mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25041 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1374 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1374 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by James M. Laskey and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a simple two pass scheduler.  The first pass attempts to push
 | |
| // backward any lengthy instructions and critical paths.  The second pass packs
 | |
| // instructions into semi-optimal time slots.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetInstrItineraries.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <iostream>
 | |
| #include <ios>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   // Style of scheduling to use.
 | |
|   enum ScheduleChoices {
 | |
|     noScheduling,
 | |
|     simpleScheduling,
 | |
|     simpleNoItinScheduling
 | |
|   };
 | |
| } // namespace
 | |
| 
 | |
| cl::opt<ScheduleChoices> ScheduleStyle("sched",
 | |
|   cl::desc("Choose scheduling style"),
 | |
|   cl::init(noScheduling),
 | |
|   cl::values(
 | |
|     clEnumValN(noScheduling, "none",
 | |
|               "Trivial emission with no analysis"),
 | |
|     clEnumValN(simpleScheduling, "simple",
 | |
|               "Minimize critical path and maximize processor utilization"),
 | |
|     clEnumValN(simpleNoItinScheduling, "simple-noitin",
 | |
|               "Same as simple except using generic latency"),
 | |
|    clEnumValEnd));
 | |
| 
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewDAGs("view-sched-dags", cl::Hidden,
 | |
|          cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| #else
 | |
| static const bool ViewDAGs = 0;
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// BitsIterator - Provides iteration through individual bits in a bit vector.
 | |
| ///
 | |
| template<class T>
 | |
| class BitsIterator {
 | |
| private:
 | |
|   T Bits;                               // Bits left to iterate through
 | |
| 
 | |
| public:
 | |
|   /// Ctor.
 | |
|   BitsIterator(T Initial) : Bits(Initial) {}
 | |
|   
 | |
|   /// Next - Returns the next bit set or zero if exhausted.
 | |
|   inline T Next() {
 | |
|     // Get the rightmost bit set
 | |
|     T Result = Bits & -Bits;
 | |
|     // Remove from rest
 | |
|     Bits &= ~Result;
 | |
|     // Return single bit or zero
 | |
|     return Result;
 | |
|   }
 | |
| };
 | |
|   
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// ResourceTally - Manages the use of resources over time intervals.  Each
 | |
| /// item (slot) in the tally vector represents the resources used at a given
 | |
| /// moment.  A bit set to 1 indicates that a resource is in use, otherwise
 | |
| /// available.  An assumption is made that the tally is large enough to schedule 
 | |
| /// all current instructions (asserts otherwise.)
 | |
| ///
 | |
| template<class T>
 | |
| class ResourceTally {
 | |
| private:
 | |
|   std::vector<T> Tally;                 // Resources used per slot
 | |
|   typedef typename std::vector<T>::iterator Iter;
 | |
|                                         // Tally iterator 
 | |
|   
 | |
|   /// SlotsAvailable - Returns true if all units are available.
 | |
| 	///
 | |
|   bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
 | |
|                                               unsigned &Resource) {
 | |
|     assert(N && "Must check availability with N != 0");
 | |
|     // Determine end of interval
 | |
|     Iter End = Begin + N;
 | |
|     assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | |
|     
 | |
|     // Iterate thru each resource
 | |
|     BitsIterator<T> Resources(ResourceSet & ~*Begin);
 | |
|     while (unsigned Res = Resources.Next()) {
 | |
|       // Check if resource is available for next N slots
 | |
|       Iter Interval = End;
 | |
|       do {
 | |
|         Interval--;
 | |
|         if (*Interval & Res) break;
 | |
|       } while (Interval != Begin);
 | |
|       
 | |
|       // If available for N
 | |
|       if (Interval == Begin) {
 | |
|         // Success
 | |
|         Resource = Res;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // No luck
 | |
|     Resource = 0;
 | |
|     return false;
 | |
|   }
 | |
| 	
 | |
| 	/// RetrySlot - Finds a good candidate slot to retry search.
 | |
|   Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
 | |
|     assert(N && "Must check availability with N != 0");
 | |
|     // Determine end of interval
 | |
|     Iter End = Begin + N;
 | |
|     assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | |
| 		
 | |
| 		while (Begin != End--) {
 | |
| 			// Clear units in use
 | |
| 			ResourceSet &= ~*End;
 | |
| 			// If no units left then we should go no further 
 | |
| 			if (!ResourceSet) return End + 1;
 | |
| 		}
 | |
| 		// Made it all the way through
 | |
| 		return Begin;
 | |
| 	}
 | |
|   
 | |
|   /// FindAndReserveStages - Return true if the stages can be completed. If
 | |
|   /// so mark as busy.
 | |
|   bool FindAndReserveStages(Iter Begin,
 | |
|                             InstrStage *Stage, InstrStage *StageEnd) {
 | |
|     // If at last stage then we're done
 | |
|     if (Stage == StageEnd) return true;
 | |
|     // Get number of cycles for current stage
 | |
|     unsigned N = Stage->Cycles;
 | |
|     // Check to see if N slots are available, if not fail
 | |
|     unsigned Resource;
 | |
|     if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
 | |
|     // Check to see if remaining stages are available, if not fail
 | |
|     if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
 | |
|     // Reserve resource
 | |
|     Reserve(Begin, N, Resource);
 | |
|     // Success
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Reserve - Mark busy (set) the specified N slots.
 | |
|   void Reserve(Iter Begin, unsigned N, unsigned Resource) {
 | |
|     // Determine end of interval
 | |
|     Iter End = Begin + N;
 | |
|     assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | |
|  
 | |
|     // Set resource bit in each slot
 | |
|     for (; Begin < End; Begin++)
 | |
|       *Begin |= Resource;
 | |
|   }
 | |
| 
 | |
|   /// FindSlots - Starting from Begin, locate consecutive slots where all stages
 | |
|   /// can be completed.  Returns the address of first slot.
 | |
|   Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
 | |
|     // Track position      
 | |
|     Iter Cursor = Begin;
 | |
|     
 | |
|     // Try all possible slots forward
 | |
|     while (true) {
 | |
|       // Try at cursor, if successful return position.
 | |
|       if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
 | |
|       // Locate a better position
 | |
| 			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
 | |
|     }
 | |
|   }
 | |
|   
 | |
| public:
 | |
|   /// Initialize - Resize and zero the tally to the specified number of time
 | |
|   /// slots.
 | |
|   inline void Initialize(unsigned N) {
 | |
|     Tally.assign(N, 0);   // Initialize tally to all zeros.
