mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25313 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1718 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1718 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineDebugInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <map>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewDAGs("view-isel-dags", cl::Hidden,
 | |
|          cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| #else
 | |
| static const bool ViewDAGs = 0;
 | |
| #endif
 | |
| 
 | |
| namespace llvm {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// FunctionLoweringInfo - This contains information that is global to a
 | |
|   /// function that is used when lowering a region of the function.
 | |
|   class FunctionLoweringInfo {
 | |
|   public:
 | |
|     TargetLowering &TLI;
 | |
|     Function &Fn;
 | |
|     MachineFunction &MF;
 | |
|     SSARegMap *RegMap;
 | |
| 
 | |
|     FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | |
| 
 | |
|     /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | |
|     std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | |
| 
 | |
|     /// ValueMap - Since we emit code for the function a basic block at a time,
 | |
|     /// we must remember which virtual registers hold the values for
 | |
|     /// cross-basic-block values.
 | |
|     std::map<const Value*, unsigned> ValueMap;
 | |
| 
 | |
|     /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | |
|     /// the entry block.  This allows the allocas to be efficiently referenced
 | |
|     /// anywhere in the function.
 | |
|     std::map<const AllocaInst*, int> StaticAllocaMap;
 | |
| 
 | |
|     unsigned MakeReg(MVT::ValueType VT) {
 | |
|       return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
|     }
 | |
| 
 | |
|     unsigned CreateRegForValue(const Value *V) {
 | |
|       MVT::ValueType VT = TLI.getValueType(V->getType());
 | |
|       // The common case is that we will only create one register for this
 | |
|       // value.  If we have that case, create and return the virtual register.
 | |
|       unsigned NV = TLI.getNumElements(VT);
 | |
|       if (NV == 1) {
 | |
|         // If we are promoting this value, pick the next largest supported type.
 | |
|         return MakeReg(TLI.getTypeToTransformTo(VT));
 | |
|       }
 | |
| 
 | |
|       // If this value is represented with multiple target registers, make sure
 | |
|       // to create enough consequtive registers of the right (smaller) type.
 | |
|       unsigned NT = VT-1;  // Find the type to use.
 | |
|       while (TLI.getNumElements((MVT::ValueType)NT) != 1)
 | |
|         --NT;
 | |
| 
 | |
|       unsigned R = MakeReg((MVT::ValueType)NT);
 | |
|       for (unsigned i = 1; i != NV; ++i)
 | |
|         MakeReg((MVT::ValueType)NT);
 | |
|       return R;
 | |
|     }
 | |
| 
 | |
|     unsigned InitializeRegForValue(const Value *V) {
 | |
|       unsigned &R = ValueMap[V];
 | |
|       assert(R == 0 && "Already initialized this value register!");
 | |
|       return R = CreateRegForValue(V);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it.
 | |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.
 | |
| static bool isOnlyUsedInEntryBlock(Argument *A) {
 | |
|   BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != Entry)
 | |
|       return false;  // Use not in entry block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | |
|                                            Function &fn, MachineFunction &mf)
 | |
|     : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
 | |
| 
 | |
|   // Create a vreg for each argument register that is not dead and is used
 | |
|   // outside of the entry block for the function.
 | |
|   for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
 | |
|        AI != E; ++AI)
 | |
|     if (!isOnlyUsedInEntryBlock(AI))
 | |
|       InitializeRegForValue(AI);
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::iterator BB = Fn.begin(), EB = Fn.end();
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
 | |
|         const Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | |
|         unsigned Align = 
 | |
|           std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         // If the alignment of the value is smaller than the size of the value,
 | |
|         // and if the size of the value is particularly small (<= 8 bytes),
 | |
|         // round up to the size of the value for potentially better performance.
 | |
|         //
 | |
|         // FIXME: This could be made better with a preferred alignment hook in
 | |
|         // TargetData.  It serves primarily to 8-byte align doubles for X86.
 | |
|         if (Align < TySize && TySize <= 8) Align = TySize;
 | |
|         TySize *= CUI->getValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF.getBasicBlockList().push_back(MBB);
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       if (!PN->use_empty()) {
 | |
|         unsigned NumElements =
 | |
|           TLI.getNumElements(TLI.getValueType(PN->getType()));
 | |
|         unsigned PHIReg = ValueMap[PN];
 | |
|         assert(PHIReg &&"PHI node does not have an assigned virtual register!");
 | |
|         for (unsigned i = 0; i != NumElements; ++i)
 | |
|           BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SelectionDAGLowering - This is the common target-independent lowering
 | |
| /// implementation that is parameterized by a TargetLowering object.
 | |
| /// Also, targets can overload any lowering method.
 | |
| ///
 | |
| namespace llvm {
 | |
| class SelectionDAGLowering {
 | |
|   MachineBasicBlock *CurMBB;
 | |
| 
 | |
|   std::map<const Value*, SDOperand> NodeMap;
 | |
| 
 | |
|   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | |
|   /// them up and then emit token factor nodes when possible.  This allows us to
 | |
|   /// get simple disambiguation between loads without worrying about alias
 | |
|   /// analysis.
 | |
|   std::vector<SDOperand> PendingLoads;
 | |
| 
 | |
| public:
 | |
|   // TLI - This is information that describes the available target features we
 | |
|   // need for lowering.  This indicates when operations are unavailable,
 | |
|   // implemented with a libcall, etc.
 | |
|   TargetLowering &TLI;
 | |
|   SelectionDAG &DAG;
 | |
|   const TargetData &TD;
 | |
| 
 | |
|   /// FuncInfo - Information about the function as a whole.
 | |
|   ///
 | |
|   FunctionLoweringInfo &FuncInfo;
 | |
| 
 | |
|   SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | |
|                        FunctionLoweringInfo &funcinfo)
 | |
|     : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
 | |
|       FuncInfo(funcinfo) {
 | |
|   }
 | |
| 
 | |
|   /// getRoot - Return the current virtual root of the Selection DAG.
 | |
|   ///
 | |
|   SDOperand getRoot() {
 | |
|     if (PendingLoads.empty())
 | |
|       return DAG.getRoot();
 | |
| 
 | |
|     if (PendingLoads.size() == 1) {
 | |
|       SDOperand Root = PendingLoads[0];
 | |
|       DAG.setRoot(Root);
 | |
|       PendingLoads.clear();
 | |
|       return Root;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have to make a token factor node.
