cat;
 | 
						|
    return _Cat;
 | 
						|
  }
 | 
						|
 | 
						|
  template<class T1, class T2>
 | 
						|
  inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
 | 
						|
    _Scalar_ptr_iterator_tag _Cat;
 | 
						|
    return _Cat;
 | 
						|
  }
 | 
						|
#else
 | 
						|
// FIXME: It is not clear if the problem is fixed in VS 2005.  What is clear
 | 
						|
// is that the above hack won't work if it wasn't fixed.
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// SmallVectorImpl - This class consists of common code factored out of the
 | 
						|
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
 | 
						|
/// template parameter.
 | 
						|
template <typename T>
 | 
						|
class SmallVectorImpl {
 | 
						|
protected:
 | 
						|
  T *Begin, *End, *Capacity;
 | 
						|
 | 
						|
  // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
 | 
						|
  // don't want it to be automatically run, so we need to represent the space as
 | 
						|
  // something else.  An array of char would work great, but might not be
 | 
						|
  // aligned sufficiently.  Instead, we either use GCC extensions, or some
 | 
						|
  // number of union instances for the space, which guarantee maximal alignment.
 | 
						|
protected:
 | 
						|
#ifdef __GNUC__
 | 
						|
  typedef char U;
 | 
						|
  U FirstEl __attribute__((aligned));
 | 
						|
#else
 | 
						|
  union U {
 | 
						|
    double D;
 | 
						|
    long double LD;
 | 
						|
    long long L;
 | 
						|
    void *P;
 | 
						|
  } FirstEl;
 | 
						|
#endif
 | 
						|
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
 | 
						|
public:
 | 
						|
  // Default ctor - Initialize to empty.
 | 
						|
  explicit SmallVectorImpl(unsigned N)
 | 
						|
    : Begin(reinterpret_cast<T*>(&FirstEl)),
 | 
						|
      End(reinterpret_cast<T*>(&FirstEl)),
 | 
						|
      Capacity(reinterpret_cast<T*>(&FirstEl)+N) {
 | 
						|
  }
 | 
						|
 | 
						|
  ~SmallVectorImpl() {
 | 
						|
    // Destroy the constructed elements in the vector.
 | 
						|
    destroy_range(Begin, End);
 | 
						|
 | 
						|
    // If this wasn't grown from the inline copy, deallocate the old space.
 | 
						|
    if (!isSmall())
 | 
						|
      operator delete(Begin);
 | 
						|
  }
 | 
						|
 | 
						|
  typedef size_t size_type;
 | 
						|
  typedef ptrdiff_t difference_type;
 | 
						|
  typedef T value_type;
 | 
						|
  typedef T* iterator;
 | 
						|
  typedef const T* const_iterator;
 | 
						|
 | 
						|
  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
 | 
						|
  typedef std::reverse_iterator<iterator>  reverse_iterator;
 | 
						|
 | 
						|
  typedef T& reference;
 | 
						|
  typedef const T& const_reference;
 | 
						|
  typedef T* pointer;
 | 
						|
  typedef const T* const_pointer;
 | 
						|
 | 
						|
  bool empty() const { return Begin == End; }
 | 
						|
  size_type size() const { return End-Begin; }
 | 
						|
  size_type max_size() const { return size_type(-1) / sizeof(T); }
 | 
						|
 | 
						|
  // forward iterator creation methods.
 | 
						|
  iterator begin() { return Begin; }
 | 
						|
  const_iterator begin() const { return Begin; }
 | 
						|
  iterator end() { return End; }
 | 
						|
  const_iterator end() const { return End; }
 | 
						|
 | 
						|
  // reverse iterator creation methods.
