mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	post-dominators. This code was written/adapted by Daniel Berlin! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25144 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the post-dominator construction algorithms.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorSet>
 | |
| B("postdomset", "Post-Dominator Set Construction", true);
 | |
| 
 | |
| // Postdominator set construction.  This converts the specified function to only
 | |
| // have a single exit node (return stmt), then calculates the post dominance
 | |
| // sets for the function.
 | |
| //
 | |
| bool PostDominatorSet::runOnFunction(Function &F) {
 | |
|   Doms.clear();   // Reset from the last time we were run...
 | |
| 
 | |
|   // Scan the function looking for the root nodes of the post-dominance
 | |
|   // relationships.  These blocks end with return and unwind instructions.
 | |
|   // While we are iterating over the function, we also initialize all of the
 | |
|   // domsets to empty.
 | |
|   Roots.clear();
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     Doms[I];  // Initialize to empty
 | |
| 
 | |
|     if (succ_begin(I) == succ_end(I))
 | |
|       Roots.push_back(I);
 | |
|   }
 | |
| 
 | |
|   // If there are no exit nodes for the function, postdomsets are all empty.
 | |
|   // This can happen if the function just contains an infinite loop, for
 | |
|   // example.
 | |
|   if (Roots.empty()) return false;
 | |
| 
 | |
|   // If we have more than one root, we insert an artificial "null" exit, which
 | |
|   // has "virtual edges" to each of the real exit nodes.
 | |
|   if (Roots.size() > 1)
 | |
|     Doms[0].insert(0);
 | |
| 
 | |
|   bool Changed;
 | |
|   do {
 | |
|     Changed = false;
 | |
| 
 | |
|     std::set<BasicBlock*> Visited;
 | |
|     DomSetType WorkingSet;
 | |
| 
 | |
|     for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|       for (idf_ext_iterator<BasicBlock*> It = idf_ext_begin(Roots[i], Visited),
 | |
|              E = idf_ext_end(Roots[i], Visited); It != E; ++It) {
 | |
|         BasicBlock *BB = *It;
 | |
|         succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|         if (SI != SE) {                // Is there SOME successor?
 | |
|           // Loop until we get to a successor that has had it's dom set filled
 | |
|           // in at least once.  We are guaranteed to have this because we are
 | |
|           // traversing the graph in DFO and have handled start nodes specially.
 | |
|           //
 | |
|           while (Doms[*SI].size() == 0) ++SI;
 | |
|           WorkingSet = Doms[*SI];
 | |
| 
 | |
|           for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets
 | |
|             DomSetType &SuccSet = Doms[*SI];
 | |
|             if (SuccSet.size())
 | |
|               set_intersect(WorkingSet, SuccSet);
 | |
|           }
 | |
|         } else {
 | |
|           // If this node has no successors, it must be one of the root nodes.
 | |
|           // We will already take care of the notion that the node
 | |
|           // post-dominates itself.  The only thing we have to add is that if
 | |
|           // there are multiple root nodes, we want to insert a special "null"
 | |
|           // exit node which dominates the roots as well.
 | |
|           if (Roots.size() > 1)
 | |
|             WorkingSet.insert(0);
 | |
|         }
 | |
| 
 | |
|         WorkingSet.insert(BB);           // A block always dominates itself
 | |
|         DomSetType &BBSet = Doms[BB];
 | |
|         if (BBSet != WorkingSet) {
 | |
|           BBSet.swap(WorkingSet);        // Constant time operation!
 | |
|           Changed = true;                // The sets changed.
 | |
|         }
 | |
|         WorkingSet.clear();              // Clear out the set for next iteration
 | |
|       }
 | |
|   } while (Changed);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediatePostDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediatePostDominators>
 | |
| D("postidom", "Immediate Post-Dominators Construction", true);
 | |
| 
 | |
| 
 | |
| // calcIDoms - Calculate the immediate dominator mapping, given a set of
 | |
| // dominators for every basic block.
 | |
| void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) {
 | |
|   // Loop over all of the nodes that have dominators... figuring out the IDOM
 | |
|   // for each node...
 | |
|   //
 | |
|   for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
 | |
|        DI != DEnd; ++DI) {
 | |
|     BasicBlock *BB = DI->first;
 | |
|     const DominatorSet::DomSetType &Dominators = DI->second;
 | |
|     unsigned DomSetSize = Dominators.size();
 | |
|     if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
| 
 | |
|     // Loop over all dominators of this node.  This corresponds to looping over
 | |
|     // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|     // equal to the current nodes, except that the current node does not exist
 | |
|     // in it.  This means that it is one level higher in the dom chain than the
 | |
|     // current node, and it is our idom!
 | |
|     //
 | |
|     DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|     DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|     for (; I != End; ++I) {   // Iterate over dominators...
 | |
|       // All of our dominators should form a chain, where the number of elements
 | |
|       // in the dominator set indicates what level the node is at in the chain.
 | |
|       // We want the node immediately above us, so it will have an identical
 | |
|       // dominator set, except that BB will not dominate it... therefore it's
 | |
|       // dominator set size will be one less than BB's...
 | |
|       //
 | |
|       if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
|         IDoms[BB] = *I;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorTree>
 | |
| F("postdomtree", "Post-Dominator Tree Construction", true);
 | |
| 
 | |
| void PostDominatorTree::calculate(const PostDominatorSet &DS) {
 | |
|   if (Roots.empty()) return;
 | |
|   BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
 | |
| 
 | |
|   Nodes[Root] = RootNode = new Node(Root, 0);   // Add a node for the root...
 | |
| 
 | |
|   // Iterate over all nodes in depth first order...