 | |
|   }
 | |
| 
 | |
|   // FindAndReserve - Locate an ideal slot for the specified stages and mark
 | |
|   // as busy.
 | |
|   unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
 | |
|                                          InstrStage *StageEnd) {
 | |
| 		// Where to begin 
 | |
| 		Iter Begin = Tally.begin() + Slot;
 | |
| 		// Find a free slot
 | |
| 		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
 | |
| 		// Distance is slot number
 | |
| 		unsigned Final = Where - Tally.begin();
 | |
|     return Final;
 | |
|   }
 | |
| 
 | |
| };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Forward
 | |
| class NodeInfo;
 | |
| typedef NodeInfo *NodeInfoPtr;
 | |
| typedef std::vector<NodeInfoPtr>           NIVector;
 | |
| typedef std::vector<NodeInfoPtr>::iterator NIIterator;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// Node group -  This struct is used to manage flagged node groups.
 | |
| ///
 | |
| class NodeGroup {
 | |
| private:
 | |
|   NIVector      Members;                // Group member nodes
 | |
|   NodeInfo      *Dominator;             // Node with highest latency
 | |
|   unsigned      Latency;                // Total latency of the group
 | |
|   int           Pending;                // Number of visits pending before
 | |
|                                         //    adding to order  
 | |
| 
 | |
| public:
 | |
|   // Ctor.
 | |
|   NodeGroup() : Dominator(NULL), Pending(0) {}
 | |
|   
 | |
|   // Accessors
 | |
|   inline void setDominator(NodeInfo *D) { Dominator = D; }
 | |
|   inline NodeInfo *getDominator() { return Dominator; }
 | |
|   inline void setLatency(unsigned L) { Latency = L; }
 | |
|   inline unsigned getLatency() { return Latency; }
 | |
|   inline int getPending() const { return Pending; }
 | |
|   inline void setPending(int P)  { Pending = P; }
 | |
|   inline int addPending(int I)  { return Pending += I; }
 | |
|   
 | |
|   // Pass thru
 | |
|   inline bool group_empty() { return Members.empty(); }
 | |
|   inline NIIterator group_begin() { return Members.begin(); }
 | |
|   inline NIIterator group_end() { return Members.end(); }
 | |
|   inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
 | |
|   inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
 | |
|     return Members.insert(Pos, NI);
 | |
|   }
 | |
|   inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
 | |
|     Members.insert(Pos, First, Last);
 | |
|   }
 | |
| 
 | |
|   static void Add(NodeInfo *D, NodeInfo *U);
 | |
|   static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
 | |
| };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// NodeInfo - This struct tracks information used to schedule the a node.
 | |
| ///
 | |
| class NodeInfo {
 | |
| private:
 | |
|   int           Pending;                // Number of visits pending before
 | |
|                                         //    adding to order
 | |
| public:
 | |
|   SDNode        *Node;                  // DAG node
 | |
|   InstrStage    *StageBegin;            // First stage in itinerary
 | |
|   InstrStage    *StageEnd;              // Last+1 stage in itinerary
 | |
|   unsigned      Latency;                // Total cycles to complete instruction
 | |
|   bool          IsCall : 1;             // Is function call
 | |
|   bool          IsLoad : 1;             // Is memory load
 | |
|   bool          IsStore : 1;            // Is memory store
 | |
|   unsigned      Slot;                   // Node's time slot
 | |
|   NodeGroup     *Group;                 // Grouping information
 | |
|   unsigned      VRBase;                 // Virtual register base
 | |
| #ifndef NDEBUG
 | |
|   unsigned      Preorder;               // Index before scheduling
 | |
| #endif
 | |
| 
 | |
|   // Ctor.
 | |
|   NodeInfo(SDNode *N = NULL)
 | |
|   : Pending(0)
 | |
|   , Node(N)
 | |
|   , StageBegin(NULL)
 | |
|   , StageEnd(NULL)
 | |
|   , Latency(0)
 | |
|   , IsCall(false)
 | |
|   , Slot(0)
 | |
|   , Group(NULL)
 | |
|   , VRBase(0)
 | |
| #ifndef NDEBUG
 | |
|   , Preorder(0)
 | |
| #endif
 | |
|   {}
 | |
|   
 | |
|   // Accessors
 | |
|   inline bool isInGroup() const {
 | |
|     assert(!Group || !Group->group_empty() && "Group with no members");
 | |
|     return Group != NULL;
 | |
|   }
 | |
|   inline bool isGroupDominator() const {
 | |
|      return isInGroup() && Group->getDominator() == this;
 | |
|   }
 | |
|   inline int getPending() const {
 | |
|     return Group ? Group->getPending() : Pending;
 | |
|   }
 | |
|   inline void setPending(int P) {
 | |
|     if (Group) Group->setPending(P);
 | |
|     else       Pending = P;
 | |
|   }
 | |
|   inline int addPending(int I) {
 | |
|     if (Group) return Group->addPending(I);
 | |
|     else       return Pending += I;
 | |
|   }
 | |
| };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
 | |
| /// If the node is in a group then iterate over the members of the group,
 | |
| /// otherwise just the node info.
 | |
| ///
 | |
| class NodeGroupIterator {
 | |
| private:
 | |
|   NodeInfo   *NI;                       // Node info
 | |
|   NIIterator NGI;                       // Node group iterator
 | |
|   NIIterator NGE;                       // Node group iterator end
 | |
|   
 | |
| public:
 | |
|   // Ctor.
 | |
|   NodeGroupIterator(NodeInfo *N) : NI(N) {
 | |
|     // If the node is in a group then set up the group iterator.  Otherwise
 | |
|     // the group iterators will trip first time out.
 | |
|     if (N->isInGroup()) {
 | |
|       // get Group
 | |
|       NodeGroup *Group = NI->Group;
 | |
|       NGI = Group->group_begin();
 | |
|       NGE = Group->group_end();
 | |
|       // Prevent this node from being used (will be in members list
 | |
|       NI = NULL;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /// next - Return the next node info, otherwise NULL.
 | |
|   ///
 | |
|   NodeInfo *next() {
 | |
|     // If members list
 | |
|     if (NGI != NGE) return *NGI++;
 | |
|     // Use node as the result (may be NULL)
 | |
|     NodeInfo *Result = NI;
 | |
|     // Only use once
 | |
|     NI = NULL;
 | |
|     // Return node or NULL
 | |
|     return Result;
 | |
|   }
 | |
| };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// NodeGroupOpIterator - Iterates over all the operands of a node.  If the node
 | |
| /// is a member of a group, this iterates over all the operands of all the
 | |
| /// members of the group.