 | 
						|
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
 | 
						|
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
 | 
						|
  reverse_iterator rend()              { return reverse_iterator(begin()); }
 | 
						|
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
 | 
						|
 | 
						|
 | 
						|
  reference operator[](unsigned idx) {
 | 
						|
    assert (Begin + idx < End);
 | 
						|
    return Begin[idx];
 | 
						|
  }
 | 
						|
  const_reference operator[](unsigned idx) const {
 | 
						|
    assert (Begin + idx < End);
 | 
						|
    return Begin[idx];
 | 
						|
  }
 | 
						|
 | 
						|
  reference front() {
 | 
						|
    return begin()[0];
 | 
						|
  }
 | 
						|
  const_reference front() const {
 | 
						|
    return begin()[0];
 | 
						|
  }
 | 
						|
 | 
						|
  reference back() {
 | 
						|
    return end()[-1];
 | 
						|
  }
 | 
						|
  const_reference back() const {
 | 
						|
    return end()[-1];
 | 
						|
  }
 | 
						|
 | 
						|
  void push_back(const_reference Elt) {
 | 
						|
    if (End < Capacity) {
 | 
						|
  Retry:
 | 
						|
      new (End) T(Elt);
 | 
						|
      ++End;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    grow();
 | 
						|
    goto Retry;
 | 
						|
  }
 | 
						|
 | 
						|
  void pop_back() {
 | 
						|
    --End;
 | 
						|
    End->~T();
 | 
						|
  }
 | 
						|
 | 
						|
  T pop_back_val() {
 | 
						|
    T Result = back();
 | 
						|
    pop_back();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    destroy_range(Begin, End);
 | 
						|
    End = Begin;
 | 
						|
  }
 | 
						|
 | 
						|
  void resize(unsigned N) {
 | 
						|
    if (N < size()) {
 | 
						|
      destroy_range(Begin+N, End);
 | 
						|
      End = Begin+N;
 | 
						|
    } else if (N > size()) {
 | 
						|
      if (unsigned(Capacity-Begin) < N)
 | 
						|
        grow(N);
 | 
						|
      construct_range(End, Begin+N, T());
 | 
						|
      End = Begin+N;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void resize(unsigned N, const T &NV) {
 | 
						|
    if (N < size()) {
 | 
						|
      destroy_range(Begin+N, End);
 | 
						|
      End = Begin+N;
 | 
						|
    } else if (N > size()) {
 | 
						|
      if (unsigned(Capacity-Begin) < N)
 | 
						|
        grow(N);
 | 
						|
      construct_range(End, Begin+N, NV);
 | 
						|
      End = Begin+N;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void reserve(unsigned N) {
 | 
						|
    if (unsigned(Capacity-Begin) < N)
 | 
						|
      grow(N);
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(SmallVectorImpl &RHS);
 | 
						|
 | 
						|
  /// append - Add the specified range to the end of the SmallVector.
 | 
						|
  ///
 | 
						|
  template<typename in_iter>
 | 
						|
  void append(in_iter in_start, in_iter in_end) {
 | 
						|
    size_type NumInputs = std::distance(in_start, in_end);
 | 
						|
    // Grow allocated space if needed.
 | 
						|
    if (NumInputs > size_type(Capacity-End))
 | 
						|
      grow(size()+NumInputs);
 | 
						|
 | 
						|
    // Copy the new elements over.
 | 
						|
    std::uninitialized_copy(in_start, in_end, End);
 | 
						|
    End += NumInputs;
 | 
						|
  }
 | 
						|
 | 
						|
  /// append - Add the specified range to the end of the SmallVector.
 | 
						|
  ///
 | 
						|
  void append(size_type NumInputs, const T &Elt) {
 | 
						|
    // Grow allocated space if needed.
 | 
						|
    if (NumInputs > size_type(Capacity-End))
 | 
						|
      grow(size()+NumInputs);
 | 
						|
 | 
						|
    // Copy the new elements over.
 | 
						|
    std::uninitialized_fill_n(End, NumInputs, Elt);
 | 
						|
    End += NumInputs;
 | 
						|
  }
 | 
						|
 | 
						|
  void assign(unsigned NumElts, const T &Elt) {
 | 
						|
    clear();
 | 
						|
    if (unsigned(Capacity-Begin) < NumElts)
 | 
						|
      grow(NumElts);
 | 
						|
    End = Begin+NumElts;
 | 
						|
    construct_range(Begin, End, Elt);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator erase(iterator I) {
 | 
						|
    iterator N = I;
 | 
						|
    // Shift all elts down one.
 | 
						|
    std::copy(I+1, End, I);
 | 
						|
    // Drop the last elt.
 | 
						|
    pop_back();
 | 
						|
    return(N);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator erase(iterator S, iterator E) {
 | 
						|
    iterator N = S;
 | 
						|
    // Shift all elts down.
 | 
						|
    iterator I = std::copy(E, End, S);
 | 
						|
    // Drop the last elts.
 | 
						|
    destroy_range(I, End);
 | 
						|
    End = I;
 | 
						|
    return(N);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(iterator I, const T &Elt) {
 | 
						|
    if (I == End) {  // Important special case for empty vector.
 | 
						|
      push_back(Elt);
 | 
						|
      return end()-1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (End < Capacity) {
 | 
						|
  Retry:
 | 
						|
      new (End) T(back());
 | 
						|
      ++End;
 | 
						|
      // Push everything else over.