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
 | |
|            E = idf_end(Roots[i]); I != E; ++I) {
 | |
|       BasicBlock *BB = *I;
 | |
|       const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
 | |
|       unsigned DomSetSize = Dominators.size();
 | |
|       if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
| 
 | |
|       // If we have already computed the immediate dominator for this node,
 | |
|       // don't revisit.  This can happen due to nodes reachable from multiple
 | |
|       // roots, but which the idf_iterator doesn't know about.
 | |
|       if (Nodes.find(BB) != Nodes.end()) continue;
 | |
| 
 | |
|       // Loop over all dominators of this node.  This corresponds to looping
 | |
|       // over nodes in the dominator chain, looking for a node whose dominator
 | |
|       // set is equal to the current nodes, except that the current node does
 | |
|       // not exist in it.  This means that it is one level higher in the dom
 | |
|       // chain than the current node, and it is our idom!  We know that we have
 | |
|       // already added a DominatorTree node for our idom, because the idom must
 | |
|       // be a predecessor in the depth first order that we are iterating through
 | |
|       // the function.
 | |
|       //
 | |
|       for (DominatorSet::DomSetType::const_iterator I = Dominators.begin(),
 | |
|            E = Dominators.end(); I != E; ++I) {  // Iterate over dominators.
 | |
|         // All of our dominators should form a chain, where the number
 | |
|         // of elements in the dominator set indicates what level the
 | |
|         // node is at in the chain.  We want the node immediately
 | |
|         // above us, so it will have an identical dominator set,
 | |
|         // except that BB will not dominate it... therefore it's
 | |
|         // dominator set size will be one less than BB's...
 | |
|         //
 | |
|         if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
|           // We know that the immediate dominator should already have a node,
 | |
|           // because we are traversing the CFG in depth first order!
 | |
|           //
 | |
|           Node *IDomNode = Nodes[*I];
 | |
|           assert(IDomNode && "No node for IDOM?");
 | |
| 
 | |
|           // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|           // IDomNode
 | |
|           Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PostETForest Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostETForest>
 | |
| G("postetforest", "Post-ET-Forest Construction", true);
 | |
| 
 | |
| ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) {
 | |
|   ETNode *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
| 
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate dominator.
 | |
|   BasicBlock *IDom = getAnalysis<ImmediatePostDominators>()[BB];
 | |
| 
 | |
|   // If we are unreachable, we may not have an immediate dominator.
 | |
|   if (!IDom)
 | |
|     return BBNode = new ETNode(BB);
 | |
|   else {
 | |
|     ETNode *IDomNode = getNodeForBlock(IDom);
 | |
|     
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     BBNode = new ETNode(BB);
 | |
|     BBNode->setFather(IDomNode);
 | |
|     return BBNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PostETForest::calculate(const ImmediatePostDominators &ID) {
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root
 | |
| 
 | |
|   // Iterate over all nodes in inverse depth first order.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
 | |
|            E = idf_end(Roots[i]); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     ETNode *&BBNode = Nodes[BB];
 | |
|     if (!BBNode) {  
 | |
|       ETNode *IDomNode =  NULL;
 | |
| 
 | |
|       if (ID.get(BB))
 | |
|         IDomNode = getNodeForBlock(ID.get(BB));
 | |
| 
 | |
|       // Add a new ETNode for this BasicBlock, and set it's parent
 | |
|       // to it's immediate dominator.
 | |
|       BBNode = new ETNode(BB);
 | |
|       if (IDomNode)          
 | |
|         BBNode->setFather(IDomNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int dfsnum = 0;
 | |
|   // Iterate over all nodes in depth first order...
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
 | |
|            E = idf_end(Roots[i]); I != E; ++I) {
 | |
|         if (!getNodeForBlock(*I)->hasFather())
 | |
|           getNodeForBlock(*I)->assignDFSNumber(dfsnum);
 | |
|     }
 | |
|   DFSInfoValid = true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominanceFrontier>
 | |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT,
 | |
|                                  const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
|   if (getRoots().empty()) return S;
 | |
| 
 | |
|   if (BB)
 | |
|     for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
 | |
|          SI != SE; ++SI)
 | |
|       // Does Node immediately dominate this predecessor?
 | |
|       if (DT[*SI]->getIDom() != Node)
 | |
|         S.insert(*SI);
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (PostDominatorTree::Node::const_iterator
 | |
|          NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->properlyDominates(DT[*CDFI]))
 | |
|         S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // stub - a dummy function to make linking work ok.
 | |
| void PostDominanceFrontier::stub() {
 | |
| }
 | |
| 
 |