 | |
| ///
 | |
| class NodeGroupOpIterator {
 | |
| private:
 | |
|   NodeInfo            *NI;              // Node containing operands
 | |
|   NodeGroupIterator   GI;               // Node group iterator
 | |
|   SDNode::op_iterator OI;               // Operand iterator
 | |
|   SDNode::op_iterator OE;               // Operand iterator end
 | |
|   
 | |
|   /// CheckNode - Test if node has more operands.  If not get the next node
 | |
|   /// skipping over nodes that have no operands.
 | |
|   void CheckNode() {
 | |
|     // Only if operands are exhausted first
 | |
|     while (OI == OE) {
 | |
|       // Get next node info
 | |
|       NodeInfo *NI = GI.next();
 | |
|       // Exit if nodes are exhausted
 | |
|       if (!NI) return;
 | |
|       // Get node itself
 | |
|       SDNode *Node = NI->Node;
 | |
|       // Set up the operand iterators
 | |
|       OI = Node->op_begin();
 | |
|       OE = Node->op_end();
 | |
|     }
 | |
|   }
 | |
|   
 | |
| public:
 | |
|   // Ctor.
 | |
|   NodeGroupOpIterator(NodeInfo *N)
 | |
|     : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
 | |
|   
 | |
|   /// isEnd - Returns true when not more operands are available.
 | |
|   ///
 | |
|   inline bool isEnd() { CheckNode(); return OI == OE; }
 | |
|   
 | |
|   /// next - Returns the next available operand.
 | |
|   ///
 | |
|   inline SDOperand next() {
 | |
|     assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
 | |
|     return *OI++;
 | |
|   }
 | |
| };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// SimpleSched - Simple two pass scheduler.
 | |
| ///
 | |
| class SimpleSched {
 | |
| private:
 | |
|   MachineBasicBlock *BB;                // Current basic block
 | |
|   SelectionDAG &DAG;                    // DAG of the current basic block
 | |
|   const TargetMachine &TM;              // Target processor
 | |
|   const TargetInstrInfo &TII;           // Target instruction information
 | |
|   const MRegisterInfo &MRI;             // Target processor register information
 | |
|   SSARegMap *RegMap;                    // Virtual/real register map
 | |
|   MachineConstantPool *ConstPool;       // Target constant pool
 | |
|   unsigned NodeCount;                   // Number of nodes in DAG
 | |
|   bool HasGroups;                       // True if there are any groups
 | |
|   NodeInfo *Info;                       // Info for nodes being scheduled
 | |
|   std::map<SDNode *, NodeInfo *> Map;   // Map nodes to info
 | |
|   NIVector Ordering;                    // Emit ordering of nodes
 | |
|   ResourceTally<unsigned> Tally;        // Resource usage tally
 | |
|   unsigned NSlots;                      // Total latency
 | |
|   static const unsigned NotFound = ~0U; // Search marker
 | |
|   
 | |
| public:
 | |
| 
 | |
|   // Ctor.
 | |
|   SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
 | |
|     : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
 | |
|       MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
 | |
|       ConstPool(BB->getParent()->getConstantPool()),
 | |
|       NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
 | |
|     assert(&TII && "Target doesn't provide instr info?");
 | |
|     assert(&MRI && "Target doesn't provide register info?");
 | |
|   }
 | |
|   
 | |
|   // Run - perform scheduling.
 | |
|   MachineBasicBlock *Run() {
 | |
|     Schedule();
 | |
|     return BB;
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   /// getNI - Returns the node info for the specified node.
 | |
|   ///
 | |
|   inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
 | |
|   
 | |
|   /// getVR - Returns the virtual register number of the node.
 | |
|   ///
 | |
|   inline unsigned getVR(SDOperand Op) {
 | |
|     NodeInfo *NI = getNI(Op.Val);
 | |
|     assert(NI->VRBase != 0 && "Node emitted out of order - late");
 | |
|     return NI->VRBase + Op.ResNo;
 | |
|   }
 | |
| 
 | |
|   static bool isFlagDefiner(SDNode *A);
 | |
|   static bool isFlagUser(SDNode *A);
 | |
|   static bool isDefiner(NodeInfo *A, NodeInfo *B);
 | |
|   static bool isPassiveNode(SDNode *Node);
 | |
|   void IncludeNode(NodeInfo *NI);
 | |
|   void VisitAll();
 | |
|   void Schedule();
 | |
|   void IdentifyGroups();
 | |
|   void GatherSchedulingInfo();
 | |
|   void FakeGroupDominators(); 
 | |
|   void PrepareNodeInfo();
 | |
|   bool isStrongDependency(NodeInfo *A, NodeInfo *B);
 | |
|   bool isWeakDependency(NodeInfo *A, NodeInfo *B);
 | |
|   void ScheduleBackward();
 | |
|   void ScheduleForward();
 | |
|   void EmitAll();
 | |
|   void EmitNode(NodeInfo *NI);
 | |
|   static unsigned CountResults(SDNode *Node);
 | |
|   static unsigned CountOperands(SDNode *Node);
 | |
|   unsigned CreateVirtualRegisters(MachineInstr *MI,
 | |
|                                   unsigned NumResults,
 | |
|                                   const TargetInstrDescriptor &II);
 | |
| 
 | |
|   void printChanges(unsigned Index);
 | |
|   void printSI(std::ostream &O, NodeInfo *NI) const;
 | |
|   void print(std::ostream &O) const;
 | |
|   inline void dump(const char *tag) const { std::cerr << tag; dump(); }
 | |
|   void dump() const;
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// Special case itineraries.
 | |
| ///
 | |
| enum {
 | |
|   CallLatency = 40,          // To push calls back in time
 | |
| 
 | |
|   RSInteger   = 0xC0000000,  // Two integer units
 | |
|   RSFloat     = 0x30000000,  // Two float units
 | |
|   RSLoadStore = 0x0C000000,  // Two load store units
 | |
|   RSBranch    = 0x02000000   // One branch unit
 | |
| };
 | |
| static InstrStage CallStage  = { CallLatency, RSBranch };
 | |
| static InstrStage LoadStage  = { 5, RSLoadStore };
 | |
| static InstrStage StoreStage = { 2, RSLoadStore };
 | |
| static InstrStage IntStage   = { 2, RSInteger };
 | |
| static InstrStage FloatStage = { 3, RSFloat };
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// Add - Adds a definer and user pair to a node group.