 | 
						|
      std::copy_backward(I, End-1, End);
 | 
						|
      *I = Elt;
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    size_t EltNo = I-Begin;
 | 
						|
    grow();
 | 
						|
    I = Begin+EltNo;
 | 
						|
    goto Retry;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
 | 
						|
    if (I == End) {  // Important special case for empty vector.
 | 
						|
      append(NumToInsert, Elt);
 | 
						|
      return end()-1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | 
						|
    size_t InsertElt = I-begin();
 | 
						|
 | 
						|
    // Ensure there is enough space.
 | 
						|
    reserve(static_cast<unsigned>(size() + NumToInsert));
 | 
						|
 | 
						|
    // Uninvalidate the iterator.
 | 
						|
    I = begin()+InsertElt;
 | 
						|
 | 
						|
    // If there are more elements between the insertion point and the end of the
 | 
						|
    // range than there are being inserted, we can use a simple approach to
 | 
						|
    // insertion.  Since we already reserved space, we know that this won't
 | 
						|
    // reallocate the vector.
 | 
						|
    if (size_t(end()-I) >= NumToInsert) {
 | 
						|
      T *OldEnd = End;
 | 
						|
      append(End-NumToInsert, End);
 | 
						|
 | 
						|
      // Copy the existing elements that get replaced.
 | 
						|
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
 | 
						|
 | 
						|
      std::fill_n(I, NumToInsert, Elt);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we're inserting more elements than exist already, and we're
 | 
						|
    // not inserting at the end.
 | 
						|
 | 
						|
    // Copy over the elements that we're about to overwrite.
 | 
						|
    T *OldEnd = End;
 | 
						|
    End += NumToInsert;
 | 
						|
    size_t NumOverwritten = OldEnd-I;
 | 
						|
    std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
 | 
						|
 | 
						|
    // Replace the overwritten part.
 | 
						|
    std::fill_n(I, NumOverwritten, Elt);
 | 
						|
 | 
						|
    // Insert the non-overwritten middle part.
 | 
						|
    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename ItTy>
 | 
						|
  iterator insert(iterator I, ItTy From, ItTy To) {
 | 
						|
    if (I == End) {  // Important special case for empty vector.
 | 
						|
      append(From, To);
 | 
						|
      return end()-1;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t NumToInsert = std::distance(From, To);
 | 
						|
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | 
						|
    size_t InsertElt = I-begin();
 | 
						|
 | 
						|
    // Ensure there is enough space.
 | 
						|
    reserve(static_cast<unsigned>(size() + NumToInsert));
 | 
						|
 | 
						|
    // Uninvalidate the iterator.
 | 
						|
    I = begin()+InsertElt;
 | 
						|
 | 
						|
    // If there are more elements between the insertion point and the end of the
 | 
						|
    // range than there are being inserted, we can use a simple approach to
 | 
						|
    // insertion.  Since we already reserved space, we know that this won't
 | 
						|
    // reallocate the vector.
 | 
						|
    if (size_t(end()-I) >= NumToInsert) {
 | 
						|
      T *OldEnd = End;
 | 
						|
      append(End-NumToInsert, End);
 | 
						|
 | 
						|
      // Copy the existing elements that get replaced.
 | 
						|
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
 | 
						|
 | 
						|
      std::copy(From, To, I);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we're inserting more elements than exist already, and we're
 | 
						|
    // not inserting at the end.
 | 
						|
 | 
						|
    // Copy over the elements that we're about to overwrite.
 | 
						|
    T *OldEnd = End;
 | 
						|
    End += NumToInsert;
 | 
						|
    size_t NumOverwritten = OldEnd-I;
 | 
						|
    std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
 | 
						|
 | 
						|
    // Replace the overwritten part.
 | 
						|
    std::copy(From, From+NumOverwritten, I);
 | 
						|
 | 
						|
    // Insert the non-overwritten middle part.
 | 
						|
    std::uninitialized_copy(From+NumOverwritten, To, OldEnd);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  /// data - Return a pointer to the vector's buffer, even if empty().
 | 
						|
  pointer data() {
 | 
						|
    return pointer(Begin);
 | 
						|
  }
 | 
						|
 | 
						|
  /// data - Return a pointer to the vector's buffer, even if empty().
