mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15711 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3066 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3066 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "PowerPC.h"
 | |
| #include "PowerPCInstrBuilder.h"
 | |
| #include "PowerPCInstrInfo.h"
 | |
| #include "PPC64TargetMachine.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "Support/Debug.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
 | |
| 
 | |
|   /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
 | |
|   /// PPC Representation.
 | |
|   ///
 | |
|   enum TypeClass {
 | |
|     cByte, cShort, cInt, cFP32, cFP64, cLong
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// getClass - Turn a primitive type into a "class" number which is based on the
 | |
| /// size of the type, and whether or not it is floating point.
 | |
| ///
 | |
| static inline TypeClass getClass(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | |
|   case Type::ShortTyID:
 | |
|   case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | |
|   case Type::IntTyID:
 | |
|   case Type::UIntTyID:    return cInt;       // Ints are class #2
 | |
| 
 | |
|   case Type::FloatTyID:   return cFP32;      // Single float is #3
 | |
|   case Type::DoubleTyID:  return cFP64;      // Double Point is #4
 | |
| 
 | |
|   case Type::PointerTyID:
 | |
|   case Type::LongTyID:
 | |
|   case Type::ULongTyID:   return cLong;      // Longs and pointers are class #5
 | |
|   default:
 | |
|     assert(0 && "Invalid type to getClass!");
 | |
|     return cByte;  // not reached
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getClassB - Just like getClass, but treat boolean values as ints.
 | |
| static inline TypeClass getClassB(const Type *Ty) {
 | |
|   if (Ty == Type::BoolTy) return cInt;
 | |
|   return getClass(Ty);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct ISel : public FunctionPass, InstVisitor<ISel> {
 | |
|     PPC64TargetMachine &TM;
 | |
|     MachineFunction *F;                 // The function we are compiling into
 | |
|     MachineBasicBlock *BB;              // The current MBB we are compiling
 | |
|     int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | |
|     
 | |
|     std::map<Value*, unsigned> RegMap;  // Mapping between Values and SSA Regs
 | |
| 
 | |
|     // External functions used in the Module
 | |
|     Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, 
 | |
|       *__umoddi3Fn,  *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
 | |
|       *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
 | |
| 
 | |
|     // MBBMap - Mapping between LLVM BB -> Machine BB
 | |
|     std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | |
| 
 | |
|     // AllocaMap - Mapping from fixed sized alloca instructions to the
 | |
|     // FrameIndex for the alloca.
 | |
|     std::map<AllocaInst*, unsigned> AllocaMap;
 | |
| 
 | |
|     // A Reg to hold the base address used for global loads and stores, and a
 | |
|     // flag to set whether or not we need to emit it for this function.
 | |
|     unsigned GlobalBaseReg;
 | |
|     bool GlobalBaseInitialized;
 | |
|     
 | |
|     ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)), 
 | |
|       F(0), BB(0) {}
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       // Add external functions that we may call
 | |
|       Type *i = Type::IntTy;
 | |
|       Type *d = Type::DoubleTy;
 | |
|       Type *f = Type::FloatTy;
 | |
|       Type *l = Type::LongTy;
 | |
|       Type *ul = Type::ULongTy;
 | |
|       Type *voidPtr = PointerType::get(Type::SByteTy);
 | |
|       // float fmodf(float, float);
 | |
|       fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
 | |
|       // double fmod(double, double);
 | |
|       fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
 | |
|       // int __cmpdi2(long, long);
 | |
|       __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
 | |
|       // long __moddi3(long, long);
 | |
|       __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
 | |
|       // long __divdi3(long, long);
 | |
|       __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
 | |
|       // unsigned long __umoddi3(unsigned long, unsigned long);
 | |
|       __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
 | |
|       // unsigned long __udivdi3(unsigned long, unsigned long);
 | |
|       __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
 | |
|       // long __fixsfdi(float)
 | |
|       __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
 | |
|       // long __fixdfdi(double)
 | |
|       __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
 | |
|       // unsigned long __fixunssfdi(float)
 | |
|       __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
 | |
|       // unsigned long __fixunsdfdi(double)
 | |
|       __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
 | |
|       // float __floatdisf(long)
 | |
|       __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
 | |
|       // double __floatdidf(long)
 | |
|       __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
 | |
|       // void* malloc(size_t)
 | |
|       mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
 | |
|       // void free(void*)
 | |
|       freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// runOnFunction - Top level implementation of instruction selection for
 | |
|     /// the entire function.
 | |
|     ///
 | |
|     bool runOnFunction(Function &Fn) {
 | |
|       // First pass over the function, lower any unknown intrinsic functions
 | |
|       // with the IntrinsicLowering class.
 | |
|       LowerUnknownIntrinsicFunctionCalls(Fn);
 | |
| 
 | |
|       F = &MachineFunction::construct(&Fn, TM);
 | |
| 
 | |
|       // Create all of the machine basic blocks for the function...
 | |
|       for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|         F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | |
| 
 | |
|       BB = &F->front();
 | |
| 
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseInitialized = false;
 | |
| 
 | |
|       // Copy incoming arguments off of the stack...
 | |
|       LoadArgumentsToVirtualRegs(Fn);
 | |
| 
 | |
|       // Instruction select everything except PHI nodes
 | |
|       visit(Fn);
 | |
| 
 | |
|       // Select the PHI nodes
 | |
|       SelectPHINodes();
 | |
| 
 | |
|       RegMap.clear();
 | |
|       MBBMap.clear();
 | |
|       AllocaMap.clear();
 | |
|       F = 0;
 | |
|       // We always build a machine code representation for the function
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "PowerPC Simple Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// visitBasicBlock - This method is called when we are visiting a new basic
 | |
|     /// block.  This simply creates a new MachineBasicBlock to emit code into
 | |
|     /// and adds it to the current MachineFunction.  Subsequent visit* for
 | |
|     /// instructions will be invoked for all instructions in the basic block.
 | |
|     ///
 | |
|     void visitBasicBlock(BasicBlock &LLVM_BB) {
 | |
|       BB = MBBMap[&LLVM_BB];
 | |
|     }
 | |
| 
 | |
|     /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
|     /// function, lowering any calls to unknown intrinsic functions into the
 | |
|     /// equivalent LLVM code.
 | |
|     ///
 | |
|     void LowerUnknownIntrinsicFunctionCalls(Function &F);
 | |
| 
 | |
|     /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | |
|     /// from the stack into virtual registers.
 | |
|     ///
 | |
|     void LoadArgumentsToVirtualRegs(Function &F);
 | |
| 
 | |
|     /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
|     /// because we have to generate our sources into the source basic blocks,
 | |
|     /// not the current one.
 | |
|     ///
 | |
|     void SelectPHINodes();
 | |
| 
 | |
|     // Visitation methods for various instructions.  These methods simply emit
 | |
|     // fixed PowerPC code for each instruction.
 | |
| 
 | |
|     // Control flow operators
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitBranchInst(BranchInst &BI);
 | |
| 
 | |
|     struct ValueRecord {
 | |
|       Value *Val;
 | |
|       unsigned Reg;
 | |
|       const Type *Ty;
 | |
|       ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | |
|       ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | |
|     };
 | |
|     
 | |
|     // This struct is for recording the necessary operations to emit the GEP
 | |
|     struct CollapsedGepOp {
 | |
|       bool isMul;
 | |
|       Value *index;
 | |
|       ConstantSInt *size;
 | |
|       CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
 | |
|         isMul(mul), index(i), size(s) {}
 | |
|     };
 | |
| 
 | |
|     void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                 const std::vector<ValueRecord> &Args, bool isVarArg);
 | |
|     void visitCallInst(CallInst &I);
 | |
|     void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
 | |
| 
 | |
|     // Arithmetic operators
 | |
|     void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | |
|     void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | |
|     void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | |
|     void visitMul(BinaryOperator &B);
 | |
| 
 | |
|     void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitDivRem(BinaryOperator &B);
 | |
| 
 | |
|     // Bitwise operators
 | |
|     void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | |
|     void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | |
|     void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | |
| 
 | |
|     // Comparison operators...
 | |
|     void visitSetCondInst(SetCondInst &I);
 | |
|     unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                             MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator MBBI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     
 | |
|     
 | |
|     // Memory Instructions
 | |
|     void visitLoadInst(LoadInst &I);
 | |
|     void visitStoreInst(StoreInst &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitFreeInst(FreeInst &I);
 | |
|     
 | |
|     // Other operators
 | |
|     void visitShiftInst(ShiftInst &I);
 | |
|     void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | |
|     void visitCastInst(CastInst &I);
 | |
|     void visitVANextInst(VANextInst &I);
 | |
|     void visitVAArgInst(VAArgInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
|       std::cerr << "Cannot instruction select: " << I;
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | |
|     ///
 | |
|     void promote32(unsigned targetReg, const ValueRecord &VR);
 | |
| 
 | |
|     /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
|     /// constant expression GEP support.
 | |
|     ///
 | |
|     void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                           Value *Src, User::op_iterator IdxBegin,
 | |
|                           User::op_iterator IdxEnd, unsigned TargetReg,
 | |
|                           bool CollapseRemainder, ConstantSInt **Remainder,
 | |
|                           unsigned *PendingAddReg);
 | |
| 
 | |
|     /// emitCastOperation - Common code shared between visitCastInst and
 | |
|     /// constant expression cast support.
 | |
|     ///
 | |
|     void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
 | |
|                            Value *Src, const Type *DestTy, unsigned TargetReg);
 | |
| 
 | |
|     /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
|     /// and constant expression support.
 | |
|     ///
 | |
|     void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | |
|                                    MachineBasicBlock::iterator IP,
 | |
|                                    Value *Op0, Value *Op1,
 | |
|                                    unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     /// emitBinaryFPOperation - This method handles emission of floating point
 | |
|     /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
|     void emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Op0, Value *Op1,
 | |
|                                unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                       Value *Op0, Value *Op1, unsigned TargetReg);
 | |
| 
 | |
|     void doMultiply(MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator IP,
 | |
|                     unsigned DestReg, Value *Op0, Value *Op1);
 | |
|   
 | |
|     /// doMultiplyConst - This method will multiply the value in Op0Reg by the
 | |
|     /// value of the ContantInt *CI
 | |
|     void doMultiplyConst(MachineBasicBlock *MBB, 
 | |
|                          MachineBasicBlock::iterator IP,
 | |
|                          unsigned DestReg, Value *Op0, ConstantInt *CI);
 | |
| 
 | |
|     void emitDivRemOperation(MachineBasicBlock *BB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Op0, Value *Op1, bool isDiv,
 | |
|                              unsigned TargetReg);
 | |
| 
 | |
|     /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitSetCCOperation(MachineBasicBlock *BB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op0, Value *Op1, unsigned Opcode,
 | |
|                             unsigned TargetReg);
 | |
| 
 | |
|     /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op, Value *ShiftAmount, bool isLeftShift,
 | |
|                             const Type *ResultTy, unsigned DestReg);
 | |
|       
 | |
|     /// emitSelectOperation - Common code shared between visitSelectInst and the
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                              unsigned DestReg);
 | |
| 
 | |
|     /// copyGlobalBaseToRegister - Output the instructions required to put the
 | |
|     /// base address to use for accessing globals into a register.
 | |
|     ///
 | |
|     void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
 | |
|                                         MachineBasicBlock::iterator IP,
 | |
|                                         unsigned R);
 | |
| 
 | |
|     /// copyConstantToRegister - Output the instructions required to put the
 | |
|     /// specified constant into the specified register.
 | |
|     ///
 | |
|     void copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                 MachineBasicBlock::iterator MBBI,
 | |
|                                 Constant *C, unsigned Reg);
 | |
| 
 | |
|     void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | |
|                    unsigned LHS, unsigned RHS);
 | |
| 
 | |
|     /// makeAnotherReg - This method returns the next register number we haven't
 | |
|     /// yet used.
 | |
|     ///
 | |
|     unsigned makeAnotherReg(const Type *Ty) {
 | |
|       assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
 | |
|              "Current target doesn't have PPC reg info??");
 | |
|       const PowerPCRegisterInfo *PPCRI =
 | |
|         static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
 | |
|       // Add the mapping of regnumber => reg class to MachineFunction
 | |
|       const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
 | |
|       return F->getSSARegMap()->createVirtualRegister(RC);
 | |
|     }
 | |
| 
 | |
|     /// getReg - This method turns an LLVM value into a register number.
 | |
|     ///
 | |
|     unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | |
|     unsigned getReg(Value *V) {
 | |
|       // Just append to the end of the current bb.
 | |
|       MachineBasicBlock::iterator It = BB->end();
 | |
|       return getReg(V, BB, It);
 | |
|     }
 | |
|     unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator IPt);
 | |
|     
 | |
|     /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
 | |
|     /// is okay to use as an immediate argument to a certain binary operation
 | |
|     bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
 | |
| 
 | |
|     /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
|     /// that is to be statically allocated with the initial stack frame
 | |
|     /// adjustment.
 | |
|     unsigned getFixedSizedAllocaFI(AllocaInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
 | |
| /// instruction in the entry block, return it.  Otherwise, return a null
 | |
| /// pointer.
 | |
| static AllocaInst *dyn_castFixedAlloca(Value *V) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     BasicBlock *BB = AI->getParent();
 | |
|     if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
 | |
|       return AI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getReg - This method turns an LLVM value into a register number.
 | |
| ///
 | |
| unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                       MachineBasicBlock::iterator IPt) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     copyConstantToRegister(MBB, IPt, C, Reg);
 | |
|     return Reg;
 | |
|   } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
 | |
|     return Reg;
 | |
|   }
 | |
| 
 | |
|   unsigned &Reg = RegMap[V];
 | |
|   if (Reg == 0) {
 | |
|     Reg = makeAnotherReg(V->getType());
 | |
|     RegMap[V] = Reg;
 | |
|   }
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
 | |
| /// is okay to use as an immediate argument to a certain binary operator.
 | |
| ///
 | |
| /// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
 | |
| bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
 | |
|   ConstantSInt *Op1Cs;
 | |
|   ConstantUInt *Op1Cu;
 | |
|       
 | |
|   // ADDI, Compare, and non-indexed Load take SIMM
 | |
|   bool cond1 = (Operator == 0) 
 | |
|     && (Op1Cs = dyn_cast<ConstantSInt>(CI))
 | |
|     && (Op1Cs->getValue() <= 32767)
 | |
|     && (Op1Cs->getValue() >= -32768);
 | |
| 
 | |
|   // SUBI takes -SIMM since it is a mnemonic for ADDI
 | |
|   bool cond2 = (Operator == 1)
 | |
|     && (Op1Cs = dyn_cast<ConstantSInt>(CI)) 
 | |
|     && (Op1Cs->getValue() <= 32768)
 | |
|     && (Op1Cs->getValue() >= -32767);
 | |
|       
 | |
|   // ANDIo, ORI, and XORI take unsigned values
 | |
|   bool cond3 = (Operator >= 2)
 | |
|     && (Op1Cs = dyn_cast<ConstantSInt>(CI))
 | |
|     && (Op1Cs->getValue() >= 0)
 | |
|     && (Op1Cs->getValue() <= 32767);
 | |
| 
 | |
|   // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
 | |
|   bool cond4 = (Operator < 2)
 | |
|     && (Op1Cu = dyn_cast<ConstantUInt>(CI)) 
 | |
|     && (Op1Cu->getValue() <= 32767);
 | |
| 
 | |
|   // ANDIo, ORI, and XORI take UIMMs, so they can be larger
 | |
|   bool cond5 = (Operator >= 2)
 | |
|     && (Op1Cu = dyn_cast<ConstantUInt>(CI))
 | |
|     && (Op1Cu->getValue() <= 65535);
 | |
| 
 | |
|   if (cond1 || cond2 || cond3 || cond4 || cond5)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
| /// that is to be statically allocated with the initial stack frame
 | |
| /// adjustment.
 | |
| unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
 | |
|   // Already computed this?
 | |
|   std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
 | |
|   if (I != AllocaMap.end() && I->first == AI) return I->second;
 | |
| 
 | |
|   const Type *Ty = AI->getAllocatedType();
 | |
|   ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
|   TySize *= CUI->getValue();   // Get total allocated size...
 | |
|   unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | |
|       
 | |
|   // Create a new stack object using the frame manager...
 | |
|   int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | |
|   AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
 | |
|   return FrameIdx;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// copyGlobalBaseToRegister - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
 | |
|                                     MachineBasicBlock::iterator IP,
 | |
|                                     unsigned R) {
 | |
|   if (!GlobalBaseInitialized) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = F->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     GlobalBaseReg = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
 | |
|     GlobalBaseInitialized = true;
 | |
|   }
 | |
|   // Emit our copy of GlobalBaseReg to the destination register in the
 | |
|   // current MBB
 | |
|   BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
 | |
|     .addReg(GlobalBaseReg);
 | |
| }
 | |
| 
 | |
| /// copyConstantToRegister - Output the instructions required to put the
 | |
| /// specified constant into the specified register.
 | |
| ///
 | |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator IP,
 | |
|                                   Constant *C, unsigned R) {
 | |
|   if (C->getType()->isIntegral()) {
 | |
|     unsigned Class = getClassB(C->getType());
 | |
| 
 | |
|     if (Class == cLong) {
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
 | |
|         uint64_t uval = CUI->getValue();
 | |
|         if (uval < (1LL << 32)) {
 | |
|           ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
 | |
|           copyConstantToRegister(MBB, IP, CU, R);
 | |
|           return;
 | |
|         }
 | |
|       } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
 | |
|         int64_t val = CUI->getValue();
 | |
|         if (val < (1LL << 31)) {
 | |
|           ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
 | |
|           copyConstantToRegister(MBB, IP, CU, R);
 | |
|           return;
 | |
|         }
 | |
|       } else {
 | |
|         std::cerr << "Unhandled long constant type!\n";
 | |
|         abort();
 | |
|       }
 | |
|       // Spill long to the constant pool and load it
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(C);
 | |
|       BuildMI(*MBB, IP, PPC::LD, 1, R)
 | |
|         .addReg(PPC::R2).addConstantPoolIndex(CPI);
 | |
|     }
 | |
|     
 | |
|     assert(Class <= cInt && "Type not handled yet!");
 | |
| 
 | |
|     // Handle bool
 | |
|     if (C->getType() == Type::BoolTy) {
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Handle int
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
 | |
|       unsigned uval = CUI->getValue();
 | |
|       if (uval < 32768) {
 | |
|         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
 | |
|       } else {
 | |
|         unsigned Temp = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
 | |
|       }
 | |
|       return;
 | |
|     } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
 | |
|       int sval = CSI->getValue();
 | |
|       if (sval < 32768 && sval >= -32768) {
 | |
|         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
 | |
|       } else {
 | |
|         unsigned Temp = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     std::cerr << "Unhandled integer constant!\n";
 | |
|     abort();
 | |
|   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     // We need to spill the constant to memory...
 | |
|     MachineConstantPool *CP = F->getConstantPool();
 | |
|     unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|     const Type *Ty = CFP->getType();
 | |
|     unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
 | |
|     BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
 | |
|   } else if (isa<ConstantPointerNull>(C)) {
 | |
|     // Copy zero (null pointer) to the register.
 | |
|     BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|     static unsigned OpcodeTable[] = {
 | |
|       PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
 | |
|     };
 | |
|     unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
 | |
|     BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
 | |
|   } else {
 | |
|     std::cerr << "Offending constant: " << *C << "\n";
 | |
|     assert(0 && "Type not handled yet!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | |
| /// the stack into virtual registers.
 | |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | |
|   unsigned ArgOffset = 24;
 | |
|   unsigned GPR_remaining = 8;
 | |
|   unsigned FPR_remaining = 13;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|   static const unsigned GPR[] = { 
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
|     
 | |
|   MachineFrameInfo *MFI = F->getFrameInfo();
 | |
|  
 | |
|   for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
 | |
|     bool ArgLive = !I->use_empty();
 | |
|     unsigned Reg = ArgLive ? getReg(*I) : 0;
 | |
|     int FI;          // Frame object index
 | |
| 
 | |
|     switch (getClassB(I->getType())) {
 | |
|     case cByte:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cInt:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cLong:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
|         if (GPR_remaining > 1) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       // longs require 4 additional bytes
 | |
|       ArgOffset += 4;
 | |
|       break;
 | |
|     case cFP32:
 | |
|      if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
| 
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
 | |
|           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cFP64:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
| 
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
 | |
|           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // doubles require 4 additional bytes and use 2 GPRs of param space
 | |
|       ArgOffset += 4;   
 | |
|       if (GPR_remaining > 0) {
 | |
|         GPR_remaining--;
 | |
|         GPR_idx++;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unhandled argument type!");
 | |
|     }
 | |
|     ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | |
|     if (GPR_remaining > 0) {
 | |
|       GPR_remaining--;    // uses up 2 GPRs
 | |
|       GPR_idx++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, add a frame offset for
 | |
|   // the start of the first vararg value... this is used to expand
 | |
|   // llvm.va_start.
 | |
|   if (Fn.getFunctionType()->isVarArg())
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
| /// because we have to generate our sources into the source basic blocks, not
 | |
| /// the current one.
 | |
| ///
 | |
| void ISel::SelectPHINodes() {
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const Function &LF = *F->getFunction();  // The LLVM function...
 | |
|   for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | |
|     const BasicBlock *BB = I;
 | |
|     MachineBasicBlock &MBB = *MBBMap[I];
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the LLVM basic block...
 | |
|     MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
 | |
| 
 | |
|       // Create a new machine instr PHI node, and insert it.
 | |
|       unsigned PHIReg = getReg(*PN);
 | |
|       MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
 | |
|                                     PPC::PHI, PN->getNumOperands(), PHIReg);
 | |
| 
 | |
|       // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | |
|       // so that we only initialize one incoming value for a particular block,
 | |
|       // even if the block has multiple entries in the PHI node.
 | |
|       //
 | |
|       std::map<MachineBasicBlock*, unsigned> PHIValues;
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         MachineBasicBlock *PredMBB = 0;
 | |
|         for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
 | |
|              PE = MBB.pred_end (); PI != PE; ++PI)
 | |
|           if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
 | |
|             PredMBB = *PI;
 | |
|             break;
 | |
|           }
 | |
|         assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
 | |
| 
 | |
|         unsigned ValReg;
 | |
|         std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | |
|           PHIValues.lower_bound(PredMBB);
 | |
| 
 | |
|         if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | |
|           // We already inserted an initialization of the register for this
 | |
|           // predecessor.  Recycle it.
 | |
|           ValReg = EntryIt->second;
 | |
|         } else {
 | |
|           // Get the incoming value into a virtual register.
 | |
|           //
 | |
|           Value *Val = PN->getIncomingValue(i);
 | |
| 
 | |
|           // If this is a constant or GlobalValue, we may have to insert code
 | |
|           // into the basic block to compute it into a virtual register.
 | |
|           if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
 | |
|               isa<GlobalValue>(Val)) {
 | |
|             // Simple constants get emitted at the end of the basic block,
 | |
|             // before any terminator instructions.  We "know" that the code to
 | |
|             // move a constant into a register will never clobber any flags.
 | |
|             ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
 | |
|           } else {
 | |
|             // Because we don't want to clobber any values which might be in
 | |
|             // physical registers with the computation of this constant (which
 | |
|             // might be arbitrarily complex if it is a constant expression),
 | |
|             // just insert the computation at the top of the basic block.
 | |
|             MachineBasicBlock::iterator PI = PredMBB->begin();
 | |
| 
 | |
|             // Skip over any PHI nodes though!
 | |
|             while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
 | |
|               ++PI;
 | |
| 
 | |
|             ValReg = getReg(Val, PredMBB, PI);
 | |
|           }
 | |
| 
 | |
|           // Remember that we inserted a value for this PHI for this predecessor
 | |
|           PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | |
|         }
 | |
| 
 | |
|         PhiMI->addRegOperand(ValReg);
 | |
|         PhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
|       }
 | |
| 
 | |
|       // Now that we emitted all of the incoming values for the PHI node, make
 | |
|       // sure to reposition the InsertPoint after the PHI that we just added.
 | |
|       // This is needed because we might have inserted a constant into this
 | |
|       // block, right after the PHI's which is before the old insert point!
 | |
|       PHIInsertPoint = PhiMI;
 | |
|       ++PHIInsertPoint;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
 | |
| // it into the conditional branch or select instruction which is the only user
 | |
| // of the cc instruction.  This is the case if the conditional branch is the
 | |
| // only user of the setcc, and if the setcc is in the same basic block as the
 | |
| // conditional branch.
 | |
| //
 | |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|     if (SCI->hasOneUse()) {
 | |
|       Instruction *User = cast<Instruction>(SCI->use_back());
 | |
|       if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
 | |
|           SCI->getParent() == User->getParent())
 | |
|         return SCI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
 | |
| // the load or store instruction that is the only user of the GEP.
 | |
| //
 | |
| static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
 | |
|     if (GEPI->hasOneUse()) {
 | |
|       Instruction *User = cast<Instruction>(GEPI->use_back());
 | |
|       if (isa<StoreInst>(User) &&
 | |
|           GEPI->getParent() == User->getParent() &&
 | |
|           User->getOperand(0) != GEPI &&
 | |
|           User->getOperand(1) == GEPI) {
 | |
|         ++GEPFolds;
 | |
|         return GEPI;
 | |
|       }
 | |
|       if (isa<LoadInst>(User) &&
 | |
|           GEPI->getParent() == User->getParent() &&
 | |
|           User->getOperand(0) == GEPI) {
 | |
|         ++GEPFolds;
 | |
|         return GEPI;
 | |
|       }
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return a fixed numbering for setcc instructions which does not depend on the
 | |
| // order of the opcodes.
 | |
| //
 | |
| static unsigned getSetCCNumber(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return 0;
 | |
|   case Instruction::SetNE: return 1;
 | |
|   case Instruction::SetLT: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetGT: return 4;
 | |
|   case Instruction::SetLE: return 5;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return PPC::BEQ;
 | |
|   case Instruction::SetNE: return PPC::BNE;
 | |
|   case Instruction::SetLT: return PPC::BLT;
 | |
|   case Instruction::SetGE: return PPC::BGE;
 | |
|   case Instruction::SetGT: return PPC::BGT;
 | |
|   case Instruction::SetLE: return PPC::BLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// emitUCOM - emits an unordered FP compare.
 | |
| void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                      unsigned LHS, unsigned RHS) {
 | |
|     BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
 | |
| }
 | |
| 
 | |
| /// EmitComparison - emits a comparison of the two operands, returning the
 | |
| /// extended setcc code to use.  The result is in CR0.
 | |
| ///
 | |
| unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                               MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock::iterator IP) {
 | |
|   // The arguments are already supposed to be of the same type.
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   unsigned Class = getClassB(CompTy);
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
| 
 | |
|   // Before we do a comparison, we have to make sure that we're truncating our
 | |
|   // registers appropriately.
 | |
|   if (Class == cByte) {
 | |
|     unsigned TmpReg = makeAnotherReg(CompTy);
 | |
|     if (CompTy->isSigned())
 | |
|       BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
 | |
|         .addImm(24).addImm(31);
 | |
|     Op0r = TmpReg;
 | |
|   } else if (Class == cShort) {
 | |
|     unsigned TmpReg = makeAnotherReg(CompTy);
 | |
|     if (CompTy->isSigned())
 | |
|       BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
 | |
|         .addImm(16).addImm(31);
 | |
|     Op0r = TmpReg;
 | |
|   }
 | |
|   
 | |
|   // Use crand for lt, gt and crandc for le, ge
 | |
|   unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
 | |
|   unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
 | |
|   unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
 | |
|   if (Class == cLong) {
 | |
|     Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
 | |
|     OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
 | |
|   }
 | |
| 
 | |
|   // Special case handling of: cmp R, i
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     unsigned Op1v = CI->getRawValue() & 0xFFFF;
 | |
| 
 | |
|     // Treat compare like ADDI for the purposes of immediate suitability
 | |
|     if (canUseAsImmediateForOpcode(CI, 0)) {
 | |
|       BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
 | |
|     } else {
 | |
|       unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|       BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
 | |
|     }
 | |
|     return OpNum;
 | |
|   }
 | |
| 
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
| 
 | |
|   switch (Class) {
 | |
|   default: assert(0 && "Unknown type class!");
 | |
|   case cByte:
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|   case cLong:
 | |
|     BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
| 
 | |
|   case cFP32:
 | |
|   case cFP64:
 | |
|     emitUCOM(MBB, IP, Op0r, Op1r);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return OpNum;
 | |
| }
 | |
| 
 | |
| /// visitSetCondInst - emit code to calculate the condition via
 | |
| /// EmitComparison(), and possibly store a 0 or 1 to a register as a result
 | |
| ///
 | |
| void ISel::visitSetCondInst(SetCondInst &I) {
 | |
|   if (canFoldSetCCIntoBranchOrSelect(&I))
 | |
|     return;
 | |
| 
 | |
|   unsigned DestReg = getReg(I);
 | |
|   unsigned OpNum = I.getOpcode();
 | |
|   const Type *Ty = I.getOperand (0)->getType();
 | |
| 
 | |
|   EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
 | |
|   
 | |
|   unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
|   
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   cmpTY cr0, r1, r2
 | |
|   //   bCC copy1MBB
 | |
|   //   b copy0MBB
 | |
| 
 | |
|   // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
 | |
|   // if we could insert other, non-terminator instructions after the
 | |
|   // bCC. But MBB->getFirstTerminator() can't understand this.
 | |
|   MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, copy1MBB);
 | |
|   BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
 | |
|   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, copy0MBB);
 | |
|   BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
 | |
|   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(copy1MBB);
 | |
|   BB->addSuccessor(copy0MBB);
 | |
| 
 | |
|   //  copy1MBB:
 | |
|   //   %TrueValue = li 1
 | |
|   //   b sinkMBB
 | |
|   BB = copy1MBB;
 | |
|   unsigned TrueValue = makeAnotherReg(I.getType());
 | |
|   BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
 | |
|   BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = li 0
 | |
|   //   fallthrough
 | |
|   BB = copy0MBB;
 | |
|   unsigned FalseValue = makeAnotherReg(I.getType());
 | |
|   BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
 | |
|   //  ...
 | |
|   BB = sinkMBB;
 | |
|   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
 | |
|     .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
 | |
| }
 | |
| 
 | |
| void ISel::visitSelectInst(SelectInst &SI) {
 | |
|   unsigned DestReg = getReg(SI);
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
 | |
|                       SI.getFalseValue(), DestReg);
 | |
| }
 | |
|  
 | |
| /// emitSelect - Common code shared between visitSelectInst and the constant
 | |
| /// expression support.
 | |
| /// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
 | |
| /// no select instruction.  FSEL only works for comparisons against zero.
 | |
| void ISel::emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                unsigned DestReg) {
 | |
|   unsigned SelectClass = getClassB(TrueVal->getType());
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   // See if we can fold the setcc into the select instruction, or if we have
 | |
|   // to get the register of the Cond value
 | |
|   if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
 | |
|     // We successfully folded the setcc into the select instruction.
 | |
|     unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|     OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
 | |
|     Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
 | |
|   } else {
 | |
|     unsigned CondReg = getReg(Cond, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
 | |
|     Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
 | |
|   }
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   cmpTY cr0, r1, r2
 | |
|   //   bCC copy1MBB
 | |
|   //   b copy0MBB
 | |
| 
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
 | |
|   // if we could insert other, non-terminator instructions after the
 | |
|   // bCC. But MBB->getFirstTerminator() can't understand this.
 | |
|   MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, copy1MBB);
 | |
|   BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
 | |
|   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, copy0MBB);
 | |
|   BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
 | |
|   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|   F->getBasicBlockList().insert(It, sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(copy1MBB);
 | |
|   BB->addSuccessor(copy0MBB);
 | |
| 
 | |
|   //  copy1MBB:
 | |
|   //   %TrueValue = ...
 | |
|   //   b sinkMBB
 | |
|   BB = copy1MBB;
 | |
|   unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
 | |
|   BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = ...
 | |
|   //   fallthrough
 | |
|   BB = copy0MBB;
 | |
|   unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
 | |
|   //  ...
 | |
|   BB = sinkMBB;
 | |
|   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
 | |
|     .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | |
| /// operand, in the specified target register.
 | |
| ///
 | |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | |
|   bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
 | |
| 
 | |
|   Value *Val = VR.Val;
 | |
|   const Type *Ty = VR.Ty;
 | |
|   if (Val) {
 | |
|     if (Constant *C = dyn_cast<Constant>(Val)) {
 | |
|       Val = ConstantExpr::getCast(C, Type::IntTy);
 | |
|       if (isa<ConstantExpr>(Val))   // Could not fold
 | |
|         Val = C;
 | |
|       else
 | |
|         Ty = Type::IntTy;           // Folded!
 | |
|     }
 | |
| 
 | |
|     // If this is a simple constant, just emit a load directly to avoid the copy
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|       int TheVal = CI->getRawValue() & 0xFFFFFFFF;
 | |
| 
 | |
|       if (TheVal < 32768 && TheVal >= -32768) {
 | |
|         BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
 | |
|       } else {
 | |
|         unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
 | |
|         BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
 | |
|           .addImm(TheVal & 0xFFFF);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure we have the register number for this value...
 | |
|   unsigned Reg = Val ? getReg(Val) : VR.Reg;
 | |
|   switch (getClassB(Ty)) {
 | |
|   case cByte:
 | |
|     // Extend value into target register (8->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | |
|         .addZImm(24).addZImm(31);
 | |
|     else
 | |
|       BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cShort:
 | |
|     // Extend value into target register (16->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | |
|         .addZImm(16).addZImm(31);
 | |
|     else
 | |
|       BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cInt:
 | |
|   case cLong:
 | |
|     // Move value into target register (32->32)
 | |
|     BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
 | |
|     break;
 | |
|   default:
 | |
|     assert(0 && "Unpromotable operand class in promote32");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitReturnInst - implemented with BLR
 | |
| ///
 | |
| void ISel::visitReturnInst(ReturnInst &I) {
 | |
|   // Only do the processing if this is a non-void return
 | |
|   if (I.getNumOperands() > 0) {
 | |
|     Value *RetVal = I.getOperand(0);
 | |
|     switch (getClassB(RetVal->getType())) {
 | |
|     case cByte:   // integral return values: extend or move into r3 and return
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|     case cLong:
 | |
|       promote32(PPC::R3, ValueRecord(RetVal));
 | |
|       break;
 | |
|     case cFP32:
 | |
|     case cFP64: {   // Floats & Doubles: Return in f1
 | |
|       unsigned RetReg = getReg(RetVal);
 | |
|       BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       visitInstruction(I);
 | |
|     }
 | |
|   }
 | |
|   BuildMI(BB, PPC::BLR, 1).addImm(1);
 | |
| }
 | |
| 
 | |
| // getBlockAfter - Return the basic block which occurs lexically after the
 | |
| // specified one.
 | |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | |
|   Function::iterator I = BB; ++I;  // Get iterator to next block
 | |
|   return I != BB->getParent()->end() ? &*I : 0;
 | |
| }
 | |
| 
 | |
| /// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | |
| /// that since code layout is frozen at this point, that if we are trying to
 | |
| /// jump to a block that is the immediate successor of the current block, we can
 | |
| /// just make a fall-through (but we don't currently).
 | |
| ///
 | |
| void ISel::visitBranchInst(BranchInst &BI) {
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
 | |
|   if (BI.isConditional())
 | |
|     BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
 | |
|   
 | |
|   BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | |
| 
 | |
|   if (!BI.isConditional()) {  // Unconditional branch?
 | |
|     if (BI.getSuccessor(0) != NextBB) 
 | |
|       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // See if we can fold the setcc into the branch itself...
 | |
|   SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
 | |
|   if (SCI == 0) {
 | |
|     // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | |
|     // computed some other way...
 | |
|     unsigned condReg = getReg(BI.getCondition());
 | |
|     BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
 | |
|       .addImm(0);
 | |
|     if (BI.getSuccessor(1) == NextBB) {
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
 | |
|           .addMBB(MBBMap[BI.getSuccessor(0)])
 | |
|           .addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|     } else {
 | |
|       BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
 | |
|         .addMBB(MBBMap[BI.getSuccessor(1)])
 | |
|         .addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|   unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
 | |
|   
 | |
|   if (BI.getSuccessor(0) != NextBB) {
 | |
|     BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
 | |
|       .addMBB(MBBMap[BI.getSuccessor(0)])
 | |
|       .addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|     if (BI.getSuccessor(1) != NextBB)
 | |
|       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|   } else {
 | |
|     // Change to the inverse condition...
 | |
|     if (BI.getSuccessor(1) != NextBB) {
 | |
|       Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
 | |
|       BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
 | |
|         .addMBB(MBBMap[BI.getSuccessor(1)])
 | |
|         .addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// doCall - This emits an abstract call instruction, setting up the arguments
 | |
| /// and the return value as appropriate.  For the actual function call itself,
 | |
| /// it inserts the specified CallMI instruction into the stream.
 | |
| ///
 | |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                   const std::vector<ValueRecord> &Args, bool isVarArg) {
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.
 | |
|   unsigned NumBytes = 24;
 | |
|   unsigned ArgOffset = 24;
 | |
| 
 | |
|   if (!Args.empty()) {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte: case cShort: case cInt:
 | |
|         NumBytes += 4; break;
 | |
|       case cLong:
 | |
|         NumBytes += 8; break;
 | |
|       case cFP32:
 | |
|         NumBytes += 4; break;
 | |
|       case cFP64:
 | |
|         NumBytes += 8; break;
 | |
|         break;
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
| 
 | |
|     // Just to be safe, we'll always reserve the full 32 bytes worth of
 | |
|     // argument passing space in case any called code gets funky on us.
 | |
|     if (NumBytes < 24 + 32) NumBytes = 24 + 32;
 | |
| 
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     // These functions are automatically eliminated by the prolog/epilog pass
 | |
|     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
 | |
| 
 | |
|     // Arguments go on the stack in reverse order, as specified by the ABI.
 | |
|     // Offset to the paramater area on the stack is 24.
 | |
|     int GPR_remaining = 8, FPR_remaining = 13;
 | |
|     unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|     static const unsigned GPR[] = { 
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     static const unsigned FPR[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, 
 | |
|       PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, 
 | |
|       PPC::F13
 | |
|     };
 | |
|     
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       unsigned ArgReg;
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte:
 | |
|       case cShort:
 | |
|         // Promote arg to 32 bits wide into a temporary register...
 | |
|         ArgReg = makeAnotherReg(Type::UIntTy);
 | |
|         promote32(ArgReg, Args[i]);
 | |
|           
 | |
|         // Reg or stack?
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 0 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cInt:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
| 
 | |
|         // Reg or stack?
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 0 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cLong:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
| 
 | |
|         // Reg or stack?
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 0 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
|         ArgOffset += 4;        // 8 byte entry, not 4.
 | |
|         break;
 | |
|       case cFP32:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|         // Reg or stack?
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
 | |
|           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|           
 | |
|           // If this is a vararg function, and there are GPRs left, also
 | |
|           // pass the float in an int.  Otherwise, put it on the stack.
 | |
|           if (isVarArg) {
 | |
|             BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|             if (GPR_remaining > 0) {
 | |
|               BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
 | |
|               .addSImm(ArgOffset).addReg(ArgReg);
 | |
|               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|           .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cFP64:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|         // Reg or stack?
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
 | |
|           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|           // For vararg functions, must pass doubles via int regs as well
 | |
|           if (isVarArg) {
 | |
|             BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|             
 | |
|             if (GPR_remaining > 0) {
 | |
|               BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
 | |
|               .addReg(PPC::R1);
 | |
|               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|           .addReg(PPC::R1);
 | |
|         }
 | |
|         // Doubles use 8 bytes
 | |
|         ArgOffset += 4;
 | |
|         break;
 | |
|         
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
|       ArgOffset += 4;
 | |
|       GPR_remaining--;
 | |
|       GPR_idx++;
 | |
|     }
 | |
|   } else {
 | |
|     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
 | |
|   }
 | |
| 
 | |
|   BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
 | |
|   BB->push_back(CallMI);
 | |
|   BuildMI(BB, PPC::NOP, 0);
 | |
|   
 | |
|   // These functions are automatically eliminated by the prolog/epilog pass
 | |
|   BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
 | |
| 
 | |
|   // If there is a return value, scavenge the result from the location the call
 | |
|   // leaves it in...
 | |
|   //
 | |
|   if (Ret.Ty != Type::VoidTy) {
 | |
|     unsigned DestClass = getClassB(Ret.Ty);
 | |
|     switch (DestClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|     case cLong:
 | |
|       // Integral results are in r3
 | |
|       BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
 | |
|       break;
 | |
|     case cFP32:   // Floating-point return values live in f1
 | |
|     case cFP64:
 | |
|       BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
 | |
|       break;
 | |
|     default: assert(0 && "Unknown class!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - Push args on stack and do a procedure call instruction.
 | |
| void ISel::visitCallInst(CallInst &CI) {
 | |
|   MachineInstr *TheCall;
 | |
|   Function *F = CI.getCalledFunction();
 | |
|   if (F) {
 | |
|     // Is it an intrinsic function call?
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | |
|       visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | |
|       return;
 | |
|     }
 | |
|     // Emit a CALL instruction with PC-relative displacement.
 | |
|     TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
 | |
|     // Add it to the set of functions called to be used by the Printer
 | |
|     TM.CalledFunctions.insert(F);
 | |
|   } else {  // Emit an indirect call through the CTR
 | |
|     unsigned Reg = getReg(CI.getCalledValue());
 | |
|     BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
 | |
|     TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | |
|     Args.push_back(ValueRecord(CI.getOperand(i)));
 | |
| 
 | |
|   unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | |
|   bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
 | |
|   doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
 | |
| }         
 | |
| 
 | |
| 
 | |
| /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
 | |
| ///
 | |
| static Value *dyncastIsNan(Value *V) {
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(V))
 | |
|     if (Function *F = CI->getCalledFunction())
 | |
|       if (F->getIntrinsicID() == Intrinsic::isunordered)
 | |
|         return CI->getOperand(1);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
 | |
| /// or's whos operands are all calls to the isnan predicate.
 | |
| static bool isOnlyUsedByUnorderedComparisons(Value *V) {
 | |
|   assert(dyncastIsNan(V) && "The value isn't an isnan call!");
 | |
| 
 | |
|   // Check all uses, which will be or's of isnans if this predicate is true.
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | |
|     Instruction *I = cast<Instruction>(*UI);
 | |
|     if (I->getOpcode() != Instruction::Or) return false;
 | |
|     if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
 | |
|     if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
| /// function, lowering any calls to unknown intrinsic functions into the
 | |
| /// equivalent LLVM code.
 | |
| ///
 | |
| void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(I++))
 | |
|         if (Function *F = CI->getCalledFunction())
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           case Intrinsic::not_intrinsic:
 | |
|           case Intrinsic::vastart:
 | |
|           case Intrinsic::vacopy:
 | |
|           case Intrinsic::vaend:
 | |
|           case Intrinsic::returnaddress:
 | |
|           case Intrinsic::frameaddress:
 | |
|             // FIXME: should lower these ourselves
 | |
|             // case Intrinsic::isunordered:
 | |
|             // case Intrinsic::memcpy: -> doCall().  system memcpy almost
 | |
|             // guaranteed to be faster than anything we generate ourselves
 | |
|             // We directly implement these intrinsics
 | |
|             break;
 | |
|           case Intrinsic::readio: {
 | |
|             // On PPC, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile load.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
 | |
|             CI->replaceAllUsesWith(LI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           case Intrinsic::writeio: {
 | |
|             // On PPC, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile store.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             StoreInst *SI = new StoreInst(CI->getOperand(1),
 | |
|                                           CI->getOperand(2), true, CI);
 | |
|             CI->replaceAllUsesWith(SI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           default:
 | |
|             // All other intrinsic calls we must lower.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
 | |
|             if (Before) {        // Move iterator to instruction after call
 | |
|               I = Before; ++I;
 | |
|             } else {
 | |
|               I = BB->begin();
 | |
|             }
 | |
|           }
 | |
| }
 | |
| 
 | |
| void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   unsigned TmpReg1, TmpReg2, TmpReg3;
 | |
|   switch (ID) {
 | |
|   case Intrinsic::vastart:
 | |
|     // Get the address of the first vararg value...
 | |
|     TmpReg1 = getReg(CI);
 | |
|     addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 
 | |
|                       0, false);
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::vacopy:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     TmpReg2 = getReg(CI.getOperand(1));
 | |
|     BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
 | |
|     return;
 | |
|   case Intrinsic::vaend: return;
 | |
| 
 | |
|   case Intrinsic::returnaddress:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | |
|       MachineFrameInfo *MFI = F->getFrameInfo();
 | |
|       unsigned NumBytes = MFI->getStackSize();
 | |
|       
 | |
|       BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
 | |
|         .addReg(PPC::R1);
 | |
|     } else {
 | |
|       // Values other than zero are not implemented yet.
 | |
|       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::frameaddress:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | |
|       BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
 | |
|     } else {
 | |
|       // Values other than zero are not implemented yet.
 | |
|       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
 | |
|     }
 | |
|     return;
 | |
|     
 | |
| #if 0
 | |
|     // This may be useful for supporting isunordered
 | |
|   case Intrinsic::isnan:
 | |
|     // If this is only used by 'isunordered' style comparisons, don't emit it.
 | |
|     if (isOnlyUsedByUnorderedComparisons(&CI)) return;
 | |
|     TmpReg1 = getReg(CI.getOperand(1));
 | |
|     emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
 | |
|     TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(BB, PPC::MFCR, TmpReg2);
 | |
|     TmpReg3 = getReg(CI);
 | |
|     BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
 | |
|     return;
 | |
| #endif
 | |
|     
 | |
|   default: assert(0 && "Error: unknown intrinsics should have been lowered!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitSimpleBinary - Implement simple binary operators for integral types...
 | |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | |
| /// Xor.
 | |
| ///
 | |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | |
|   unsigned DestReg = getReg(B);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
 | |
|   unsigned Class = getClassB(B.getType());
 | |
| 
 | |
|   emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
 | |
| }
 | |
| 
 | |
| /// emitBinaryFPOperation - This method handles emission of floating point
 | |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
| void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                  MachineBasicBlock::iterator IP,
 | |
|                                  Value *Op0, Value *Op1,
 | |
|                                  unsigned OperatorClass, unsigned DestReg) {
 | |
| 
 | |
|   // Special case: op Reg, <const fp>
 | |
|   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | |
|     // Create a constant pool entry for this constant.
 | |
|     MachineConstantPool *CP = F->getConstantPool();
 | |
|     unsigned CPI = CP->getConstantPoolIndex(Op1C);
 | |
|     const Type *Ty = Op1->getType();
 | |
|     assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
| 
 | |
|     static const unsigned OpcodeTab[][4] = {
 | |
|       { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
 | |
|       { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
 | |
|     };
 | |
| 
 | |
|     unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | |
|     unsigned Op1Reg = getReg(Op1C, BB, IP);
 | |
|     unsigned Op0r = getReg(Op0, BB, IP);
 | |
|     BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Special case: R1 = op <const fp>, R2
 | |
|   if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
 | |
|     if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
 | |
|       // -0.0 - X === -X
 | |
|       unsigned op1Reg = getReg(Op1, BB, IP);
 | |
|       BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
 | |
|       return;
 | |
|     } else {
 | |
|       // R1 = op CST, R2  -->  R1 = opr R2, CST
 | |
| 
 | |
|       // Create a constant pool entry for this constant.
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(Op0C);
 | |
|       const Type *Ty = Op0C->getType();
 | |
|       assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
| 
 | |
|       static const unsigned OpcodeTab[][4] = {
 | |
|         { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
 | |
|         { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
 | |
|       };
 | |
| 
 | |
|       unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | |
|       unsigned Op0Reg = getReg(Op0C, BB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|       BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // General case.
 | |
|   static const unsigned OpcodeTab[] = {
 | |
|     PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
 | |
|   };
 | |
| 
 | |
|   unsigned Opcode = OpcodeTab[OperatorClass];
 | |
|   unsigned Op0r = getReg(Op0, BB, IP);
 | |
|   unsigned Op1r = getReg(Op1, BB, IP);
 | |
|   BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
| }
 | |
| 
 | |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral
 | |
| /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
 | |
| /// Or, 4 for Xor.
 | |
| ///
 | |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
| /// and constant expression support.
 | |
| ///
 | |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
 | |
|                                      MachineBasicBlock::iterator IP,
 | |
|                                      Value *Op0, Value *Op1,
 | |
|                                      unsigned OperatorClass, unsigned DestReg) {
 | |
|   unsigned Class = getClassB(Op0->getType());
 | |
| 
 | |
|   // Arithmetic and Bitwise operators
 | |
|   static const unsigned OpcodeTab[] = {
 | |
|     PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
 | |
|   };
 | |
|   static const unsigned ImmOpcodeTab[] = {
 | |
|     PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
 | |
|   };
 | |
|   static const unsigned RImmOpcodeTab[] = {
 | |
|     PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
 | |
|   };
 | |
| 
 | |
|   if (Class == cFP32 || Class == cFP64) {
 | |
|     assert(OperatorClass < 2 && "No logical ops for FP!");
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Op0->getType() == Type::BoolTy) {
 | |
|     if (OperatorClass == 3)
 | |
|       // If this is an or of two isnan's, emit an FP comparison directly instead
 | |
|       // of or'ing two isnan's together.
 | |
|       if (Value *LHS = dyncastIsNan(Op0))
 | |
|         if (Value *RHS = dyncastIsNan(Op1)) {
 | |
|           unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
 | |
|           unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|           emitUCOM(MBB, IP, Op0Reg, Op1Reg);
 | |
|           BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
 | |
|           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
 | |
|             .addImm(31).addImm(31);
 | |
|           return;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Special case: op <const int>, Reg
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // sub 0, X -> subfic
 | |
|     if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
 | |
|       unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|       int imm = CI->getRawValue() & 0xFFFF;
 | |
|       BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // If it is easy to do, swap the operands and emit an immediate op
 | |
|     if (Class != cLong && OperatorClass != 1 && 
 | |
|         canUseAsImmediateForOpcode(CI, OperatorClass)) {
 | |
|       unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|       int imm = CI->getRawValue() & 0xFFFF;
 | |
|     
 | |
|       if (OperatorClass < 2)
 | |
|         BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
 | |
|           .addSImm(imm);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
 | |
|           .addZImm(imm);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special case: op Reg, <const int>
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     unsigned Op0r = getReg(Op0, MBB, IP);
 | |
| 
 | |
|     // xor X, -1 -> not X
 | |
|     if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
 | |
|       BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
 | |
|       int immediate = Op1C->getRawValue() & 0xFFFF;
 | |
|       
 | |
|       if (OperatorClass < 2)
 | |
|         BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
 | |
|           .addSImm(immediate);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
 | |
|           .addZImm(immediate);
 | |
|     } else {
 | |
|       unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|       BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
 | |
|         .addReg(Op1r);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // We couldn't generate an immediate variant of the op, load both halves into
 | |
|   // registers and emit the appropriate opcode.
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
| 
 | |
|   unsigned Opcode = OpcodeTab[OperatorClass];
 | |
|   BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | |
| // returns zero when the input is not exactly a power of two.
 | |
| static unsigned ExactLog2(unsigned Val) {
 | |
|   if (Val == 0 || (Val & (Val-1))) return 0;
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// doMultiply - Emit appropriate instructions to multiply together the
 | |
| /// Values Op0 and Op1, and put the result in DestReg.
 | |
| ///
 | |
| void ISel::doMultiply(MachineBasicBlock *MBB,
 | |
|                       MachineBasicBlock::iterator IP,
 | |
|                       unsigned DestReg, Value *Op0, Value *Op1) {
 | |
|   unsigned Class0 = getClass(Op0->getType());
 | |
|   unsigned Class1 = getClass(Op1->getType());
 | |
|   
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|   
 | |
|   // 64 x 64 -> 64
 | |
|   if (Class0 == cLong && Class1 == cLong) {
 | |
|     BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
 | |
|   if (Class0 == cLong && Class1 <= cInt) {
 | |
|     // FIXME: CLEAR or SIGN EXTEND Op1
 | |
|     BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // 32 x 32 -> 32
 | |
|   if (Class0 <= cInt && Class1 <= cInt) {
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(0 && "doMultiply cannot operate on unknown type!");
 | |
| }
 | |
| 
 | |
| /// doMultiplyConst - This method will multiply the value in Op0 by the
 | |
| /// value of the ContantInt *CI
 | |
| void ISel::doMultiplyConst(MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator IP,
 | |
|                            unsigned DestReg, Value *Op0, ConstantInt *CI) {
 | |
|   unsigned Class = getClass(Op0->getType());
 | |
| 
 | |
|   // Mul op0, 0 ==> 0
 | |
|   if (CI->isNullValue()) {
 | |
|     BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Mul op0, 1 ==> op0
 | |
|   if (CI->equalsInt(1)) {
 | |
|     unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the element size is exactly a power of 2, use a shift to get it.
 | |
|   if (unsigned Shift = ExactLog2(CI->getRawValue())) {
 | |
|     ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
 | |
|     emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If 32 bits or less and immediate is in right range, emit mul by immediate
 | |
|   if (Class == cByte || Class == cShort || Class == cInt) {
 | |
|     if (canUseAsImmediateForOpcode(CI, 0)) {
 | |
|       unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|       unsigned imm = CI->getRawValue() & 0xFFFF;
 | |
|       BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   doMultiply(MBB, IP, DestReg, Op0, CI);
 | |
| }
 | |
| 
 | |
| void ISel::visitMul(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitMultiply(BB, IP, Op0, Op1, ResultReg);
 | |
| }
 | |
| 
 | |
| void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                         Value *Op0, Value *Op1, unsigned DestReg) {
 | |
|   TypeClass Class = getClass(Op0->getType());
 | |
| 
 | |
|   switch (Class) {
 | |
|   case cByte:
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|   case cLong:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       doMultiplyConst(MBB, IP, DestReg, Op0, CI);
 | |
|     } else {
 | |
|       doMultiply(MBB, IP, DestReg, Op0, Op1);
 | |
|     }
 | |
|     return;
 | |
|   case cFP32:
 | |
|   case cFP64:
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
 | |
|     return;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitDivRem - Handle division and remainder instructions... these
 | |
| /// instruction both require the same instructions to be generated, they just
 | |
| /// select the result from a different register.  Note that both of these
 | |
| /// instructions work differently for signed and unsigned operands.
 | |
| ///
 | |
| void ISel::visitDivRem(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
 | |
|                       ResultReg);
 | |
| }
 | |
| 
 | |
| void ISel::emitDivRemOperation(MachineBasicBlock *BB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Op0, Value *Op1, bool isDiv,
 | |
|                                unsigned ResultReg) {
 | |
|   const Type *Ty = Op0->getType();
 | |
|   unsigned Class = getClass(Ty);
 | |
|   switch (Class) {
 | |
|   case cFP32:
 | |
|     if (isDiv) {
 | |
|       // Floating point divide...
 | |
|       emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
 | |
|       return;
 | |
|     } else {
 | |
|       // Floating point remainder via fmodf(float x, float y);
 | |
|       unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
 | |
|       Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
 | |
|       doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
 | |
|       TM.CalledFunctions.insert(fmodfFn);
 | |
|     }
 | |
|     return;
 | |
|   case cFP64:
 | |
|     if (isDiv) {
 | |
|       // Floating point divide...
 | |
|       emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
 | |
|       return;
 | |
|     } else {               
 | |
|       // Floating point remainder via fmod(double x, double y);
 | |
|       unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
 | |
|       Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
 | |
|       doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
 | |
|       TM.CalledFunctions.insert(fmodFn);
 | |
|     }
 | |
|     return;
 | |
|   case cLong: {
 | |
|     static Function* const Funcs[] =
 | |
|       { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
 | |
|     unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|     unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|     unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
 | |
|     MachineInstr *TheCall =
 | |
|       BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
 | |
| 
 | |
|     std::vector<ValueRecord> Args;
 | |
|     Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
 | |
|     Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
 | |
|     doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
 | |
|     TM.CalledFunctions.insert(Funcs[NameIdx]);
 | |
|     return;
 | |
|   }
 | |
|   case cByte: case cShort: case cInt:
 | |
|     break;          // Small integrals, handled below...
 | |
|   default: assert(0 && "Unknown class!");
 | |
|   }
 | |
| 
 | |
|   // Special case signed division by power of 2.
 | |
|   if (isDiv)
 | |
|     if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
 | |
|       assert(Class != cLong && "This doesn't handle 64-bit divides!");
 | |
|       int V = CI->getValue();
 | |
| 
 | |
|       if (V == 1) {       // X /s 1 => X
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (V == -1) {      // X /s -1 => -X
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       unsigned log2V = ExactLog2(V);
 | |
|       if (log2V != 0 && Ty->isSigned()) {
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         unsigned TmpReg = makeAnotherReg(Op0->getType());
 | |
|         
 | |
|         BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
 | |
|         BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|   unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|   unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
 | |
|   
 | |
|   if (isDiv) {
 | |
|     BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | |
|   } else { // Remainder
 | |
|     unsigned TmpReg1 = makeAnotherReg(Op0->getType());
 | |
|     unsigned TmpReg2 = makeAnotherReg(Op0->getType());
 | |
|     
 | |
|     BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
 | |
|     BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
 | |
|     BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | |
| /// for constant immediate shift values, and for constant immediate
 | |
| /// shift values equal to 1. Even the general case is sort of special,
 | |
| /// because the shift amount has to be in CL, not just any old register.
 | |
| ///
 | |
| void ISel::visitShiftInst(ShiftInst &I) {
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
 | |
|                      I.getOpcode() == Instruction::Shl, I.getType(),
 | |
|                      getReg(I));
 | |
| }
 | |
| 
 | |
| /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
| /// constant expression support.
 | |
| ///
 | |
| void ISel::emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock::iterator IP,
 | |
|                               Value *Op, Value *ShiftAmount, bool isLeftShift,
 | |
|                               const Type *ResultTy, unsigned DestReg) {
 | |
|   unsigned SrcReg = getReg (Op, MBB, IP);
 | |
|   bool isSigned = ResultTy->isSigned ();
 | |
|   unsigned Class = getClass (ResultTy);
 | |
|   
 | |
|   // Longs, as usual, are handled specially...
 | |
|   if (Class == cLong) {
 | |
|     // If we have a constant shift, we can generate much more efficient code
 | |
|     // than otherwise...
 | |
|     //
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|       unsigned Amount = CUI->getValue();
 | |
|       assert(Amount < 64 && "Invalid immediate shift amount!");
 | |
|       if (isLeftShift) {
 | |
|         BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount)
 | |
|           .addImm(63-Amount);
 | |
|       } else {
 | |
|         if (isSigned) {
 | |
|           BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg)
 | |
|             .addImm(Amount);
 | |
|         } else {
 | |
|           BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg)
 | |
|             .addImm(64-Amount).addImm(Amount);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       unsigned ShiftReg = getReg (ShiftAmount, MBB, IP);
 | |
| 
 | |
|       if (isLeftShift) {
 | |
|         BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg);
 | |
|       } else {
 | |
|         unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD;
 | |
|         BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|     // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | |
|     assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | |
|     unsigned Amount = CUI->getValue();
 | |
| 
 | |
|     if (isLeftShift) {
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|         .addImm(Amount).addImm(0).addImm(31-Amount);
 | |
|     } else {
 | |
|       if (isSigned) {
 | |
|         BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
 | |
|       } else {
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(32-Amount).addImm(Amount).addImm(31);
 | |
|       }
 | |
|     }
 | |
|   } else {                  // The shift amount is non-constant.
 | |
|     unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | |
| 
 | |
|     if (isLeftShift) {
 | |
|       BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
 | |
|         .addReg(ShiftAmountReg);
 | |
|     } else {
 | |
|       BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
 | |
|         .addReg(SrcReg).addReg(ShiftAmountReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitLoadInst - Implement LLVM load instructions.  Pretty straightforward
 | |
| /// mapping of LLVM classes to PPC load instructions, with the exception of
 | |
| /// signed byte loads, which need a sign extension following them.
 | |
| ///
 | |
| void ISel::visitLoadInst(LoadInst &I) {
 | |
|   // Immediate opcodes, for reg+imm addressing
 | |
|   static const unsigned ImmOpcodes[] = { 
 | |
|     PPC::LBZ, PPC::LHZ, PPC::LWZ, 
 | |
|     PPC::LFS, PPC::LFD, PPC::LWZ
 | |
|   };
 | |
|   // Indexed opcodes, for reg+reg addressing
 | |
|   static const unsigned IdxOpcodes[] = {
 | |
|     PPC::LBZX, PPC::LHZX, PPC::LWZX,
 | |
|     PPC::LFSX, PPC::LFDX, PPC::LWZX
 | |
|   };
 | |
| 
 | |
|   unsigned Class     = getClassB(I.getType());
 | |
|   unsigned ImmOpcode = ImmOpcodes[Class];
 | |
|   unsigned IdxOpcode = IdxOpcodes[Class];
 | |
|   unsigned DestReg   = getReg(I);
 | |
|   Value *SourceAddr  = I.getOperand(0);
 | |
|   
 | |
|   if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
 | |
|   if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     if (Class == cByte && I.getType()->isSigned()) {
 | |
|       unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
 | |
|       BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|     } else {
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If this load is the only use of the GEP instruction that is its address,
 | |
|   // then we can fold the GEP directly into the load instruction.
 | |
|   // emitGEPOperation with a second to last arg of 'true' will place the
 | |
|   // base register for the GEP into baseReg, and the constant offset from that
 | |
|   // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
 | |
|   // otherwise, we copy the offset into another reg, and use reg+reg addressing.
 | |
|   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
 | |
|     unsigned baseReg = getReg(GEPI);
 | |
|     unsigned pendingAdd;
 | |
|     ConstantSInt *offset;
 | |
|     
 | |
|     emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
 | |
|                      GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
 | |
| 
 | |
|     if (pendingAdd == 0 && Class != cLong && 
 | |
|         canUseAsImmediateForOpcode(offset, 0)) {
 | |
|       if (Class == cByte && I.getType()->isSigned()) {
 | |
|         unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|         BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
 | |
|           .addReg(baseReg);
 | |
|         BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|       } else {
 | |
|         BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
 | |
|           .addReg(baseReg);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
 | |
| 
 | |
|     if (Class == cByte && I.getType()->isSigned()) {
 | |
|       unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|       BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
 | |
|       BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|     } else {
 | |
|       BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // The fallback case, where the load was from a source that could not be
 | |
|   // folded into the load instruction. 
 | |
|   unsigned SrcAddrReg = getReg(SourceAddr);
 | |
|     
 | |
|   if (Class == cByte && I.getType()->isSigned()) {
 | |
|     unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|     BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
 | |
|     BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|   } else {
 | |
|     BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitStoreInst - Implement LLVM store instructions
 | |
| ///
 | |
| void ISel::visitStoreInst(StoreInst &I) {
 | |
|   // Immediate opcodes, for reg+imm addressing
 | |
|   static const unsigned ImmOpcodes[] = {
 | |
|     PPC::STB, PPC::STH, PPC::STW, 
 | |
|     PPC::STFS, PPC::STFD, PPC::STW
 | |
|   };
 | |
|   // Indexed opcodes, for reg+reg addressing
 | |
|   static const unsigned IdxOpcodes[] = {
 | |
|     PPC::STBX, PPC::STHX, PPC::STWX, 
 | |
|     PPC::STFSX, PPC::STFDX, PPC::STWX
 | |
|   };
 | |
|   
 | |
|   Value *SourceAddr  = I.getOperand(1);
 | |
|   const Type *ValTy  = I.getOperand(0)->getType();
 | |
|   unsigned Class     = getClassB(ValTy);
 | |
|   unsigned ImmOpcode = ImmOpcodes[Class];
 | |
|   unsigned IdxOpcode = IdxOpcodes[Class];
 | |
|   unsigned ValReg    = getReg(I.getOperand(0));
 | |
| 
 | |
|   // If this store is the only use of the GEP instruction that is its address,
 | |
|   // then we can fold the GEP directly into the store instruction.
 | |
|   // emitGEPOperation with a second to last arg of 'true' will place the
 | |
|   // base register for the GEP into baseReg, and the constant offset from that
 | |
|   // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
 | |
|   // otherwise, we copy the offset into another reg, and use reg+reg addressing.
 | |
|   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
 | |
|     unsigned baseReg = getReg(GEPI);
 | |
|     unsigned pendingAdd;
 | |
|     ConstantSInt *offset;
 | |
|     
 | |
|     emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
 | |
|                      GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
 | |
| 
 | |
|     if (0 == pendingAdd && Class != cLong && 
 | |
|         canUseAsImmediateForOpcode(offset, 0)) {
 | |
|       BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
 | |
|         .addReg(baseReg);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
 | |
|     BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If the store address wasn't the only use of a GEP, we fall back to the
 | |
|   // standard path: store the ValReg at the value in AddressReg.
 | |
|   unsigned AddressReg  = getReg(I.getOperand(1));
 | |
|   BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCastInst - Here we have various kinds of copying with or without sign
 | |
| /// extension going on.
 | |
| ///
 | |
| void ISel::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
| 
 | |
|   unsigned SrcClass = getClassB(Op->getType());
 | |
|   unsigned DestClass = getClassB(CI.getType());
 | |
| 
 | |
|   // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | |
|   // of the case are GEP instructions, then the cast does not need to be
 | |
|   // generated explicitly, it will be folded into the GEP.
 | |
|   if (DestClass == cLong && SrcClass == cInt) {
 | |
|     bool AllUsesAreGEPs = true;
 | |
|     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | |
|       if (!isa<GetElementPtrInst>(*I)) {
 | |
|         AllUsesAreGEPs = false;
 | |
|         break;
 | |
|       }        
 | |
| 
 | |
|     // No need to codegen this cast if all users are getelementptr instrs...
 | |
|     if (AllUsesAreGEPs) return;
 | |
|   }
 | |
| 
 | |
|   unsigned DestReg = getReg(CI);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | |
| }
 | |
| 
 | |
| /// emitCastOperation - Common code shared between visitCastInst and constant
 | |
| /// expression cast support.
 | |
| ///
 | |
| void ISel::emitCastOperation(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Src, const Type *DestTy,
 | |
|                              unsigned DestReg) {
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   unsigned SrcClass = getClassB(SrcTy);
 | |
|   unsigned DestClass = getClassB(DestTy);
 | |
|   unsigned SrcReg = getReg(Src, MBB, IP);
 | |
| 
 | |
|   // Implement casts to bool by using compare on the operand followed by set if
 | |
|   // not zero on the result.
 | |
|   if (DestTy == Type::BoolTy) {
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|     case cLong: {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
 | |
|       BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     case cFP32:
 | |
|     case cFP64:
 | |
|       // FSEL perhaps?
 | |
|       std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
 | |
|       abort();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle cast of Float -> Double
 | |
|   if (SrcClass == cFP32 && DestClass == cFP64) {
 | |
|     BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle cast of Double -> Float
 | |
|   if (SrcClass == cFP64 && DestClass == cFP32) {
 | |
|     BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle casts from integer to floating point now...
 | |
|   if (DestClass == cFP32 || DestClass == cFP64) {
 | |
| 
 | |
|     // Emit a library call for long to float conversion
 | |
|     if (SrcClass == cLong) {
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|       Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|       doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
 | |
|       TM.CalledFunctions.insert(floatFn);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Make sure we're dealing with a full 32 bits
 | |
|     unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|     promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
 | |
| 
 | |
|     SrcReg = TmpReg;
 | |
|     
 | |
|     // Spill the integer to memory and reload it from there.
 | |
|     // Also spill room for a special conversion constant
 | |
|     int ConstantFrameIndex = 
 | |
|       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | |
|     int ValueFrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | |
| 
 | |
|     unsigned constantHi = makeAnotherReg(Type::IntTy);
 | |
|     unsigned constantLo = makeAnotherReg(Type::IntTy);
 | |
|     unsigned ConstF = makeAnotherReg(Type::DoubleTy);
 | |
|     unsigned TempF = makeAnotherReg(Type::DoubleTy);
 | |
|     
 | |
|     if (!SrcTy->isSigned()) {
 | |
|       BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
 | |
|       BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
 | |
|                         ConstantFrameIndex);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
 | |
|                         ConstantFrameIndex, 4);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
 | |
|                         ValueFrameIdx);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg), 
 | |
|                         ValueFrameIdx, 4);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
 | |
|                         ConstantFrameIndex);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
 | |
|       BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
 | |
|     } else {
 | |
|       unsigned TempLo = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
 | |
|       BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
 | |
|                         ConstantFrameIndex);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
 | |
|                         ConstantFrameIndex, 4);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
 | |
|                         ValueFrameIdx);
 | |
|       BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo), 
 | |
|                         ValueFrameIdx, 4);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
 | |
|                         ConstantFrameIndex);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
 | |
|       BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from floating point to integer now...
 | |
|   if (SrcClass == cFP32 || SrcClass == cFP64) {
 | |
|     static Function* const Funcs[] =
 | |
|       { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
 | |
|     // emit library call
 | |
|     if (DestClass == cLong) {
 | |
|       bool isDouble = SrcClass == cFP64;
 | |
|       unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|       Function *floatFn = Funcs[nameIndex];
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|       doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
 | |
|       TM.CalledFunctions.insert(floatFn);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int ValueFrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | |
| 
 | |
|     if (DestTy->isSigned()) {
 | |
|       unsigned TempReg = makeAnotherReg(Type::DoubleTy);
 | |
|       
 | |
|       // Convert to integer in the FP reg and store it to a stack slot
 | |
|       BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
 | |
|                           .addReg(TempReg), ValueFrameIdx);
 | |
| 
 | |
|       // There is no load signed byte opcode, so we must emit a sign extend for
 | |
|       // that particular size.  Make sure to source the new integer from the 
 | |
|       // correct offset.
 | |
|       if (DestClass == cByte) {
 | |
|         unsigned TempReg2 = makeAnotherReg(DestTy);
 | |
|         addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2), 
 | |
|                           ValueFrameIdx, 7);
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
 | |
|       } else {
 | |
|         int offset = (DestClass == cShort) ? 6 : 4;
 | |
|         unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
 | |
|         addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg), 
 | |
|                           ValueFrameIdx, offset);
 | |
|       }
 | |
|     } else {
 | |
|       unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
 | |
|       double maxInt = (1LL << 32) - 1;
 | |
|       unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
 | |
|       double border = 1LL << 31;
 | |
|       unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
 | |
|       unsigned UseZero = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned IntTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned XorReg = makeAnotherReg(Type::IntTy);
 | |
|       int FrameIdx = 
 | |
|         F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | |
|       // Update machine-CFG edges
 | |
|       MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *OldMBB = BB;
 | |
|       ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|       F->getBasicBlockList().insert(It, XorMBB);
 | |
|       F->getBasicBlockList().insert(It, PhiMBB);
 | |
|       BB->addSuccessor(XorMBB);
 | |
|       BB->addSuccessor(PhiMBB);
 | |
| 
 | |
|       // Convert from floating point to unsigned 32-bit value
 | |
|       // Use 0 if incoming value is < 0.0
 | |
|       BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
 | |
|         .addReg(Zero);
 | |
|       // Use 2**32 - 1 if incoming value is >= 2**32
 | |
|       BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
 | |
|       BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
 | |
|         .addReg(UseZero).addReg(MaxInt);
 | |
|       // Subtract 2**31
 | |
|       BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
 | |
|       // Use difference if >= 2**31
 | |
|       BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
 | |
|         .addReg(Border);
 | |
|       BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
 | |
|         .addReg(UseChoice);
 | |
|       // Convert to integer
 | |
|       BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
 | |
|       addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
 | |
|                         FrameIdx);
 | |
|       if (DestClass == cByte) {
 | |
|         addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
 | |
|                           FrameIdx, 7);
 | |
|       } else if (DestClass == cShort) {
 | |
|         addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
 | |
|                           FrameIdx, 6);
 | |
|       } if (DestClass == cInt) {
 | |
|         addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
 | |
|                           FrameIdx, 4);
 | |
|         BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 | |
|         BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
 | |
| 
 | |
|         // XorMBB:
 | |
|         //   add 2**31 if input was >= 2**31
 | |
|         BB = XorMBB;
 | |
|         BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
 | |
|         XorMBB->addSuccessor(PhiMBB);
 | |
| 
 | |
|         // PhiMBB:
 | |
|         //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
 | |
|         BB = PhiMBB;
 | |
|         BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
 | |
|           .addReg(XorReg).addMBB(XorMBB);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check our invariants
 | |
|   assert((SrcClass <= cInt || SrcClass == cLong) && 
 | |
|          "Unhandled source class for cast operation!");
 | |
|   assert((DestClass <= cInt || DestClass == cLong) && 
 | |
|          "Unhandled destination class for cast operation!");
 | |
| 
 | |
|   bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
 | |
|   bool destUnsigned = DestTy->isUnsigned();
 | |
| 
 | |
|   // Unsigned -> Unsigned, clear if larger
 | |
|   if (sourceUnsigned && destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle u{ byte, short, int } x u{ byte, short, int }
 | |
|     unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|       if (SrcClass == DestClass)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cInt)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Signed -> Signed
 | |
|   if (!sourceUnsigned && !destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle { byte, short, int } x { byte, short, int }
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Unsigned -> Signed
 | |
|   if (sourceUnsigned && !destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle u{ byte, short, int } -> { byte, short, int }
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       if (DestClass == cByte)
 | |
|         // uByte 255 -> signed byte == -1
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         // uByte 255 -> signed short/int == 255
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
 | |
|           .addImm(24).addImm(31);
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
 | |
|           .addImm(16).addImm(31);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Signed -> Unsigned
 | |
|   if (!sourceUnsigned && destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle { byte, short, int } -> u{ byte, short, int }
 | |
|     unsigned clearBits = (DestClass == cByte) ? 24 : 16;
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|       if (DestClass == cByte || DestClass == cShort)
 | |
|         // sbyte -1 -> ubyte 0x000000FF
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       else
 | |
|         // sbyte -1 -> ubyte 0xFFFFFFFF
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cInt)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Anything we haven't handled already, we can't (yet) handle at all.
 | |
|   std::cerr << "Unhandled cast from " << SrcTy->getDescription()
 | |
|             << "to " << DestTy->getDescription() << '\n';
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| /// visitVANextInst - Implement the va_next instruction...
 | |
| ///
 | |
| void ISel::visitVANextInst(VANextInst &I) {
 | |
|   unsigned VAList = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   unsigned Size;
 | |
|   switch (I.getArgType()->getTypeID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_next instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     Size = 4;
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|   case Type::DoubleTyID:
 | |
|     Size = 8;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Increment the VAList pointer...
 | |
|   BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
 | |
| }
 | |
| 
 | |
| void ISel::visitVAArgInst(VAArgInst &I) {
 | |
|   unsigned VAList = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   switch (I.getType()->getTypeID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_next instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|     BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitGetElementPtrInst - instruction-select GEP instructions
 | |
| ///
 | |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   if (canFoldGEPIntoLoadOrStore(&I))
 | |
|     return;
 | |
| 
 | |
|   unsigned outputReg = getReg(I);
 | |
|   emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), 
 | |
|                    outputReg, false, 0, 0);
 | |
| }
 | |
| 
 | |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
| /// constant expression GEP support.
 | |
| ///
 | |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Src, User::op_iterator IdxBegin,
 | |
|                             User::op_iterator IdxEnd, unsigned TargetReg,
 | |
|                             bool GEPIsFolded, ConstantSInt **RemainderPtr,
 | |
|                             unsigned *PendingAddReg) {
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
|   const Type *Ty = Src->getType();
 | |
|   unsigned basePtrReg = getReg(Src, MBB, IP);
 | |
|   int64_t constValue = 0;
 | |
|   
 | |
|   // Record the operations to emit the GEP in a vector so that we can emit them
 | |
|   // after having analyzed the entire instruction.
 | |
|   std::vector<CollapsedGepOp> ops;
 | |
|   
 | |
|   // GEPs have zero or more indices; we must perform a struct access
 | |
|   // or array access for each one.
 | |
|   for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
 | |
|        ++oi) {
 | |
|     Value *idx = *oi;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       // It's a struct access.  idx is the index into the structure,
 | |
|       // which names the field. Use the TargetData structure to
 | |
|       // pick out what the layout of the structure is in memory.
 | |
|       // Use the (constant) structure index's value to find the
 | |
|       // right byte offset from the StructLayout class's list of
 | |
|       // structure member offsets.
 | |
|       unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
 | |
|       unsigned memberOffset =
 | |
|         TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
 | |
| 
 | |
|       // StructType member offsets are always constant values.  Add it to the
 | |
|       // running total.
 | |
|       constValue += memberOffset;
 | |
| 
 | |
|       // The next type is the member of the structure selected by the
 | |
|       // index.
 | |
|       Ty = StTy->getElementType (fieldIndex);
 | |
|     } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
 | |
|       // Many GEP instructions use a [cast (int/uint) to LongTy] as their
 | |
|       // operand.  Handle this case directly now...
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(idx))
 | |
|         if (CI->getOperand(0)->getType() == Type::IntTy ||
 | |
|             CI->getOperand(0)->getType() == Type::UIntTy)
 | |
|           idx = CI->getOperand(0);
 | |
| 
 | |
|       // It's an array or pointer access: [ArraySize x ElementType].
 | |
|       // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
 | |
|       // must find the size of the pointed-to type (Not coincidentally, the next
 | |
|       // type is the type of the elements in the array).
 | |
|       Ty = SqTy->getElementType();
 | |
|       unsigned elementSize = TD.getTypeSize(Ty);
 | |
|       
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
 | |
|         if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
 | |
|           constValue += CS->getValue() * elementSize;
 | |
|         else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|           constValue += CU->getValue() * elementSize;
 | |
|         else
 | |
|           assert(0 && "Invalid ConstantInt GEP index type!");
 | |
|       } else {
 | |
|         // Push current gep state to this point as an add
 | |
|         ops.push_back(CollapsedGepOp(false, 0, 
 | |
|           ConstantSInt::get(Type::IntTy,constValue)));
 | |
|         
 | |
|         // Push multiply gep op and reset constant value
 | |
|         ops.push_back(CollapsedGepOp(true, idx, 
 | |
|           ConstantSInt::get(Type::IntTy, elementSize)));
 | |
|         
 | |
|         constValue = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Emit instructions for all the collapsed ops
 | |
|   bool pendingAdd = false;
 | |
|   unsigned pendingAddReg = 0;
 | |
|   
 | |
|   for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
 | |
|       cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
 | |
|     CollapsedGepOp& cgo = *cgo_i;
 | |
|     unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
 | |
|   
 | |
|     // If we didn't emit an add last time through the loop, we need to now so
 | |
|     // that the base reg is updated appropriately.
 | |
|     if (pendingAdd) {
 | |
|       assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
 | |
|       BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
 | |
|         .addReg(pendingAddReg);
 | |
|       basePtrReg = nextBasePtrReg;
 | |
|       nextBasePtrReg = makeAnotherReg(Type::IntTy);
 | |
|       pendingAddReg = 0;
 | |
|       pendingAdd = false;
 | |
|     }
 | |
| 
 | |
|     if (cgo.isMul) {
 | |
|       // We know the elementSize is a constant, so we can emit a constant mul
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
 | |
|       pendingAddReg = basePtrReg;
 | |
|       pendingAdd = true;
 | |
|     } else {
 | |
|       // Try and generate an immediate addition if possible
 | |
|       if (cgo.size->isNullValue()) {
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
 | |
|           .addReg(basePtrReg);
 | |
|       } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
 | |
|         BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
 | |
|           .addSImm(cgo.size->getValue());
 | |
|       } else {
 | |
|         unsigned Op1r = getReg(cgo.size, MBB, IP);
 | |
|         BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
 | |
|           .addReg(Op1r);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     basePtrReg = nextBasePtrReg;
 | |
|   }
 | |
|   // Add the current base register plus any accumulated constant value
 | |
|   ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
 | |
|   
 | |
|   // If we are emitting this during a fold, copy the current base register to
 | |
|   // the target, and save the current constant offset so the folding load or
 | |
|   // store can try and use it as an immediate.
 | |
|   if (GEPIsFolded) {
 | |
|     // If this is a folded GEP and the last element was an index, then we need
 | |
|     // to do some extra work to turn a shift/add/stw into a shift/stwx
 | |
|     if (pendingAdd && 0 == remainder->getValue()) {
 | |
|       assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
 | |
|       *PendingAddReg = pendingAddReg;
 | |
|     } else {
 | |
|       *PendingAddReg = 0;
 | |
|       if (pendingAdd) {
 | |
|         unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
 | |
|         assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
 | |
|         BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
 | |
|           .addReg(pendingAddReg);
 | |
|         basePtrReg = nextBasePtrReg;
 | |
|       }
 | |
|     }
 | |
|     BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
 | |
|       .addReg(basePtrReg);
 | |
|     *RemainderPtr = remainder;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we still have a pending add at this point, emit it now
 | |
|   if (pendingAdd) {
 | |
|     unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
 | |
|       .addReg(basePtrReg);
 | |
|     basePtrReg = TmpReg;
 | |
|   }
 | |
|   
 | |
|   // After we have processed all the indices, the result is left in
 | |
|   // basePtrReg.  Move it to the register where we were expected to
 | |
|   // put the answer.
 | |
|   if (remainder->isNullValue()) {
 | |
|     BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
 | |
|       .addReg(basePtrReg);
 | |
|   } else if (canUseAsImmediateForOpcode(remainder, 0)) {
 | |
|     BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
 | |
|       .addSImm(remainder->getValue());
 | |
|   } else {
 | |
|     unsigned Op1r = getReg(remainder, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | |
| /// frame manager, otherwise do it the hard way.
 | |
| ///
 | |
| void ISel::visitAllocaInst(AllocaInst &I) {
 | |
|   // If this is a fixed size alloca in the entry block for the function, we
 | |
|   // statically stack allocate the space, so we don't need to do anything here.
 | |
|   //
 | |
|   if (dyn_castFixedAlloca(&I)) return;
 | |
|   
 | |
|   // Find the data size of the alloca inst's getAllocatedType.
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
| 
 | |
|   // Create a register to hold the temporary result of multiplying the type size
 | |
|   // constant by the variable amount.
 | |
|   unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   
 | |
|   // TotalSizeReg = mul <numelements>, <TypeSize>
 | |
|   MachineBasicBlock::iterator MBBI = BB->end();
 | |
|   ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
 | |
|   doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
 | |
| 
 | |
|   // AddedSize = add <TotalSizeReg>, 15
 | |
|   unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
 | |
| 
 | |
|   // AlignedSize = and <AddedSize>, ~15
 | |
|   unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
 | |
|     .addImm(0).addImm(27);
 | |
|   
 | |
|   // Subtract size from stack pointer, thereby allocating some space.
 | |
|   BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
 | |
| 
 | |
|   // Put a pointer to the space into the result register, by copying
 | |
|   // the stack pointer.
 | |
|   BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   F->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| /// visitMallocInst - Malloc instructions are code generated into direct calls
 | |
| /// to the library malloc.
 | |
| ///
 | |
| void ISel::visitMallocInst(MallocInst &I) {
 | |
|   unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | |
|   unsigned Arg;
 | |
| 
 | |
|   if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | |
|     Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | |
|   } else {
 | |
|     Arg = makeAnotherReg(Type::UIntTy);
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
 | |
|     doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | |
|   MachineInstr *TheCall = 
 | |
|     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
 | |
|   doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
 | |
|   TM.CalledFunctions.insert(mallocFn);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc
 | |
| /// function.
 | |
| ///
 | |
| void ISel::visitFreeInst(FreeInst &I) {
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|   MachineInstr *TheCall = 
 | |
|     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
 | |
|   doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
 | |
|   TM.CalledFunctions.insert(freeFn);
 | |
| }
 | |
|    
 | |
| /// createPPC64ISelSimple - This pass converts an LLVM function into a machine
 | |
| /// code representation is a very simple peep-hole fashion.
 | |
| ///
 | |
| FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 |