 | |
| ///
 | |
| void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
 | |
|   // Get current groups
 | |
|   NodeGroup *DGroup = D->Group;
 | |
|   NodeGroup *UGroup = U->Group;
 | |
|   // If both are members of groups
 | |
|   if (DGroup && UGroup) {
 | |
|     // There may have been another edge connecting 
 | |
|     if (DGroup == UGroup) return;
 | |
|     // Add the pending users count
 | |
|     DGroup->addPending(UGroup->getPending());
 | |
|     // For each member of the users group
 | |
|     NodeGroupIterator UNGI(U);
 | |
|     while (NodeInfo *UNI = UNGI.next() ) {
 | |
|       // Change the group
 | |
|       UNI->Group = DGroup;
 | |
|       // For each member of the definers group
 | |
|       NodeGroupIterator DNGI(D);
 | |
|       while (NodeInfo *DNI = DNGI.next() ) {
 | |
|         // Remove internal edges
 | |
|         DGroup->addPending(-CountInternalUses(DNI, UNI));
 | |
|       }
 | |
|     }
 | |
|     // Merge the two lists
 | |
|     DGroup->group_insert(DGroup->group_end(),
 | |
|                          UGroup->group_begin(), UGroup->group_end());
 | |
|   } else if (DGroup) {
 | |
|     // Make user member of definers group
 | |
|     U->Group = DGroup;
 | |
|     // Add users uses to definers group pending
 | |
|     DGroup->addPending(U->Node->use_size());
 | |
|     // For each member of the definers group
 | |
|     NodeGroupIterator DNGI(D);
 | |
|     while (NodeInfo *DNI = DNGI.next() ) {
 | |
|       // Remove internal edges
 | |
|       DGroup->addPending(-CountInternalUses(DNI, U));
 | |
|     }
 | |
|     DGroup->group_push_back(U);
 | |
|   } else if (UGroup) {
 | |
|     // Make definer member of users group
 | |
|     D->Group = UGroup;
 | |
|     // Add definers uses to users group pending
 | |
|     UGroup->addPending(D->Node->use_size());
 | |
|     // For each member of the users group
 | |
|     NodeGroupIterator UNGI(U);
 | |
|     while (NodeInfo *UNI = UNGI.next() ) {
 | |
|       // Remove internal edges
 | |
|       UGroup->addPending(-CountInternalUses(D, UNI));
 | |
|     }
 | |
|     UGroup->group_insert(UGroup->group_begin(), D);
 | |
|   } else {
 | |
|     D->Group = U->Group = DGroup = new NodeGroup();
 | |
|     DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
 | |
|                        CountInternalUses(D, U));
 | |
|     DGroup->group_push_back(D);
 | |
|     DGroup->group_push_back(U);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CountInternalUses - Returns the number of edges between the two nodes.
 | |
| ///
 | |
| unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
 | |
|   unsigned N = 0;
 | |
|   for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
 | |
|     SDOperand Op = U->Node->getOperand(M);
 | |
|     if (Op.Val == D->Node) N++;
 | |
|   }
 | |
| 
 | |
|   return N;
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// isFlagDefiner - Returns true if the node defines a flag result.
 | |
| bool SimpleSched::isFlagDefiner(SDNode *A) {
 | |
|   unsigned N = A->getNumValues();
 | |
|   return N && A->getValueType(N - 1) == MVT::Flag;
 | |
| }
 | |
| 
 | |
| /// isFlagUser - Returns true if the node uses a flag result.
 | |
| ///
 | |
| bool SimpleSched::isFlagUser(SDNode *A) {
 | |
|   unsigned N = A->getNumOperands();
 | |
|   return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
 | |
| }
 | |
| 
 | |
| /// isDefiner - Return true if node A is a definer for B.
 | |
| ///
 | |
| bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
 | |
|   // While there are A nodes
 | |
|   NodeGroupIterator NII(A);
 | |
|   while (NodeInfo *NI = NII.next()) {
 | |
|     // Extract node
 | |
|     SDNode *Node = NI->Node;
 | |
|     // While there operands in nodes of B
 | |
|     NodeGroupOpIterator NGOI(B);
 | |
|     while (!NGOI.isEnd()) {
 | |
|       SDOperand Op = NGOI.next();
 | |
|       // If node from A defines a node in B
 | |
|       if (Node == Op.Val) return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPassiveNode - Return true if the node is a non-scheduled leaf.
 | |
| ///
 | |
| bool SimpleSched::isPassiveNode(SDNode *Node) {
 | |
|   if (isa<ConstantSDNode>(Node))       return true;
 | |
|   if (isa<RegisterSDNode>(Node))       return true;
 | |
|   if (isa<GlobalAddressSDNode>(Node))  return true;
 | |
|   if (isa<BasicBlockSDNode>(Node))     return true;
 | |
|   if (isa<FrameIndexSDNode>(Node))     return true;
 | |
|   if (isa<ConstantPoolSDNode>(Node))   return true;
 | |
|   if (isa<ExternalSymbolSDNode>(Node)) return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IncludeNode - Add node to NodeInfo vector.
 | |
| ///
 | |
| void SimpleSched::IncludeNode(NodeInfo *NI) {
 | |
|   // Get node
 | |
|   SDNode *Node = NI->Node;
 | |
|   // Ignore entry node
 | |
|   if (Node->getOpcode() == ISD::EntryToken) return;
 | |
|   // Check current count for node
 | |
|   int Count = NI->getPending();
 | |
|   // If the node is already in list
 | |
|   if (Count < 0) return;
 | |
|   // Decrement count to indicate a visit
 | |
|   Count--;
 | |
|   // If count has gone to zero then add node to list
 | |
|   if (!Count) {
 | |
|     // Add node
 | |
|     if (NI->isInGroup()) {
 | |
|       Ordering.push_back(NI->Group->getDominator());
 | |
|     } else {
 | |
|       Ordering.push_back(NI);
 | |
|     }
 | |
|     // indicate node has been added
 | |
|     Count--;
 | |
|   }
 | |
|   // Mark as visited with new count 
 | |
|   NI->setPending(Count);
 | |
| }
 | |
| 
 | |
| /// VisitAll - Visit each node breadth-wise to produce an initial ordering.
 | |
| /// Note that the ordering in the Nodes vector is reversed.
 | |
| void SimpleSched::VisitAll() {
 | |
|   // Add first element to list
 | |
|   NodeInfo *NI = getNI(DAG.getRoot().Val);
 | |
|   if (NI->isInGroup()) {
 | |
|     Ordering.push_back(NI->Group->getDominator());
 | |
|   } else {
 | |
|     Ordering.push_back(NI);
 | |
|   }
 | |
| 
 | |
|   // Iterate through all nodes that have been added
 | |
|   for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
 | |
|     // Visit all operands
 | |
|     NodeGroupOpIterator NGI(Ordering[i]);
 | |
|     while (!NGI.isEnd()) {
 | |
|       // Get next operand
 | |
|       SDOperand Op = NGI.next();
 | |
|       // Get node
 | |
|       SDNode *Node = Op.Val;
 | |
|       // Ignore passive nodes
 | |
|       if (isPassiveNode(Node)) continue;
 | |
|       // Check out node
 | |
|       IncludeNode(getNI(Node));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add entry node last (IncludeNode filters entry nodes)
 | |
|   if (DAG.getEntryNode().Val != DAG.getRoot().Val)
 | |
|     Ordering.push_back(getNI(DAG.getEntryNode().Val));
 | |
|     
 | |
|   // Reverse the order
 | |
|   std::reverse(Ordering.begin(), Ordering.end());
 | |
| }
 | |
| 
 | |
| /// IdentifyGroups - Put flagged nodes into groups.
 | |
| ///
 | |
| void SimpleSched::IdentifyGroups() {
 | |
|   for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | |
|     NodeInfo* NI = &Info[i];
 | |
|     SDNode *Node = NI->Node;
 | |
| 
 | |
|     // For each operand (in reverse to only look at flags)
 | |
|     for (unsigned N = Node->getNumOperands(); 0 < N--;) {
 | |
|       // Get operand
 | |
|       SDOperand Op = Node->getOperand(N);
 | |
|       // No more flags to walk
 | |
|       if (Op.getValueType() != MVT::Flag) break;
 | |
|       // Add to node group
 | |
|       NodeGroup::Add(getNI(Op.Val), NI);
 | |
|       // Let evryone else know
 | |
|       HasGroups = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GatherSchedulingInfo - Get latency and resource information about each node.
 | |
| ///
 | |
| void SimpleSched::GatherSchedulingInfo() {
 | |
|   // Get instruction itineraries for the target
 | |
|   const InstrItineraryData InstrItins = TM.getInstrItineraryData();
 | |
|   
 | |
|   // For each node
 | |
|   for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | |
|     // Get node info
 | |
|     NodeInfo* NI = &Info[i];
 | |
|     SDNode *Node = NI->Node;
 | |
|     
 | |
|     // If there are itineraries and it is a machine instruction
 | |
|     if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
 | |
|       // If machine opcode
 | |
|       if (Node->isTargetOpcode()) {
 | |
|         // Get return type to guess which processing unit 
 | |
|         MVT::ValueType VT = Node->getValueType(0);
 | |
|         // Get machine opcode
 | |
|         MachineOpCode TOpc = Node->getTargetOpcode();
 | |
|         NI->IsCall = TII.isCall(TOpc);
 | |
|         NI->IsLoad = TII.isLoad(TOpc);
 | |
|         NI->IsStore = TII.isStore(TOpc);
 | |
| 
 | |
|         if (TII.isLoad(TOpc))              NI->StageBegin = &LoadStage;
 | |
|         else if (TII.isStore(TOpc))        NI->StageBegin = &StoreStage;
 | |
|         else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
 | |
|         else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
 | |
|         if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
 | |
|       }
 | |
|     } else if (Node->isTargetOpcode()) {
 | |
|       // get machine opcode
 | |
|       MachineOpCode TOpc = Node->getTargetOpcode();
 | |
|       // Check to see if it is a call
 | |
|       NI->IsCall = TII.isCall(TOpc);
 | |
|       // Get itinerary stages for instruction
 | |
|       unsigned II = TII.getSchedClass(TOpc);
 | |
|       NI->StageBegin = InstrItins.begin(II);
 | |
|       NI->StageEnd = InstrItins.end(II);
 | |
|     }
 | |
|     
 | |
|     // One slot for the instruction itself
 | |
|     NI->Latency = 1;
 | |
|     
 | |
|     // Add long latency for a call to push it back in time
 | |
|     if (NI->IsCall) NI->Latency += CallLatency;
 | |
|     
 | |
|     // Sum up all the latencies
 | |
|     for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
 | |
|         Stage != E; Stage++) {
 | |
|       NI->Latency += Stage->Cycles;
 | |
|     }
 | |
|     
 | |
|     // Sum up all the latencies for max tally size
 | |
|     NSlots += NI->Latency;
 | |
|   }
 | |
|   
 | |
|   // Unify metrics if in a group
 | |
|   if (HasGroups) {
 | |
|     for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | |
|       NodeInfo* NI = &Info[i];
 | |
|       
 | |
|       if (NI->isInGroup()) {
 | |
|         NodeGroup *Group = NI->Group;
 | |
|         
 | |
|         if (!Group->getDominator()) {
 | |
|           NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
 | |
|           NodeInfo *Dominator = *NGI;
 | |
|           unsigned Latency = 0;
 | |
|           
 | |
|           for (NGI++; NGI != NGE; NGI++) {
 | |
|             NodeInfo* NGNI = *NGI;
 | |
|             Latency += NGNI->Latency;
 | |
|             if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
 | |
|           }
 | |
|           
 | |
|           Dominator->Latency = Latency;
 | |
|           Group->setDominator(Dominator);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FakeGroupDominators - Set dominators for non-scheduling.
 | |
| /// 
 | |
| void SimpleSched::FakeGroupDominators() {
 | |
|   for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | |
|     NodeInfo* NI = &Info[i];
 | |
|     
 | |
|     if (NI->isInGroup()) {
 | |
|       NodeGroup *Group = NI->Group;
 | |
|       
 | |
|       if (!Group->getDominator()) {
 | |
|         Group->setDominator(NI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
 | |
| /// 
 | |
| void SimpleSched::PrepareNodeInfo() {
 | |
|   // Allocate node information
 | |
|   Info = new NodeInfo[NodeCount];
 | |
| 
 | |
|   unsigned i = 0;
 | |
|   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | |
|        E = DAG.allnodes_end(); I != E; ++I, ++i) {
 | |
|     // Fast reference to node schedule info
 | |
|     NodeInfo* NI = &Info[i];
 | |
|     // Set up map
 | |
|     Map[I] = NI;
 | |
|     // Set node
 | |
|     NI->Node = I;
 | |
|     // Set pending visit count
 | |
|     NI->setPending(I->use_size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isStrongDependency - Return true if node A has results used by node B. 
 | |
| /// I.E., B must wait for latency of A.
 | |
| bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
 | |
|   // If A defines for B then it's a strong dependency or
 | |
|   // if a load follows a store (may be dependent but why take a chance.)