 | 
						|
  const_pointer data() const {
 | 
						|
    return const_pointer(Begin);
 | 
						|
  }
 | 
						|
 | 
						|
  const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
 | 
						|
 | 
						|
  bool operator==(const SmallVectorImpl &RHS) const {
 | 
						|
    if (size() != RHS.size()) return false;
 | 
						|
    for (T *This = Begin, *That = RHS.Begin, *E = Begin+size();
 | 
						|
         This != E; ++This, ++That)
 | 
						|
      if (*This != *That)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }
 | 
						|
 | 
						|
  bool operator<(const SmallVectorImpl &RHS) const {
 | 
						|
    return std::lexicographical_compare(begin(), end(),
 | 
						|
                                        RHS.begin(), RHS.end());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// isSmall - Return true if this is a smallvector which has not had dynamic
 | 
						|
  /// memory allocated for it.
 | 
						|
  bool isSmall() const {
 | 
						|
    return static_cast<const void*>(Begin) ==
 | 
						|
           static_cast<const void*>(&FirstEl);
 | 
						|
  }
 | 
						|
 | 
						|
  /// grow - double the size of the allocated memory, guaranteeing space for at
 | 
						|
  /// least one more element or MinSize if specified.
 | 
						|
  void grow(size_type MinSize = 0);
 | 
						|
 | 
						|
  void construct_range(T *S, T *E, const T &Elt) {
 | 
						|
    for (; S != E; ++S)
 | 
						|
      new (S) T(Elt);
 | 
						|
  }
 | 
						|
 | 
						|
  void destroy_range(T *S, T *E) {
 | 
						|
    while (S != E) {
 | 
						|
      --E;
 | 
						|
      E->~T();
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
 | 
						|
template <typename T>
 | 
						|
void SmallVectorImpl<T>::grow(size_t MinSize) {
 | 
						|
  size_t CurCapacity = Capacity-Begin;
 | 
						|
  size_t CurSize = size();
 | 
						|
  size_t NewCapacity = 2*CurCapacity;
 | 
						|
  if (NewCapacity < MinSize)
 | 
						|
    NewCapacity = MinSize;
 | 
						|
  T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
 | 
						|
 | 
						|
  // Copy the elements over.
 | 
						|
  if (is_class<T>::value)
 | 
						|
    std::uninitialized_copy(Begin, End, NewElts);
 | 
						|
  else
 | 
						|
    // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
 | 
						|
    memcpy(NewElts, Begin, CurSize * sizeof(T));
 | 
						|
 | 
						|
  // Destroy the original elements.
 | 
						|
  destroy_range(Begin, End);
 | 
						|
 | 
						|
  // If this wasn't grown from the inline copy, deallocate the old space.
 | 
						|
  if (!isSmall())
 | 
						|
    operator delete(Begin);
 | 
						|
 | 
						|
  Begin = NewElts;
 | 
						|
  End = NewElts+CurSize;
 | 
						|
  Capacity = Begin+NewCapacity;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
 | 
						|
  if (this == &RHS) return;
 | 
						|
 | 
						|
  // We can only avoid copying elements if neither vector is small.
 | 
						|
  if (!isSmall() && !RHS.isSmall()) {
 | 
						|
    std::swap(Begin, RHS.Begin);
 | 
						|
    std::swap(End, RHS.End);
 | 
						|
    std::swap(Capacity, RHS.Capacity);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (RHS.size() > size_type(Capacity-Begin))
 | 
						|
    grow(RHS.size());
 | 
						|
  if (size() > size_type(RHS.Capacity-RHS.begin()))
 | 
						|
    RHS.grow(size());
 | 
						|
 | 
						|
  // Swap the shared elements.
 | 
						|
  size_t NumShared = size();
 | 
						|
  if (NumShared > RHS.size()) NumShared = RHS.size();
 | 
						|
  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
 | 
						|
    std::swap(Begin[i], RHS[i]);
 | 
						|
 | 
						|
  // Copy over the extra elts.
 | 
						|
  if (size() > RHS.size()) {
 | 
						|
    size_t EltDiff = size() - RHS.size();
 | 
						|
    std::uninitialized_copy(Begin+NumShared, End, RHS.End);
 | 
						|
    RHS.End += EltDiff;
 | 
						|
    destroy_range(Begin+NumShared, End);
 | 
						|
    End = Begin+NumShared;
 | 
						|
  } else if (RHS.size() > size()) {
 | 
						|
    size_t EltDiff = RHS.size() - size();
 | 
						|
    std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End);
 | 
						|
    End += EltDiff;
 | 
						|
    destroy_range(RHS.Begin+NumShared, RHS.End);
 | 
						|
    RHS.End = RHS.Begin+NumShared;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
const SmallVectorImpl<T> &
 | 
						|
SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
 | 
						|
  // Avoid self-assignment.
