mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	(A <setcc1> B) logicalop (A <setcc2> B) -> (A <setcc3> B) or true or false Where setcc[123] is one of the 6 setcc instructions, and logicalop is one of: And, Or, Xor git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7828 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1908 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1908 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG This pass is where algebraic
 | |
| // simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add int 1, %X
 | |
| //    %Z = add int 1, %Y
 | |
| // into:
 | |
| //    %Z = add int 2, %X
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following cannonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All SetCC instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //    N. This list is incomplete
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/ConstantHandling.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumCombined ("instcombine", "Number of insts combined");
 | |
|   Statistic<> NumConstProp("instcombine", "Number of constant folds");
 | |
|   Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
 | |
| 
 | |
|   class InstCombiner : public FunctionPass,
 | |
|                        public InstVisitor<InstCombiner, Instruction*> {
 | |
|     // Worklist of all of the instructions that need to be simplified.
 | |
|     std::vector<Instruction*> WorkList;
 | |
| 
 | |
|     void AddUsesToWorkList(Instruction &I) {
 | |
|       // The instruction was simplified, add all users of the instruction to
 | |
|       // the work lists because they might get more simplified now...
 | |
|       //
 | |
|       for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|            UI != UE; ++UI)
 | |
|         WorkList.push_back(cast<Instruction>(*UI));
 | |
|     }
 | |
| 
 | |
|     // removeFromWorkList - remove all instances of I from the worklist.
 | |
|     void removeFromWorkList(Instruction *I);
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     // Visitation implementation - Implement instruction combining for different
 | |
|     // instruction types.  The semantics are as follows:
 | |
|     // Return Value:
 | |
|     //    null        - No change was made
 | |
|     //     I          - Change was made, I is still valid, I may be dead though
 | |
|     //   otherwise    - Change was made, replace I with returned instruction
 | |
|     //   
 | |
|     Instruction *visitAdd(BinaryOperator &I);
 | |
|     Instruction *visitSub(BinaryOperator &I);
 | |
|     Instruction *visitMul(BinaryOperator &I);
 | |
|     Instruction *visitDiv(BinaryOperator &I);
 | |
|     Instruction *visitRem(BinaryOperator &I);
 | |
|     Instruction *visitAnd(BinaryOperator &I);
 | |
|     Instruction *visitOr (BinaryOperator &I);
 | |
|     Instruction *visitXor(BinaryOperator &I);
 | |
|     Instruction *visitSetCondInst(BinaryOperator &I);
 | |
|     Instruction *visitShiftInst(ShiftInst &I);
 | |
|     Instruction *visitCastInst(CastInst &CI);
 | |
|     Instruction *visitCallInst(CallInst &CI);
 | |
|     Instruction *visitInvokeInst(InvokeInst &II);
 | |
|     Instruction *visitPHINode(PHINode &PN);
 | |
|     Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     Instruction *visitAllocationInst(AllocationInst &AI);
 | |
|     Instruction *visitLoadInst(LoadInst &LI);
 | |
|     Instruction *visitBranchInst(BranchInst &BI);
 | |
| 
 | |
|     // visitInstruction - Specify what to return for unhandled instructions...
 | |
|     Instruction *visitInstruction(Instruction &I) { return 0; }
 | |
| 
 | |
|   private:
 | |
|     bool transformConstExprCastCall(CallSite CS);
 | |
| 
 | |
|     // InsertNewInstBefore - insert an instruction New before instruction Old
 | |
|     // in the program.  Add the new instruction to the worklist.
 | |
|     //
 | |
|     void InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | |
|       assert(New && New->getParent() == 0 &&
 | |
|              "New instruction already inserted into a basic block!");
 | |
|       BasicBlock *BB = Old.getParent();
 | |
|       BB->getInstList().insert(&Old, New);  // Insert inst
 | |
|       WorkList.push_back(New);              // Add to worklist
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     // ReplaceInstUsesWith - This method is to be used when an instruction is
 | |
|     // found to be dead, replacable with another preexisting expression.  Here
 | |
|     // we add all uses of I to the worklist, replace all uses of I with the new
 | |
|     // value, then return I, so that the inst combiner will know that I was
 | |
|     // modified.
 | |
|     //
 | |
|     Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | |
|       AddUsesToWorkList(I);         // Add all modified instrs to worklist
 | |
|       I.replaceAllUsesWith(V);
 | |
|       return &I;
 | |
|     }
 | |
|   private:
 | |
|     /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
|     /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
|     /// casts that are known to not do anything...
 | |
|     ///
 | |
|     Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                    Instruction *InsertBefore);
 | |
| 
 | |
|     // SimplifyCommutative - This performs a few simplifications for commutative
 | |
|     // operators...
 | |
|     bool SimplifyCommutative(BinaryOperator &I);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
 | |
| }
 | |
| 
 | |
| // getComplexity:  Assign a complexity or rank value to LLVM Values...
 | |
| //   0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
 | |
| static unsigned getComplexity(Value *V) {
 | |
|   if (isa<Instruction>(V)) {
 | |
|     if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | |
|       return 2;
 | |
|     return 3;
 | |
|   }
 | |
|   if (isa<Argument>(V)) return 2;
 | |
|   return isa<Constant>(V) ? 0 : 1;
 | |
| }
 | |
| 
 | |
| // isOnlyUse - Return true if this instruction will be deleted if we stop using
 | |
| // it.
 | |
| static bool isOnlyUse(Value *V) {
 | |
|   return V->use_size() == 1 || isa<Constant>(V);
 | |
| }
 | |
| 
 | |
| // SimplifyCommutative - This performs a few simplifications for commutative
 | |
| // operators:
 | |
| //
 | |
| //  1. Order operands such that they are listed from right (least complex) to
 | |
| //     left (most complex).  This puts constants before unary operators before
 | |
| //     binary operators.
 | |
| //
 | |
| //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | |
| //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
| //
 | |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | |
|   bool Changed = false;
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | |
|     Changed = !I.swapOperands();
 | |
|   
 | |
|   if (!I.isAssociative()) return Changed;
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | |
|     if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | |
|       if (isa<Constant>(I.getOperand(1))) {
 | |
|         Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | |
|                                              cast<Constant>(I.getOperand(1)),
 | |
|                                              cast<Constant>(Op->getOperand(1)));
 | |
|         I.setOperand(0, Op->getOperand(0));
 | |
|         I.setOperand(1, Folded);
 | |
|         return true;
 | |
|       } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | |
|         if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | |
|             isOnlyUse(Op) && isOnlyUse(Op1)) {
 | |
|           Constant *C1 = cast<Constant>(Op->getOperand(1));
 | |
|           Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|           // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
|           Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | |
|           Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | |
|                                                     Op1->getOperand(0),
 | |
|                                                     Op1->getName(), &I);
 | |
|           WorkList.push_back(New);
 | |
|           I.setOperand(0, New);
 | |
|           I.setOperand(1, Folded);
 | |
|           return true;
 | |
|         }      
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | |
| // if the LHS is a constant zero (which is the 'negate' form).
 | |
| //
 | |
| static inline Value *dyn_castNegVal(Value *V) {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded...