 | |
|   return isDefiner(A, B) || (A->IsStore && B->IsLoad);
 | |
| }
 | |
| 
 | |
| /// isWeakDependency Return true if node A produces a result that will
 | |
| /// conflict with operands of B.  It is assumed that we have called
 | |
| /// isStrongDependency prior.
 | |
| bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
 | |
|   // TODO check for conflicting real registers and aliases
 | |
| #if 0 // FIXME - Since we are in SSA form and not checking register aliasing
 | |
|   return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
 | |
| #else
 | |
|   return A->Node->getOpcode() == ISD::EntryToken;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// ScheduleBackward - Schedule instructions so that any long latency
 | |
| /// instructions and the critical path get pushed back in time. Time is run in
 | |
| /// reverse to allow code reuse of the Tally and eliminate the overhead of
 | |
| /// biasing every slot indices against NSlots.
 | |
| void SimpleSched::ScheduleBackward() {
 | |
|   // Size and clear the resource tally
 | |
|   Tally.Initialize(NSlots);
 | |
|   // Get number of nodes to schedule
 | |
|   unsigned N = Ordering.size();
 | |
|   
 | |
|   // For each node being scheduled
 | |
|   for (unsigned i = N; 0 < i--;) {
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     // Track insertion
 | |
|     unsigned Slot = NotFound;
 | |
|     
 | |
|     // Compare against those previously scheduled nodes
 | |
|     unsigned j = i + 1;
 | |
|     for (; j < N; j++) {
 | |
|       // Get following instruction
 | |
|       NodeInfo *Other = Ordering[j];
 | |
|       
 | |
|       // Check dependency against previously inserted nodes
 | |
|       if (isStrongDependency(NI, Other)) {
 | |
|         Slot = Other->Slot + Other->Latency;
 | |
|         break;
 | |
|       } else if (isWeakDependency(NI, Other)) {
 | |
|         Slot = Other->Slot;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If independent of others (or first entry)
 | |
|     if (Slot == NotFound) Slot = 0;
 | |
|     
 | |
| #if 0 // FIXME - measure later
 | |
|     // Find a slot where the needed resources are available
 | |
|     if (NI->StageBegin != NI->StageEnd)
 | |
|       Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
 | |
| #endif
 | |
|       
 | |
|     // Set node slot
 | |
|     NI->Slot = Slot;
 | |
|     
 | |
|     // Insert sort based on slot
 | |
|     j = i + 1;
 | |
|     for (; j < N; j++) {
 | |
|       // Get following instruction
 | |
|       NodeInfo *Other = Ordering[j];
 | |
|       // Should we look further (remember slots are in reverse time)
 | |
|       if (Slot >= Other->Slot) break;
 | |
|       // Shuffle other into ordering
 | |
|       Ordering[j - 1] = Other;
 | |
|     }
 | |
|     // Insert node in proper slot
 | |
|     if (j != i + 1) Ordering[j - 1] = NI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleForward - Schedule instructions to maximize packing.
 | |
| ///
 | |
| void SimpleSched::ScheduleForward() {
 | |
|   // Size and clear the resource tally
 | |
|   Tally.Initialize(NSlots);
 | |
|   // Get number of nodes to schedule
 | |
|   unsigned N = Ordering.size();
 | |
|   
 | |
|   // For each node being scheduled
 | |
|   for (unsigned i = 0; i < N; i++) {
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     // Track insertion
 | |
|     unsigned Slot = NotFound;
 | |
|     
 | |
|     // Compare against those previously scheduled nodes
 | |
|     unsigned j = i;
 | |
|     for (; 0 < j--;) {
 | |
|       // Get following instruction
 | |
|       NodeInfo *Other = Ordering[j];
 | |
|       
 | |
|       // Check dependency against previously inserted nodes
 | |
|       if (isStrongDependency(Other, NI)) {
 | |
|         Slot = Other->Slot + Other->Latency;
 | |
|         break;
 | |
|       } else if (Other->IsCall || isWeakDependency(Other, NI)) {
 | |
|         Slot = Other->Slot;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If independent of others (or first entry)
 | |
|     if (Slot == NotFound) Slot = 0;
 | |
|     
 | |
|     // Find a slot where the needed resources are available
 | |
|     if (NI->StageBegin != NI->StageEnd)
 | |
|       Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
 | |
|       
 | |
|     // Set node slot
 | |
|     NI->Slot = Slot;
 | |
|     
 | |
|     // Insert sort based on slot
 | |
|     j = i;
 | |
|     for (; 0 < j--;) {
 | |
|       // Get prior instruction
 | |
|       NodeInfo *Other = Ordering[j];
 | |
|       // Should we look further
 | |
|       if (Slot >= Other->Slot) break;
 | |
|       // Shuffle other into ordering
 | |
|       Ordering[j + 1] = Other;
 | |
|     }
 | |
|     // Insert node in proper slot
 | |
|     if (j != i) Ordering[j + 1] = NI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitAll - Emit all nodes in schedule sorted order.
 | |
| ///
 | |
| void SimpleSched::EmitAll() {
 | |
|   // For each node in the ordering
 | |
|   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
 | |
|     // Get the scheduling info
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     if (NI->isInGroup()) {
 | |
|       NodeGroupIterator NGI(Ordering[i]);
 | |
|       while (NodeInfo *NI = NGI.next()) EmitNode(NI);
 | |
|     } else {
 | |
|       EmitNode(NI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CountResults - The results of target nodes have register or immediate
 | |
| /// operands first, then an optional chain, and optional flag operands (which do
 | |
| /// not go into the machine instrs.)
 | |
| unsigned SimpleSched::CountResults(SDNode *Node) {
 | |
|   unsigned N = Node->getNumValues();
 | |
|   while (N && Node->getValueType(N - 1) == MVT::Flag)
 | |
|     --N;
 | |
|   if (N && Node->getValueType(N - 1) == MVT::Other)
 | |
|     --N;    // Skip over chain result.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// CountOperands  The inputs to target nodes have any actual inputs first,
 | |
| /// followed by an optional chain operand, then flag operands.  Compute the
 | |
| /// number of actual operands that  will go into the machine instr.
 | |
| unsigned SimpleSched::CountOperands(SDNode *Node) {
 | |
|   unsigned N = Node->getNumOperands();
 | |
|   while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
 | |
|     --N;
 | |
|   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
 | |
|     --N; // Ignore chain if it exists.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// CreateVirtualRegisters - Add result register values for things that are
 | |
| /// defined by this instruction.
 | |
| unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
 | |
|                                              unsigned NumResults,
 | |
|                                              const TargetInstrDescriptor &II) {
 | |
|   // Create the result registers for this node and add the result regs to
 | |
|   // the machine instruction.
 | |
|   const TargetOperandInfo *OpInfo = II.OpInfo;
 | |
|   unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
 | |
|   MI->addRegOperand(ResultReg, MachineOperand::Def);
 | |
|   for (unsigned i = 1; i != NumResults; ++i) {
 | |
|     assert(OpInfo[i].RegClass && "Isn't a register operand!");
 | |
|     MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass),
 | |
|                       MachineOperand::Def);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| /// EmitNode - Generate machine code for an node and needed dependencies.
 | |
| ///
 | |
| void SimpleSched::EmitNode(NodeInfo *NI) {
 | |
|   unsigned VRBase = 0;                 // First virtual register for node
 | |
|   SDNode *Node = NI->Node;
 | |
|   
 | |
|   // If machine instruction
 | |
|   if (Node->isTargetOpcode()) {
 | |
|     unsigned Opc = Node->getTargetOpcode();
 | |
|     const TargetInstrDescriptor &II = TII.get(Opc);
 | |
| 
 | |
|     unsigned NumResults = CountResults(Node);
 | |
|     unsigned NodeOperands = CountOperands(Node);
 | |
|     unsigned NumMIOperands = NodeOperands + NumResults;
 | |
| #ifndef NDEBUG
 | |
|     assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
 | |
|            "#operands for dag node doesn't match .td file!"); 
 | |
| #endif
 | |
| 
 | |
|     // Create the new machine instruction.
 | |
|     MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
 | |
|     
 | |
|     // Add result register values for things that are defined by this
 | |
|     // instruction.
 | |
|     
 | |
|     // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|     // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|     if (NumResults == 1) {
 | |
|       for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | |
|            UI != E; ++UI) {
 | |
|         SDNode *Use = *UI;
 | |
|         if (Use->getOpcode() == ISD::CopyToReg && 
 | |
|             Use->getOperand(2).Val == Node) {
 | |
|           unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | |
|           if (MRegisterInfo::isVirtualRegister(Reg)) {
 | |
|             VRBase = Reg;
 | |
|             MI->addRegOperand(Reg, MachineOperand::Def);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Otherwise, create new virtual registers.
 | |
|     if (NumResults && VRBase == 0)
 | |
|       VRBase = CreateVirtualRegisters(MI, NumResults, II);
 | |
|     
 | |
|     // Emit all of the actual operands of this instruction, adding them to the
 | |
|     // instruction as appropriate.
 | |
|     for (unsigned i = 0; i != NodeOperands; ++i) {
 | |
|       if (Node->getOperand(i).isTargetOpcode()) {
 | |
|         // Note that this case is redundant with the final else block, but we
 | |
|         // include it because it is the most common and it makes the logic
 | |
|         // simpler here.
 | |
|         assert(Node->getOperand(i).getValueType() != MVT::Other &&
 | |
|                Node->getOperand(i).getValueType() != MVT::Flag &&
 | |
|                "Chain and flag operands should occur at end of operand list!");
 | |
| 
 | |
|         // Get/emit the operand.
 | |
|         unsigned VReg = getVR(Node->getOperand(i));
 | |
|         MI->addRegOperand(VReg, MachineOperand::Use);
 | |
|         
 | |
|         // Verify that it is right.
 | |
|         assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | |
|         assert(II.OpInfo[i+NumResults].RegClass &&
 | |
|                "Don't have operand info for this instruction!");
 | |
|         assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
 | |
|                "Register class of operand and regclass of use don't agree!");
 | |
|       } else if (ConstantSDNode *C =
 | |
|                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
 | |
|         MI->addZeroExtImm64Operand(C->getValue());
 | |
|       } else if (RegisterSDNode*R =
 | |
|                  dyn_cast<RegisterSDNode>(Node->getOperand(i))) {
 | |
|         MI->addRegOperand(R->getReg(), MachineOperand::Use);
 | |
|       } else if (GlobalAddressSDNode *TGA =
 | |
|                        dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) {
 | |
|         MI->addGlobalAddressOperand(TGA->getGlobal(), false, TGA->getOffset());
 | |
|       } else if (BasicBlockSDNode *BB =
 | |
|                        dyn_cast<BasicBlockSDNode>(Node->getOperand(i))) {
 | |
|         MI->addMachineBasicBlockOperand(BB->getBasicBlock());
 | |
|       } else if (FrameIndexSDNode *FI =
 | |
|                        dyn_cast<FrameIndexSDNode>(Node->getOperand(i))) {
 | |
|         MI->addFrameIndexOperand(FI->getIndex());
 | |
|       } else if (ConstantPoolSDNode *CP = 
 | |
|                     dyn_cast<ConstantPoolSDNode>(Node->getOperand(i))) {
 | |
|         unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
 | |
|         MI->addConstantPoolIndexOperand(Idx);
 | |
|       } else if (ExternalSymbolSDNode *ES = 
 | |
|                  dyn_cast<ExternalSymbolSDNode>(Node->getOperand(i))) {
 | |
|         MI->addExternalSymbolOperand(ES->getSymbol(), false);
 | |
|       } else {
 | |
|         assert(Node->getOperand(i).getValueType() != MVT::Other &&
 | |
|                Node->getOperand(i).getValueType() != MVT::Flag &&
 | |
|                "Chain and flag operands should occur at end of operand list!");
 | |
|         unsigned VReg = getVR(Node->getOperand(i));
 | |
|         MI->addRegOperand(VReg, MachineOperand::Use);
 | |
|         
 | |
|         // Verify that it is right.
 | |
|         assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | |
|         assert(II.OpInfo[i+NumResults].RegClass &&
 | |
|                "Don't have operand info for this instruction!");
 | |
|         assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
 | |
|                "Register class of operand and regclass of use don't agree!");
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that we have emitted all operands, emit this instruction itself.
 | |
|     if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
 | |
|       BB->insert(BB->end(), MI);
 | |
|     } else {
 | |
|       // Insert this instruction into the end of the basic block, potentially
 | |
|       // taking some custom action.
 | |
|       BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
 | |
|     }
 | |
|   } else {
 | |
|     switch (Node->getOpcode()) {
 | |
|     default:
 | |
|       Node->dump(); 
 | |
|       assert(0 && "This target-independent node should have been selected!");
 | |
|     case ISD::EntryToken: // fall thru
 | |
|     case ISD::TokenFactor:
 | |
|       break;
 | |
|     case ISD::CopyToReg: {
 | |
|       unsigned InReg = getVR(Node->getOperand(2));
 | |
|       unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|       if (InReg != DestReg)   // Coallesced away the copy?
 | |
|         MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg,
 | |
|                          RegMap->getRegClass(InReg));
 | |
|       break;
 | |
|     }
 | |
|     case ISD::CopyFromReg: {
 | |
|       unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|       if (MRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|         VRBase = SrcReg;  // Just use the input register directly!
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|       // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|       for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | |
|            UI != E; ++UI) {
 | |
|         SDNode *Use = *UI;
 | |
|         if (Use->getOpcode() == ISD::CopyToReg && 
 | |
|             Use->getOperand(2).Val == Node) {
 | |
|           unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | |
|           if (MRegisterInfo::isVirtualRegister(DestReg)) {
 | |
|             VRBase = DestReg;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Figure out the register class to create for the destreg.
 | |
|       const TargetRegisterClass *TRC = 0;
 | |
|       if (VRBase) {
 | |
|         TRC = RegMap->getRegClass(VRBase);
 | |
|       } else {
 | |
| 
 | |
|         // Pick the register class of the right type that contains this physreg.
 | |
|         for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
 | |
|              E = MRI.regclass_end(); I != E; ++I)
 | |
|           if ((*I)->hasType(Node->getValueType(0)) &&
 | |
|               (*I)->contains(SrcReg)) {
 | |
|             TRC = *I;
 | |
|             break;
 | |
|           }
 | |
|         assert(TRC && "Couldn't find register class for reg copy!");
 | |
|       
 | |
|         // Create the reg, emit the copy.
 | |
|         VRBase = RegMap->createVirtualRegister(TRC);
 | |
|       }
 | |
|       MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(NI->VRBase == 0 && "Node emitted out of order - early");
 | |
|   NI->VRBase = VRBase;
 | |
| }
 | |
| 
 | |
| /// Schedule - Order nodes according to selected style.
 | |
| ///
 | |
| void SimpleSched::Schedule() {
 | |
|   // Number the nodes
 | |
|   NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
 | |
|   // Test to see if scheduling should occur
 | |
|   bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
 | |
|   // Set up minimum info for scheduling
 | |
|   PrepareNodeInfo();
 | |
|   // Construct node groups for flagged nodes
 | |
|   IdentifyGroups();
 | |
| 
 | |
|   // Don't waste time if is only entry and return
 | |
|   if (ShouldSchedule) {
 | |
|     // Get latency and resource requirements
 | |
|     GatherSchedulingInfo();
 | |
|   } else if (HasGroups) {
 | |
|     // Make sure all the groups have dominators
 | |
|     FakeGroupDominators();
 | |
|   }
 | |
| 
 | |
|   // Breadth first walk of DAG
 | |
|   VisitAll();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   static unsigned Count = 0;
 | |
|   Count++;
 | |
|   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     NI->Preorder = i;
 | |
|   }
 | |
| #endif  
 | |
|   
 | |
|   // Don't waste time if is only entry and return
 | |
|   if (ShouldSchedule) {
 | |
|     // Push back long instructions and critical path
 | |
|     ScheduleBackward();
 | |
|     
 | |
|     // Pack instructions to maximize resource utilization
 | |
|     ScheduleForward();
 | |
|   }
 | |
|   
 | |
|   DEBUG(printChanges(Count));
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitAll();
 | |
| }
 | |
| 
 | |
| /// printChanges - Hilight changes in order caused by scheduling.
 | |
| ///
 | |
| void SimpleSched::printChanges(unsigned Index) {
 | |
| #ifndef NDEBUG
 | |
|   // Get the ordered node count
 | |
|   unsigned N = Ordering.size();
 | |
|   // Determine if any changes
 | |
|   unsigned i = 0;
 | |
|   for (; i < N; i++) {
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     if (NI->Preorder != i) break;
 | |
|   }
 | |
|   
 | |
|   if (i < N) {
 | |
|     std::cerr << Index << ". New Ordering\n";
 | |
|     
 | |
|     for (i = 0; i < N; i++) {
 | |
|       NodeInfo *NI = Ordering[i];
 | |
|       std::cerr << "  " << NI->Preorder << ". ";
 | |
|       printSI(std::cerr, NI);
 | |
|       std::cerr << "\n";
 | |
|       if (NI->isGroupDominator()) {
 | |
|         NodeGroup *Group = NI->Group;
 | |
|         for (NIIterator NII = Group->group_begin(), E = Group->group_end();
 | |
|              NII != E; NII++) {
 | |
|           std::cerr << "          ";
 | |
|           printSI(std::cerr, *NII);
 | |
|           std::cerr << "\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     std::cerr << Index << ". No Changes\n";
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// printSI - Print schedule info.
 | |
| ///
 | |
| void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
 | |
| #ifndef NDEBUG
 | |
|   SDNode *Node = NI->Node;
 | |
|   O << " "
 | |
|     << std::hex << Node << std::dec
 | |
|     << ", Lat=" << NI->Latency
 | |
|     << ", Slot=" << NI->Slot
 | |
|     << ", ARITY=(" << Node->getNumOperands() << ","
 | |
|                    << Node->getNumValues() << ")"
 | |
|     << " " << Node->getOperationName(&DAG);
 | |
|   if (isFlagDefiner(Node)) O << "<#";
 | |
|   if (isFlagUser(Node)) O << ">#";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// print - Print ordering to specified output stream.
 | |
| ///
 | |
| void SimpleSched::print(std::ostream &O) const {
 | |
| #ifndef NDEBUG
 | |
|   using namespace std;
 | |
|   O << "Ordering\n";
 | |
|   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
 | |
|     NodeInfo *NI = Ordering[i];
 | |
|     printSI(O, NI);
 | |
|     O << "\n";
 | |
|     if (NI->isGroupDominator()) {
 | |
|       NodeGroup *Group = NI->Group;
 | |
|       for (NIIterator NII = Group->group_begin(), E = Group->group_end();
 | |
|            NII != E; NII++) {
 | |
|         O << "    ";
 | |
|         printSI(O, *NII);
 | |
|         O << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// dump - Print ordering to std::cerr.
 | |
| ///
 | |
| void SimpleSched::dump() const {
 | |
|   print(std::cerr);
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
 | |
| /// target node in the graph.
 | |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
 | |
|   if (ViewDAGs) SD.viewGraph();
 | |
|   BB = SimpleSched(SD, BB).Run();  
 | |
| }
 |