 | |
|     SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
 | |
|     PendingLoads.clear();
 | |
|     DAG.setRoot(Root);
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | |
| 
 | |
|   void visit(unsigned Opcode, User &I) {
 | |
|     switch (Opcode) {
 | |
|     default: assert(0 && "Unknown instruction type encountered!");
 | |
|              abort();
 | |
|       // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|     case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | |
| #include "llvm/Instruction.def"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | |
| 
 | |
| 
 | |
|   SDOperand getIntPtrConstant(uint64_t Val) {
 | |
|     return DAG.getConstant(Val, TLI.getPointerTy());
 | |
|   }
 | |
| 
 | |
|   SDOperand getValue(const Value *V) {
 | |
|     SDOperand &N = NodeMap[V];
 | |
|     if (N.Val) return N;
 | |
| 
 | |
|     const Type *VTy = V->getType();
 | |
|     MVT::ValueType VT = TLI.getValueType(VTy);
 | |
|     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|         visit(CE->getOpcode(), *CE);
 | |
|         assert(N.Val && "visit didn't populate the ValueMap!");
 | |
|         return N;
 | |
|       } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|         return N = DAG.getGlobalAddress(GV, VT);
 | |
|       } else if (isa<ConstantPointerNull>(C)) {
 | |
|         return N = DAG.getConstant(0, TLI.getPointerTy());
 | |
|       } else if (isa<UndefValue>(C)) {
 | |
|         return N = DAG.getNode(ISD::UNDEF, VT);
 | |
|       } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|         return N = DAG.getConstantFP(CFP->getValue(), VT);
 | |
|       } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
 | |
|         unsigned NumElements = PTy->getNumElements();
 | |
|         MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|         MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | |
|         
 | |
|         // Now that we know the number and type of the elements, push a
 | |
|         // Constant or ConstantFP node onto the ops list for each element of
 | |
|         // the packed constant.
 | |
|         std::vector<SDOperand> Ops;
 | |
|         if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
 | |
|           if (MVT::isFloatingPoint(PVT)) {
 | |
|             for (unsigned i = 0; i != NumElements; ++i) {
 | |
|               const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
 | |
|               Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
 | |
|             }
 | |
|           } else {
 | |
|             for (unsigned i = 0; i != NumElements; ++i) {
 | |
|               const ConstantIntegral *El = 
 | |
|                 cast<ConstantIntegral>(CP->getOperand(i));
 | |
|               Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
 | |
|           SDOperand Op;
 | |
|           if (MVT::isFloatingPoint(PVT))
 | |
|             Op = DAG.getConstantFP(0, PVT);
 | |
|           else
 | |
|             Op = DAG.getConstant(0, PVT);
 | |
|           Ops.assign(NumElements, Op);
 | |
|         }
 | |
|         
 | |
|         // Handle the case where we have a 1-element vector, in which
 | |
|         // case we want to immediately turn it into a scalar constant.
 | |
|         if (Ops.size() == 1) {
 | |
|           return N = Ops[0];
 | |
|         } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
 | |
|           return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
 | |
|         } else {
 | |
|           // If the packed type isn't legal, then create a ConstantVec node with
 | |
|           // generic Vector type instead.
 | |
|           return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops);
 | |
|         }
 | |
|       } else {
 | |
|         // Canonicalize all constant ints to be unsigned.
 | |
|         return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
 | |
|       }
 | |
| 
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|       std::map<const AllocaInst*, int>::iterator SI =
 | |
|         FuncInfo.StaticAllocaMap.find(AI);
 | |
|       if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|         return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | |
|     }
 | |
| 
 | |
|     std::map<const Value*, unsigned>::const_iterator VMI =
 | |
|       FuncInfo.ValueMap.find(V);
 | |
|     assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
 | |
| 
 | |
|     unsigned InReg = VMI->second;
 | |
|    
 | |
|     // If this type is not legal, make it so now.
 | |
|     MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
 | |
|     
 | |
|     N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
 | |
|     if (DestVT < VT) {
 | |
|       // Source must be expanded.  This input value is actually coming from the
 | |
|       // register pair VMI->second and VMI->second+1.
 | |
|       N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
 | |
|                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
 | |
|     } else {
 | |
|       if (DestVT > VT) { // Promotion case
 | |
|         if (MVT::isFloatingPoint(VT))
 | |
|           N = DAG.getNode(ISD::FP_ROUND, VT, N);
 | |
|         else
 | |
|           N = DAG.getNode(ISD::TRUNCATE, VT, N);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   const SDOperand &setValue(const Value *V, SDOperand NewN) {
 | |
|     SDOperand &N = NodeMap[V];
 | |
|     assert(N.Val == 0 && "Already set a value for this node!");
 | |
|     return N = NewN;
 | |
|   }
 | |
| 
 | |
|   // Terminator instructions.
 | |
|   void visitRet(ReturnInst &I);
 | |
|   void visitBr(BranchInst &I);
 | |
|   void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | |
| 
 | |
|   // These all get lowered before this pass.
 | |
|   void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
 | |
|   void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
 | |
|   void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
 | |
|   void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
 | |
| 
 | |
|   //
 | |
|   void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
 | |
|   void visitShift(User &I, unsigned Opcode);
 | |
|   void visitAdd(User &I) { 
 | |
|     visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); 
 | |
|   }
 | |
|   void visitSub(User &I);
 | |
|   void visitMul(User &I) { 
 | |
|     visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); 
 | |
|   }
 | |
|   void visitDiv(User &I) {
 | |
|     const Type *Ty = I.getType();
 | |
|     visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0);
 | |
|   }
 | |
|   void visitRem(User &I) {
 | |
|     const Type *Ty = I.getType();
 | |
|     visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
 | |
|   }
 | |
|   void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); }
 | |
|   void visitOr (User &I) { visitBinary(I, ISD::OR,  0, 0); }
 | |
|   void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); }
 | |
|   void visitShl(User &I) { visitShift(I, ISD::SHL); }
 | |
|   void visitShr(User &I) { 
 | |
|     visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
 | |
|   }
 | |
| 
 | |
|   void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
 | |
|   void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
 | |
|   void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
 | |
|   void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
 | |
|   void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
 | |
|   void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
 | |
|   void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
 | |
| 
 | |
|   void visitGetElementPtr(User &I);
 | |
|   void visitCast(User &I);
 | |
|   void visitSelect(User &I);
 | |
|   //
 | |
| 
 | |
|   void visitMalloc(MallocInst &I);
 | |
|   void visitFree(FreeInst &I);
 | |
|   void visitAlloca(AllocaInst &I);
 | |
|   void visitLoad(LoadInst &I);
 | |
|   void visitStore(StoreInst &I);
 | |
|   void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | |
|   void visitCall(CallInst &I);
 | |
|   const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
 | |
| 
 | |
|   void visitVAStart(CallInst &I);
 | |
|   void visitVAArg(VAArgInst &I);
 | |
|   void visitVAEnd(CallInst &I);
 | |
|   void visitVACopy(CallInst &I);
 | |
|   void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
 | |
| 
 | |
|   void visitMemIntrinsic(CallInst &I, unsigned Op);
 | |
| 
 | |
|   void visitUserOp1(Instruction &I) {
 | |
|     assert(0 && "UserOp1 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
|   void visitUserOp2(Instruction &I) {
 | |
|     assert(0 && "UserOp2 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
| };
 | |
| } // end namespace llvm
 | |
| 
 | |
| void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) {
 | |
|     DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   MVT::ValueType TmpVT;
 | |
| 
 | |
|   switch (Op1.getValueType()) {
 | |
|   default: assert(0 && "Unknown value type!");
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     // If this is a machine where 32-bits is legal or expanded, promote to
 | |
|     // 32-bits, otherwise, promote to 64-bits.
 | |
|     if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
 | |
|       TmpVT = TLI.getTypeToTransformTo(MVT::i32);
 | |
|     else
 | |
|       TmpVT = MVT::i32;
 | |
| 
 | |
|     // Extend integer types to result type.
 | |
|     if (I.getOperand(0)->getType()->isSigned())
 | |
|       Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
 | |
|     else
 | |
|       Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|   case MVT::i64:
 | |
|   case MVT::f64:
 | |
|     break; // No extension needed!
 | |
|   }
 | |
|   // Allow targets to lower this further to meet ABI requirements
 | |
|   DAG.setRoot(TLI.LowerReturnTo(getRoot(), Op1, DAG));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBr(BranchInst &I) {
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (Succ0MBB != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
|   } else {
 | |
|     MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|     SDOperand Cond = getValue(I.getCondition());
 | |
|     if (Succ1MBB == NextBlock) {
 | |
|       // If the condition is false, fall through.  This means we should branch
 | |
|       // if the condition is true to Succ #0.
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | |
|                               Cond, DAG.getBasicBlock(Succ0MBB)));
 | |
|     } else if (Succ0MBB == NextBlock) {
 | |
|       // If the condition is true, fall through.  This means we should branch if
 | |
|       // the condition is false to Succ #1.  Invert the condition first.
 | |
|       SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | |
|                               Cond, DAG.getBasicBlock(Succ1MBB)));
 | |
|     } else {
 | |
|       std::vector<SDOperand> Ops;
 | |
|       Ops.push_back(getRoot());
 | |
|       Ops.push_back(Cond);
 | |
|       Ops.push_back(DAG.getBasicBlock(Succ0MBB));
 | |
|       Ops.push_back(DAG.getBasicBlock(Succ1MBB));
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSub(User &I) {
 | |
|   // -0.0 - X --> fneg
 | |
|   if (I.getType()->isFloatingPoint()) {
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | |
|       if (CFP->isExactlyValue(-0.0)) {
 | |
|         SDOperand Op2 = getValue(I.getOperand(1));
 | |
|         setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
|   visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, 
 | |
|                                        unsigned VecOp) {
 | |
|   const Type *Ty = I.getType();
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   if (Ty->isIntegral()) {
 | |
|     setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
 | |
|   } else if (Ty->isFloatingPoint()) {
 | |
|     setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
 | |
|   } else {
 | |
|     const PackedType *PTy = cast<PackedType>(Ty);
 | |
|     unsigned NumElements = PTy->getNumElements();
 | |
|     MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|     MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | |
|     
 | |
|     // Immediately scalarize packed types containing only one element, so that
 | |
|     // the Legalize pass does not have to deal with them.  Similarly, if the
 | |
|     // abstract vector is going to turn into one that the target natively
 | |
|     // supports, generate that type now so that Legalize doesn't have to deal
 | |
|     // with that either.  These steps ensure that Legalize only has to handle
 | |
|     // vector types in its Expand case.
 | |
|     unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
 | |
|     if (NumElements == 1) {
 | |
|       setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
 | |
|     } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
 | |
|       setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
 | |
|     } else {
 | |
|       SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
 | |
|       SDOperand Typ = DAG.getValueType(PVT);
 | |
|       setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   
 | |
|   Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
 | |
|   
 | |
|   setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
 | |
|                                       ISD::CondCode UnsignedOpcode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode = SignedOpcode;
 | |
|   if (I.getOperand(0)->getType()->isUnsigned())
 | |
|     Opcode = UnsignedOpcode;
 | |
|   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSelect(User &I) {
 | |
|   SDOperand Cond     = getValue(I.getOperand(0));
 | |
|   SDOperand TrueVal  = getValue(I.getOperand(1));
 | |
|   SDOperand FalseVal = getValue(I.getOperand(2));
 | |
|   setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | |
|                            TrueVal, FalseVal));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitCast(User &I) {
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
 | |
|   MVT::ValueType DestTy = TLI.getValueType(I.getType());
 | |
| 
 | |
|   if (N.getValueType() == DestTy) {
 | |
|     setValue(&I, N);  // noop cast.
 | |
|   } else if (DestTy == MVT::i1) {
 | |
|     // Cast to bool is a comparison against zero, not truncation to zero.
 | |
|     SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
 | |
|                                        DAG.getConstantFP(0.0, N.getValueType());
 | |
|     setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
 | |
|   } else if (isInteger(SrcTy)) {
 | |
|     if (isInteger(DestTy)) {        // Int -> Int cast
 | |
|       if (DestTy < SrcTy)   // Truncating cast?
 | |
|         setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
 | |
|       else if (I.getOperand(0)->getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
 | |
|     } else {                        // Int -> FP cast
 | |
|       if (I.getOperand(0)->getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
 | |
|     }
 | |
|   } else {
 | |
|     assert(isFloatingPoint(SrcTy) && "Unknown value type!");
 | |
|     if (isFloatingPoint(DestTy)) {  // FP -> FP cast
 | |
|       if (DestTy < SrcTy)   // Rounding cast?
 | |
|         setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
 | |
|     } else {                        // FP -> Int cast.
 | |
|       if (I.getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   const Type *Ty = I.getOperand(0)->getType();
 | |
|   const Type *UIntPtrTy = TD.getIntPtrType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | |
|        OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | |
|                         getIntPtrConstant(Offset));
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getRawValue() == 0) continue;
 | |
| 
 | |
|         uint64_t Offs;
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | |
|           Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
 | |
|         else
 | |
|           Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = TD.getTypeSize(Ty);
 | |
|       SDOperand IdxN = getValue(Idx);
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       if (IdxN.getValueType() < N.getValueType()) {
 | |
|         if (Idx->getType()->isSigned())
 | |
|           IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
 | |
|         else
 | |
|           IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
 | |
|       } else if (IdxN.getValueType() > N.getValueType())
 | |
|         IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
 | |
| 
 | |
|       // If this is a multiply by a power of two, turn it into a shl
 | |
|       // immediately.  This is a very common case.
 | |
|       if (isPowerOf2_64(ElementSize)) {
 | |
|         unsigned Amt = Log2_64(ElementSize);
 | |
|         IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
 | |
|                            DAG.getConstant(Amt, TLI.getShiftAmountTy()));
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       SDOperand Scale = getIntPtrConstant(ElementSize);
 | |
|       IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | |
|       N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | |
|   unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
 | |
|                             I.getAlignment());
 | |
| 
 | |
|   SDOperand AllocSize = getValue(I.getArraySize());
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   if (IntPtr < AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
 | |
|   else if (IntPtr > AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
 | |
| 
 | |
|   AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
 | |
|                           getIntPtrConstant(TySize));
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to the
 | |
|   // stack alignment, ignore it and round the size of the allocation up to the
 | |
|   // stack alignment size.  If the size is greater than the stack alignment, we
 | |
|   // note this in the DYNAMIC_STACKALLOC node.
 | |
|   unsigned StackAlign =
 | |
|     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (Align <= StackAlign) {
 | |
|     Align = 0;
 | |
|     // Add SA-1 to the size.
 | |
|     AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(StackAlign-1));
 | |
|     // Mask out the low bits for alignment purposes.
 | |
|     AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | |
|   }
 | |
| 
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   VTs.push_back(AllocSize.getValueType());
 | |
|   VTs.push_back(MVT::Other);
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(getRoot());
 | |
|   Ops.push_back(AllocSize);
 | |
|   Ops.push_back(getIntPtrConstant(Align));
 | |
|   SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
 | |
|   DAG.setRoot(setValue(&I, DSA).getValue(1));
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| /// getStringValue - Turn an LLVM constant pointer that eventually points to a
 | |
| /// global into a string value.  Return an empty string if we can't do it.
 | |
| ///
 | |
| static std::string getStringValue(Value *V, unsigned Offset = 0) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|     if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
 | |
|       ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
 | |
|       if (Init->isString()) {
 | |
|         std::string Result = Init->getAsString();
 | |
|         if (Offset < Result.size()) {
 | |
|           // If we are pointing INTO The string, erase the beginning...
 | |
|           Result.erase(Result.begin(), Result.begin()+Offset);
 | |
| 
 | |
|           // Take off the null terminator, and any string fragments after it.
 | |
|           std::string::size_type NullPos = Result.find_first_of((char)0);
 | |
|           if (NullPos != std::string::npos)
 | |
|             Result.erase(Result.begin()+NullPos, Result.end());
 | |
|           return Result;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|       return getStringValue(GV, Offset);
 | |
|     else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         // Turn a gep into the specified offset.
 | |
|         if (CE->getNumOperands() == 3 &&
 | |
|             cast<Constant>(CE->getOperand(1))->isNullValue() &&
 | |
|             isa<ConstantInt>(CE->getOperand(2))) {
 | |
|           return getStringValue(CE->getOperand(0),
 | |
|                    Offset+cast<ConstantInt>(CE->getOperand(2))->getRawValue());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | |
|   SDOperand Ptr = getValue(I.getOperand(0));
 | |
| 
 | |
|   SDOperand Root;
 | |
|   if (I.isVolatile())
 | |
|     Root = getRoot();
 | |
|   else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
|   
 | |
|   const Type *Ty = I.getType();
 | |
|   SDOperand L;
 | |
|   
 | |
|   if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
 | |
|     unsigned NumElements = PTy->getNumElements();
 | |
|     MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|     MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | |
|     
 | |
|     // Immediately scalarize packed types containing only one element, so that
 | |
|     // the Legalize pass does not have to deal with them.
 | |
|     if (NumElements == 1) {
 | |
|       L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
 | |
|     } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
 | |
|       L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
 | |
|     } else {
 | |
|       L = DAG.getVecLoad(NumElements, PVT, Root, Ptr, 
 | |
|                          DAG.getSrcValue(I.getOperand(0)));
 | |
|     }
 | |
|   } else {
 | |
|     L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, 
 | |
|                     DAG.getSrcValue(I.getOperand(0)));
 | |
|   }
 | |
|   setValue(&I, L);
 | |
| 
 | |
|   if (I.isVolatile())
 | |
|     DAG.setRoot(L.getValue(1));
 | |
|   else
 | |
|     PendingLoads.push_back(L.getValue(1));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitStore(StoreInst &I) {
 | |
|   Value *SrcV = I.getOperand(0);
 | |
|   SDOperand Src = getValue(SrcV);
 | |
|   SDOperand Ptr = getValue(I.getOperand(1));
 | |
|   DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | |
| /// we want to emit this as a call to a named external function, return the name
 | |
| /// otherwise lower it and return null.
 | |
| const char *
 | |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return 0;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | |
|   case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
 | |
|   case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
 | |
|   case Intrinsic::setjmp:
 | |
|     return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::longjmp:
 | |
|     return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return 0;
 | |
|   case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return 0;
 | |
|   case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0;
 | |
|     
 | |
|   case Intrinsic::readport:
 | |
|   case Intrinsic::readio: {
 | |
|     std::vector<MVT::ValueType> VTs;
 | |
|     VTs.push_back(TLI.getValueType(I.getType()));
 | |
|     VTs.push_back(MVT::Other);
 | |
|     std::vector<SDOperand> Ops;
 | |
|     Ops.push_back(getRoot());
 | |
|     Ops.push_back(getValue(I.getOperand(1)));
 | |
|     SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ?
 | |
|                                 ISD::READPORT : ISD::READIO, VTs, Ops);
 | |
|     
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::writeport:
 | |
|   case Intrinsic::writeio:
 | |
|     DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ?
 | |
|                             ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
 | |
|                             getRoot(), getValue(I.getOperand(1)),
 | |
|                             getValue(I.getOperand(2))));
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::dbg_stoppoint: {
 | |
|     if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | |
|       return "llvm_debugger_stop";
 | |
|     
 | |
|     std::string fname = "<unknown>";
 | |
|     std::vector<SDOperand> Ops;
 | |
| 
 | |
|     // Input Chain
 | |
|     Ops.push_back(getRoot());
 | |
|     
 | |
|     // line number
 | |
|     Ops.push_back(getValue(I.getOperand(2)));
 | |
|    
 | |
|     // column
 | |
|     Ops.push_back(getValue(I.getOperand(3)));
 | |
| 
 | |
|     // filename/working dir
 | |
|     // Pull the filename out of the the compilation unit.
 | |
|     const GlobalVariable *cunit = dyn_cast<GlobalVariable>(I.getOperand(4));
 | |
|     if (cunit && cunit->hasInitializer()) {
 | |
|       if (ConstantStruct *CS = 
 | |
|             dyn_cast<ConstantStruct>(cunit->getInitializer())) {
 | |
|         if (CS->getNumOperands() > 0) {
 | |
|           Ops.push_back(DAG.getString(getStringValue(CS->getOperand(3))));
 | |
|           Ops.push_back(DAG.getString(getStringValue(CS->getOperand(4))));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Ops.size() == 5)  // Found filename/workingdir.
 | |
|       DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
 | |
|     setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_start:
 | |
|     if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | |
|       return "llvm_dbg_region_start";
 | |
|     if (I.getType() != Type::VoidTy)
 | |
|       setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | |
|     return 0;
 | |
|   case Intrinsic::dbg_region_end:
 | |
|     if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | |
|       return "llvm_dbg_region_end";
 | |
|     if (I.getType() != Type::VoidTy)
 | |
|       setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | |
|     return 0;
 | |
|   case Intrinsic::dbg_func_start:
 | |
|     if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | |
|       return "llvm_dbg_subprogram";
 | |
|     if (I.getType() != Type::VoidTy)
 | |
|       setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | |
|     return 0;
 | |
|   case Intrinsic::dbg_declare:
 | |
|     if (I.getType() != Type::VoidTy)
 | |
|       setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::isunordered:
 | |
|     setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
 | |
|                               getValue(I.getOperand(2)), ISD::SETUO));
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::sqrt:
 | |
|     setValue(&I, DAG.getNode(ISD::FSQRT,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDOperand Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     std::vector<MVT::ValueType> VTs;
 | |
|     VTs.push_back(MVT::i64);
 | |
|     VTs.push_back(MVT::Other);
 | |
|     std::vector<SDOperand> Ops;
 | |
|     Ops.push_back(getRoot());
 | |
|     SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::bswap_i16:
 | |
|   case Intrinsic::bswap_i32:
 | |
|   case Intrinsic::bswap_i64:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::cttz:
 | |
|     setValue(&I, DAG.getNode(ISD::CTTZ,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::ctlz:
 | |
|     setValue(&I, DAG.getNode(ISD::CTLZ,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::ctpop:
 | |
|     setValue(&I, DAG.getNode(ISD::CTPOP,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::stacksave: {
 | |
|     std::vector<MVT::ValueType> VTs;
 | |
|     VTs.push_back(TLI.getPointerTy());
 | |
|     VTs.push_back(MVT::Other);
 | |
|     std::vector<SDOperand> Ops;
 | |
|     Ops.push_back(getRoot());
 | |
|     SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stackrestore:
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, DAG.getRoot(),
 | |
|                             getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::prefetch:
 | |
|     // FIXME: Currently discarding prefetches.
 | |
|     return 0;
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "This intrinsic is not implemented yet!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitCall(CallInst &I) {
 | |
|   const char *RenameFn = 0;
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     if (F->isExternal())
 | |
|       if (unsigned IID = F->getIntrinsicID()) {
 | |
|         RenameFn = visitIntrinsicCall(I, IID);
 | |
|         if (!RenameFn)
 | |
|           return;
 | |
|       } else {    // Not an LLVM intrinsic.
 | |
|         const std::string &Name = F->getName();
 | |
|         if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   SDOperand Callee;
 | |
|   if (!RenameFn)
 | |
|     Callee = getValue(I.getOperand(0));
 | |
|   else
 | |
|     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.reserve(I.getNumOperands());
 | |
|   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Value *Arg = I.getOperand(i);
 | |
|     SDOperand ArgNode = getValue(Arg);
 | |
|     Args.push_back(std::make_pair(ArgNode, Arg->getType()));
 | |
|   }
 | |
| 
 | |
|   const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
 | |
|                     I.isTailCall(), Callee, Args, DAG);
 | |
|   if (I.getType() != Type::VoidTy)
 | |
|     setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | |
|   SDOperand Src = getValue(I.getOperand(0));
 | |
| 
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
| 
 | |
|   if (IntPtr < Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
 | |
|   else if (IntPtr > Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
 | |
| 
 | |
|   // Scale the source by the type size.
 | |
|   uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
 | |
|   Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | |
|                     Src, getIntPtrConstant(ElementSize));
 | |
| 
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("malloc", IntPtr),
 | |
|                     Args, DAG);
 | |
|   setValue(&I, Result.first);  // Pointers always fit in registers
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFree(FreeInst &I) {
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.push_back(std::make_pair(getValue(I.getOperand(0)),
 | |
|                                 TLI.getTargetData().getIntPtrType()));
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| // InsertAtEndOfBasicBlock - This method should be implemented by targets that
 | |
| // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and the scheduler passes ownership of it to this method.
 | |
| MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                                        MachineBasicBlock *MBB) {
 | |
|   std::cerr << "If a target marks an instruction with "
 | |
|                "'usesCustomDAGSchedInserter', it must implement "
 | |
|                "TargetLowering::InsertAtEndOfBasicBlock!\n";
 | |
|   abort();
 | |
|   return 0;  
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
 | |
|                                        SDOperand VAListP, Value *VAListV,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   // We have no sane default behavior, just emit a useful error message and bail
 | |
|   // out.
 | |
|   std::cerr << "Variable arguments handling not implemented on this target!\n";
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   // Default to a noop.
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
 | |
|                                       SDOperand SrcP, Value *SrcV,
 | |
|                                       SDOperand DestP, Value *DestV,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   // Default to copying the input list.
 | |
|   SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
 | |
|                               SrcP, DAG.getSrcValue(SrcV));
 | |
|   SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
 | |
|                                  Val, DestP, DAG.getSrcValue(DestV));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand,SDOperand>
 | |
| TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
 | |
|                            const Type *ArgTy, SelectionDAG &DAG) {
 | |
|   // We have no sane default behavior, just emit a useful error message and bail
 | |
|   // out.
 | |
|   std::cerr << "Variable arguments handling not implemented on this target!\n";
 | |
|   abort();
 | |
|   return std::make_pair(SDOperand(), SDOperand());
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | |
|   DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
 | |
|                                I.getOperand(1), DAG));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
 | |
|                    I.getType(), DAG);
 | |
|   setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | |
|   DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
 | |
|                              I.getOperand(1), DAG));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | |
|   SDOperand Result =
 | |
|     TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
 | |
|                     getValue(I.getOperand(1)), I.getOperand(1), DAG);
 | |
|   DAG.setRoot(Result);
 | |
| }
 | |
| 
 | |
| 
 | |
| // It is always conservatively correct for llvm.returnaddress and
 | |
| // llvm.frameaddress to return 0.
 | |
| std::pair<SDOperand, SDOperand>
 | |
| TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
 | |
|                                         unsigned Depth, SelectionDAG &DAG) {
 | |
|   return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(0 && "LowerOperation not implemented for this target!");
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
 | |
|   unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
 | |
|   setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
 | |
| #if 0
 | |
|   // If the size of the cpy/move/set is constant (known)
 | |
|   if (ConstantUInt* op3 = dyn_cast<ConstantUInt>(I.getOperand(3))) {
 | |
|     uint64_t size = op3->getValue();
 | |
|     switch (Op) {
 | |
|       case ISD::MEMSET: 
 | |
|         if (size <= TLI.getMaxStoresPerMemSet()) {
 | |
|           if (ConstantUInt* op4 = dyn_cast<ConstantUInt>(I.getOperand(4))) {
 | |
|         uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | |
|             uint64_t align = op4.getValue();
 | |
|             while (size > align) {
 | |
|               size -=align;
 | |
|             }
 | |
|   Value *SrcV = I.getOperand(0);
 | |
|   SDOperand Src = getValue(SrcV);
 | |
|   SDOperand Ptr = getValue(I.getOperand(1));
 | |
|   DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|         break; // don't do this optimization, use a normal memset
 | |
|       case ISD::MEMMOVE: 
 | |
|       case ISD::MEMCPY:
 | |
|         break; // FIXME: not implemented yet
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Non-optimized version
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(getRoot());
 | |
|   Ops.push_back(getValue(I.getOperand(1)));
 | |
|   Ops.push_back(getValue(I.getOperand(2)));
 | |
|   Ops.push_back(getValue(I.getOperand(3)));
 | |
|   Ops.push_back(getValue(I.getOperand(4)));
 | |
|   DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
 | |
|   return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   // FIXME: we only modify the CFG to split critical edges.  This
 | |
|   // updates dom and loop info.
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
 | |
| /// casting to the type of GEPI.
 | |
| static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
 | |
|                                    Value *Ptr, Value *PtrOffset) {
 | |
|   if (V) return V;   // Already computed.
 | |
|   
 | |
|   BasicBlock::iterator InsertPt;
 | |
|   if (BB == GEPI->getParent()) {
 | |
|     // If insert into the GEP's block, insert right after the GEP.
 | |
|     InsertPt = GEPI;
 | |
|     ++InsertPt;
 | |
|   } else {
 | |
|     // Otherwise, insert at the top of BB, after any PHI nodes
 | |
|     InsertPt = BB->begin();
 | |
|     while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|   }
 | |
|   
 | |
|   // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
 | |
|   // BB so that there is only one value live across basic blocks (the cast 
 | |
|   // operand).
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Ptr))
 | |
|     if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
 | |
|       Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
 | |
|   
 | |
|   // Add the offset, cast it to the right type.
 | |
|   Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
 | |
|   Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
 | |
|   return V = Ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
 | |
| /// selection, we want to be a bit careful about some things.  In particular, if
 | |
| /// we have a GEP instruction that is used in a different block than it is
 | |
| /// defined, the addressing expression of the GEP cannot be folded into loads or
 | |
| /// stores that use it.  In this case, decompose the GEP and move constant
 | |
| /// indices into blocks that use it.
 | |
| static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
 | |
|                                   const TargetData &TD) {
 | |
|   // If this GEP is only used inside the block it is defined in, there is no
 | |
|   // need to rewrite it.
 | |
|   bool isUsedOutsideDefBB = false;
 | |
|   BasicBlock *DefBB = GEPI->getParent();
 | |
|   for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); 
 | |
|        UI != E; ++UI) {
 | |
|     if (cast<Instruction>(*UI)->getParent() != DefBB) {
 | |
|       isUsedOutsideDefBB = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!isUsedOutsideDefBB) return;
 | |
| 
 | |
|   // If this GEP has no non-zero constant indices, there is nothing we can do,
 | |
|   // ignore it.
 | |
|   bool hasConstantIndex = false;
 | |
|   for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | |
|        E = GEPI->op_end(); OI != E; ++OI) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
 | |
|       if (CI->getRawValue()) {
 | |
|         hasConstantIndex = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
 | |
|   if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
 | |
|   
 | |
|   // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
 | |
|   // constant offset (which we now know is non-zero) and deal with it later.
 | |
|   uint64_t ConstantOffset = 0;
 | |
|   const Type *UIntPtrTy = TD.getIntPtrType();
 | |
|   Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
 | |
|   const Type *Ty = GEPI->getOperand(0)->getType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | |
|        E = GEPI->op_end(); OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | |
|       if (Field)
 | |
|         ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // Handle constant subscripts.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getRawValue() == 0) continue;
 | |
|         
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | |
|           ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
 | |
|         else
 | |
|           ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Ptr = Ptr + Idx * ElementSize;
 | |
|       
 | |
|       // Cast Idx to UIntPtrTy if needed.
 | |
|       Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
 | |
|       
 | |
|       uint64_t ElementSize = TD.getTypeSize(Ty);
 | |
|       // Mask off bits that should not be set.
 | |
|       ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | |
|       Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
 | |
| 
 | |
|       // Multiply by the element size and add to the base.
 | |
|       Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
 | |
|       Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Make sure that the offset fits in uintptr_t.
 | |
|   ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | |
|   Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
 | |
|   
 | |
|   // Okay, we have now emitted all of the variable index parts to the BB that
 | |
|   // the GEP is defined in.  Loop over all of the using instructions, inserting
 | |
|   // an "add Ptr, ConstantOffset" into each block that uses it and update the
 | |
|   // instruction to use the newly computed value, making GEPI dead.  When the
 | |
|   // user is a load or store instruction address, we emit the add into the user
 | |
|   // block, otherwise we use a canonical version right next to the gep (these 
 | |
|   // won't be foldable as addresses, so we might as well share the computation).
 | |
|   
 | |
|   std::map<BasicBlock*,Value*> InsertedExprs;
 | |
|   while (!GEPI->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(GEPI->use_back());
 | |
| 
 | |
|     // If this use is not foldable into the addressing mode, use a version 
 | |
|     // emitted in the GEP block.
 | |
|     Value *NewVal;
 | |
|     if (!isa<LoadInst>(User) &&
 | |
|         (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
 | |
|       NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, 
 | |
|                                     Ptr, PtrOffset);
 | |
|     } else {
 | |
|       // Otherwise, insert the code in the User's block so it can be folded into
 | |
|       // any users in that block.
 | |
|       NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], 
 | |
|                                     User->getParent(), GEPI, 
 | |
|                                     Ptr, PtrOffset);
 | |
|     }
 | |
|     User->replaceUsesOfWith(GEPI, NewVal);
 | |
|   }
 | |
|   
 | |
|   // Finally, the GEP is dead, remove it.
 | |
|   GEPI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | |
|   MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | |
|   RegMap = MF.getSSARegMap();
 | |
|   DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
 | |
| 
 | |
|   // First, split all critical edges for PHI nodes with incoming values that are
 | |
|   // constants, this way the load of the constant into a vreg will not be placed
 | |
|   // into MBBs that are used some other way.
 | |
|   //
 | |
|   // In this pass we also look for GEP instructions that are used across basic
 | |
|   // blocks and rewrites them to improve basic-block-at-a-time selection.
 | |
|   // 
 | |
|   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     PHINode *PN;
 | |
|     BasicBlock::iterator BBI;
 | |
|     for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (isa<Constant>(PN->getIncomingValue(i)))
 | |
|           SplitCriticalEdge(PN->getIncomingBlock(i), BB);
 | |
|     
 | |
|     for (BasicBlock::iterator E = BB->end(); BBI != E; )
 | |
|       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
 | |
|         OptimizeGEPExpression(GEPI, TLI.getTargetData());
 | |
|   }
 | |
|   
 | |
|   FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | |
| 
 | |
|   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|     SelectBasicBlock(I, MF, FuncInfo);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAGISel::
 | |
| CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
 | |
|   SDOperand Op = SDL.getValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   
 | |
|   // If this type is not legal, we must make sure to not create an invalid
 | |
|   // register use.
 | |
|   MVT::ValueType SrcVT = Op.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|   SelectionDAG &DAG = SDL.DAG;
 | |
|   if (SrcVT == DestVT) {
 | |
|     return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | |
|   } else if (SrcVT < DestVT) {
 | |
|     // The src value is promoted to the register.
 | |
|     if (MVT::isFloatingPoint(SrcVT))
 | |
|       Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
 | |
|     else
 | |
|       Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
 | |
|     return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | |
|   } else  {
 | |
|     // The src value is expanded into multiple registers.
 | |
|     SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(0, MVT::i32));
 | |
|     SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(1, MVT::i32));
 | |
|     Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
 | |
|     return DAG.getCopyToReg(Op, Reg+1, Hi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::
 | |
| LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
 | |
|                std::vector<SDOperand> &UnorderedChains) {
 | |
|   // If this is the entry block, emit arguments.
 | |
|   Function &F = *BB->getParent();
 | |
|   FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | |
|   SDOperand OldRoot = SDL.DAG.getRoot();
 | |
|   std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | |
| 
 | |
|   unsigned a = 0;
 | |
|   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
 | |
|        AI != E; ++AI, ++a)
 | |
|     if (!AI->use_empty()) {
 | |
|       SDL.setValue(AI, Args[a]);
 | |
|       
 | |
|       // If this argument is live outside of the entry block, insert a copy from
 | |
|       // whereever we got it to the vreg that other BB's will reference it as.
 | |
|       if (FuncInfo.ValueMap.count(AI)) {
 | |
|         SDOperand Copy =
 | |
|           CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
 | |
|         UnorderedChains.push_back(Copy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Next, if the function has live ins that need to be copied into vregs,
 | |
|   // emit the copies now, into the top of the block.
 | |
|   MachineFunction &MF = SDL.DAG.getMachineFunction();
 | |
|   if (MF.livein_begin() != MF.livein_end()) {
 | |
|     SSARegMap *RegMap = MF.getSSARegMap();
 | |
|     const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
 | |
|     for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | |
|          E = MF.livein_end(); LI != E; ++LI)
 | |
|       if (LI->second)
 | |
|         MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
 | |
|                          LI->first, RegMap->getRegClass(LI->second));
 | |
|   }
 | |
|     
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | |
|        std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | |
|                                     FunctionLoweringInfo &FuncInfo) {
 | |
|   SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
 | |
| 
 | |
|   std::vector<SDOperand> UnorderedChains;
 | |
| 
 | |
|   // Lower any arguments needed in this block if this is the entry block.
 | |
|   if (LLVMBB == &LLVMBB->getParent()->front())
 | |
|     LowerArguments(LLVMBB, SDL, UnorderedChains);
 | |
| 
 | |
|   BB = FuncInfo.MBBMap[LLVMBB];
 | |
|   SDL.setCurrentBasicBlock(BB);
 | |
| 
 | |
|   // Lower all of the non-terminator instructions.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | |
|        I != E; ++I)
 | |
|     SDL.visit(*I);
 | |
| 
 | |
|   // Ensure that all instructions which are used outside of their defining
 | |
|   // blocks are available as virtual registers.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | |
|     if (!I->use_empty() && !isa<PHINode>(I)) {
 | |
|       std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | |
|       if (VMI != FuncInfo.ValueMap.end())
 | |
|         UnorderedChains.push_back(
 | |
|                            CopyValueToVirtualRegister(SDL, I, VMI->second));
 | |
|     }
 | |
| 
 | |
|   // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
|   // ensure constants are generated when needed.  Remember the virtual registers
 | |
|   // that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
|   // directly add them, because expansion might result in multiple MBB's for one
 | |
|   // BB.  As such, the start of the BB might correspond to a different MBB than
 | |
|   // the end.
 | |
|   //
 | |
| 
 | |
|   // Emit constants only once even if used by multiple PHI nodes.
 | |
|   std::map<Constant*, unsigned> ConstantsOut;
 | |
| 
 | |
|   // Check successor nodes PHI nodes that expect a constant to be available from
 | |
|   // this block.
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
 | |
|     PHINode *PN;
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::iterator I = SuccBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       if (!PN->use_empty()) {
 | |
|         unsigned Reg;
 | |
|         Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
|         if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|           unsigned &RegOut = ConstantsOut[C];
 | |
|           if (RegOut == 0) {
 | |
|             RegOut = FuncInfo.CreateRegForValue(C);
 | |
|             UnorderedChains.push_back(
 | |
|                              CopyValueToVirtualRegister(SDL, C, RegOut));
 | |
|           }
 | |
|           Reg = RegOut;
 | |
|         } else {
 | |
|           Reg = FuncInfo.ValueMap[PHIOp];
 | |
|           if (Reg == 0) {
 | |
|             assert(isa<AllocaInst>(PHIOp) &&
 | |
|                    FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                    "Didn't codegen value into a register!??");
 | |
|             Reg = FuncInfo.CreateRegForValue(PHIOp);
 | |
|             UnorderedChains.push_back(
 | |
|                              CopyValueToVirtualRegister(SDL, PHIOp, Reg));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Remember that this register needs to added to the machine PHI node as
 | |
|         // the input for this MBB.
 | |
|         unsigned NumElements =
 | |
|           TLI.getNumElements(TLI.getValueType(PN->getType()));
 | |
|         for (unsigned i = 0, e = NumElements; i != e; ++i)
 | |
|           PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | |
|       }
 | |
|   }
 | |
|   ConstantsOut.clear();
 | |
| 
 | |
|   // Turn all of the unordered chains into one factored node.
 | |
|   if (!UnorderedChains.empty()) {
 | |
|     SDOperand Root = SDL.getRoot();
 | |
|     if (Root.getOpcode() != ISD::EntryToken) {
 | |
|       unsigned i = 0, e = UnorderedChains.size();
 | |
|       for (; i != e; ++i) {
 | |
|         assert(UnorderedChains[i].Val->getNumOperands() > 1);
 | |
|         if (UnorderedChains[i].Val->getOperand(0) == Root)
 | |
|           break;  // Don't add the root if we already indirectly depend on it.
 | |
|       }
 | |
|         
 | |
|       if (i == e)
 | |
|         UnorderedChains.push_back(Root);
 | |
|     }
 | |
|     DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
 | |
|   }
 | |
| 
 | |
|   // Lower the terminator after the copies are emitted.
 | |
|   SDL.visit(*LLVMBB->getTerminator());
 | |
| 
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   DAG.setRoot(SDL.getRoot());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | |
|                                         FunctionLoweringInfo &FuncInfo) {
 | |
|   SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
 | |
|   CurDAG = &DAG;
 | |
|   std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | |
| 
 | |
|   // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | |
|   // types that are not supported by the target.
 | |
|   BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | |
| 
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   DAG.Combine(false);
 | |
|   
 | |
|   DEBUG(std::cerr << "Lowered selection DAG:\n");
 | |
|   DEBUG(DAG.dump());
 | |
| 
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   DAG.Legalize();
 | |
| 
 | |
|   DEBUG(std::cerr << "Legalized selection DAG:\n");
 | |
|   DEBUG(DAG.dump());
 | |
| 
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   DAG.Combine(true);
 | |
|   
 | |
|   if (ViewDAGs) DAG.viewGraph();
 | |
|   
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   InstructionSelectBasicBlock(DAG);
 | |
| 
 | |
|   DEBUG(std::cerr << "Selected machine code:\n");
 | |
|   DEBUG(BB->dump());
 | |
| 
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | |
|     MachineInstr *PHI = PHINodesToUpdate[i].first;
 | |
|     assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|            "This is not a machine PHI node that we are updating!");
 | |
|     PHI->addRegOperand(PHINodesToUpdate[i].second);
 | |
|     PHI->addMachineBasicBlockOperand(BB);
 | |
|   }
 | |
| 
 | |
|   // Finally, add the CFG edges from the last selected MBB to the successor
 | |
|   // MBBs.
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|     MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
 | |
|     BB->addSuccessor(Succ0MBB);
 | |
|   }
 | |
| }
 |