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::get(Instruction::Sub,
 | |
|                              Constant::getNullValue(V->getType()), C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   if (BinaryOperator::isNot(V))
 | |
|     return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
 | |
|     return ConstantExpr::get(Instruction::Xor,
 | |
|                              ConstantIntegral::getAllOnesValue(C->getType()),C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into
 | |
| // other computations (because it has a constant operand), return the
 | |
| // non-constant operand of the multiply.
 | |
| //
 | |
| static inline Value *dyn_castFoldableMul(Value *V) {
 | |
|   if (V->use_size() == 1 && V->getType()->isInteger())
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|       if (I->getOpcode() == Instruction::Mul)
 | |
|         if (isa<Constant>(I->getOperand(1)))
 | |
|           return I->getOperand(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castMaskingAnd - If this value is an And instruction masking a value with
 | |
| // a constant, return the constant being anded with.
 | |
| //
 | |
| template<class ValueType>
 | |
| static inline Constant *dyn_castMaskingAnd(ValueType *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (I->getOpcode() == Instruction::And)
 | |
|       return dyn_cast<Constant>(I->getOperand(1));
 | |
| 
 | |
|   // If this is a constant, it acts just like we were masking with it.
 | |
|   return dyn_cast<Constant>(V);
 | |
| }
 | |
| 
 | |
| // Log2 - Calculate the log base 2 for the specified value if it is exactly a
 | |
| // power of 2.
 | |
| static unsigned Log2(uint64_t Val) {
 | |
|   assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     if (Val & 1) return 0;    // Multiple bits set?
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AssociativeOpt - Perform an optimization on an associative operator.  This
 | |
| /// function is designed to check a chain of associative operators for a
 | |
| /// potential to apply a certain optimization.  Since the optimization may be
 | |
| /// applicable if the expression was reassociated, this checks the chain, then
 | |
| /// reassociates the expression as necessary to expose the optimization
 | |
| /// opportunity.  This makes use of a special Functor, which must define
 | |
| /// 'shouldApply' and 'apply' methods.
 | |
| ///
 | |
| template<typename Functor>
 | |
| Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | |
|   unsigned Opcode = Root.getOpcode();
 | |
|   Value *LHS = Root.getOperand(0);
 | |
| 
 | |
|   // Quick check, see if the immediate LHS matches...
 | |
|   if (F.shouldApply(LHS))
 | |
|     return F.apply(Root);
 | |
| 
 | |
|   // Otherwise, if the LHS is not of the same opcode as the root, return.
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   while (LHSI && LHSI->getOpcode() == Opcode && LHSI->use_size() == 1) {
 | |
|     // Should we apply this transform to the RHS?
 | |
|     bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | |
| 
 | |
|     // If not to the RHS, check to see if we should apply to the LHS...
 | |
|     if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | |
|       cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | |
|       ShouldApply = true;
 | |
|     }
 | |
| 
 | |
|     // If the functor wants to apply the optimization to the RHS of LHSI,
 | |
|     // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | |
|     if (ShouldApply) {
 | |
|       BasicBlock *BB = Root.getParent();
 | |
|       // All of the instructions have a single use and have no side-effects,
 | |
|       // because of this, we can pull them all into the current basic block.
 | |
|       if (LHSI->getParent() != BB) {
 | |
|         // Move all of the instructions from root to LHSI into the current
 | |
|         // block.
 | |
|         Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | |
|         Instruction *LastUse = &Root;
 | |
|         while (TmpLHSI->getParent() == BB) {
 | |
|           LastUse = TmpLHSI;
 | |
|           TmpLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | |
|         }
 | |
|         
 | |
|         // Loop over all of the instructions in other blocks, moving them into
 | |
|         // the current one.
 | |
|         Value *TmpLHS = TmpLHSI;
 | |
|         do {
 | |
|           TmpLHSI = cast<Instruction>(TmpLHS);
 | |
|           // Remove from current block...
 | |
|           TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | |
|           // Insert before the last instruction...
 | |
|           BB->getInstList().insert(LastUse, TmpLHSI);
 | |
|           TmpLHS = TmpLHSI->getOperand(0);
 | |
|         } while (TmpLHSI != LHSI);
 | |
|       }
 | |
|       
 | |
|       // Now all of the instructions are in the current basic block, go ahead
 | |
|       // and perform the reassociation.
 | |
|       Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | |
| 
 | |
|       // First move the selected RHS to the LHS of the root...
 | |
|       Root.setOperand(0, LHSI->getOperand(1));
 | |
| 
 | |
|       // Make what used to be the LHS of the root be the user of the root...
 | |
|       Value *ExtraOperand = TmpLHSI->getOperand(1);
 | |
|       Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | |
|       TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | |
|       BB->getInstList().remove(&Root);           // Remove root from the BB
 | |
|       BB->getInstList().insert(TmpLHSI, &Root);  // Insert root before TmpLHSI
 | |
| 
 | |
|       // Now propagate the ExtraOperand down the chain of instructions until we
 | |
|       // get to LHSI.
 | |
|       while (TmpLHSI != LHSI) {
 | |
|         Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | |
|         Value *NextOp = NextLHSI->getOperand(1);
 | |
|         NextLHSI->setOperand(1, ExtraOperand);
 | |
|         TmpLHSI = NextLHSI;
 | |
|         ExtraOperand = NextOp;
 | |
|       }
 | |
|       
 | |
|       // Now that the instructions are reassociated, have the functor perform
 | |
|       // the transformation...
 | |
|       return F.apply(Root);
 | |
|     }
 | |
|     
 | |
|     LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // AddRHS - Implements: X + X --> X << 1
 | |
| struct AddRHS {
 | |
|   Value *RHS;
 | |
|   AddRHS(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return new ShiftInst(Instruction::Shl, Add.getOperand(0),
 | |
|                          ConstantInt::get(Type::UByteTy, 1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | |
| //                 iff C1&C2 == 0
 | |
| struct AddMaskingAnd {
 | |
|   Constant *C2;
 | |
|   AddMaskingAnd(Constant *c) : C2(c) {}
 | |
|   bool shouldApply(Value *LHS) const {
 | |
|     if (Constant *C1 = dyn_castMaskingAnd(LHS))
 | |
|       return ConstantExpr::get(Instruction::And, C1, C2)->isNullValue();
 | |
|     return false;
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return BinaryOperator::create(Instruction::Or, Add.getOperand(0),
 | |
|                                   Add.getOperand(1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   // X + 0 --> X
 | |
|   if (RHS == Constant::getNullValue(I.getType()))
 | |
|     return ReplaceInstUsesWith(I, LHS);
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (I.getType()->isInteger())
 | |
|     if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   if (Value *V = dyn_castNegVal(LHS))
 | |
|     return BinaryOperator::create(Instruction::Sub, RHS, V);
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::create(Instruction::Sub, LHS, V);
 | |
| 
 | |
|   // X*C + X --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(LHS) == RHS) {
 | |
|     Constant *CP1 =
 | |
|       ConstantExpr::get(Instruction::Add, 
 | |
|                         cast<Constant>(cast<Instruction>(LHS)->getOperand(1)),
 | |
|                         ConstantInt::get(I.getType(), 1));
 | |
|     return BinaryOperator::create(Instruction::Mul, RHS, CP1);
 | |
|   }
 | |
| 
 | |
|   // X + X*C --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(RHS) == LHS) {
 | |
|     Constant *CP1 =
 | |
|       ConstantExpr::get(Instruction::Add,
 | |
|                         cast<Constant>(cast<Instruction>(RHS)->getOperand(1)),
 | |
|                         ConstantInt::get(I.getType(), 1));
 | |
|     return BinaryOperator::create(Instruction::Mul, LHS, CP1);
 | |
|   }
 | |
| 
 | |
|   // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|   if (Constant *C2 = dyn_castMaskingAnd(RHS))
 | |
|     if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // isSignBit - Return true if the value represented by the constant only has the
 | |
| // highest order bit set.
 | |
| static bool isSignBit(ConstantInt *CI) {
 | |
|   unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | |
|   return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
 | |
| }
 | |
| 
 | |
| static unsigned getTypeSizeInBits(const Type *Ty) {
 | |
|   return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Op0 == Op1)         // sub X, X  -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castNegVal(Op1))
 | |
|     return BinaryOperator::create(Instruction::Add, Op0, V);
 | |
| 
 | |
|   // Replace (-1 - A) with (~A)...
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0))
 | |
|     if (C->isAllOnesValue())
 | |
|       return BinaryOperator::createNot(Op1);
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
 | |
|     if (Op1I->use_size() == 1) {
 | |
|       // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | |
|       // is not used by anyone else...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::Sub) {
 | |
|         // Swap the two operands of the subexpr...
 | |
|         Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | |
|         Op1I->setOperand(0, IIOp1);
 | |
|         Op1I->setOperand(1, IIOp0);
 | |
|         
 | |
|         // Create the new top level add instruction...
 | |
|         return BinaryOperator::create(Instruction::Add, Op0, Op1);
 | |
|       }
 | |
| 
 | |
|       // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::And &&
 | |
|           (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | |
|         Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | |
| 
 | |
|         Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I);
 | |
|         return BinaryOperator::create(Instruction::And, Op0, NewNot);
 | |
|       }
 | |
| 
 | |
|       // X - X*C --> X * (1-C)
 | |
|       if (dyn_castFoldableMul(Op1I) == Op0) {
 | |
|         Constant *CP1 =
 | |
|           ConstantExpr::get(Instruction::Sub,
 | |
|                             ConstantInt::get(I.getType(), 1),
 | |
|                          cast<Constant>(cast<Instruction>(Op1)->getOperand(1)));
 | |
|         assert(CP1 && "Couldn't constant fold 1-C?");
 | |
|         return BinaryOperator::create(Instruction::Mul, Op0, CP1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // X*C - X --> X * (C-1)
 | |
|   if (dyn_castFoldableMul(Op0) == Op1) {
 | |
|     Constant *CP1 =
 | |
|       ConstantExpr::get(Instruction::Sub,
 | |
|                         cast<Constant>(cast<Instruction>(Op0)->getOperand(1)),
 | |
|                         ConstantInt::get(I.getType(), 1));
 | |
|     assert(CP1 && "Couldn't constant fold C - 1?");
 | |
|     return BinaryOperator::create(Instruction::Mul, Op1, CP1);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0);
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS...
 | |
|   if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
| 
 | |
|       // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|       if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
 | |
|         if (SI->getOpcode() == Instruction::Shl)
 | |
|           if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|             return BinaryOperator::create(Instruction::Mul, SI->getOperand(0),
 | |
|                                           *CI << *ShOp);
 | |
| 
 | |
|       const Type *Ty = CI->getType();
 | |
|       int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
 | |
|       switch (Val) {
 | |
|       case -1:                               // X * -1 -> -X
 | |
|         return BinaryOperator::createNeg(Op0, I.getName());
 | |
|       case 0:
 | |
|         return ReplaceInstUsesWith(I, Op1);  // Eliminate 'mul double %X, 0'
 | |
|       case 1:
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul int %X, 1'
 | |
|       }
 | |
| 
 | |
|       if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
 | |
|         return new ShiftInst(Instruction::Shl, Op0,
 | |
|                              ConstantUInt::get(Type::UByteTy, C));
 | |
|     } else {
 | |
|       ConstantFP *Op1F = cast<ConstantFP>(Op1);
 | |
|       if (Op1F->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | |
|       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | |
|       if (Op1F->getValue() == 1.0)
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | |
|       return BinaryOperator::create(Instruction::Mul, Op0v, Op1v);
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
 | |
|   // div X, 1 == X
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | |
|     if (RHS->equalsInt(1))
 | |
|       return ReplaceInstUsesWith(I, I.getOperand(0));
 | |
| 
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (uint64_t Val = C->getValue())    // Don't break X / 0
 | |
|         if (uint64_t C = Log2(Val))
 | |
|           return new ShiftInst(Instruction::Shr, I.getOperand(0),
 | |
|                                ConstantUInt::get(Type::UByteTy, C));
 | |
|   }
 | |
| 
 | |
|   // 0 / X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitRem(BinaryOperator &I) {
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | |
|     if (RHS->equalsInt(1))  // X % 1 == 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|     // Check to see if this is an unsigned remainder with an exact power of 2,
 | |
|     // if so, convert to a bitwise and.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
 | |
|         if (Log2(Val))
 | |
|           return BinaryOperator::create(Instruction::And, I.getOperand(0),
 | |
|                                         ConstantUInt::get(I.getType(), Val-1));
 | |
|   }
 | |
| 
 | |
|   // 0 % X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // isMaxValueMinusOne - return true if this is Max-1
 | |
| static bool isMaxValueMinusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
 | |
|     // Calculate -1 casted to the right type...
 | |
|     unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|     uint64_t Val = ~0ULL;                // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return CU->getValue() == Val-1;
 | |
|   }
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
|   
 | |
|   // Calculate 0111111111..11111
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|   int64_t Val = INT64_MAX;             // All ones
 | |
|   Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|   return CS->getValue() == Val-1;
 | |
| }
 | |
| 
 | |
| // isMinValuePlusOne - return true if this is Min+1
 | |
| static bool isMinValuePlusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|     return CU->getValue() == 1;
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
|   
 | |
|   // Calculate 1111111111000000000000 
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|   int64_t Val = -1;                    // All ones
 | |
|   Val <<= TypeBits-1;                  // Shift over to the right spot
 | |
|   return CS->getValue() == Val+1;
 | |
| }
 | |
| 
 | |
| /// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
 | |
| /// are carefully arranged to allow folding of expressions such as:
 | |
| ///
 | |
| ///      (A < B) | (A > B) --> (A != B)
 | |
| ///
 | |
| /// Bit value '4' represents that the comparison is true if A > B, bit value '2'
 | |
| /// represents that the comparison is true if A == B, and bit value '1' is true
 | |
| /// if A < B.
 | |
| ///
 | |
| static unsigned getSetCondCode(const SetCondInst *SCI) {
 | |
|   switch (SCI->getOpcode()) {
 | |
|     // False -> 0
 | |
|   case Instruction::SetGT: return 1;
 | |
|   case Instruction::SetEQ: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetLT: return 4;
 | |
|   case Instruction::SetNE: return 5;
 | |
|   case Instruction::SetLE: return 6;
 | |
|     // True -> 7
 | |
|   default:
 | |
|     assert(0 && "Invalid SetCC opcode!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCValue - This is the complement of getSetCondCode, which turns an
 | |
| /// opcode and two operands into either a constant true or false, or a brand new
 | |
| /// SetCC instruction.
 | |
| static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
 | |
|   switch (Opcode) {
 | |
|   case 0: return ConstantBool::False;
 | |
|   case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
 | |
|   case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
 | |
|   case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
 | |
|   case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
 | |
|   case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
 | |
|   case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
 | |
|   case 7: return ConstantBool::True;
 | |
|   default: assert(0 && "Illegal SetCCCode!"); return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
| struct FoldSetCCLogical {
 | |
|   InstCombiner &IC;
 | |
|   Value *LHS, *RHS;
 | |
|   FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
 | |
|     : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
 | |
|   bool shouldApply(Value *V) const {
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|       return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
 | |
|               SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
 | |
|     return false;
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Log) const {
 | |
|     SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
 | |
|     if (SCI->getOperand(0) != LHS) {
 | |
|       assert(SCI->getOperand(1) == LHS);
 | |
|       SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
 | |
|     }
 | |
| 
 | |
|     unsigned LHSCode = getSetCondCode(SCI);
 | |
|     unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
 | |
|     unsigned Code;
 | |
|     switch (Log.getOpcode()) {
 | |
|     case Instruction::And: Code = LHSCode & RHSCode; break;
 | |
|     case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | |
|     case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | |
|     default: assert(0 && "Illegal logical opcode!");
 | |
|     }
 | |
| 
 | |
|     Value *RV = getSetCCValue(Code, LHS, RHS);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(RV))
 | |
|       return I;
 | |
|     // Otherwise, it's a constant boolean value...
 | |
|     return IC.ReplaceInstUsesWith(Log, RV);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // and X, X = X   and X, 0 == 0
 | |
|   if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | |
|     return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|   // and X, -1 == X
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       Value *X = Op0I->getOperand(0);
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Op0I->getOpcode() == Instruction::Xor) {
 | |
|           if ((*RHS & *Op0CI)->isNullValue()) {
 | |
|             // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
 | |
|             return BinaryOperator::create(Instruction::And, X, RHS);
 | |
|           } else if (isOnlyUse(Op0)) {
 | |
|             // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|             std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | |
|             Instruction *And = BinaryOperator::create(Instruction::And,
 | |
|                                                       X, RHS, Op0Name);
 | |
|             InsertNewInstBefore(And, I);
 | |
|             return BinaryOperator::create(Instruction::Xor, And, *RHS & *Op0CI);
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
 | |
|           if ((*RHS & *Op0CI)->isNullValue())
 | |
|             return BinaryOperator::create(Instruction::And, X, RHS);
 | |
| 
 | |
|           Constant *Together = *RHS & *Op0CI;
 | |
|           if (Together == RHS) // (X | C) & C --> C
 | |
|             return ReplaceInstUsesWith(I, RHS);
 | |
| 
 | |
|           if (isOnlyUse(Op0)) {
 | |
|             if (Together != Op0CI) {
 | |
|               // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|               std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | |
|               Instruction *Or = BinaryOperator::create(Instruction::Or, X,
 | |
|                                                        Together, Op0Name);
 | |
|               InsertNewInstBefore(Or, I);
 | |
|               return BinaryOperator::create(Instruction::And, Or, RHS);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *Op0NotVal = dyn_castNotVal(Op0);
 | |
|   Value *Op1NotVal = dyn_castNotVal(Op1);
 | |
| 
 | |
|   // (~A & ~B) == (~(A | B)) - Demorgan's Law
 | |
|   if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|     Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal,
 | |
|                                              Op1NotVal,I.getName()+".demorgan");
 | |
|     InsertNewInstBefore(Or, I);
 | |
|     return BinaryOperator::createNot(Or);
 | |
|   }
 | |
| 
 | |
|   if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // or X, X = X   or X, 0 == X
 | |
|   if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // or X, -1 == -1
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|       if (Op0I->getOpcode() == Instruction::And && isOnlyUse(Op0))
 | |
|         if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|           std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | |
|           Instruction *Or = BinaryOperator::create(Instruction::Or,
 | |
|                                                    Op0I->getOperand(0), RHS,
 | |
|                                                    Op0Name);
 | |
|           InsertNewInstBefore(Or, I);
 | |
|           return BinaryOperator::create(Instruction::And, Or, *RHS | *Op0CI);
 | |
|         }
 | |
| 
 | |
|       // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|       if (Op0I->getOpcode() == Instruction::Xor && isOnlyUse(Op0))
 | |
|         if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|           std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | |
|           Instruction *Or = BinaryOperator::create(Instruction::Or,
 | |
|                                                    Op0I->getOperand(0), RHS,
 | |
|                                                    Op0Name);
 | |
|           InsertNewInstBefore(Or, I);
 | |
|           return BinaryOperator::create(Instruction::Xor, Or, *Op0CI & *~*RHS);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (A & C1)|(A & C2) == A & (C1|C2)
 | |
|   if (Instruction *LHS = dyn_cast<BinaryOperator>(Op0))
 | |
|     if (Instruction *RHS = dyn_cast<BinaryOperator>(Op1))
 | |
|       if (LHS->getOperand(0) == RHS->getOperand(0))
 | |
|         if (Constant *C0 = dyn_castMaskingAnd(LHS))
 | |
|           if (Constant *C1 = dyn_castMaskingAnd(RHS))
 | |
|             return BinaryOperator::create(Instruction::And, LHS->getOperand(0),
 | |
|                                           *C0 | *C1);            
 | |
| 
 | |
|   Value *Op0NotVal = dyn_castNotVal(Op0);
 | |
|   Value *Op1NotVal = dyn_castNotVal(Op1);
 | |
| 
 | |
|   if (Op1 == Op0NotVal)   // ~A | A == -1
 | |
|     return ReplaceInstUsesWith(I, 
 | |
|                                ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Op0 == Op1NotVal)   // A | ~A == -1
 | |
|     return ReplaceInstUsesWith(I, 
 | |
|                                ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   // (~A | ~B) == (~(A & B)) - Demorgan's Law
 | |
|   if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|     Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal,
 | |
|                                               Op1NotVal,I.getName()+".demorgan",
 | |
|                                               &I);
 | |
|     WorkList.push_back(And);
 | |
|     return BinaryOperator::createNot(And);
 | |
|   }
 | |
| 
 | |
|   // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // xor X, X = 0
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     // xor X, 0 == X
 | |
|     if (RHS->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
 | |
|       if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
 | |
|         if (RHS == ConstantBool::True && SCI->use_size() == 1)
 | |
|           return new SetCondInst(SCI->getInverseCondition(),
 | |
|                                  SCI->getOperand(0), SCI->getOperand(1));
 | |
|           
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Op0I->getOpcode() == Instruction::And) {
 | |
|           // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
 | |
|           if ((*RHS & *Op0CI)->isNullValue())
 | |
|             return BinaryOperator::create(Instruction::Or, Op0, RHS);
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|           if ((*RHS & *Op0CI) == RHS)
 | |
|             return BinaryOperator::create(Instruction::And, Op0, ~*RHS);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | |
|     if (X == Op1)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | |
|     if (X == Op0)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
 | |
|     if (Op1I->getOpcode() == Instruction::Or)
 | |
|       if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         cast<BinaryOperator>(Op1I)->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
| 
 | |
|   if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
 | |
|     if (Op0I->getOpcode() == Instruction::Or && Op0I->use_size() == 1) {
 | |
|       if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | |
|         cast<BinaryOperator>(Op0I)->swapOperands();
 | |
|       if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | |
|         Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I);
 | |
|         WorkList.push_back(cast<Instruction>(NotB));
 | |
|         return BinaryOperator::create(Instruction::And, Op0I->getOperand(0),
 | |
|                                       NotB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
 | |
|   if (Constant *C1 = dyn_castMaskingAnd(Op0))
 | |
|     if (Constant *C2 = dyn_castMaskingAnd(Op1))
 | |
|       if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue())
 | |
|         return BinaryOperator::create(Instruction::Or, Op0, Op1);
 | |
| 
 | |
|   // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | |
| static Constant *AddOne(ConstantInt *C) {
 | |
|   Constant *Result = ConstantExpr::get(Instruction::Add, C,
 | |
|                                        ConstantInt::get(C->getType(), 1));
 | |
|   assert(Result && "Constant folding integer addition failed!");
 | |
|   return Result;
 | |
| }
 | |
| static Constant *SubOne(ConstantInt *C) {
 | |
|   Constant *Result = ConstantExpr::get(Instruction::Sub, C,
 | |
|                                        ConstantInt::get(C->getType(), 1));
 | |
|   assert(Result && "Constant folding integer addition failed!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // isTrueWhenEqual - Return true if the specified setcondinst instruction is
 | |
| // true when both operands are equal...
 | |
| //
 | |
| static bool isTrueWhenEqual(Instruction &I) {
 | |
|   return I.getOpcode() == Instruction::SetEQ ||
 | |
|          I.getOpcode() == Instruction::SetGE ||
 | |
|          I.getOpcode() == Instruction::SetLE;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const Type *Ty = Op0->getType();
 | |
| 
 | |
|   // setcc X, X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
 | |
| 
 | |
|   // setcc <global/alloca*>, 0 - Global/Stack value addresses are never null!
 | |
|   if (isa<ConstantPointerNull>(Op1) && 
 | |
|       (isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0)))
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
 | |
| 
 | |
| 
 | |
|   // setcc's with boolean values can always be turned into bitwise operations
 | |
|   if (Ty == Type::BoolTy) {
 | |
|     // If this is <, >, or !=, we can change this into a simple xor instruction
 | |
|     if (!isTrueWhenEqual(I))
 | |
|       return BinaryOperator::create(Instruction::Xor, Op0, Op1, I.getName());
 | |
| 
 | |
|     // Otherwise we need to make a temporary intermediate instruction and insert
 | |
|     // it into the instruction stream.  This is what we are after:
 | |
|     //
 | |
|     //  seteq bool %A, %B -> ~(A^B)
 | |
|     //  setle bool %A, %B -> ~A | B
 | |
|     //  setge bool %A, %B -> A | ~B
 | |
|     //
 | |
|     if (I.getOpcode() == Instruction::SetEQ) {  // seteq case
 | |
|       Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1,
 | |
|                                                 I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Xor, I);
 | |
|       return BinaryOperator::createNot(Xor, I.getName());
 | |
|     }
 | |
| 
 | |
|     // Handle the setXe cases...
 | |
|     assert(I.getOpcode() == Instruction::SetGE ||
 | |
|            I.getOpcode() == Instruction::SetLE);
 | |
| 
 | |
|     if (I.getOpcode() == Instruction::SetGE)
 | |
|       std::swap(Op0, Op1);                   // Change setge -> setle
 | |
| 
 | |
|     // Now we just have the SetLE case.
 | |
|     Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | |
|     InsertNewInstBefore(Not, I);
 | |
|     return BinaryOperator::create(Instruction::Or, Not, Op1, I.getName());
 | |
|   }
 | |
| 
 | |
|   // Check to see if we are doing one of many comparisons against constant
 | |
|   // integers at the end of their ranges...
 | |
|   //
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // Simplify seteq and setne instructions...
 | |
|     if (I.getOpcode() == Instruction::SetEQ ||
 | |
|         I.getOpcode() == Instruction::SetNE) {
 | |
|       bool isSetNE = I.getOpcode() == Instruction::SetNE;
 | |
| 
 | |
|       // If the first operand is (and|or|xor) with a constant, and the second
 | |
|       // operand is a constant, simplify a bit.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|         switch (BO->getOpcode()) {
 | |
|         case Instruction::Add:
 | |
|           if (CI->isNullValue()) {
 | |
|             // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|             // efficiently invertible, or if the add has just this one use.
 | |
|             Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
|             if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, NegVal);
 | |
|             else if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|               return new SetCondInst(I.getOpcode(), NegVal, BOp1);
 | |
|             else if (BO->use_size() == 1) {
 | |
|               Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | |
|               BO->setName("");
 | |
|               InsertNewInstBefore(Neg, I);
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, Neg);
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         case Instruction::Xor:
 | |
|           // For the xor case, we can xor two constants together, eliminating
 | |
|           // the explicit xor.
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|             return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
 | |
|                                           *CI ^ *BOC);
 | |
| 
 | |
|           // FALLTHROUGH
 | |
|         case Instruction::Sub:
 | |
|           // Replace (([sub|xor] A, B) != 0) with (A != B)
 | |
|           if (CI->isNullValue())
 | |
|             return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | |
|                                    BO->getOperand(1));
 | |
|           break;
 | |
| 
 | |
|         case Instruction::Or:
 | |
|           // If bits are being or'd in that are not present in the constant we
 | |
|           // are comparing against, then the comparison could never succeed!
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|             if (!(*BOC & *~*CI)->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
|           break;
 | |
| 
 | |
|         case Instruction::And:
 | |
|           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             // If bits are being compared against that are and'd out, then the
 | |
|             // comparison can never succeed!
 | |
|             if (!(*CI & *~*BOC)->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
| 
 | |
|             // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
 | |
|             // to be a signed value as appropriate.
 | |
|             if (isSignBit(BOC)) {
 | |
|               Value *X = BO->getOperand(0);
 | |
|               // If 'X' is not signed, insert a cast now...
 | |
|               if (!BOC->getType()->isSigned()) {
 | |
|                 const Type *DestTy;
 | |
|                 switch (BOC->getType()->getPrimitiveID()) {
 | |
|                 case Type::UByteTyID:  DestTy = Type::SByteTy; break;
 | |
|                 case Type::UShortTyID: DestTy = Type::ShortTy; break;
 | |
|                 case Type::UIntTyID:   DestTy = Type::IntTy;   break;
 | |
|                 case Type::ULongTyID:  DestTy = Type::LongTy;  break;
 | |
|                 default: assert(0 && "Invalid unsigned integer type!"); abort();
 | |
|                 }
 | |
|                 CastInst *NewCI = new CastInst(X,DestTy,X->getName()+".signed");
 | |
|                 InsertNewInstBefore(NewCI, I);
 | |
|                 X = NewCI;
 | |
|               }
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetLT :
 | |
|                                          Instruction::SetGE, X,
 | |
|                                      Constant::getNullValue(X->getType()));
 | |
|             }
 | |
|           }
 | |
|         default: break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check to see if we are comparing against the minimum or maximum value...
 | |
|     if (CI->isMinValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
 | |
|         return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName());
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
 | |
|         return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName());
 | |
| 
 | |
|     } else if (CI->isMaxValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
 | |
|         return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName());
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
 | |
|         return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName());
 | |
| 
 | |
|       // Comparing against a value really close to min or max?
 | |
|     } else if (isMinValuePlusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
 | |
|         return BinaryOperator::create(Instruction::SetEQ, Op0,
 | |
|                                       SubOne(CI), I.getName());
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
 | |
|         return BinaryOperator::create(Instruction::SetNE, Op0,
 | |
|                                       SubOne(CI), I.getName());
 | |
| 
 | |
|     } else if (isMaxValueMinusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
 | |
|         return BinaryOperator::create(Instruction::SetEQ, Op0,
 | |
|                                       AddOne(CI), I.getName());
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
 | |
|         return BinaryOperator::create(Instruction::SetNE, Op0,
 | |
|                                       AddOne(CI), I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
 | |
|   assert(I.getOperand(1)->getType() == Type::UByteTy);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
| 
 | |
|   // shl X, 0 == X and shr X, 0 == X
 | |
|   // shl 0, X == 0 and shr 0, X == 0
 | |
|   if (Op1 == Constant::getNullValue(Type::UByteTy) ||
 | |
|       Op0 == Constant::getNullValue(Op0->getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | |
|   if (!isLeftShift)
 | |
|     if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | |
|       if (CSI->isAllOnesValue())
 | |
|         return ReplaceInstUsesWith(I, CSI);
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
 | |
|     // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | |
|     // of a signed value.
 | |
|     //
 | |
|     unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
 | |
|     if (CUI->getValue() >= TypeBits &&
 | |
|         (!Op0->getType()->isSigned() || isLeftShift))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | |
| 
 | |
|     // ((X*C1) << C2) == (X * (C1 << C2))
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | |
|         if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|           return BinaryOperator::create(Instruction::Mul, BO->getOperand(0),
 | |
|                                         *BOOp << *CUI);
 | |
|     
 | |
| 
 | |
|     // If the operand is an bitwise operator with a constant RHS, and the
 | |
|     // shift is the only use, we can pull it out of the shift.
 | |
|     if (Op0->use_size() == 1)
 | |
|       if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
 | |
|         if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | |
|           bool isValid = true;     // Valid only for And, Or, Xor
 | |
|           bool highBitSet = false; // Transform if high bit of constant set?
 | |
| 
 | |
|           switch (Op0BO->getOpcode()) {
 | |
|           default: isValid = false; break;   // Do not perform transform!
 | |
|           case Instruction::Or:
 | |
|           case Instruction::Xor:
 | |
|             highBitSet = false;
 | |
|             break;
 | |
|           case Instruction::And:
 | |
|             highBitSet = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // If this is a signed shift right, and the high bit is modified
 | |
|           // by the logical operation, do not perform the transformation.
 | |
|           // The highBitSet boolean indicates the value of the high bit of
 | |
|           // the constant which would cause it to be modified for this
 | |
|           // operation.
 | |
|           //
 | |
|           if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
 | |
|             uint64_t Val = Op0C->getRawValue();
 | |
|             isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | |
|           }
 | |
| 
 | |
|           if (isValid) {
 | |
|             Constant *NewRHS =
 | |
|               ConstantFoldShiftInstruction(I.getOpcode(), Op0C, CUI);
 | |
| 
 | |
|             Instruction *NewShift =
 | |
|               new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
 | |
|                             Op0BO->getName());
 | |
|             Op0BO->setName("");
 | |
|             InsertNewInstBefore(NewShift, I);
 | |
| 
 | |
|             return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | |
|                                           NewRHS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     // If this is a shift of a shift, see if we can fold the two together...
 | |
|     if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
 | |
|       if (ConstantUInt *ShiftAmt1C =
 | |
|                                  dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
 | |
|         unsigned ShiftAmt1 = ShiftAmt1C->getValue();
 | |
|         unsigned ShiftAmt2 = CUI->getValue();
 | |
|         
 | |
|         // Check for (A << c1) << c2   and   (A >> c1) >> c2
 | |
|         if (I.getOpcode() == Op0SI->getOpcode()) {
 | |
|           unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
 | |
|           return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
 | |
|                                ConstantUInt::get(Type::UByteTy, Amt));
 | |
|         }
 | |
|         
 | |
|         // Check for (A << c1) >> c2 or visaversa.  If we are dealing with
 | |
|         // signed types, we can only support the (A >> c1) << c2 configuration,
 | |
|         // because it can not turn an arbitrary bit of A into a sign bit.
 | |
|         if (I.getType()->isUnsigned() || isLeftShift) {
 | |
|           // Calculate bitmask for what gets shifted off the edge...
 | |
|           Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
 | |
|           if (isLeftShift)
 | |
|             C = ConstantExpr::getShift(Instruction::Shl, C, ShiftAmt1C);
 | |
|           else
 | |
|             C = ConstantExpr::getShift(Instruction::Shr, C, ShiftAmt1C);
 | |
|           
 | |
|           Instruction *Mask =
 | |
|             BinaryOperator::create(Instruction::And, Op0SI->getOperand(0),
 | |
|                                    C, Op0SI->getOperand(0)->getName()+".mask");
 | |
|           InsertNewInstBefore(Mask, I);
 | |
|           
 | |
|           // Figure out what flavor of shift we should use...
 | |
|           if (ShiftAmt1 == ShiftAmt2)
 | |
|             return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
 | |
|           else if (ShiftAmt1 < ShiftAmt2) {
 | |
|             return new ShiftInst(I.getOpcode(), Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
 | |
|           } else {
 | |
|             return new ShiftInst(Op0SI->getOpcode(), Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // isEliminableCastOfCast - Return true if it is valid to eliminate the CI
 | |
| // instruction.
 | |
| //
 | |
| static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
 | |
|                                           const Type *DstTy) {
 | |
| 
 | |
|   // It is legal to eliminate the instruction if casting A->B->A if the sizes
 | |
|   // are identical and the bits don't get reinterpreted (for example 
 | |
|   // int->float->int would not be allowed)
 | |
|   if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
 | |
|     return true;
 | |
| 
 | |
|   // Allow free casting and conversion of sizes as long as the sign doesn't
 | |
|   // change...
 | |
|   if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
 | |
|     unsigned SrcSize = SrcTy->getPrimitiveSize();
 | |
|     unsigned MidSize = MidTy->getPrimitiveSize();
 | |
|     unsigned DstSize = DstTy->getPrimitiveSize();
 | |
| 
 | |
|     // Cases where we are monotonically decreasing the size of the type are
 | |
|     // always ok, regardless of what sign changes are going on.
 | |
|     //
 | |
|     if (SrcSize >= MidSize && MidSize >= DstSize)
 | |
|       return true;
 | |
| 
 | |
|     // Cases where the source and destination type are the same, but the middle
 | |
|     // type is bigger are noops.
 | |
|     //
 | |
|     if (SrcSize == DstSize && MidSize > SrcSize)
 | |
|       return true;
 | |
| 
 | |
|     // If we are monotonically growing, things are more complex.
 | |
|     //
 | |
|     if (SrcSize <= MidSize && MidSize <= DstSize) {
 | |
|       // We have eight combinations of signedness to worry about. Here's the
 | |
|       // table:
 | |
|       static const int SignTable[8] = {
 | |
|         // CODE, SrcSigned, MidSigned, DstSigned, Comment
 | |
|         1,     //   U          U          U       Always ok
 | |
|         1,     //   U          U          S       Always ok
 | |
|         3,     //   U          S          U       Ok iff SrcSize != MidSize
 | |
|         3,     //   U          S          S       Ok iff SrcSize != MidSize
 | |
|         0,     //   S          U          U       Never ok
 | |
|         2,     //   S          U          S       Ok iff MidSize == DstSize
 | |
|         1,     //   S          S          U       Always ok
 | |
|         1,     //   S          S          S       Always ok
 | |
|       };
 | |
| 
 | |
|       // Choose an action based on the current entry of the signtable that this
 | |
|       // cast of cast refers to...
 | |
|       unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
 | |
|       switch (SignTable[Row]) {
 | |
|       case 0: return false;              // Never ok
 | |
|       case 1: return true;               // Always ok
 | |
|       case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
 | |
|       case 3:                            // Ok iff SrcSize != MidSize
 | |
|         return SrcSize != MidSize || SrcTy == Type::BoolTy;
 | |
|       default: assert(0 && "Bad entry in sign table!");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we cannot succeed.  Specifically we do not want to allow things
 | |
|   // like:  short -> ushort -> uint, because this can create wrong results if
 | |
|   // the input short is negative!
 | |
|   //
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool ValueRequiresCast(const Value *V, const Type *Ty) {
 | |
|   if (V->getType() == Ty || isa<Constant>(V)) return false;
 | |
|   if (const CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
| /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
| /// casts that are known to not do anything...
 | |
| ///
 | |
| Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                              Instruction *InsertBefore) {
 | |
|   if (V->getType() == DestTy) return V;
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(C, DestTy);
 | |
| 
 | |
|   CastInst *CI = new CastInst(V, DestTy, V->getName());
 | |
|   InsertNewInstBefore(CI, *InsertBefore);
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| // CastInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitCastInst(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // If the user is casting a value to the same type, eliminate this cast
 | |
|   // instruction...
 | |
|   if (CI.getType() == Src->getType())
 | |
|     return ReplaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   // If casting the result of another cast instruction, try to eliminate this
 | |
|   // one!
 | |
|   //
 | |
|   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
 | |
|     if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
 | |
|                                CSrc->getType(), CI.getType())) {
 | |
|       // This instruction now refers directly to the cast's src operand.  This
 | |
|       // has a good chance of making CSrc dead.
 | |
|       CI.setOperand(0, CSrc->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
| 
 | |
|     // If this is an A->B->A cast, and we are dealing with integral types, try
 | |
|     // to convert this into a logical 'and' instruction.
 | |
|     //
 | |
|     if (CSrc->getOperand(0)->getType() == CI.getType() &&
 | |
|         CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
 | |
|         CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
 | |
|         CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
 | |
|       assert(CSrc->getType() != Type::ULongTy &&
 | |
|              "Cannot have type bigger than ulong!");
 | |
|       uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
 | |
|       Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
 | |
|       return BinaryOperator::create(Instruction::And, CSrc->getOperand(0),
 | |
|                                     AndOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If casting the result of a getelementptr instruction with no offset, turn
 | |
|   // this into a cast of the original pointer!
 | |
|   //
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     bool AllZeroOperands = true;
 | |
|     for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEP->getOperand(i)) ||
 | |
|           !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | |
|         AllZeroOperands = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeroOperands) {
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the source value is an instruction with only this use, we can attempt to
 | |
|   // propagate the cast into the instruction.  Also, only handle integral types
 | |
|   // for now.
 | |
|   if (Instruction *SrcI = dyn_cast<Instruction>(Src))
 | |
|     if (SrcI->use_size() == 1 && Src->getType()->isIntegral() &&
 | |
|         CI.getType()->isInteger()) {  // Don't mess with casts to bool here
 | |
|       const Type *DestTy = CI.getType();
 | |
|       unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
 | |
|       unsigned DestBitSize = getTypeSizeInBits(DestTy);
 | |
| 
 | |
|       Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | |
|       Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | |
| 
 | |
|       switch (SrcI->getOpcode()) {
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|         // If we are discarding information, or just changing the sign, rewrite.
 | |
|         if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | |
|           // Don't insert two casts if they cannot be eliminated.  We allow two
 | |
|           // casts to be inserted if the sizes are the same.  This could only be
 | |
|           // converting signedness, which is a noop.
 | |
|           if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy) ||
 | |
|               !ValueRequiresCast(Op0, DestTy)) {
 | |
|             Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|             Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
 | |
|             return BinaryOperator::create(cast<BinaryOperator>(SrcI)
 | |
|                              ->getOpcode(), Op0c, Op1c);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|         // Allow changing the sign of the source operand.  Do not allow changing
 | |
|         // the size of the shift, UNLESS the shift amount is a constant.  We
 | |
|         // mush not change variable sized shifts to a smaller size, because it
 | |
|         // is undefined to shift more bits out than exist in the value.
 | |
|         if (DestBitSize == SrcBitSize ||
 | |
|             (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | |
|           Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|           return new ShiftInst(Instruction::Shl, Op0c, Op1);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // CallInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   if (transformConstExprCastCall(&CI)) return 0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   if (transformConstExprCastCall(&II)) return 0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getPromotedType - Return the specified type promoted as it would be to pass
 | |
| // though a va_arg area...
 | |
| static const Type *getPromotedType(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:  return Type::IntTy;
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID: return Type::UIntTy;
 | |
|   case Type::FloatTyID:  return Type::DoubleTy;
 | |
|   default:               return Ty;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | |
| // attempt to move the cast to the arguments of the call/invoke.
 | |
| //
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | |
|   if (CE->getOpcode() != Instruction::Cast ||
 | |
|       !isa<ConstantPointerRef>(CE->getOperand(0)))
 | |
|     return false;
 | |
|   ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0));
 | |
|   if (!isa<Function>(CPR->getValue())) return false;
 | |
|   Function *Callee = cast<Function>(CPR->getValue());
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   const FunctionType *FT = Callee->getFunctionType();
 | |
|   const Type *OldRetTy = Caller->getType();
 | |
| 
 | |
|   if (Callee->isExternal() &&
 | |
|       !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()))
 | |
|     return false;   // Cannot transform this return value...
 | |
| 
 | |
|   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
|                                     
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
 | |
|     if (Callee->isExternal() && !isConvertible) return false;    
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | |
|       Callee->isExternal())
 | |
|     return false;   // Do not delete arguments unless we have a function body...
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary...
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Instruction *Cast = new CastInst(*AI, ParamTy, "tmp");
 | |
|       InsertNewInstBefore(Cast, *Caller);
 | |
|       Args.push_back(Cast);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now...
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning...
 | |
|   if (FT->getNumParams() < NumActualArgs)
 | |
|     if (!FT->isVarArg()) {
 | |
|       std::cerr << "WARNING: While resolving call to function '"
 | |
|                 << Callee->getName() << "' arguments were dropped!\n";
 | |
|     } else {
 | |
|       // Add all of the arguments in their promoted form to the arg list...
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         const Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction *Cast = new CastInst(*AI, PTy, "tmp");
 | |
|           InsertNewInstBefore(Cast, *Caller);
 | |
|           Args.push_back(Cast);
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (FT->getReturnType() == Type::VoidTy)
 | |
|     Caller->setName("");   // Void type should not have a name...
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = new InvokeInst(Callee, II->getNormalDest(), II->getExceptionalDest(),
 | |
|                         Args, Caller->getName(), Caller);
 | |
|   } else {
 | |
|     NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary...
 | |
|   Value *NV = NC;
 | |
|   if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | |
|     if (NV->getType() != Type::VoidTy) {
 | |
|       NV = NC = new CastInst(NC, Caller->getType(), "tmp");
 | |
|       InsertNewInstBefore(NC, *Caller);
 | |
|       AddUsesToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = Constant::getNullValue(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | |
|     Caller->replaceAllUsesWith(NV);
 | |
|   Caller->getParent()->getInstList().erase(Caller);
 | |
|   removeFromWorkList(Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // PHINode simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | |
|   // If the PHI node only has one incoming value, eliminate the PHI node...
 | |
|   if (PN.getNumIncomingValues() == 1)
 | |
|     return ReplaceInstUsesWith(PN, PN.getIncomingValue(0));
 | |
|   
 | |
|   // Otherwise if all of the incoming values are the same for the PHI, replace
 | |
|   // the PHI node with the incoming value.
 | |
|   //
 | |
|   Value *InVal = 0;
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN.getIncomingValue(i) != &PN)  // Not the PHI node itself...
 | |
|       if (InVal && PN.getIncomingValue(i) != InVal)
 | |
|         return 0;  // Not the same, bail out.
 | |
|       else
 | |
|         InVal = PN.getIncomingValue(i);
 | |
| 
 | |
|   // The only case that could cause InVal to be null is if we have a PHI node
 | |
|   // that only has entries for itself.  In this case, there is no entry into the
 | |
|   // loop, so kill the PHI.
 | |
|   //
 | |
|   if (InVal == 0) InVal = Constant::getNullValue(PN.getType());
 | |
| 
 | |
|   // All of the incoming values are the same, replace the PHI node now.
 | |
|   return ReplaceInstUsesWith(PN, InVal);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | |
|   // If so, eliminate the noop.
 | |
|   if ((GEP.getNumOperands() == 2 &&
 | |
|        GEP.getOperand(1) == Constant::getNullValue(Type::LongTy)) ||
 | |
|       GEP.getNumOperands() == 1)
 | |
|     return ReplaceInstUsesWith(GEP, GEP.getOperand(0));
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) {
 | |
|     std::vector<Value *> Indices;
 | |
|   
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (Src->getNumOperands() == 2 && isa<Constant>(Src->getOperand(1)) &&
 | |
|         isa<Constant>(GEP.getOperand(1))) {
 | |
|       // Replace: gep (gep %P, long C1), long C2, ...
 | |
|       // With:    gep %P, long (C1+C2), ...
 | |
|       Value *Sum = ConstantExpr::get(Instruction::Add,
 | |
|                                      cast<Constant>(Src->getOperand(1)),
 | |
|                                      cast<Constant>(GEP.getOperand(1)));
 | |
|       assert(Sum && "Constant folding of longs failed!?");
 | |
|       GEP.setOperand(0, Src->getOperand(0));
 | |
|       GEP.setOperand(1, Sum);
 | |
|       AddUsesToWorkList(*Src);   // Reduce use count of Src
 | |
|       return &GEP;
 | |
|     } else if (Src->getNumOperands() == 2) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *Sum = BinaryOperator::create(Instruction::Add, Src->getOperand(1),
 | |
|                                           GEP.getOperand(1),
 | |
|                                           Src->getName()+".sum", &GEP);
 | |
|       GEP.setOperand(0, Src->getOperand(0));
 | |
|       GEP.setOperand(1, Sum);
 | |
|       WorkList.push_back(cast<Instruction>(Sum));
 | |
|       return &GEP;
 | |
|     } else if (*GEP.idx_begin() == Constant::getNullValue(Type::LongTy) &&
 | |
|                Src->getNumOperands() != 1) { 
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
 | |
|       Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | |
|     } else if (Src->getOperand(Src->getNumOperands()-1) == 
 | |
|                Constant::getNullValue(Type::LongTy)) {
 | |
|       // If the src gep ends with a constant array index, merge this get into
 | |
|       // it, even if we have a non-zero array index.
 | |
|       Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()-1);
 | |
|       Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName());
 | |
| 
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) {
 | |
|     // GEP of global variable.  If all of the indices for this GEP are
 | |
|     // constants, we can promote this to a constexpr instead of an instruction.
 | |
| 
 | |
|     // Scan for nonconstants...
 | |
|     std::vector<Constant*> Indices;
 | |
|     User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | |
|     for (; I != E && isa<Constant>(*I); ++I)
 | |
|       Indices.push_back(cast<Constant>(*I));
 | |
| 
 | |
|     if (I == E) {  // If they are all constants...
 | |
|       Constant *CE =
 | |
|         ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);
 | |
| 
 | |
|       // Replace all uses of the GEP with the new constexpr...
 | |
|       return ReplaceInstUsesWith(GEP, CE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | |
|   // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | |
|   if (AI.isArrayAllocation())    // Check C != 1
 | |
|     if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
 | |
|       const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
 | |
|       AllocationInst *New = 0;
 | |
| 
 | |
|       // Create and insert the replacement instruction...
 | |
|       if (isa<MallocInst>(AI))
 | |
|         New = new MallocInst(NewTy, 0, AI.getName(), &AI);
 | |
|       else {
 | |
|         assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | |
|         New = new AllocaInst(NewTy, 0, AI.getName(), &AI);
 | |
|       }
 | |
|       
 | |
|       // Scan to the end of the allocation instructions, to skip over a block of
 | |
|       // allocas if possible...
 | |
|       //
 | |
|       BasicBlock::iterator It = New;
 | |
|       while (isa<AllocationInst>(*It)) ++It;
 | |
| 
 | |
|       // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|       // insert our getelementptr instruction...
 | |
|       //
 | |
|       std::vector<Value*> Idx(2, Constant::getNullValue(Type::LongTy));
 | |
|       Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
 | |
| 
 | |
|       // Now make everything use the getelementptr instead of the original
 | |
|       // allocation.
 | |
|       ReplaceInstUsesWith(AI, V);
 | |
|       return &AI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetGEPGlobalInitializer - Given a constant, and a getelementptr
 | |
| /// constantexpr, return the constant value being addressed by the constant
 | |
| /// expression, or null if something is funny.
 | |
| ///
 | |
| static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
 | |
|   if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy))
 | |
|     return 0;  // Do not allow stepping over the value!
 | |
| 
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing...
 | |
|   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
 | |
|       ConstantStruct *CS = cast<ConstantStruct>(C);
 | |
|       if (CU->getValue() >= CS->getValues().size()) return 0;
 | |
|       C = cast<Constant>(CS->getValues()[CU->getValue()]);
 | |
|     } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
 | |
|       ConstantArray *CA = cast<ConstantArray>(C);
 | |
|       if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
 | |
|       C = cast<Constant>(CA->getValues()[CS->getValue()]);
 | |
|     } else 
 | |
|       return 0;
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
|   if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Op))
 | |
|     Op = CPR->getValue();
 | |
| 
 | |
|   // Instcombine load (constant global) into the value loaded...
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | |
|     if (GV->isConstant() && !GV->isExternal())
 | |
|       return ReplaceInstUsesWith(LI, GV->getInitializer());
 | |
| 
 | |
|   // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded...
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
 | |
|           if (GV->isConstant() && !GV->isExternal())
 | |
|             if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
 | |
|               return ReplaceInstUsesWith(LI, V);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   if (BI.isConditional() && !isa<Constant>(BI.getCondition()))
 | |
|     if (Value *V = dyn_castNotVal(BI.getCondition())) {
 | |
|       BasicBlock *TrueDest = BI.getSuccessor(0);
 | |
|       BasicBlock *FalseDest = BI.getSuccessor(1);
 | |
|       // Swap Destinations and condition...
 | |
|       BI.setCondition(V);
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       return &BI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void InstCombiner::removeFromWorkList(Instruction *I) {
 | |
|   WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | |
|                  WorkList.end());
 | |
| }
 | |
| 
 | |
| bool InstCombiner::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // Check to see if we can DCE or ConstantPropagate the instruction...
 | |
|     // Check to see if we can DIE the instruction...
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       // Add operands to the worklist...
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           WorkList.push_back(Op);
 | |
| 
 | |
|       ++NumDeadInst;
 | |
|       BasicBlock::iterator BBI = I;
 | |
|       if (dceInstruction(BBI)) {
 | |
|         removeFromWorkList(I);
 | |
|         continue;
 | |
|       }
 | |
|     } 
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it...
 | |
|     if (Constant *C = ConstantFoldInstruction(I)) {
 | |
|       // Add operands to the worklist...
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           WorkList.push_back(Op);
 | |
|       ReplaceInstUsesWith(*I, C);
 | |
| 
 | |
|       ++NumConstProp;
 | |
|       BasicBlock::iterator BBI = I;
 | |
|       if (dceInstruction(BBI)) {
 | |
|         removeFromWorkList(I);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that we have an instruction, try combining it to simplify it...
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         // Instructions can end up on the worklist more than once.  Make sure
 | |
|         // we do not process an instruction that has been deleted.
 | |
|         removeFromWorkList(I);
 | |
|         ReplaceInstWithInst(I, Result);
 | |
|       } else {
 | |
|         BasicBlock::iterator II = I;
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (dceInstruction(II)) {
 | |
|           // Instructions may end up in the worklist more than once.  Erase them
 | |
|           // all.
 | |
|           removeFromWorkList(I);
 | |
|           Result = 0;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Result) {
 | |
|         WorkList.push_back(Result);
 | |
|         AddUsesToWorkList(*Result);
 | |
|       }
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| Pass *createInstructionCombiningPass() {
 | |
|   return new InstCombiner();
 | |
| }
 |