 | 
						|
  if (this == &RHS) return *this;
 | 
						|
 | 
						|
  // If we already have sufficient space, assign the common elements, then
 | 
						|
  // destroy any excess.
 | 
						|
  unsigned RHSSize = unsigned(RHS.size());
 | 
						|
  unsigned CurSize = unsigned(size());
 | 
						|
  if (CurSize >= RHSSize) {
 | 
						|
    // Assign common elements.
 | 
						|
    iterator NewEnd;
 | 
						|
    if (RHSSize)
 | 
						|
      NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
 | 
						|
    else
 | 
						|
      NewEnd = Begin;
 | 
						|
 | 
						|
    // Destroy excess elements.
 | 
						|
    destroy_range(NewEnd, End);
 | 
						|
 | 
						|
    // Trim.
 | 
						|
    End = NewEnd;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have to grow to have enough elements, destroy the current elements.
 | 
						|
  // This allows us to avoid copying them during the grow.
 | 
						|
  if (unsigned(Capacity-Begin) < RHSSize) {
 | 
						|
    // Destroy current elements.
 | 
						|
    destroy_range(Begin, End);
 | 
						|
    End = Begin;
 | 
						|
    CurSize = 0;
 | 
						|
    grow(RHSSize);
 | 
						|
  } else if (CurSize) {
 | 
						|
    // Otherwise, use assignment for the already-constructed elements.
 | 
						|
    std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy construct the new elements in place.
 | 
						|
  std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
 | 
						|
 | 
						|
  // Set end.
 | 
						|
  End = Begin+RHSSize;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
 | 
						|
/// for the case when the array is small.  It contains some number of elements
 | 
						|
/// in-place, which allows it to avoid heap allocation when the actual number of
 | 
						|
/// elements is below that threshold.  This allows normal "small" cases to be
 | 
						|
/// fast without losing generality for large inputs.
 | 
						|
///
 | 
						|
/// Note that this does not attempt to be exception safe.
 | 
						|
///
 | 
						|
template <typename T, unsigned N>
 | 
						|
class SmallVector : public SmallVectorImpl<T> {
 | 
						|
  /// InlineElts - These are 'N-1' elements that are stored inline in the body
 | 
						|
  /// of the vector.  The extra '1' element is stored in SmallVectorImpl.
 | 
						|
  typedef typename SmallVectorImpl<T>::U U;
 | 
						|
  enum {
 | 
						|
    // MinUs - The number of U's require to cover N T's.
 | 
						|
    MinUs = (static_cast<unsigned int>(sizeof(T))*N +
 | 
						|
             static_cast<unsigned int>(sizeof(U)) - 1) /
 | 
						|
            static_cast<unsigned int>(sizeof(U)),
 | 
						|
 | 
						|
    // NumInlineEltsElts - The number of elements actually in this array.  There
 | 
						|
    // is already one in the parent class, and we have to round up to avoid
 | 
						|
    // having a zero-element array.
 | 
						|
    NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
 | 
						|
 | 
						|
    // NumTsAvailable - The number of T's we actually have space for, which may
 | 
						|
    // be more than N due to rounding.
 | 
						|
    NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
 | 
						|
                     static_cast<unsigned int>(sizeof(T))
 | 
						|
  };
 | 
						|
  U InlineElts[NumInlineEltsElts];
 | 
						|
public:
 | 
						|
  SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
 | 
						|
  }
 | 
						|
 | 
						|
  explicit SmallVector(unsigned Size, const T &Value = T())
 | 
						|
    : SmallVectorImpl<T>(NumTsAvailable) {
 | 
						|
    this->reserve(Size);
 | 
						|
    while (Size--)
 | 
						|
      this->push_back(Value);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename ItTy>
 | 
						|
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
 | 
						|
    this->append(S, E);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
 | 
						|
    if (!RHS.empty())
 | 
						|
      SmallVectorImpl<T>::operator=(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  const SmallVector &operator=(const SmallVector &RHS) {
 | 
						|
    SmallVectorImpl<T>::operator=(RHS);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
namespace std {
 | 
						|
  /// Implement std::swap in terms of SmallVector swap.
 | 
						|
  template<typename T>
 | 
						|
  inline void
 | 
						|
  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
 | 
						|
    LHS.swap(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement std::swap in terms of SmallVector swap.
 | 
						|
  template<typename T, unsigned N>
 | 
						|
  inline void
 | 
						|
  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
 | 
						|
    LHS.swap(RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |