llvm-6502/lib/MC/MCAsmStreamer.cpp
Bill Wendling 2fb86a8fe6 Disable to investigate ARM failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133293 91177308-0d34-0410-b5e6-96231b3b80d8
2011-06-17 21:09:50 +00:00

1617 lines
50 KiB
C++

//===- lib/MC/MCAsmStreamer.cpp - Text Assembly Output --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetAsmBackend.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <cctype>
using namespace llvm;
namespace {
class MCAsmStreamer : public MCStreamer {
protected:
formatted_raw_ostream &OS;
const MCAsmInfo &MAI;
private:
OwningPtr<MCInstPrinter> InstPrinter;
OwningPtr<MCCodeEmitter> Emitter;
OwningPtr<TargetAsmBackend> AsmBackend;
SmallString<128> CommentToEmit;
raw_svector_ostream CommentStream;
unsigned IsVerboseAsm : 1;
unsigned ShowInst : 1;
unsigned UseLoc : 1;
unsigned UseCFI : 1;
enum EHSymbolFlags { EHGlobal = 1,
EHWeakDefinition = 1 << 1,
EHPrivateExtern = 1 << 2 };
DenseMap<const MCSymbol*, unsigned> FlagMap;
bool needsSet(const MCExpr *Value);
void EmitRegisterName(int64_t Register);
public:
MCAsmStreamer(MCContext &Context, formatted_raw_ostream &os,
bool isVerboseAsm, bool useLoc, bool useCFI,
MCInstPrinter *printer, MCCodeEmitter *emitter,
TargetAsmBackend *asmbackend,
bool showInst)
: MCStreamer(Context), OS(os), MAI(Context.getAsmInfo()),
InstPrinter(printer), Emitter(emitter), AsmBackend(asmbackend),
CommentStream(CommentToEmit), IsVerboseAsm(isVerboseAsm),
ShowInst(showInst), UseLoc(useLoc), UseCFI(useCFI) {
if (InstPrinter && IsVerboseAsm)
InstPrinter->setCommentStream(CommentStream);
}
~MCAsmStreamer() {}
inline void EmitEOL() {
// If we don't have any comments, just emit a \n.
if (!IsVerboseAsm) {
OS << '\n';
return;
}
EmitCommentsAndEOL();
}
void EmitCommentsAndEOL();
/// isVerboseAsm - Return true if this streamer supports verbose assembly at
/// all.
virtual bool isVerboseAsm() const { return IsVerboseAsm; }
/// hasRawTextSupport - We support EmitRawText.
virtual bool hasRawTextSupport() const { return true; }
/// AddComment - Add a comment that can be emitted to the generated .s
/// file if applicable as a QoI issue to make the output of the compiler
/// more readable. This only affects the MCAsmStreamer, and only when
/// verbose assembly output is enabled.
virtual void AddComment(const Twine &T);
/// AddEncodingComment - Add a comment showing the encoding of an instruction.
virtual void AddEncodingComment(const MCInst &Inst);
/// GetCommentOS - Return a raw_ostream that comments can be written to.
/// Unlike AddComment, you are required to terminate comments with \n if you
/// use this method.
virtual raw_ostream &GetCommentOS() {
if (!IsVerboseAsm)
return nulls(); // Discard comments unless in verbose asm mode.
return CommentStream;
}
/// AddBlankLine - Emit a blank line to a .s file to pretty it up.
virtual void AddBlankLine() {
EmitEOL();
}
/// @name MCStreamer Interface
/// @{
virtual void ChangeSection(const MCSection *Section);
virtual void InitSections() {
// FIXME, this is MachO specific, but the testsuite
// expects this.
SwitchSection(getContext().getMachOSection("__TEXT", "__text",
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
0, SectionKind::getText()));
}
virtual void EmitLabel(MCSymbol *Symbol);
virtual void EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol);
virtual void EmitAssemblerFlag(MCAssemblerFlag Flag);
virtual void EmitThumbFunc(MCSymbol *Func);
virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value);
virtual void EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol);
virtual void EmitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label);
virtual void EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label);
virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute);
virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue);
virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol);
virtual void EmitCOFFSymbolStorageClass(int StorageClass);
virtual void EmitCOFFSymbolType(int Type);
virtual void EndCOFFSymbolDef();
virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value);
virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment);
/// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol.
///
/// @param Symbol - The common symbol to emit.
/// @param Size - The size of the common symbol.
virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size);
virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
unsigned Size = 0, unsigned ByteAlignment = 0);
virtual void EmitTBSSSymbol (const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment = 0);
virtual void EmitBytes(StringRef Data, unsigned AddrSpace);
virtual void EmitValueImpl(const MCExpr *Value, unsigned Size,
unsigned AddrSpace);
virtual void EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace = 0);
virtual void EmitULEB128Value(const MCExpr *Value);
virtual void EmitSLEB128Value(const MCExpr *Value);
virtual void EmitGPRel32Value(const MCExpr *Value);
virtual void EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace);
virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
unsigned ValueSize = 1,
unsigned MaxBytesToEmit = 0);
virtual void EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit = 0);
virtual void EmitValueToOffset(const MCExpr *Offset,
unsigned char Value = 0);
virtual void EmitFileDirective(StringRef Filename);
virtual bool EmitDwarfFileDirective(unsigned FileNo, StringRef Filename);
virtual void EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Column, unsigned Flags,
unsigned Isa, unsigned Discriminator,
StringRef FileName);
virtual void EmitCFISections(bool EH, bool Debug);
virtual void EmitCFIStartProc();
virtual void EmitCFIEndProc();
virtual void EmitCFIDefCfa(int64_t Register, int64_t Offset);
virtual void EmitCFIDefCfaOffset(int64_t Offset);
virtual void EmitCFIDefCfaRegister(int64_t Register);
virtual void EmitCFIOffset(int64_t Register, int64_t Offset);
virtual void EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding);
virtual void EmitCFILsda(const MCSymbol *Sym, unsigned Encoding);
virtual void EmitCFIRememberState();
virtual void EmitCFIRestoreState();
virtual void EmitCFISameValue(int64_t Register);
virtual void EmitCFIRelOffset(int64_t Register, int64_t Offset);
virtual void EmitCFIAdjustCfaOffset(int64_t Adjustment);
virtual void EmitWin64EHStartProc(const MCSymbol *Symbol);
virtual void EmitWin64EHEndProc();
virtual void EmitWin64EHStartChained();
virtual void EmitWin64EHEndChained();
virtual void EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind,
bool Except);
virtual void EmitWin64EHHandlerData();
virtual void EmitWin64EHPushReg(unsigned Register);
virtual void EmitWin64EHSetFrame(unsigned Register, unsigned Offset);
virtual void EmitWin64EHAllocStack(unsigned Size);
virtual void EmitWin64EHSaveReg(unsigned Register, unsigned Offset);
virtual void EmitWin64EHSaveXMM(unsigned Register, unsigned Offset);
virtual void EmitWin64EHPushFrame(bool Code);
virtual void EmitWin64EHEndProlog();
virtual void EmitFnStart();
virtual void EmitFnEnd();
virtual void EmitCantUnwind();
virtual void EmitPersonality(const MCSymbol *Personality);
virtual void EmitHandlerData();
virtual void EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0);
virtual void EmitPad(int64_t Offset);
virtual void EmitRegSave(const SmallVectorImpl<unsigned> &RegList, bool);
virtual void EmitInstruction(const MCInst &Inst);
/// EmitRawText - If this file is backed by an assembly streamer, this dumps
/// the specified string in the output .s file. This capability is
/// indicated by the hasRawTextSupport() predicate.
virtual void EmitRawText(StringRef String);
virtual void Finish();
/// @}
};
} // end anonymous namespace.
/// AddComment - Add a comment that can be emitted to the generated .s
/// file if applicable as a QoI issue to make the output of the compiler
/// more readable. This only affects the MCAsmStreamer, and only when
/// verbose assembly output is enabled.
void MCAsmStreamer::AddComment(const Twine &T) {
if (!IsVerboseAsm) return;
// Make sure that CommentStream is flushed.
CommentStream.flush();
T.toVector(CommentToEmit);
// Each comment goes on its own line.
CommentToEmit.push_back('\n');
// Tell the comment stream that the vector changed underneath it.
CommentStream.resync();
}
void MCAsmStreamer::EmitCommentsAndEOL() {
if (CommentToEmit.empty() && CommentStream.GetNumBytesInBuffer() == 0) {
OS << '\n';
return;
}
CommentStream.flush();
StringRef Comments = CommentToEmit.str();
assert(Comments.back() == '\n' &&
"Comment array not newline terminated");
do {
// Emit a line of comments.
OS.PadToColumn(MAI.getCommentColumn());
size_t Position = Comments.find('\n');
OS << MAI.getCommentString() << ' ' << Comments.substr(0, Position) << '\n';
Comments = Comments.substr(Position+1);
} while (!Comments.empty());
CommentToEmit.clear();
// Tell the comment stream that the vector changed underneath it.
CommentStream.resync();
}
static inline int64_t truncateToSize(int64_t Value, unsigned Bytes) {
assert(Bytes && "Invalid size!");
return Value & ((uint64_t) (int64_t) -1 >> (64 - Bytes * 8));
}
void MCAsmStreamer::ChangeSection(const MCSection *Section) {
assert(Section && "Cannot switch to a null section!");
Section->PrintSwitchToSection(MAI, OS);
}
void MCAsmStreamer::EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol) {
if (UseCFI)
return;
unsigned Flags = FlagMap.lookup(Symbol);
if (Flags & EHGlobal)
EmitSymbolAttribute(EHSymbol, MCSA_Global);
if (Flags & EHWeakDefinition)
EmitSymbolAttribute(EHSymbol, MCSA_WeakDefinition);
if (Flags & EHPrivateExtern)
EmitSymbolAttribute(EHSymbol, MCSA_PrivateExtern);
}
void MCAsmStreamer::EmitLabel(MCSymbol *Symbol) {
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
MCStreamer::EmitLabel(Symbol);
OS << *Symbol << MAI.getLabelSuffix();
EmitEOL();
}
void MCAsmStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
switch (Flag) {
default: assert(0 && "Invalid flag!");
case MCAF_SyntaxUnified: OS << "\t.syntax unified"; break;
case MCAF_SubsectionsViaSymbols: OS << ".subsections_via_symbols"; break;
case MCAF_Code16: OS << "\t.code\t16"; break;
case MCAF_Code32: OS << "\t.code\t32"; break;
}
EmitEOL();
}
void MCAsmStreamer::EmitThumbFunc(MCSymbol *Func) {
// This needs to emit to a temporary string to get properly quoted
// MCSymbols when they have spaces in them.
OS << "\t.thumb_func";
// Only Mach-O hasSubsectionsViaSymbols()
if (MAI.hasSubsectionsViaSymbols())
OS << '\t' << *Func;
EmitEOL();
}
void MCAsmStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
OS << *Symbol << " = " << *Value;
EmitEOL();
// FIXME: Lift context changes into super class.
Symbol->setVariableValue(Value);
}
void MCAsmStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {
OS << ".weakref " << *Alias << ", " << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label) {
EmitDwarfSetLineAddr(LineDelta, Label,
getContext().getTargetAsmInfo().getPointerSize());
}
void MCAsmStreamer::EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label) {
EmitIntValue(dwarf::DW_CFA_advance_loc4, 1);
const MCExpr *AddrDelta = BuildSymbolDiff(getContext(), Label, LastLabel);
AddrDelta = ForceExpAbs(AddrDelta);
EmitValue(AddrDelta, 4);
}
void MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
MCSymbolAttr Attribute) {
switch (Attribute) {
case MCSA_Invalid: assert(0 && "Invalid symbol attribute");
case MCSA_ELF_TypeFunction: /// .type _foo, STT_FUNC # aka @function
case MCSA_ELF_TypeIndFunction: /// .type _foo, STT_GNU_IFUNC
case MCSA_ELF_TypeObject: /// .type _foo, STT_OBJECT # aka @object
case MCSA_ELF_TypeTLS: /// .type _foo, STT_TLS # aka @tls_object
case MCSA_ELF_TypeCommon: /// .type _foo, STT_COMMON # aka @common
case MCSA_ELF_TypeNoType: /// .type _foo, STT_NOTYPE # aka @notype
case MCSA_ELF_TypeGnuUniqueObject: /// .type _foo, @gnu_unique_object
assert(MAI.hasDotTypeDotSizeDirective() && "Symbol Attr not supported");
OS << "\t.type\t" << *Symbol << ','
<< ((MAI.getCommentString()[0] != '@') ? '@' : '%');
switch (Attribute) {
default: assert(0 && "Unknown ELF .type");
case MCSA_ELF_TypeFunction: OS << "function"; break;
case MCSA_ELF_TypeIndFunction: OS << "gnu_indirect_function"; break;
case MCSA_ELF_TypeObject: OS << "object"; break;
case MCSA_ELF_TypeTLS: OS << "tls_object"; break;
case MCSA_ELF_TypeCommon: OS << "common"; break;
case MCSA_ELF_TypeNoType: OS << "no_type"; break;
case MCSA_ELF_TypeGnuUniqueObject: OS << "gnu_unique_object"; break;
}
EmitEOL();
return;
case MCSA_Global: // .globl/.global
OS << MAI.getGlobalDirective();
FlagMap[Symbol] |= EHGlobal;
break;
case MCSA_Hidden: OS << "\t.hidden\t"; break;
case MCSA_IndirectSymbol: OS << "\t.indirect_symbol\t"; break;
case MCSA_Internal: OS << "\t.internal\t"; break;
case MCSA_LazyReference: OS << "\t.lazy_reference\t"; break;
case MCSA_Local: OS << "\t.local\t"; break;
case MCSA_NoDeadStrip: OS << "\t.no_dead_strip\t"; break;
case MCSA_SymbolResolver: OS << "\t.symbol_resolver\t"; break;
case MCSA_PrivateExtern:
OS << "\t.private_extern\t";
FlagMap[Symbol] |= EHPrivateExtern;
break;
case MCSA_Protected: OS << "\t.protected\t"; break;
case MCSA_Reference: OS << "\t.reference\t"; break;
case MCSA_Weak: OS << "\t.weak\t"; break;
case MCSA_WeakDefinition:
OS << "\t.weak_definition\t";
FlagMap[Symbol] |= EHWeakDefinition;
break;
// .weak_reference
case MCSA_WeakReference: OS << MAI.getWeakRefDirective(); break;
case MCSA_WeakDefAutoPrivate: OS << "\t.weak_def_can_be_hidden\t"; break;
}
OS << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
OS << ".desc" << ' ' << *Symbol << ',' << DescValue;
EmitEOL();
}
void MCAsmStreamer::BeginCOFFSymbolDef(const MCSymbol *Symbol) {
OS << "\t.def\t " << *Symbol << ';';
EmitEOL();
}
void MCAsmStreamer::EmitCOFFSymbolStorageClass (int StorageClass) {
OS << "\t.scl\t" << StorageClass << ';';
EmitEOL();
}
void MCAsmStreamer::EmitCOFFSymbolType (int Type) {
OS << "\t.type\t" << Type << ';';
EmitEOL();
}
void MCAsmStreamer::EndCOFFSymbolDef() {
OS << "\t.endef";
EmitEOL();
}
void MCAsmStreamer::EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) {
assert(MAI.hasDotTypeDotSizeDirective());
OS << "\t.size\t" << *Symbol << ", " << *Value << '\n';
}
void MCAsmStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) {
OS << "\t.comm\t" << *Symbol << ',' << Size;
if (ByteAlignment != 0) {
if (MAI.getCOMMDirectiveAlignmentIsInBytes())
OS << ',' << ByteAlignment;
else
OS << ',' << Log2_32(ByteAlignment);
}
EmitEOL();
}
/// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol.
///
/// @param Symbol - The common symbol to emit.
/// @param Size - The size of the common symbol.
void MCAsmStreamer::EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) {
assert(MAI.hasLCOMMDirective() && "Doesn't have .lcomm, can't emit it!");
OS << "\t.lcomm\t" << *Symbol << ',' << Size;
EmitEOL();
}
void MCAsmStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol,
unsigned Size, unsigned ByteAlignment) {
// Note: a .zerofill directive does not switch sections.
OS << ".zerofill ";
// This is a mach-o specific directive.
const MCSectionMachO *MOSection = ((const MCSectionMachO*)Section);
OS << MOSection->getSegmentName() << "," << MOSection->getSectionName();
if (Symbol != NULL) {
OS << ',' << *Symbol << ',' << Size;
if (ByteAlignment != 0)
OS << ',' << Log2_32(ByteAlignment);
}
EmitEOL();
}
// .tbss sym, size, align
// This depends that the symbol has already been mangled from the original,
// e.g. _a.
void MCAsmStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
assert(Symbol != NULL && "Symbol shouldn't be NULL!");
// Instead of using the Section we'll just use the shortcut.
// This is a mach-o specific directive and section.
OS << ".tbss " << *Symbol << ", " << Size;
// Output align if we have it. We default to 1 so don't bother printing
// that.
if (ByteAlignment > 1) OS << ", " << Log2_32(ByteAlignment);
EmitEOL();
}
static inline char toOctal(int X) { return (X&7)+'0'; }
static void PrintQuotedString(StringRef Data, raw_ostream &OS) {
OS << '"';
for (unsigned i = 0, e = Data.size(); i != e; ++i) {
unsigned char C = Data[i];
if (C == '"' || C == '\\') {
OS << '\\' << (char)C;
continue;
}
if (isprint((unsigned char)C)) {
OS << (char)C;
continue;
}
switch (C) {
case '\b': OS << "\\b"; break;
case '\f': OS << "\\f"; break;
case '\n': OS << "\\n"; break;
case '\r': OS << "\\r"; break;
case '\t': OS << "\\t"; break;
default:
OS << '\\';
OS << toOctal(C >> 6);
OS << toOctal(C >> 3);
OS << toOctal(C >> 0);
break;
}
}
OS << '"';
}
void MCAsmStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
if (Data.empty()) return;
if (Data.size() == 1) {
OS << MAI.getData8bitsDirective(AddrSpace);
OS << (unsigned)(unsigned char)Data[0];
EmitEOL();
return;
}
// If the data ends with 0 and the target supports .asciz, use it, otherwise
// use .ascii
if (MAI.getAscizDirective() && Data.back() == 0) {
OS << MAI.getAscizDirective();
Data = Data.substr(0, Data.size()-1);
} else {
OS << MAI.getAsciiDirective();
}
OS << ' ';
PrintQuotedString(Data, OS);
EmitEOL();
}
void MCAsmStreamer::EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace) {
EmitValue(MCConstantExpr::Create(Value, getContext()), Size, AddrSpace);
}
void MCAsmStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size,
unsigned AddrSpace) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
const char *Directive = 0;
switch (Size) {
default: break;
case 1: Directive = MAI.getData8bitsDirective(AddrSpace); break;
case 2: Directive = MAI.getData16bitsDirective(AddrSpace); break;
case 4: Directive = MAI.getData32bitsDirective(AddrSpace); break;
case 8:
Directive = MAI.getData64bitsDirective(AddrSpace);
// If the target doesn't support 64-bit data, emit as two 32-bit halves.
if (Directive) break;
int64_t IntValue;
if (!Value->EvaluateAsAbsolute(IntValue))
report_fatal_error("Don't know how to emit this value.");
if (getContext().getTargetAsmInfo().isLittleEndian()) {
EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace);
EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace);
} else {
EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace);
EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace);
}
return;
}
assert(Directive && "Invalid size for machine code value!");
OS << Directive << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitULEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->EvaluateAsAbsolute(IntValue)) {
EmitULEB128IntValue(IntValue);
return;
}
assert(MAI.hasLEB128() && "Cannot print a .uleb");
OS << ".uleb128 " << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitSLEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->EvaluateAsAbsolute(IntValue)) {
EmitSLEB128IntValue(IntValue);
return;
}
assert(MAI.hasLEB128() && "Cannot print a .sleb");
OS << ".sleb128 " << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitGPRel32Value(const MCExpr *Value) {
assert(MAI.getGPRel32Directive() != 0);
OS << MAI.getGPRel32Directive() << *Value;
EmitEOL();
}
/// EmitFill - Emit NumBytes bytes worth of the value specified by
/// FillValue. This implements directives such as '.space'.
void MCAsmStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace) {
if (NumBytes == 0) return;
if (AddrSpace == 0)
if (const char *ZeroDirective = MAI.getZeroDirective()) {
OS << ZeroDirective << NumBytes;
if (FillValue != 0)
OS << ',' << (int)FillValue;
EmitEOL();
return;
}
// Emit a byte at a time.
MCStreamer::EmitFill(NumBytes, FillValue, AddrSpace);
}
void MCAsmStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value,
unsigned ValueSize,
unsigned MaxBytesToEmit) {
// Some assemblers don't support non-power of two alignments, so we always
// emit alignments as a power of two if possible.
if (isPowerOf2_32(ByteAlignment)) {
switch (ValueSize) {
default: llvm_unreachable("Invalid size for machine code value!");
case 1: OS << MAI.getAlignDirective(); break;
// FIXME: use MAI for this!
case 2: OS << ".p2alignw "; break;
case 4: OS << ".p2alignl "; break;
case 8: llvm_unreachable("Unsupported alignment size!");
}
if (MAI.getAlignmentIsInBytes())
OS << ByteAlignment;
else
OS << Log2_32(ByteAlignment);
if (Value || MaxBytesToEmit) {
OS << ", 0x";
OS.write_hex(truncateToSize(Value, ValueSize));
if (MaxBytesToEmit)
OS << ", " << MaxBytesToEmit;
}
EmitEOL();
return;
}
// Non-power of two alignment. This is not widely supported by assemblers.
// FIXME: Parameterize this based on MAI.
switch (ValueSize) {
default: llvm_unreachable("Invalid size for machine code value!");
case 1: OS << ".balign"; break;
case 2: OS << ".balignw"; break;
case 4: OS << ".balignl"; break;
case 8: llvm_unreachable("Unsupported alignment size!");
}
OS << ' ' << ByteAlignment;
OS << ", " << truncateToSize(Value, ValueSize);
if (MaxBytesToEmit)
OS << ", " << MaxBytesToEmit;
EmitEOL();
}
void MCAsmStreamer::EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit) {
// Emit with a text fill value.
EmitValueToAlignment(ByteAlignment, MAI.getTextAlignFillValue(),
1, MaxBytesToEmit);
}
void MCAsmStreamer::EmitValueToOffset(const MCExpr *Offset,
unsigned char Value) {
// FIXME: Verify that Offset is associated with the current section.
OS << ".org " << *Offset << ", " << (unsigned) Value;
EmitEOL();
}
void MCAsmStreamer::EmitFileDirective(StringRef Filename) {
assert(MAI.hasSingleParameterDotFile());
OS << "\t.file\t";
PrintQuotedString(Filename, OS);
EmitEOL();
}
bool MCAsmStreamer::EmitDwarfFileDirective(unsigned FileNo, StringRef Filename){
if (UseLoc) {
OS << "\t.file\t" << FileNo << ' ';
PrintQuotedString(Filename, OS);
EmitEOL();
}
return this->MCStreamer::EmitDwarfFileDirective(FileNo, Filename);
}
void MCAsmStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Column, unsigned Flags,
unsigned Isa,
unsigned Discriminator,
StringRef FileName) {
this->MCStreamer::EmitDwarfLocDirective(FileNo, Line, Column, Flags,
Isa, Discriminator, FileName);
if (!UseLoc)
return;
OS << "\t.loc\t" << FileNo << " " << Line << " " << Column;
if (Flags & DWARF2_FLAG_BASIC_BLOCK)
OS << " basic_block";
if (Flags & DWARF2_FLAG_PROLOGUE_END)
OS << " prologue_end";
if (Flags & DWARF2_FLAG_EPILOGUE_BEGIN)
OS << " epilogue_begin";
unsigned OldFlags = getContext().getCurrentDwarfLoc().getFlags();
if ((Flags & DWARF2_FLAG_IS_STMT) != (OldFlags & DWARF2_FLAG_IS_STMT)) {
OS << " is_stmt ";
if (Flags & DWARF2_FLAG_IS_STMT)
OS << "1";
else
OS << "0";
}
if (Isa)
OS << "isa " << Isa;
if (Discriminator)
OS << "discriminator " << Discriminator;
if (IsVerboseAsm) {
OS.PadToColumn(MAI.getCommentColumn());
OS << MAI.getCommentString() << ' ' << FileName << ':'
<< Line << ':' << Column;
}
EmitEOL();
}
void MCAsmStreamer::EmitCFISections(bool EH, bool Debug) {
MCStreamer::EmitCFISections(EH, Debug);
if (!UseCFI)
return;
OS << "\t.cfi_sections ";
if (EH) {
OS << ".eh_frame";
if (Debug)
OS << ", .debug_frame";
} else if (Debug) {
OS << ".debug_frame";
}
EmitEOL();
}
void MCAsmStreamer::EmitCFIStartProc() {
MCStreamer::EmitCFIStartProc();
if (!UseCFI)
return;
OS << "\t.cfi_startproc";
EmitEOL();
}
void MCAsmStreamer::EmitCFIEndProc() {
MCStreamer::EmitCFIEndProc();
if (!UseCFI)
return;
OS << "\t.cfi_endproc";
EmitEOL();
}
void MCAsmStreamer::EmitRegisterName(int64_t Register) {
if (InstPrinter) {
const TargetAsmInfo &asmInfo = getContext().getTargetAsmInfo();
unsigned LLVMRegister = asmInfo.getLLVMRegNum(Register, true);
InstPrinter->printRegName(OS, LLVMRegister);
} else {
OS << Register;
}
}
void MCAsmStreamer::EmitCFIDefCfa(int64_t Register, int64_t Offset) {
MCStreamer::EmitCFIDefCfa(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIDefCfaOffset(int64_t Offset) {
MCStreamer::EmitCFIDefCfaOffset(Offset);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa_offset " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIDefCfaRegister(int64_t Register) {
MCStreamer::EmitCFIDefCfaRegister(Register);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa_register ";
EmitRegisterName(Register);
EmitEOL();
}
void MCAsmStreamer::EmitCFIOffset(int64_t Register, int64_t Offset) {
this->MCStreamer::EmitCFIOffset(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_offset ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIPersonality(const MCSymbol *Sym,
unsigned Encoding) {
MCStreamer::EmitCFIPersonality(Sym, Encoding);
if (!UseCFI)
return;
OS << "\t.cfi_personality " << Encoding << ", " << *Sym;
EmitEOL();
}
void MCAsmStreamer::EmitCFILsda(const MCSymbol *Sym, unsigned Encoding) {
MCStreamer::EmitCFILsda(Sym, Encoding);
if (!UseCFI)
return;
OS << "\t.cfi_lsda " << Encoding << ", " << *Sym;
EmitEOL();
}
void MCAsmStreamer::EmitCFIRememberState() {
MCStreamer::EmitCFIRememberState();
if (!UseCFI)
return;
OS << "\t.cfi_remember_state";
EmitEOL();
}
void MCAsmStreamer::EmitCFIRestoreState() {
MCStreamer::EmitCFIRestoreState();
if (!UseCFI)
return;
OS << "\t.cfi_restore_state";
EmitEOL();
}
void MCAsmStreamer::EmitCFISameValue(int64_t Register) {
MCStreamer::EmitCFISameValue(Register);
if (!UseCFI)
return;
OS << "\t.cfi_same_value ";
EmitRegisterName(Register);
EmitEOL();
}
void MCAsmStreamer::EmitCFIRelOffset(int64_t Register, int64_t Offset) {
MCStreamer::EmitCFIRelOffset(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_rel_offset ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIAdjustCfaOffset(int64_t Adjustment) {
MCStreamer::EmitCFIAdjustCfaOffset(Adjustment);
if (!UseCFI)
return;
OS << "\t.cfi_adjust_cfa_offset " << Adjustment;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHStartProc(const MCSymbol *Symbol) {
MCStreamer::EmitWin64EHStartProc(Symbol);
OS << ".seh_proc " << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndProc() {
MCStreamer::EmitWin64EHEndProc();
OS << "\t.seh_endproc";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHStartChained() {
MCStreamer::EmitWin64EHStartChained();
OS << "\t.seh_startchained";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndChained() {
MCStreamer::EmitWin64EHEndChained();
OS << "\t.seh_endchained";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind,
bool Except) {
MCStreamer::EmitWin64EHHandler(Sym, Unwind, Except);
OS << "\t.seh_handler " << *Sym;
if (Unwind)
OS << ", @unwind";
if (Except)
OS << ", @except";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHHandlerData() {
MCStreamer::EmitWin64EHHandlerData();
// Switch sections. Don't call SwitchSection directly, because that will
// cause the section switch to be visible in the emitted assembly.
// We only do this so the section switch that terminates the handler
// data block is visible.
MCWin64EHUnwindInfo *CurFrame = getCurrentW64UnwindInfo();
StringRef suffix=MCWin64EHUnwindEmitter::GetSectionSuffix(CurFrame->Function);
const MCSection *xdataSect =
getContext().getTargetAsmInfo().getWin64EHTableSection(suffix);
if (xdataSect)
SwitchSectionNoChange(xdataSect);
OS << "\t.seh_handlerdata";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHPushReg(unsigned Register) {
MCStreamer::EmitWin64EHPushReg(Register);
OS << "\t.seh_pushreg " << Register;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSetFrame(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSetFrame(Register, Offset);
OS << "\t.seh_setframe " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHAllocStack(unsigned Size) {
MCStreamer::EmitWin64EHAllocStack(Size);
OS << "\t.seh_stackalloc " << Size;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSaveReg(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSaveReg(Register, Offset);
OS << "\t.seh_savereg " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSaveXMM(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSaveXMM(Register, Offset);
OS << "\t.seh_savexmm " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHPushFrame(bool Code) {
MCStreamer::EmitWin64EHPushFrame(Code);
OS << "\t.seh_pushframe";
if (Code)
OS << " @code";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndProlog(void) {
MCStreamer::EmitWin64EHEndProlog();
OS << "\t.seh_endprologue";
EmitEOL();
}
void MCAsmStreamer::AddEncodingComment(const MCInst &Inst) {
raw_ostream &OS = GetCommentOS();
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
Emitter->EncodeInstruction(Inst, VecOS, Fixups);
VecOS.flush();
// If we are showing fixups, create symbolic markers in the encoded
// representation. We do this by making a per-bit map to the fixup item index,
// then trying to display it as nicely as possible.
SmallVector<uint8_t, 64> FixupMap;
FixupMap.resize(Code.size() * 8);
for (unsigned i = 0, e = Code.size() * 8; i != e; ++i)
FixupMap[i] = 0;
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind());
for (unsigned j = 0; j != Info.TargetSize; ++j) {
unsigned Index = F.getOffset() * 8 + Info.TargetOffset + j;
assert(Index < Code.size() * 8 && "Invalid offset in fixup!");
FixupMap[Index] = 1 + i;
}
}
// FIXME: Node the fixup comments for Thumb2 are completely bogus since the
// high order halfword of a 32-bit Thumb2 instruction is emitted first.
OS << "encoding: [";
for (unsigned i = 0, e = Code.size(); i != e; ++i) {
if (i)
OS << ',';
// See if all bits are the same map entry.
uint8_t MapEntry = FixupMap[i * 8 + 0];
for (unsigned j = 1; j != 8; ++j) {
if (FixupMap[i * 8 + j] == MapEntry)
continue;
MapEntry = uint8_t(~0U);
break;
}
if (MapEntry != uint8_t(~0U)) {
if (MapEntry == 0) {
OS << format("0x%02x", uint8_t(Code[i]));
} else {
if (Code[i]) {
// FIXME: Some of the 8 bits require fix up.
OS << format("0x%02x", uint8_t(Code[i])) << '\''
<< char('A' + MapEntry - 1) << '\'';
} else
OS << char('A' + MapEntry - 1);
}
} else {
// Otherwise, write out in binary.
OS << "0b";
for (unsigned j = 8; j--;) {
unsigned Bit = (Code[i] >> j) & 1;
unsigned FixupBit;
if (getContext().getTargetAsmInfo().isLittleEndian())
FixupBit = i * 8 + j;
else
FixupBit = i * 8 + (7-j);
if (uint8_t MapEntry = FixupMap[FixupBit]) {
assert(Bit == 0 && "Encoder wrote into fixed up bit!");
OS << char('A' + MapEntry - 1);
} else
OS << Bit;
}
}
}
OS << "]\n";
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind());
OS << " fixup " << char('A' + i) << " - " << "offset: " << F.getOffset()
<< ", value: " << *F.getValue() << ", kind: " << Info.Name << "\n";
}
}
void MCAsmStreamer::EmitFnStart() {
OS << "\t.fnstart";
EmitEOL();
}
void MCAsmStreamer::EmitFnEnd() {
OS << "\t.fnend";
EmitEOL();
}
void MCAsmStreamer::EmitCantUnwind() {
OS << "\t.cantunwind";
EmitEOL();
}
void MCAsmStreamer::EmitHandlerData() {
OS << "\t.handlerdata";
EmitEOL();
}
void MCAsmStreamer::EmitPersonality(const MCSymbol *Personality) {
OS << "\t.personality " << Personality->getName();
EmitEOL();
}
void MCAsmStreamer::EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) {
OS << "\t.setfp\t";
InstPrinter->printRegName(OS, FpReg);
OS << ", ";
InstPrinter->printRegName(OS, SpReg);
if (Offset)
OS << ", #" << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitPad(int64_t Offset) {
OS << "\t.pad\t#" << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {
assert(RegList.size() && "RegList should not be empty");
if (isVector)
OS << "\t.vsave\t{";
else
OS << "\t.save\t{";
InstPrinter->printRegName(OS, RegList[0]);
for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
OS << ", ";
InstPrinter->printRegName(OS, RegList[i]);
}
OS << "}";
EmitEOL();
}
void MCAsmStreamer::EmitInstruction(const MCInst &Inst) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
// Show the encoding in a comment if we have a code emitter.
if (Emitter)
AddEncodingComment(Inst);
// Show the MCInst if enabled.
if (ShowInst) {
Inst.dump_pretty(GetCommentOS(), &MAI, InstPrinter.get(), "\n ");
GetCommentOS() << "\n";
}
// If we have an AsmPrinter, use that to print, otherwise print the MCInst.
if (InstPrinter)
InstPrinter->printInst(&Inst, OS);
else
Inst.print(OS, &MAI);
EmitEOL();
}
/// EmitRawText - If this file is backed by an assembly streamer, this dumps
/// the specified string in the output .s file. This capability is
/// indicated by the hasRawTextSupport() predicate.
void MCAsmStreamer::EmitRawText(StringRef String) {
if (!String.empty() && String.back() == '\n')
String = String.substr(0, String.size()-1);
OS << String;
EmitEOL();
}
void MCAsmStreamer::Finish() {
// Dump out the dwarf file & directory tables and line tables.
if (getContext().hasDwarfFiles() && !UseLoc)
MCDwarfFileTable::Emit(this);
if (!UseCFI)
EmitFrames(false);
}
//===----------------------------------------------------------------------===//
/// MCLSDADecoderAsmStreamer - This is identical to the MCAsmStreamer, but
/// outputs a description of the LSDA in a human readable format.
///
namespace {
class MCLSDADecoderAsmStreamer : public MCAsmStreamer {
const MCSymbol *PersonalitySymbol;
const MCSymbol *LSDASymbol;
bool InLSDA;
bool ReadingULEB128;
uint64_t BytesRead;
uint64_t ActionTableBytes;
uint64_t LSDASize;
SmallVector<char, 2> ULEB128Value;
std::vector<int64_t> LSDAEncoding;
std::vector<const MCExpr*> Assignments;
/// GetULEB128Value - A helper function to convert the value in the
/// ULEB128Value vector into a uint64_t.
uint64_t GetULEB128Value(SmallVectorImpl<char> &ULEB128Value) {
uint64_t Val = 0;
for (unsigned i = 0, e = ULEB128Value.size(); i != e; ++i)
Val |= (ULEB128Value[i] & 0x7F) << (7 * i);
return Val;
}
/// ResetState - Reset the state variables.
void ResetState() {
PersonalitySymbol = 0;
LSDASymbol = 0;
LSDASize = 0;
BytesRead = 0;
ActionTableBytes = 0;
InLSDA = false;
ReadingULEB128 = false;
ULEB128Value.clear();
LSDAEncoding.clear();
Assignments.clear();
}
void EmitEHTableDescription();
const char *DecodeDWARFEncoding(unsigned Encoding) {
switch (Encoding) {
case dwarf::DW_EH_PE_absptr: return "absptr";
case dwarf::DW_EH_PE_omit: return "omit";
case dwarf::DW_EH_PE_pcrel: return "pcrel";
case dwarf::DW_EH_PE_udata4: return "udata4";
case dwarf::DW_EH_PE_udata8: return "udata8";
case dwarf::DW_EH_PE_sdata4: return "sdata4";
case dwarf::DW_EH_PE_sdata8: return "sdata8";
case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata4: return "pcrel udata4";
case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata4: return "pcrel sdata4";
case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata8: return "pcrel udata8";
case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata8: return "pcrel sdata8";
case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata4:
return "indirect pcrel udata4";
case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata4:
return "indirect pcrel sdata4";
case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata8:
return "indirect pcrel udata8";
case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata8:
return "indirect pcrel sdata8";
}
return "<unknown encoding>";
}
public:
MCLSDADecoderAsmStreamer(MCContext &Context, formatted_raw_ostream &os,
bool isVerboseAsm, bool useLoc, bool useCFI,
MCInstPrinter *printer, MCCodeEmitter *emitter,
TargetAsmBackend *asmbackend,
bool showInst)
: MCAsmStreamer(Context, os, isVerboseAsm, useLoc, useCFI,
printer, emitter, asmbackend, showInst) {
ResetState();
}
~MCLSDADecoderAsmStreamer() {}
virtual void Finish() {
ResetState();
MCAsmStreamer::Finish();
}
virtual void EmitLabel(MCSymbol *Symbol) {
if (Symbol == LSDASymbol)
InLSDA = true;
MCAsmStreamer::EmitLabel(Symbol);
}
virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
if (InLSDA)
Assignments.push_back(Value);
MCAsmStreamer::EmitAssignment(Symbol, Value);
}
virtual void EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace = 0);
virtual void EmitValueImpl(const MCExpr *Value, unsigned Size,
unsigned AddrSpace);
virtual void EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace);
virtual void EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding) {
PersonalitySymbol = Sym;
MCAsmStreamer::EmitCFIPersonality(Sym, Encoding);
}
virtual void EmitCFILsda(const MCSymbol *Sym, unsigned Encoding) {
LSDASymbol = Sym;
MCAsmStreamer::EmitCFILsda(Sym, Encoding);
}
};
} // end anonymous namespace
void MCLSDADecoderAsmStreamer::EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace) {
if (!InLSDA)
return MCAsmStreamer::EmitIntValue(Value, Size, AddrSpace);
BytesRead += Size;
// We place the LSDA into the LSDAEncoding vector for later analysis. If we
// have a ULEB128, we read that in separate iterations through here and then
// get its value.
if (!ReadingULEB128) {
LSDAEncoding.push_back(Value);
int EncodingSize = LSDAEncoding.size();
if (EncodingSize == 1 || EncodingSize == 3) {
// The LPStart and TType encodings.
if (Value != dwarf::DW_EH_PE_omit) {
// The encoding is next and is a ULEB128 value.
ReadingULEB128 = true;
ULEB128Value.clear();
} else {
// The encoding was omitted. Put a 0 here as a placeholder.
LSDAEncoding.push_back(0);
}
} else if (EncodingSize == 5) {
// The next value is a ULEB128 value that tells us how long the call site
// table is -- where the start of the action tab
ReadingULEB128 = true;
ULEB128Value.clear();
}
InLSDA = (LSDASize == 0 || BytesRead < LSDASize);
} else {
// We're reading a ULEB128. Make it so!
assert(Size == 1 && "Non-byte representation of a ULEB128?");
ULEB128Value.push_back(Value);
if ((Value & 0x80) == 0) {
uint64_t Val = GetULEB128Value(ULEB128Value);
LSDAEncoding.push_back(Val);
ULEB128Value.clear();
ReadingULEB128 = false;
if (LSDAEncoding.size() == 4)
// The fourth value tells us where the bottom of the type table is.
LSDASize = BytesRead + LSDAEncoding[3];
else if (LSDAEncoding.size() == 6)
// The sixth value tells us where the start of the action table is.
ActionTableBytes = BytesRead;
}
}
MCAsmStreamer::EmitValueImpl(MCConstantExpr::Create(Value, getContext()),
Size, AddrSpace);
if (LSDASize != 0 && !InLSDA)
EmitEHTableDescription();
}
void MCLSDADecoderAsmStreamer::EmitValueImpl(const MCExpr *Value,
unsigned Size,
unsigned AddrSpace) {
if (InLSDA && LSDASize != 0) {
assert(BytesRead + Size <= LSDASize && "EH table too small!");
if (BytesRead > uint64_t(LSDAEncoding[5]) + ActionTableBytes)
// Insert the type values.
Assignments.push_back(Value);
LSDAEncoding.push_back(Assignments.size());
BytesRead += Size;
InLSDA = (LSDASize == 0 || BytesRead < LSDASize);
}
MCAsmStreamer::EmitValueImpl(Value, Size, AddrSpace);
if (LSDASize != 0 && !InLSDA)
EmitEHTableDescription();
}
void MCLSDADecoderAsmStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace) {
if (InLSDA && ReadingULEB128) {
for (uint64_t I = NumBytes; I != 0; --I)
ULEB128Value.push_back(FillValue);
BytesRead += NumBytes;
if ((FillValue & 0x80) == 0) {
uint64_t Val = GetULEB128Value(ULEB128Value);
LSDAEncoding.push_back(Val);
ULEB128Value.clear();
ReadingULEB128 = false;
if (LSDAEncoding.size() == 4)
// The fourth value tells us where the bottom of the type table is.
LSDASize = BytesRead + LSDAEncoding[3];
else if (LSDAEncoding.size() == 6)
// The sixth value tells us where the start of the action table is.
ActionTableBytes = BytesRead;
}
}
MCAsmStreamer::EmitFill(NumBytes, FillValue, AddrSpace);
}
/// EmitEHTableDescription - Emit a human readable version of the LSDA.
void MCLSDADecoderAsmStreamer::EmitEHTableDescription() {
assert(LSDAEncoding.size() > 6 && "Invalid LSDA!");
// Emit header information.
StringRef C = MAI.getCommentString();
#define CMT OS << C << ' '
CMT << "Exception Handling Table: " << LSDASymbol->getName() << "\n";
CMT << " @LPStart Encoding: " << DecodeDWARFEncoding(LSDAEncoding[0]) << "\n";
if (LSDAEncoding[1])
CMT << "@LPStart: 0x" << LSDAEncoding[1] << "\n";
CMT << " @TType Encoding: " << DecodeDWARFEncoding(LSDAEncoding[2]) << "\n";
CMT << " @TType Base: " << LSDAEncoding[3] << " bytes\n";
CMT << "@CallSite Encoding: " << DecodeDWARFEncoding(LSDAEncoding[4]) << "\n";
CMT << "@Action Table Size: " << LSDAEncoding[5] << " bytes\n\n";
bool isSjLjEH = (MAI.getExceptionHandlingType() == ExceptionHandling::ARM);
int64_t CallSiteTableSize = LSDAEncoding[5];
unsigned CallSiteEntrySize;
if (!isSjLjEH)
CallSiteEntrySize = 4 + // Region start.
4 + // Region end.
4 + // Landing pad.
1; // TType index.
else
CallSiteEntrySize = 1 + // Call index.
1 + // Landing pad.
1; // TType index.
unsigned NumEntries = CallSiteTableSize / CallSiteEntrySize;
assert(CallSiteTableSize % CallSiteEntrySize == 0 &&
"The action table size is not a multiple of what it should be!");
unsigned TTypeIdx = 5 + // Action table size index.
(isSjLjEH ? 3 : 4) * NumEntries + // Action table entries.
1; // Just because.
// Emit the action table.
unsigned Action = 1;
for (unsigned I = 6; I < TTypeIdx; ) {
CMT << "Action " << Action++ << ":\n";
// The beginning of the throwing region.
uint64_t Idx = LSDAEncoding[I++];
if (!isSjLjEH) {
CMT << " A throw between "
<< *cast<MCBinaryExpr>(Assignments[Idx - 1])->getLHS() << " and ";
// The end of the throwing region.
Idx = LSDAEncoding[I++];
OS << *cast<MCBinaryExpr>(Assignments[Idx - 1])->getLHS();
} else {
CMT << " A throw from call " << *Assignments[Idx - 1];
}
// The landing pad.
Idx = LSDAEncoding[I++];
if (Idx) {
OS << " jumps to "
<< *cast<MCBinaryExpr>(Assignments[Idx - 1])->getLHS()
<< " on an exception.\n";
} else {
OS << " does not have a landing pad.\n";
++I;
continue;
}
// The index into the action table.
Idx = LSDAEncoding[I++];
if (!Idx) {
CMT << " :cleanup:\n";
continue;
}
// A semi-graphical representation of what the different indexes are in the
// loop below.
//
// Idx - Index into the action table.
// Action - Index into the type table from the type table base.
// Next - Offset from Idx to the next action type.
//
// Idx---.
// |
// v
// [call site table] _1 _2 _3
// TTypeIdx--> .........................
// [action 1] _1 _2
// [action 2] _1 _2
// ...
// [action n] _1 _2
// [type m] ^
// ... |
// [type 1] `---Next
//
int Action = LSDAEncoding[TTypeIdx + Idx - 1];
if ((Action & 0x40) != 0)
// Ignore exception specifications.
continue;
// Emit the types that are caught by this exception.
CMT << " For type(s): ";
for (;;) {
if ((Action & 0x40) != 0)
// Ignore exception specifications.
break;
if (uint64_t Ty = LSDAEncoding[LSDAEncoding.size() - Action]) {
OS << " " << *Assignments[Ty - 1];
// Types can be chained together. Typically, it's a negative offset from
// the current type to a different one in the type table.
int Next = LSDAEncoding[TTypeIdx + Idx];
if (Next == 0)
break;
if ((Next & 0x40) != 0)
Next = (int)(signed char)(Next | 0x80);
Idx += Next + 1;
Action = LSDAEncoding[TTypeIdx + Idx - 1];
continue;
} else {
OS << " :catchall:";
}
break;
}
OS << "\n";
}
OS << "\n";
ResetState();
}
MCStreamer *llvm::createAsmStreamer(MCContext &Context,
formatted_raw_ostream &OS,
bool isVerboseAsm, bool useLoc,
bool useCFI, MCInstPrinter *IP,
MCCodeEmitter *CE, TargetAsmBackend *TAB,
bool ShowInst) {
#if 0
if (isVerboseAsm)
return new MCLSDADecoderAsmStreamer(Context, OS, isVerboseAsm, useLoc,
useCFI, IP, CE, TAB, ShowInst);
#endif
return new MCAsmStreamer(Context, OS, isVerboseAsm, useLoc, useCFI,
IP, CE, TAB, ShowInst);
}